1
|
Ma C, Liang Z, Wang Y, Luo H, Yang X, Yao B, Tu T. p-Hydroxycinnamic Acids: Advancements in Synthetic Biology, Emerging Regulatory Targets in Gut Microbiota Interactions, and Implications for Animal Health. J Nutr 2025; 155:1041-1056. [PMID: 39900184 DOI: 10.1016/j.tjnut.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
p-hydroxycinnamic acids (p-HCAs), a class of natural phenolic acid compounds extracted from plant resources and widely distributed, feature a C6-C3 phenylpropanoid structure. Their antioxidant, anti-inflammatory, and antibacterial activities have shown great potential for applications in food and animal feed. The interactions between p-HCAs and the gut microbiota, as well as their subsequent effects on animal health, have increasingly attracted the attention of researchers. In the context of a greener and safer future, the progress and innovation in biosynthetic technology have occupied a central position in ensuring the safety of food and feed. This review emphasizes the complex mechanisms underlying the interactions between p-HCAs and the gut microbiota, providing a solid explanation for the remarkable bioactivities of p-HCAs and their subsequent impact on animal health. Furthermore, it explores the advancements in the synthetic biology of p-HCAs. This review could aid in a basis for better understanding the underlying interactions between p-HCAs and gut microbiota and animal health.
Collapse
Affiliation(s)
- Chunlai Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ziqi Liang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhang L, Yin Y, Jin S. Gut microbial metabolites: The bridge connecting diet and atherosclerosis, and next-generation targets for dietary interventions. Microbiol Res 2025; 292:128037. [PMID: 39752807 DOI: 10.1016/j.micres.2024.128037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Mounting evidence indicates that gut microbial metabolites are central hubs linking the gut microbiota to atherosclerosis (AS). Gut microbiota enriched with pathobiont bacteria responsible for producing metabolites like trimethylamine N-oxide and phenylacetylglutamine are related to an increased risk of cardiovascular events. Furthermore, gut microbiota enriched with bacteria responsible for producing short-chain fatty acids, indole, and its derivatives, such as indole-3-propionic acid, have demonstrated AS-protective effects. This study described AS-related gut microbial composition and how microbial metabolites affect AS. Summary findings revealed gut microbiota and their metabolites-targeted diets could benefit AS treatment. In conclusion, dietary interventions centered on the gut microbiota represent a promising strategy for AS treatment, and understanding diet-microbiota interactions could potentially be devoted to developing novel anti-AS therapies.
Collapse
Affiliation(s)
- Liyin Zhang
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Yao Yin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, Hubei 430077, China.
| |
Collapse
|
3
|
Thorakkattu P, Jain S, Sivapragasam N, Maurya A, Tiwari S, Dwivedy AK, Koirala P, Nirmal N. Edible Berries-An Update on Nutritional Composition and Health Benefits-Part II. Curr Nutr Rep 2025; 14:10. [PMID: 39753836 DOI: 10.1007/s13668-024-00608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW Berries are a great source of fiber, polyunsaturated fatty acids, and beneficial secondary metabolites (polyphenols). Various phytochemicals present in berries (glycosidic-linked flavonoids, anthocyanins, etc.) provide potential health benefits to consumers. Berries are known as high antioxidant food which provides certain cellular and molecular protection thereby lower rates of obesity and chronic disease risk. Molecular-level mechanisms protect a cell, while cellular mechanism considers all molecular units. For example, polyphenols found in blueberries have the potential to significantly reduce adipogenesis. Therefore, in continuation with part I, this review part II summarizes recent updates on the nutritional composition and biological activities of caperberry, chokeberry, cloudberry, cranberry, elderberry, gooseberry, goji berry, and lingonberry. RECENT FINDINGS These berries contain higher amounts of dietary fiber, protein, polyphenols, vitamins, minerals, and lipids. Besides, their antioxidant and anti-inflammatory activities, these berries are reported for eye health, brain health, cardiovascular health, anti-diabetic, etc. The consumption of a summarized group of berries could be more beneficial for eye health, mental health, and metabolic health thereby enhancing the well-being of the consumers.
Collapse
Affiliation(s)
- Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Surangna Jain
- Department of Food Science, University of Tennessee, Knoxville, USA
| | - Nilushni Sivapragasam
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shikha Tiwari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
5
|
Wan H, Lu Y, Yang J, Wan H, Yu L, Fang N, He Y, Li C. Naoxintong capsule remodels gut microbiota and ameliorates early-stage atherosclerosis in apolipoprotein E-deficient mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155662. [PMID: 38728917 DOI: 10.1016/j.phymed.2024.155662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/22/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Naoxintong capsule (NXT) is a compound traditional Chinese medicine prescription with demonstrated effect for the treatment of cardiovascular and cerebrovascular diseases including atherosclerosis (AS). However, the pharmacological mechanisms of NXT in ameliorating early-stage AS are still unclear, especially regarding the role of gut microbiota. PURPOSE This study is aiming to evaluate the therapeutic effect of NXT against early-stage AS, and further illustrate the potential correlations among AS, gut microbiota, and NXT. METHODS Thirty-two male ApoE knockout mice (C57BL/6 background) were fed with a high cholesterol diet (HCD) for 4 weeks to establish an early-stage AS model. NXT in two different dosages and simvastatin (Simv) were than administrated for another 8 weeks. Lipid metabolism indicators and inflammation levels were measured with corresponding assay kits. Changes in blood vessels, liver lesions, and intestinal barrier proteins were evaluated with different staining methods. Furthermore, the gut microbiota structure was analyzed using 16S rRNA sequencing technology, while GC-MS was utilized to determine the fecal contents of short-chain fatty acids (SCFAs). RESULTS Administration of NXT significantly ameliorated obesity, hyperlipidemia, systemic inflammation, vasculopathy, liver injury, and intestinal barrier disorder in AS mice. Administration of NXT also significantly regulated the gut microbiota disturbance and increased the total contents of fecal SCFAs in AS mice. Furthermore, acetic acid content and the relative abundance of Faecalibacterium in feces were proposed as potential therapeutic biomarkers of NXT for AS treatment as indicated via the correlation analysis. CONCLUSION This study demonstrated that NXT could effectively treat early-stage AS induced by HCD in mice. NXT regulated the gut microbiota and metabolites, maintained intestinal homeostasis, and improved the systemic inflammatory response. These findings may provide robust experimental support for the clinical use of NXT for AS treatment.
Collapse
Affiliation(s)
- Haofang Wan
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Yihang Lu
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Jiehong Yang
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Haitong Wan
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Li Yu
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Ningji Fang
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Yu He
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Chang Li
- School of Pharmaceutical Sciences, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
6
|
Li C, Cao J, Chen Z, Su Z, Bao H, Li X, Liu L, Xiao Z, Duan J, Zhou T, Xu F. Gastrodin alleviates the deterioration of depressive-like behavior and glucolipid metabolism promoted by chronic stress in type 2 diabetic mice. Eur J Pharmacol 2024; 973:176582. [PMID: 38642668 DOI: 10.1016/j.ejphar.2024.176582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
The growing burden of psychological stress among diabetes patients has contributed to a rising incidence of depression within this population. It is of significant importance to conduct research on the impact of stress on diabetes patients and to explore potential pharmacological interventions to counteract the stress-induced exacerbation of their condition. Gastrodin is a low molecular weight bioactive compound extracted from the rhizome of Gastrodiae elata Blume, and it may be a preventive strategy for diabetes and a novel treatment for depression symptoms. However, its relevant pharmacological mechanisms for protecting against the impacts of psychological stress in diabetic patients are unclear. In this study, we performed 5 weeks CUMS intervention and simultaneously administered gastrodin (140 mg/kg, once daily) on T2DM mice, to investigate the potential protective effects of gastrodin. The protective effect of gastrodin was evaluated by behavioral tests, biochemical analysis, histopathological examination, RT-qPCR and gut microbiota analysis. We found that the depressive-like behavior and glucolipid metabolism could be deteriorated by chronic stress in type 2 diabetic mice, while gastrodin showed a protective effect against these exacerbations by regulating HPA hormones, activating FXR and Cyp7a1, reducing inflammatory and oxidative stress responses, and regulating ileal gut microbiota abundance. Gastrodin might be a potential therapeutic agent for mitigating the deterioration of diabetes conditions due to chronic stress.
Collapse
MESH Headings
- Animals
- Benzyl Alcohols/pharmacology
- Benzyl Alcohols/therapeutic use
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/psychology
- Depression/drug therapy
- Depression/metabolism
- Male
- Mice
- Stress, Psychological/drug therapy
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Gastrointestinal Microbiome/drug effects
- Behavior, Animal/drug effects
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Mice, Inbred C57BL
- Oxidative Stress/drug effects
- Chronic Disease
Collapse
Affiliation(s)
- Canye Li
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Jinming Cao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zhicong Chen
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zuanjun Su
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Huimin Bao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Xue Li
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Luping Liu
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zhijun Xiao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Jingjing Duan
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Ting Zhou
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China.
| | - Feng Xu
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China.
| |
Collapse
|
7
|
Zheng S, Liu Z, Liu H, Lim JY, Li DWH, Zhang S, Luo F, Wang X, Sun C, Tang R, Zheng W, Xie Q. Research development on gut microbiota and vulnerable atherosclerotic plaque. Heliyon 2024; 10:e25186. [PMID: 38384514 PMCID: PMC10878880 DOI: 10.1016/j.heliyon.2024.e25186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The relationship between gut microbiota and its metabolites with cardiovascular disease (CVD) has been proven. In this review, we aim to conclude the potential mechanism of gut microbiota and its metabolites on inducing the formation of vulnerable atherosclerotic plaque, and to discuss the effect of intestinal metabolites, including trimethylamine-N-oxide (TMAO), lipopolysaccharide (LPS), phenylacetylglutamine (PAG), short-chain fatty acids (SCFAs) on plaque stability. Finally, we include the impact of gut microbiota and its metabolites on plaque stability, to propose a new therapeutic direction for coronary heart disease. Gut microbiota regulation intervenes the progress of arteriosclerosis, especially on coronary atherosclerosis, by avoiding or reducing the formation of vulnerable plaque, to lower the morbidity rate of myocardial infarction.
Collapse
Affiliation(s)
- Shujiao Zheng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Zuheng Liu
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyue Liu
- Xiamen Key Laboratory of Genetic Testing, The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jie Ying Lim
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dolly Wong Hui Li
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shaofeng Zhang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fang Luo
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiujing Wang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changqing Sun
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rong Tang
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Wuyang Zheng
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qiang Xie
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Zhang P, Fang Z, Zhao M, Yi B, Huang Y, Yang H, Guo N, Zhao C. Ethanol extract of Pueraria lobata improve acute myocardial infarction in rats via regulating gut microbiota and bile acid metabolism. Phytother Res 2023; 37:5932-5946. [PMID: 37697496 DOI: 10.1002/ptr.8005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND AND AIM Acute myocardial infarction (AMI) is a multifactorial disease with high mortality rate worldwide. Ethanol extract of Pueraria lobata (EEPL) has been widely used in treating cardiovascular diseases in China. This study aimed to explore the underlying therapeutic mechanism of EEPL in AMI rats. EXPERIMENTAL PROCEDURE We first evaluated the anti-AMI efficacy of EEPL through immunohistochemistry staining and biochemical indexes. Then, UPLC-MS/MS, 16S rDNA, and shotgun metagenomic sequencing were used to analyze the alterations in bile acid metabolism and intestinal flora. Finally, the influence of EEPL on ilem bile acid metabolism, related enzymes expression, and transporter proteins expression in rats were verified by mass spectrometry image and ELISA. KEY RESULTS The results showed that EEPL can reduce cardiac impairment in AMI rats. Besides, EEPL effectively increased bile acid levels and regulated gut microbiota disturbance in AMI rats via increasing CYP7A1 expression and restoring intestinal microbiota diversity, separately. Moreover, it can increase bile acids reabsorption and fecal excretion through inhibiting FXR-FGF15 signaling pathway and increasing OST-α expression, which associated with Lachnoclostridium. CONCLUSIONS AND IMPLICATIONS Our findings demonstrated that EEPL alleviated AMI partially by remediating intestinal dysbiosis and promoting bile acid biosynthesis, which provided new targets for AMI treatment.
Collapse
Affiliation(s)
- Pin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Bojiao Yi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihe Huang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
9
|
Hemmati M, Kashanipoor S, Mazaheri P, Alibabaei F, Babaeizad A, Asli S, Mohammadi S, Gorgin AH, Ghods K, Yousefi B, Eslami M. Importance of gut microbiota metabolites in the development of cardiovascular diseases (CVD). Life Sci 2023; 329:121947. [PMID: 37463653 DOI: 10.1016/j.lfs.2023.121947] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
Cardiovascular disease (CVD) remains the most common cause of death worldwide and has become a public health concern. The proven notable risk factors for CVD are atherosclerosis, hypertension, diabetes, dyslipidemia, inflammation, and some genetic defects. However, research has shown a correlation between metabolic health, gut microbiota, and dietary risk factors. The gut microbiota makes an important contribution to human functional metabolic pathways by contributing enzymes that are not encoded by the human genome, for instance, the breakdown of polysaccharides, polyphenols and vitamins synthesis. TMAO and SCFAs, human gut microbiota compounds, have respective immunomodulatory and pro-inflammatory effects. Choline and l-carnitine are abundant in high-fat diets and are transformed into TMA by gut bacteria. The liver's phase of metabolism then changes TMA into TMAO. In turn, TMAO promotes the activation of macrophages, damages vascular endothelium, and results in CVD-however, dysbiosis decreases SCFAs and bile acids, which raises intestinal permeability. Congestion in the portal vein, a drop in cardiac output, a reduction in intestinal perfusion, and intestinal leakage are all caused by heart failure. These factors induce systemic inflammation by increasing intestinal leakage. By raising CRP and pro-inflammatory reactions, human gut dysbiosis and elevated TMAO levels promote the development of arterial plaque, hasten the beginning of atherosclerosis, and raise the risk of CAD. A healthy symbiosis between the gut microbiota and host is a key factor in shaping the biochemical profile of the diet, therefore which are crucial for maintaining the intestinal epithelial barrier, growing mucosa, reducing inflammation, and controlling blood pressure.
Collapse
Affiliation(s)
- Maryam Hemmati
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Payman Mazaheri
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnaz Alibabaei
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Shima Asli
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sina Mohammadi
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amir Hosein Gorgin
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Kamran Ghods
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
10
|
Ciccone MM, Lepera ME, Guaricci AI, Forleo C, Cafiero C, Colella M, Palmirotta R, Santacroce L. Might Gut Microbiota Be a Target for a Personalized Therapeutic Approach in Patients Affected by Atherosclerosis Disease? J Pers Med 2023; 13:1360. [PMID: 37763128 PMCID: PMC10532785 DOI: 10.3390/jpm13091360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, the increasing number of studies on the relationship between the gut microbiota and atherosclerosis have led to significant interest in this subject. The gut microbiota, its metabolites (metabolome), such as TMAO, and gut dysbiosis play an important role in the development of atherosclerosis. Furthermore, inflammation, originating from the intestinal tract, adds yet another mechanism by which the human ecosystem is disrupted, resulting in the manifestation of metabolic diseases and, by extension, cardiovascular diseases. The scientific community must understand and elucidate these mechanisms in depth, to gain a better understanding of the relationship between atherosclerosis and the gut microbiome and to promote the development of new therapeutic targets in the coming years. This review aims to present the knowledge acquired so far, to trigger others to further investigate this intriguing topic.
Collapse
Affiliation(s)
- Marco Matteo Ciccone
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Mario Erminio Lepera
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Cinzia Forleo
- Cardiology Unit, Interdisciplinary Department of Medicine, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.M.C.); (M.E.L.); (A.I.G.); (C.F.)
| | - Concetta Cafiero
- Area of Molecular Pathology, Anatomic Pathology Unit, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy;
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Raffele Palmirotta
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (M.C.); (L.S.)
| |
Collapse
|
11
|
Polysaccharide extract from Rosa laevigata fruit attenuates inflammatory obesity by targeting redox balance and gut interface in high-fat diet-fed rats. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Centner AM, Khalili L, Ukhanov V, Kadyan S, Nagpal R, Salazar G. The Role of Phytochemicals and Gut Microbiome in Atherosclerosis in Preclinical Mouse Models. Nutrients 2023; 15:1212. [PMID: 36904211 PMCID: PMC10005405 DOI: 10.3390/nu15051212] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Gut microbiome alterations have recently been linked to many chronic conditions including cardiovascular disease (CVD). There is an interplay between diet and the resident gut microbiome, where the food eaten affects populations of certain microbes. This is important, as different microbes are associated with various pathologies, as they can produce compounds that are disease-promoting or disease-protecting. The Western diet negatively affects the host gut microbiome, ultimately resulting in heightened arterial inflammation and cell phenotype changes as well as plaque accumulation in the arteries. Nutritional interventions including whole foods rich in fiber and phytochemicals as well as isolated compounds including polyphenols and traditional medicinal plants show promise in positively influencing the host gut microbiome to alleviate atherosclerosis. This review investigates the efficacy of a vast array of foods and phytochemicals on host gut microbes and atherosclerotic burden in mice. Reduction in plaque by interventions was associated with increases in bacterial diversity, reduction in the Firmicutes/Bacteroidetes (F/B) ratio, and upregulation of Akkermansia. Upregulation in CYP7 isoform in the liver, ABC transporters, bile acid excretion, and the level of acetic acid, propionic acid, and butyric acid were also noted in several studies reducing plaque. These changes were also associated with attenuated inflammation and oxidative stress. In conclusion, an increase in the abundance of Akkermansia with diets rich in polyphenols, fiber, and grains is likely to reduce plaque burden in patients suffering from CVD.
Collapse
Affiliation(s)
- Ann M. Centner
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Leila Khalili
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir Ukhanov
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
13
|
Khalili L, Centner AM, Salazar G. Effects of Berries, Phytochemicals, and Probiotics on Atherosclerosis through Gut Microbiota Modification: A Meta-Analysis of Animal Studies. Int J Mol Sci 2023; 24:ijms24043084. [PMID: 36834497 PMCID: PMC9960548 DOI: 10.3390/ijms24043084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Atherosclerosis is a major cause of death and disability. The beneficial effects of phytochemicals and probiotics on atherosclerosis have gained significant interest since these functional foods can improve inflammation, oxidative stress, and microbiome dysbiosis. The direct effect of the microbiome in atherosclerosis, however, needs further elucidation. The objective of this work was to investigate the effects of polyphenols, alkaloids, and probiotics on atherosclerosis using a meta-analysis of studies with mouse models of atherosclerosis. Identification of eligible studies was conducted through searches on PubMed, Embase, Web of Science, and Science Direct until November 2022. The results showed that phytochemicals reduced atherosclerosis, which was significant in male mice, but not in females. Probiotics, on the other hand, showed significant reductions in plaque in both sexes. Berries and phytochemicals modulated gut microbial composition by reducing the Firmicutes/Bacteroidetes (F/B) ratio and by upregulating health-promoting bacteria, including Akkermansia muciniphila. This analysis suggests that phytochemicals and probiotics can reduce atherosclerosis in animal models, with a potentially greater effect on male animals. Thus, consumption of functional foods rich in phytochemicals as well as probiotics are viable interventions to improve gut health and reduce plaque burden in patients suffering from cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Leila Khalili
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Ann Marie Centner
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
- Correspondence:
| |
Collapse
|
14
|
Yu J, Sun H, Yang Y, Yan Y. Sesamolin Alleviates Nonalcoholic Fatty Liver Disease through Modulating Gut Microbiota and Metabolites in High-Fat and High-Fructose Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232213853. [PMID: 36430326 PMCID: PMC9694049 DOI: 10.3390/ijms232213853] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major public health problem. The effects of sesamolin on obesity-associated NAFLD and its possible mechanism are still poorly understood. The present study investigated the effects of sesamolin on NAFLD and changes in gut microbiota and serum metabolites in high-fat and high-fructose (HF-HF) diet-fed mice. Mice with NAFLD were treated with or without sesamolin. Sesamolin effectively suppressed obesity-associated metabolic disorder, attenuated hepatic steatosis and the infiltration of inflammatory cells, and decreased levels of hepatic proinflammatory cytokines. Sesamolin also altered the composition of gut microbiota at the genus level. Additionally, differential serum metabolite biomarkers identified in an untargeted metabolomics analysis showed that sesamolin changed the levels of metabolites and influenced metabolomics pathways including caffeine metabolism, steroid hormone biosynthesis, and cysteine and methionine metabolism. Changes in metabolite biomarkers and the abundances of Faecalibaculum, Lachnoclostridium, Mucispirillum, Allobaculum, and Bacteroides are highly correlated with those factors involved in the progression of NAFLD. These results are important in deciphering new mechanisms by which changes in bacteria and metabolites in sesamolin treatment might be associated with the alleviation of obesity-associated NAFLD in HF-HF diet-fed mice. Thus, sesamolin may be a potential compound for obesity-associated NAFLD treatment.
Collapse
|
15
|
Long D, Mao C, Zhang X, Liu Y, Shangguan X, Zou M, Zhu Y, Wang X. Coronary heart disease and gut microbiota: A bibliometric and visual analysis from 2002 to 2022. Front Cardiovasc Med 2022; 9:949859. [PMID: 36158832 PMCID: PMC9493042 DOI: 10.3389/fcvm.2022.949859] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background Existing studies have indicated that gut microbiota is closely related to the occurrence and development of coronary heart disease(CHD). Gut microbiota and its metabolites may be important diagnostic markers for CHD in the future and are expected to become new targets for the prevention and treatment of CHD. However, the current studies exploring the link between CHD and gut microbiota are miscellaneous and poorly targeted, without bibliometric analysis available. Objective The purpose of this research was to perform a bibliometric and visual analysis of published papers on the relationship between CHD and gut microbiota. The study also sought to identify principal authors, institutions, and countries to analyze the research status and trends of gut microbiota research in the field of CHD. Methods The Web of Science Core Collection (WoSCC) database was searched for publications on CHD and gut microbiota between 2002 and 2022. CiteSpace 5.8. R1, VOSviewer 1.6.16, and Microsoft Excel 2019 software tools were utilized to perform this bibliometric analysis and visualization. Results There were 457 qualified publications found in total, with the annual number of publications increasing. The United States dominated in this field. Hazen, Stanley l was the author of the most papers. Cleveland Clinic published the most papers of any institution. The six main clusters’ specific characteristics were discovered through analysis of the co-occurrence of keywords: inflammation, diet, trimethylamine n-oxide, metabolism, cardiovascular disease, and myocardial infarction. Newly emerging research has focused predominantly on gut microbiota metabolites and recent strategies for intervention in coronary atherosclerosis. Conclusion These results provided a useful perspective on current research and future prospects for the research on the link between CHD and gut microbiota, which may help researchers to select suitable collaborators and facilitate their research to elucidate the underlying molecular mechanisms of CHD, including the causes, prevention, and treatment.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Chenhan Mao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyue Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaxuan Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xueli Shangguan
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Menglong Zou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Ying Zhu,
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Xindong Wang,
| |
Collapse
|
16
|
Liu J, Hefni ME, Witthöft CM, Bergström M, Burleigh S, Nyman M, Hållenius F. On the effect of flavonoids and dietary fibre in lingonberries on atherosclerotic plaques, lipid profiles and gut microbiota composition in Apoe-/- mice. Int J Food Sci Nutr 2022; 73:1080-1090. [PMID: 35930435 DOI: 10.1080/09637486.2022.2106358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
It has not been clarified whether the anti-atherosclerotic effect of lingonberry can be ascribed to its content of flavonoids or dietary fibre or both. The aim of this study was to evaluate the metabolic effects of whole lingonberries compared with isolated flavonoid and fibre fractions on atherosclerotic plaques, plasma lipid profiles, gut microbiota and microbiota-dependent metabolites in an Apoe-/- mouse model. Mice fed whole lingonberries showed the lowest amount of atherosclerotic plaques, while mice fed the fibre fraction had the highest formation of caecal butyric acid. Flavonoids, rather than dietary fibre, were suggested to be the components that favour proliferation of Akkermansia, as judged by the lowest abundance of this bacterium in mice fed the fibre fraction. All groups fed lingonberry diets had both, lower Firmicutes/Bacteroidetes ratios and creatinine concentrations, compared with the control. To conclude, different components in lingonberries are associated with different physiological effects in Apoe-/- mice.
Collapse
Affiliation(s)
- Jiyun Liu
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Mohammed E Hefni
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden.,Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Cornelia M Witthöft
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Maria Bergström
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, Kalmar, Sweden
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling Atherosclerosis via Selected Nutrition. Int J Mol Sci 2022; 23:8233. [PMID: 35897799 PMCID: PMC9368664 DOI: 10.3390/ijms23158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.
Collapse
Affiliation(s)
- Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Applied Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia;
| |
Collapse
|
18
|
Huang F, Marungruang N, Kostiuchenko O, Kravchenko N, Burleigh S, Prykhodko O, Hållenius FF, Heyman-Lindén L. Identification of Nordic Berries with Beneficial Effects on Cognitive Outcomes and Gut Microbiota in High-Fat-Fed Middle-Aged C57BL/6J Mice. Nutrients 2022; 14:2734. [PMID: 35807915 PMCID: PMC9269296 DOI: 10.3390/nu14132734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
High-fat diets are associated with neuronal and memory dysfunction. Berries may be useful in improving age-related memory deficits in humans, as well as in mice receiving high-fat diets. Emerging research has also demonstrated that brain health and cognitive function may be related to the dynamic changes in the gut microbiota. In this study, the impact of Nordic berries on the brain and the gut microbiota was investigated in middle-aged C57BL/6J mice. The mice were fed high-fat diets (60%E fat) supplemented with freeze-dried powder (6% dwb) of bilberry, lingonberry, cloudberry, blueberry, blackcurrant, and sea buckthorn for 4 months. The results suggest that supplementation with bilberry, blackcurrant, blueberry, lingonberry, and (to some extent) cloudberry has beneficial effects on spatial cognition, as seen by the enhanced performance following the T-maze alternation test, as well as a greater proportion of DCX-expressing cells with prolongation in hippocampus. Furthermore, the proportion of the mucosa-associated symbiotic bacteria Akkermansia muciniphila increased by 4-14 times in the cecal microbiota of mice fed diets supplemented with lingonberry, bilberry, sea buckthorn, and blueberry. These findings demonstrate the potential of Nordic berries to preserve memory and cognitive function, and to induce alterations of the gut microbiota composition.
Collapse
Affiliation(s)
- Fang Huang
- Division of Biotechnology, Department of Chemistry, Lund University, 221 00 Lund, Sweden
- Aventure AB, Scheelevägen 22, 223 63 Lund, Sweden
| | | | - Olha Kostiuchenko
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
- Department of Cytology, Bogomoletz Institute of Physiology, 010 24 Kyiv, Ukraine
| | - Nadiia Kravchenko
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
- Department of Cytology, Bogomoletz Institute of Physiology, 010 24 Kyiv, Ukraine
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
| | - Frida Fåk Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, 221 00 Lund, Sweden; (O.K.); (N.K.); (S.B.); (O.P.); (F.F.H.)
| | - Lovisa Heyman-Lindén
- Berry Lab AB, Scheelevägen 22, 223 63 Lund, Sweden; (N.M.); (L.H.-L.)
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
19
|
Bouyahya A, Omari NE, EL Hachlafi N, Jemly ME, Hakkour M, Balahbib A, El Menyiy N, Bakrim S, Naceiri Mrabti H, Khouchlaa A, Mahomoodally MF, Catauro M, Montesano D, Zengin G. Chemical Compounds of Berry-Derived Polyphenols and Their Effects on Gut Microbiota, Inflammation, and Cancer. Molecules 2022; 27:3286. [PMID: 35630763 PMCID: PMC9146061 DOI: 10.3390/molecules27103286] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/27/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
Berry-derived polyphenols are bioactive compounds synthesized and secreted by several berry fruits. These polyphenols feature a diversity of chemical compounds, including phenolic acids and flavonoids. Here, we report the beneficial health effects of berry-derived polyphenols and their therapeutical application on gut-microbiota-related diseases, including inflammation and cancer. Pharmacokinetic investigations have confirmed the absorption, availability, and metabolism of berry-derived polyphenols. In vitro and in vivo tests, as well as clinical trials, showed that berry-derived polyphenols can positively modulate the gut microbiota, inhibiting inflammation and cancer development. Indeed, these compounds inhibit the growth of pathogenic bacteria and also promote beneficial bacteria. Moreover, berry-derived polyphenols exhibit therapeutic effects against different gut-microbiota-related disorders such as inflammation, cancer, and metabolic disorders. Moreover, these polyphenols can manage the inflammation via various mechanisms, in particular the inhibition of the transcriptional factor Nf-κB. Berry-derived polyphenols have also shown remarkable effects on different types of cancer, including colorectal, breast, esophageal, and prostate cancer. Moreover, certain metabolic disorders such as diabetes and atherosclerosis were also managed by berry-derived polyphenols through different mechanisms. These data showed that polyphenols from berries are a promising source of bioactive compounds capable of modulating the intestinal microbiota, and therefore managing cancer and associated metabolic diseases. However, further investigations should be carried out to determine the mechanisms of action of berry-derived polyphenol bioactive compounds to validate their safety and examinate their clinical uses.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco;
| | - Naoufal EL Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30003, Morocco;
| | - Meryem El Jemly
- Faculty of Pharmacy, University Mohammed VI for Health Science, Casablanca 82403, Morocco;
| | - Maryam Hakkour
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (M.H.); (A.B.)
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Saad Bakrim
- Molecular Engineering, Valorization and Environment Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco;
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10000, Morocco;
| | - Aya Khouchlaa
- Laboratory of Biochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| |
Collapse
|
20
|
Qi Y, Liu W, Yan X, Zhang C, Zhang C, Liu L, Zheng X, Suo M, Ti Y, Ni M, Zhang M, Bu P. Tongxinluo May Alleviate Inflammation and Improve the Stability of Atherosclerotic Plaques by Changing the Intestinal Flora. Front Pharmacol 2022; 13:805266. [PMID: 35431939 PMCID: PMC9011338 DOI: 10.3389/fphar.2022.805266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Intestinal flora plays an important role in atherosclerosis. Tongxinluo, as a multi-target Chinese medicine to improve atherosclerosis, whether it can improve atherosclerosis by affecting the intestinal flora is worth exploring. We established a vulnerable plaque model of atherosclerosis in New Zealand white rabbits by high cholesterol diet and balloon injury (HCB), and performed Tongxinluo intervention. We detected the level of inflammation by immunohistochemistry, Western Blot, and ELISA, analyzed plaque characteristics by calculating the vulnerability index, and analyzed the changes of gut microbiota and metabolites by 16S rRNA gene sequencing and untargeted metabolomic sequencing. The results showed that Tongxinluo intervention improved plaque stability, reduced inflammatory response, inhibited NLRP3 inflammatory pathway, increased the relative abundance of beneficial bacteria such as Alistipes which reduced by HCB, and increased the content of beneficial metabolites such as trans-ferulic acid in feces. Through correlation analysis, we found that some metabolites were significantly correlated with some bacteria and some inflammatory factors. In particular, the metabolite trans-ferulic acid was also significantly positively correlated with plaque stability. Our further studies showed that trans-ferulic acid could also inhibit the NLRP3 inflammatory pathway. In conclusion, Tongxinluo can improve plaque stability and reduce inflammation in atherosclerotic rabbits, which may be achieved by modulating intestinal flora and intestinal metabolism. Our study provides new views for the role of Tongxinluo in improving atherosclerotic vulnerable plaque, which has important clinical significance.
Collapse
|
21
|
Anto L, Blesso CN. Interplay Between Diet, the Gut Microbiome, and Atherosclerosis: Role of Dysbiosis and Microbial Metabolites on Inflammation and Disordered Lipid Metabolism. J Nutr Biochem 2022; 105:108991. [DOI: 10.1016/j.jnutbio.2022.108991] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
|
22
|
Molinari R, Merendino N, Costantini L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: State-of-the-art. Biofactors 2022; 48:255-273. [PMID: 34397132 PMCID: PMC9291298 DOI: 10.1002/biof.1772] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
The human intestine contains an intricate ecological community of bacteria, referred as the gut microbiota, which plays a pivotal role in the host homeostasis. Multiple factors could interfere with this delicate balance, thus causing a disruption of the microbiota equilibrium, the so called dysbiosis. Gut microbiota dysbiosis is involved in gastrointestinal and extra-intestinal metabolic diseases, as obesity and diabetes. Polyphenols, present in a broad range of plant foods, are known to have numerous health benefits; however, their beneficial effect on pre-existing dysbiosis is less clear. Indeed, in most of the conducted animal studies the administration of polyphenols or foods rich in polyphenols occurred simultaneously with the induction of the pathology to be examined, then analyzing the preventive action of the polyphenols on the onset of dysbiosis, while very low studies analyzed the modulatory activity of polyphenols on the pre-existing dysbiosis. For this reason, the present review aims to update the current information about the modulation of the pre-established gut microbiota dysbiosis by dietary phenolic compounds in a broad range of disorders in both animal studies and human trials, distinguishing the preventive or treatment approaches in animal studies. The described studies highlight that dietary polyphenols, exerting prebiotic-like effects, can modulate the pre-existing dysbiosis stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in both animal models and humans. Anyway, most of the conducted studies are related to obesity and metabolic syndrome, and so further studies are needed to understand this polyphenols' ability in relation to other pathologies.
Collapse
Affiliation(s)
- Romina Molinari
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Nicolò Merendino
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| | - Lara Costantini
- Department of Ecological and Biological sciences (DEB)Tuscia University, Largo dell'Università sncViterboItaly
| |
Collapse
|
23
|
Liu J, Hefni ME, Witthöft CM, Bergström M, Burleigh S, Nyman M, Hållenius F. Effects of Whole Brown Bean and Its Isolated Fiber Fraction on Plasma Lipid Profile, Atherosclerosis, Gut Microbiota, and Microbiota-Dependent Metabolites in Apoe-/- Mice. Nutrients 2022; 14:nu14050937. [PMID: 35267913 PMCID: PMC8912725 DOI: 10.3390/nu14050937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 12/21/2022] Open
Abstract
The health benefits of bean consumption are widely recognized and are largely attributed to the dietary fiber content. This study investigated and compared the effects of whole brown beans and an isolated bean dietary fiber fraction on the plasma lipid profile, atherosclerotic plaque amount, gut microbiota, and microbiota-dependent metabolites (cecal short-chain fatty acids (SCFAs) and plasma methylamines) in Apoe−/− mice fed high fat diets for 10.5 weeks. The results showed that both whole bean and the isolated fiber fraction had a tendency to lower atherosclerotic plaque amount, but not plasma lipid concentration. The whole bean diet led to a significantly higher diversity of gut microbiota compared with the high fat diet. Both bean diets resulted in a lower Firmicutes/Bacteroidetes ratio, higher relative abundance of unclassified S24-7, Prevotella, Bifidobacterium, and unclassified Clostridiales, and lower abundance of Lactobacillus. Both bean diets resulted in higher formation of all cecal SCFAs (higher proportion of propionic acid and lower proportion of acetic acid) and higher plasma trimethylamine N-oxide concentrations compared with the high fat diet. Whole beans and the isolated fiber fraction exerted similar positive effects on atherosclerotic plaque amount, gut microbiota, and cecal SCFAs in Apoe−/− mice compared with the control diets.
Collapse
Affiliation(s)
- Jiyun Liu
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Correspondence: ; Tel.: +46-072-451-6957
| | - Mohammed E. Hefni
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
- Food Industries Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt
| | - Cornelia M. Witthöft
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Maria Bergström
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnaeus University, 39231 Kalmar, Sweden; (M.E.H.); (C.M.W.); (M.B.)
| | - Stephen Burleigh
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Margareta Nyman
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, 22100 Lund, Sweden; (S.B.); (M.N.); (F.H.)
| |
Collapse
|
24
|
Shepilov D, Kovalenko T, Osadchenko I, Smozhanyk K, Marungruang N, Ushakova G, Muraviova D, Hållenius F, Prykhodko O, Skibo G. Varying Dietary Component Ratios and Lingonberry Supplementation May Affect the Hippocampal Structure of ApoE–/– Mice. Front Nutr 2022; 9:565051. [PMID: 35252286 PMCID: PMC8890029 DOI: 10.3389/fnut.2022.565051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 01/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective This study aimed to investigate and compare the morphological and biochemical characteristics of the hippocampus and the spatial memory of young adult ApoE–/– mice on a standard chow diet, a low-fat diet (LFD), a high-fat diet (HFD), and an HFD supplemented with lingonberries. Methods Eight-week-old ApoE–/– males were divided into five groups fed standard chow (Control), an LFD (LF), an HFD (HF), and an HFD supplemented with whole lingonberries (HF+WhLB) or the insoluble fraction of lingonberries (HF+InsLB) for 8 weeks. The hippocampal cellular structure was evaluated using light microscopy and immunohistochemistry; biochemical analysis and T-maze test were also performed. Structural synaptic plasticity was assessed using electron microscopy. Results ApoE–/– mice fed an LFD expressed a reduction in the number of intact CA1 pyramidal neurons compared with HF+InsLB animals and the 1.6–3.8-fold higher density of hyperchromic (damaged) hippocampal neurons relative to other groups. The LF group had also morphological and biochemical indications of astrogliosis. Meanwhile, both LFD- and HFD-fed mice demonstrated moderate microglial activation and a decline in synaptic density. The consumption of lingonberry supplements significantly reduced the microglia cell area, elevated the total number of synapses and multiple synapses, and increased postsynaptic density length in the hippocampus of ApoE–/– mice, as compared to an LFD and an HFD without lingonberries. Conclusion Our results suggest that, in contrast to the inclusion of fats in a diet, increased starch amount (an LFD) and reduction of dietary fiber (an LFD/HFD) might be unfavorable for the hippocampal structure of young adult (16-week-old) male ApoE–/– mice. Lingonberries and their insoluble fraction seem to provide a neuroprotective effect on altered synaptic plasticity in ApoE–/– animals. Observed morphological changes in the hippocampus did not result in notable spatial memory decline.
Collapse
Affiliation(s)
- Dmytro Shepilov
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- *Correspondence: Dmytro Shepilov
| | - Tatiana Kovalenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Iryna Osadchenko
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Kateryna Smozhanyk
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Nittaya Marungruang
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Ushakova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Diana Muraviova
- Department of Biochemistry and Physiology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Frida Hållenius
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Olena Prykhodko
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| |
Collapse
|
25
|
Higbee J, Solverson P, Zhu M, Carbonero F. The emerging role of dark berry polyphenols in human health and nutrition. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jerome Higbee
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Patrick Solverson
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Meijun Zhu
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| | - Franck Carbonero
- Nutrition and Exercise Physiology Washington State University ‐ Spokane, Spokane Washington USA
| |
Collapse
|
26
|
Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods 2021; 10:foods10123075. [PMID: 34945630 PMCID: PMC8700881 DOI: 10.3390/foods10123075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a complex heterogeneous microbial community modulated by endogenous and exogenous factors. Among the external causes, nutrition as well as physical activity appear to be potential drivers of microbial diversity, both at the taxonomic and functional level, likely also influencing endocrine system, and acting as endocrine organ itself. To date, clear-cut data regarding which microbial populations are modified, and by which mechanisms are lacking. Moreover, the relationship between the microbial shifts and the metabolic practical potential of the gut microbiota is still unclear. Further research by longitudinal and well-designed studies is needed to investigate whether microbiome manipulation may be an effective tool for improving human health and, also, performance in athletes, and whether these effects may be then extended to the overall health promotion of general populations. In this review, we evaluate and summarize the current knowledge regarding the interaction and cross-talks among hormonal modifications, physical performance, and microbiota content and function.
Collapse
|
27
|
Röhrl C, Steinbauer S, Bauer R, Roitinger E, Otteneder K, Wallner M, Neuhauser C, Schwarzinger B, Schwarzinger C, Stangl H, Iken M, Weghuber J. Aqueous extracts of lingonberry and blackberry leaves identified by high-content screening beneficially act on cholesterol metabolism. Food Funct 2021; 12:10432-10442. [PMID: 34617546 DOI: 10.1039/d1fo01169c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Decreasing circulating low-density lipoprotein (LDL) cholesterol levels leads to decreased risk of cardiovascular diseases. Natural compounds are capable of lowering LDL-cholesterol even on top of lifestyle modification or medication. To identify novel plant-derived compounds to lower plasma LDL cholesterol levels, we performed high-content screening based on the transcriptional activation of the promoter of the LDL receptor (LDLR). The identified hits were thoroughly validated in human hepatic cell lines in terms of increasing LDLR mRNA and protein levels, lowering cellular cholesterol levels and increasing cellular LDL uptake. By means of this incremental validation process in vitro, aqueous extracts prepared from leaves of lingonberries (Vaccinium vitis-idaea) as well as blackberries (Rubus fruticosus) were found to have effects comparable to lovastatin, a prototypic cholesterol-lowering drug. When applied in vivo in mice, both extracts induced subtle increases in hepatic LDLR expression. In addition, a significant increase in high-density lipoprotein (HDL) cholesterol was observed. Taken together, aqueous extracts from lingonberry or blackberry leaves were identified and characterized as strong candidates to provide cardiovascular protection.
Collapse
Affiliation(s)
- Clemens Röhrl
- University of Applied Sciences Upper Austria, Wels, Austria.
| | | | - Raimund Bauer
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna, Austria
| | - Eva Roitinger
- University of Applied Sciences Upper Austria, Wels, Austria.
| | | | - Melanie Wallner
- University of Applied Sciences Upper Austria, Wels, Austria.
| | | | - Bettina Schwarzinger
- University of Applied Sciences Upper Austria, Wels, Austria. .,Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Clemens Schwarzinger
- Johannes Kepler University, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Herbert Stangl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna, Austria
| | | | - Julian Weghuber
- University of Applied Sciences Upper Austria, Wels, Austria. .,Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| |
Collapse
|
28
|
Ryyti R, Pemmari A, Peltola R, Hämäläinen M, Moilanen E. Effects of Lingonberry ( Vaccinium vitis-idaea L.) Supplementation on Hepatic Gene Expression in High-Fat Diet Fed Mice. Nutrients 2021; 13:3693. [PMID: 34835949 PMCID: PMC8623941 DOI: 10.3390/nu13113693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is growing worldwide in association with Western-style diet and increasing obesity. Lingonberry (Vaccinium vitis-idaea L.) is rich in polyphenols and has been shown to attenuate adverse metabolic changes in obese liver. This paper investigated the effects of lingonberry supplementation on hepatic gene expression in high-fat diet induced obesity in a mouse model. C57BL/6N male mice were fed for six weeks with either a high-fat (HF) or low-fat (LF) diet (46% and 10% energy from fat, respectively) or HF diet supplemented with air-dried lingonberry powder (HF + LGB). HF diet induced a major phenotypic change in the liver, predominantly affecting genes involved in inflammation and in glucose and lipid metabolism. Lingonberry supplementation prevented the effect of HF diet on an array of genes (in total on 263 genes) associated particularly with lipid or glucose metabolic process (such as Mogat1, Plin4, Igfbp2), inflammatory/immune response or cell migration (such as Lcn2, Saa1, Saa2, Cxcl14, Gcp1, S100a10) and cell cycle regulation (such as Cdkn1a, Tubb2a, Tubb6). The present results suggest that lingonberry supplementation prevents HF diet-induced adverse changes in the liver that are known to predispose the development of NAFLD and its comorbidities. The findings encourage carrying out human intervention trials to confirm the results, with the aim of recommending the use of lingonberries as a part of healthy diet against obesity and its hepatic and metabolic comorbidities.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Rainer Peltola
- Natural Resources Institute Finland, Bioeconomy and Environment, 96200 Rovaniemi, Finland;
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, 33014 Tampere, Finland; (R.R.); (A.P.); (M.H.)
| |
Collapse
|
29
|
Li Y, Ji X, Wu H, Li X, Zhang H, Tang D. Mechanisms of traditional Chinese medicine in modulating gut microbiota metabolites-mediated lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114207. [PMID: 34000365 DOI: 10.1016/j.jep.2021.114207] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/23/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The gut microbiome plays an important role in advancing the process of host lipid metabolism directly or indirectly. Traditional Chinese medicine (TCM) can improve the intestinal environment by intervening with gut microbiota metabolites to potentially regulate lipid levels. However, the underlying mechanisms remain unclear. Therefore, we examined the current databases to search for studies related to influence of TCM on the gut microbiota metabolites-mediated lipid metabolism. AIM OF THE STUDY This paper aims to review the TCM that could regulate lipid metabolism mediated by microbial metabolites and their pharmacological targets and provides perspectives for future investigation. METHODS Electronic databases including PubMed, Web of Science, EMBASE, the Cochrane Library, Chinese Biological Medicine Database, and China National Knowledge Infrastructure were searched up to April 2021 to identify eligible studies. RESULTS A total of 30 active compounds, five Chinese herbal formulae, and three proprietary Chinese medicines were included in this review. We found that TCM can effectively improve lipid metabolism by increasing short chain fatty acids (SCFA) levels, regulating bile acid (BA) metabolism, reducing the production of trimethylamine N-oxide (TMAO), alleviating the release of inflammatory factors, and altering branched-chain amino acids (BCAA) biosynthesis. This process is accompanied by changes in the structure of the gut microbiota, blood lipids, and expression of lipid metabolism genes. CONCLUSION In summary, studies on the regulation of lipid metabolism by microbial metabolites in TCM will provide a new approach for better management of dyslipidemia, which may facilitate future clinical treatments.
Collapse
Affiliation(s)
- Yingying Li
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinyu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haonan Wu
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiang Li
- Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huamin Zhang
- Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Danli Tang
- Experimental Research Center of China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
30
|
Panyod S, Wu WK, Chen CC, Wu MS, Ho CT, Sheen LY. Modulation of gut microbiota by foods and herbs to prevent cardiovascular diseases. J Tradit Complement Med 2021; 13:107-118. [PMID: 36970453 PMCID: PMC10037074 DOI: 10.1016/j.jtcme.2021.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary nutrients are associated with the development of cardiovascular disease (CVD) both through traditional pathways (inducing hyperlipidemia and chronic inflammation) and through the emergence of a metaorganism-pathogenesis pathway (through the gut microbiota, its metabolites, and host). Several molecules from food play an important role as CVD risk-factor precursors either themselves or through the metabolism of the gut microbiome. Animal-based dietary proteins are the primary source of CVD risk-factor precursors; however, some plants also possess these precursors, though at relatively low levels compared with animal-source food products. Various medications have been developed to treat CVD through the gut-microbiota-circulation axis, and they exhibit potent effects in CVD treatment. Nevertheless, such medicines are still being improved, and there are many research gaps that need to be addressed. Furthermore, some medications have unpleasant or adverse effects. Numerous foods and herbs impart beneficial effects upon health and disease. In the past decade, many studies have focused on treating and preventing CVD by modulating the gut microbiota and their metabolites. This review provides an overview of the available information, summarizes current research related to the gut-microbiota-heart axis, enumerates the foods and herbs that are CVD-risk precursors, and illustrates how metabolites become CVD risk factors through the metabolism of gut microbiota. Moreover, we present perspectives on the application of foods and herbs-including prebiotics, probiotics, synbiotics, postbiotics, and antibiotic-like substances-as CVD prevention agents to modulate gut microbiota by inhibiting gut-derived CVD risk factors. Taxonomy classification by EVISE Cardiovascular disease, gut microbiota, herbal medicine, preventive medicine, dietary therapy, nutrition supplements.
Collapse
|
31
|
Bongiovanni T, Yin MOL, Heaney L. The Athlete and Gut Microbiome: Short-chain Fatty Acids as Potential Ergogenic Aids for Exercise and Training. Int J Sports Med 2021; 42:1143-1158. [PMID: 34256388 DOI: 10.1055/a-1524-2095] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced in the gut via microbial fermentation of dietary fibers referred to as microbiota-accessible carbohydrates (MACs). Acetate, propionate, and butyrate have been observed to regulate host dietary nutrient metabolism, energy balance, and local and systemic immune functions. In vitro and in vivo experiments have shown links between the presence of bacteria-derived SCFAs and host health through the blunting of inflammatory processes, as well as purported protection from the development of illness associated with respiratory infections. This bank of evidence suggests that SCFAs could be beneficial to enhance the athlete's immunity, as well as act to improve exercise recovery via anti-inflammatory activity and to provide additional energy substrates for exercise performance. However, the mechanistic basis and applied evidence for these relationships in humans have yet to be fully established. In this narrative review, we explore the existing knowledge of SCFA synthesis and the functional importance of the gut microbiome composition to induce SCFA production. Further, changes in gut microbiota associated with exercise and various dietary MACs are described. Finally, we provide suggestions for future research and practical applications, including how these metabolites could be manipulated through dietary fiber intake to optimize immunity and energy metabolism.
Collapse
Affiliation(s)
| | | | - Liam Heaney
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
32
|
Vaccinium Species (Ericaceae): From Chemical Composition to Bio-Functional Activities. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11125655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genus Vaccinium L. (Ericaceae) includes more than 450 species, which mainly grow in cooler areas of the northern hemisphere. Vaccinium species have been used in traditional medicine of different cultures and the berries are widely consumed as food. Indeed, Vaccinium supplement-based herbal medicine and functional food, mainly from V. myrtillus and V. macrocarpon, are used in Europe and North America. Biological studies support traditional uses since, for many Vaccinium components, important biological functions have been described, including antioxidant, antitumor, anti-inflammatory, antidiabetic and endothelium protective activities. Vaccinium components, such as polyphenols, anthocyanins and flavonoids, are widely recognized as modulators of cellular pathways involved in pathological conditions, thus indicating that Vaccinium may be an important source of bioactive molecules. This review aims to better describe the bioactivity of Vaccinium species, focusing on anti-inflammatory and endothelial protective cellular pathways, modulated by their components, to better understand their importance for public health.
Collapse
|
33
|
Kowalska K. Lingonberry ( Vaccinium vitis-idaea L.) Fruit as a Source of Bioactive Compounds with Health-Promoting Effects-A Review. Int J Mol Sci 2021; 22:ijms22105126. [PMID: 34066191 PMCID: PMC8150318 DOI: 10.3390/ijms22105126] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Berries, especially members of the Ericaceae family, are among the best dietary sources of bioactive compounds with beneficial health effects. The most popular berries are in the genus Vaccinium, such as bilberry (Vaccinium myrtillus), cranberry (Vaccinium macrocarpon, V. oxycoccos), and blueberry (Vaccinium corymbosum). Lingonberry (Vaccinium vitis-idaea) is less prevalent in the daily human diet because they are collected from the wild, and plant breeding of lingonberry is still on a small scale. Lingonberries are classed as “superfruits” with the highest content of antioxidants among berries and a broad range of health-promoting effects. Many studies showed various beneficial effects of lingonberries, such as anti-inflammatory, antioxidant, and anticancer activities. Lingonberries have been shown to prevent low-grade inflammation and diet-induced obesity in diabetic animals. Moreover, lingonberry intake has been associated with a beneficial effect on preventing and treating brain aging and neurodegenerative disorders. The consumption of berries and their health-promoting activity is a subject receiving a great deal of attention. Many studies investigated the natural compounds found in berries to combat diseases and promote healthy aging. This article’s scope is to indicate the potential beneficial effect of lingonberry consumption on health, to promote well-being and longevity.
Collapse
Affiliation(s)
- Katarzyna Kowalska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland
| |
Collapse
|
34
|
Matsuyama H, Tanaka W, Miyoshi N, Miyazaki T, Michimoto H, Sakakibara H. Beneficial effects of the consumption of sun-dried radishes (Raphanus sativus cv. YR-Hyuga-Risou) on dyslipidemia in apolipoprotein E-deficient mice. J Food Biochem 2021; 45:e13727. [PMID: 33856698 DOI: 10.1111/jfbc.13727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/24/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022]
Abstract
In the present study, we evaluated the effects of daily consumption of raw (RR) or sun-dried (SDR) radishes (Raphanus sativus cv. YR-Hyuga-Risou) on apolipoprotein E-deficient (ApoE-/- ) mice. Daily consumption of RR for 16 weeks significantly decreased body weight gain in the both wild-type and ApoE-/- mice. The wild-type mice fed the SDR diet gained significantly less body weight than the ApoE-/- mice fed the same diet, although the ApoE-/- mice showed a trend toward decreased body weight gain. Consumption of both diets led to a marked decrease in visceral fat weight and serum triglyceride levels in ApoE-/- mice. Oral fat tolerance tests indicated that pretreatment with RR or SDR mitigated the increase in serum triglyceride levels seen after oil administration. In conclusion, we found that daily consumption of both RR- and SDR-containing diets can help us to prevent from dyslipidemia by inhibiting fat absorption.
Collapse
Affiliation(s)
- Hiroki Matsuyama
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Wataru Tanaka
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | |
Collapse
|
35
|
Huang K, Liu C, Peng M, Su Q, Liu R, Guo Z, Chen S, Li Z, Chang G. Glycoursodeoxycholic Acid Ameliorates Atherosclerosis and Alters Gut Microbiota in Apolipoprotein E-Deficient Mice. J Am Heart Assoc 2021; 10:e019820. [PMID: 33787322 PMCID: PMC8174342 DOI: 10.1161/jaha.120.019820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Although glycoursodeoxycholic acid (GUDCA) has been associated with the improvement of metabolic disorders, its effect on atherosclerosis remains elusive. This study aimed to investigate the role of GUDCA in the development of atherosclerosis and its potential mechanisms. Methods and Results Human THP‐1 macrophages were used to investigate the effect of GUDCA on oxidized low‐density lipoprotein–induced foam cell formation in vitro. We found that GUDCA downregulated scavenger receptor A1 mRNA expression, reduced oxidized low‐density lipoprotein uptake, and inhibited macrophage foam cell formation. In an in vivo study, apolipoprotein E–deficient mice were fed a Western diet for 10 weeks to induce atherosclerosis, and then were gavaged once daily with or without GUDCA for 18 weeks. Parameters of systemic metabolism and atherosclerosis were detected. We found that GUDCA improved cholesterol homeostasis and protected against atherosclerosis progression as evidenced by reduced plaque area along with lipid deposition, ameliorated local chronic inflammation, and elevated plaque stability. In addition, 16S rDNA sequencing showed that GUDCA administration partially normalized the Western diet–associated gut microbiota dysbiosis. Interestingly, the changes of bacterial genera (Alloprevotella, Parabacteroides, Turicibacter, and Alistipes) modulated by GUDCA were correlated with the plaque area in mice aortas. Conclusions Our study for the first time indicates that GUDCA attenuates the development of atherosclerosis, probably attributable to the inhibition of foam cell formation, maintenance of cholesterol homeostasis, and modulation of gut microbiota.
Collapse
Affiliation(s)
- Kan Huang
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Chenshu Liu
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Meixiu Peng
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Qiao Su
- Animal Center First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Ruiming Liu
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Zeling Guo
- Zhongshan School of Medicine Sun Yat-sen University Guangzhou China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center Sun Yat-Sen Memorial Hospital Guangzhou China
| | - Zilun Li
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| | - Guangqi Chang
- Division of Vascular Surgery First Affiliated Hospital, Sun Yat-sen University Guangzhou China.,National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases First Affiliated Hospital, Sun Yat-sen University Guangzhou China
| |
Collapse
|
36
|
Tao F, Xing X, Wu J, Jiang R. Enteral nutrition modulation with n-3 PUFAs directs microbiome and lipid metabolism in mice. PLoS One 2021; 16:e0248482. [PMID: 33764993 PMCID: PMC7993877 DOI: 10.1371/journal.pone.0248482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nutritional support using exclusive enteral nutrition (EEN) has been studied as primary therapy for the management of liver diseases, Crohn’s disease, and cancers. EEN can also increase the number of beneficial microbiotas in the gut, improve bile acid and lipid metabolism, and decrease the number of harmful dietary micro-particles, possibly by influencing disease occurrence and increasing immunity. This study investigated the effects of EEN-n-3 polyunsaturated fatty acids (3PUFAs) (EEN-3PUFAs) on the gut microbiome, intestinal barrier, and lipid or bile acid metabolism in mice. Metagenomic sequencing technology was used to analyze the effects of EEN-3PUFAs on the composition of gut microbiome signatures. The contents of short-chain fatty acids (SCFAs) and bile acids in the feces and liver of the mice were assayed by gas chromatography and ultra-high-pressure liquid chromatography/high-resolution tandem mass spectrometry, respectively. The levels of lipopolysaccharide (LPS) and D-lactic acid in the blood were used to assess intestinal permeability. The results indicated that EEN-3PUFAs could improve the composition of gut microbiome signatures and increase the abundance of Barnesiella and Lactobacillus (genus), Porphyromonadaceae, and Bacteroidia (species), and Bacteroidetes (phylum) after EEN-3PUFAs initiation. In addition, EEN-3PUFAs induced the formation of SCFAs (mainly including acetic acid, propionic acid, and butyric acid) and increased the intestinal wall compared to the control group. In conclusion, EEN-3PUFAs modulate the alterations in gut microbiome signatures, enhanced intestinal barrier, and regulated the fatty acid composition and lipid metabolism shifts and the putative mechanisms underlying these effects.
Collapse
Affiliation(s)
- Fuzheng Tao
- Intensive Care Unit, Taizhou Hospital of Integrated Traditional Chinese and Western Medicine, Taizhou, Zhejiang, China
| | - Xi Xing
- Intensive Care Unit, First Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiannong Wu
- Intensive Care Unit, First Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ronglin Jiang
- Intensive Care Unit, First Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
37
|
Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct 2020; 11:45-65. [PMID: 31808762 DOI: 10.1039/c9fo01634a] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Berries are rich in phenolic compounds such as phenolic acids, flavonols and anthocyanins. These molecules are often reported as being responsible for the health effects attributed to berries. However, their poor bioavailability, mostly influenced by their complex chemical structures, raises the question of their actual direct impact on health. The products of their metabolization, however, may be the most bioactive compounds due to their ability to enter the blood circulation and reach the organs. The main site of metabolization of the complex polyphenols to smaller phenolic compounds is the gut through the action of microorganisms, and reciprocally polyphenols and their metabolites can also modulate the microbial populations. In healthy subjects, these modulations generally lead to an increase in Bifidobacterium, Lactobacillus and Akkermansia, therefore suggesting a prebiotic-like effect of the berries or their compounds. Finally, berries have been demonstrated to alleviate symptoms of gut inflammation through the modulation of pro-inflammatory cytokines and have chemopreventive effects towards colon cancer through the regulation of apoptosis, cell proliferation and angiogenesis. This review recapitulates the knowledge available on the interactions between berries polyphenols, gut microbiota and gut health and identifies knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science, University of Arkansas, USA
| | | | | |
Collapse
|
38
|
Delzenne NM, Rodriguez J, Olivares M, Neyrinck AM. Microbiome response to diet: focus on obesity and related diseases. Rev Endocr Metab Disord 2020; 21:369-380. [PMID: 32691288 DOI: 10.1007/s11154-020-09572-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous studies in humans and animal models describe disturbances of the gut microbial ecosystem associated with adiposity and hallmarks of the metabolic syndrome, including hepatic and cardiovascular diseases. The manipulation of the microbiome, which is largely influenced by the diet, appears as an innovative therapeutic tool to prevent or control obesity and related diseases. This review describes the impact of nutrients on the gut microbiota composition and/or function and when available, the consequences on host physiology. A special emphasis is made on the contribution of bacterial-derived metabolites in the regulation of key gut functions that may explain their systemic effect.
Collapse
Affiliation(s)
- Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marta Olivares
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
39
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
40
|
Abstract
Despite the enormous progress achieved in diagnosis and medical therapy of coronary artery disease (CAD) in the last decades, CAD continues to represent the leading cause of morbidity and mortality worldwide, leading to a massive health-care cost and social burden. Due to the dynamic and complex nature of CAD, the mechanisms underlying the progression of atherosclerotic plaque were largely unknown. With the development of metagenomics and bioinformatics, humans are gradually understanding the important role of the gut microbiome on their hosts. Trillions of microbes colonize in the human gut, they digest and absorb nutrients, as well as participate in a series of human functions and regulate the pathogenesis of diseases, including the cardiovascular disease (CVD) that has received much attention. Meanwhile, metabolomics studies have revealed associations between gut microbiota-derived metabolic bioactive signaling modules, including trimethylamine-N-oxide (TMAO), short-chain fatty acids (SCFAs), and bile acids (BAs), with the progression of CAD. Disturbance of the gut microbiome and microbial metabolites are important factors leading to CAD, which has become a novel target for CAD prevention and treatment. This review provides a brief overview of gut microbiome composition in CAD patients according to the recently reported studies, summarizes the underlying mechanisms, and highlights the prognostic value of the gut microbiome in CAD.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital & National Center for Cardiovascular Disease, Beijing, China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital & National Center for Cardiovascular Disease, Beijing, China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis. J Mol Med (Berl) 2020; 98:1235-1244. [PMID: 32737524 PMCID: PMC7447622 DOI: 10.1007/s00109-020-01936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of cardiovascular mortality and morbidity worldwide and is described as a complex disease involving several different cell types and their molecular products. Recent studies have revealed that atherosclerosis arises from a systemic inflammatory process, including the accumulation and activities of various immune cells. However, the immune system is a complicated network made up of many cell types, hundreds of bioactive cytokines, and millions of different antigens, making it challenging to readily define the associated mechanism of atherosclerosis. Nevertheless, we previously reported a potential persistent inflammatory process underlying atherosclerosis development, centered on a pathological humoral immune response between commensal microbes and activated subpopulations of substantial B cells in the vicinity of the arterial adventitia. Accumulating evidence has indicated the importance of gut microbiota in atherosclerosis development. Commensal microbiota are considered important regulators of immunity and metabolism and also to be possible antigenic sources for atherosclerosis development. However, the interplay between gut microbiota and metabolism with regard to the modulation of atherosclerosis-associated immune responses remains poorly understood. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis, with particular focus on humoral immunity and B cells, especially the gut-immune-B2 cell axis. Under high-fat and high-calorie conditions, signals driven by the intestinal microbiota via the TLR signaling pathway cause B2 cells in the spleen to become functionally active and activated B2 cells then modify responses such as antibody production (generation of active antibodies IgG and IgG3), thereby contributing to the development of atherosclerosis. On the other hand, intestinal microbiota also resulted in recruitment and ectopic activation of B2 cells via the TLR signaling pathway in perivascular adipose tissue (PVAT), and, subsequently, an increase in circulating IgG and IgG3 led to the enhanced disease development. This is a potential link between microbiota alterations and B cells in the context of atherosclerosis. ![]()
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.,Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing, Jiangsu, China
| | - Tomoaki Ishigami
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | - Hiroshi Doi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kentaro Arakawa
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
42
|
The Impact of Dietary Supplementation of Whole Foods and Polyphenols on Atherosclerosis. Nutrients 2020; 12:nu12072069. [PMID: 32664664 PMCID: PMC7400924 DOI: 10.3390/nu12072069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to highlight current research on the benefits of supplementation with foods with a diverse polyphenol composition, including fruits, vegetables, nuts, grains, oils, spices, and teas in blunting atherosclerosis. We searched PubMed for publications utilizing whole food or polyphenols prepared from whole foods in Apolipoprotein E (ApoE) or Low-Density Lipoprotein Receptor (LDLR) knockout mice, and identified 73 studies in which plaque was measured. The majority of the studies reported a reduction in plaque. Nine interventions showed no effect, while three using Agaricus blazei mushroom, HYJA-ri-4 rice variety, and safrole-2', 3'-oxide (SFO) increased plaque. The mechanisms by which atherosclerosis was reduced include improved lipid profile, antioxidant status, and cholesterol clearance, and reduced inflammation. Importantly, not all dietary interventions that reduce plaque showed an improvement in lipid profile. Additionally, we found that, out of 73 studies, only 9 used female mice and only 6 compared both sexes. Only one study compared the two models (LDLR vs. ApoE), showing that the treatment worked in one but not the other. Not all supplementations work in both male and female animals, suggesting that increasing the variety of foods with different polyphenol compositions may be more effective in mitigating atherosclerosis.
Collapse
|
43
|
Evans LW, Athukorala M, Martinez-Guryn K, Ferguson BS. The Role of Histone Acetylation and the Microbiome in Phytochemical Efficacy for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E4006. [PMID: 32503339 PMCID: PMC7313062 DOI: 10.3390/ijms21114006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVD) are the main cause of death worldwide and create a substantial financial burden. Emerging studies have begun to focus on epigenetic targets and re-establishing healthy gut microbes as therapeutic options for the treatment and prevention of CVD. Phytochemicals, commonly found in fruits and vegetables, have been shown to exert a protective effect against CVD, though their mechanisms of action remain incompletely understood. Of interest, phytochemicals such as curcumin, resveratrol and epigallocatechin gallate (EGCG) have been shown to regulate both histone acetylation and microbiome re-composition. The purpose of this review is to highlight the microbiome-epigenome axis as a therapeutic target for food bioactives in the prevention and/or treatment of CVD. Specifically, we will discuss studies that highlight how the three phytochemicals above alter histone acetylation leading to global changes in gene expression and CVD protection. Then, we will expand upon these phytochemicals to discuss the impact of phytochemical-microbiome-histone acetylation interaction in CVD.
Collapse
Affiliation(s)
- Levi W. Evans
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | - Maheshi Athukorala
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | | | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
44
|
Loo YT, Howell K, Chan M, Zhang P, Ng K. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Compr Rev Food Sci Food Saf 2020; 19:1268-1298. [PMID: 33337077 DOI: 10.1111/1541-4337.12563] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
The gut microbiota plays a prominent role in human health. Alterations in the gut microbiota are linked to the development of chronic diseases such as obesity, inflammatory bowel disease, metabolic syndrome, and certain cancers. We know that diet plays an important role to initiate, shape, and modulate the gut microbiota. Long-term dietary patterns are shown to be closely related with the gut microbiota enterotypes, specifically long-term consumption of carbohydrates (related to Prevotella abundance) or a diet rich in protein and animal fats (correlated to Bacteroides). Short-term consumption of solely animal- or plant-based diets have rapid and reproducible modulatory effects on the human gut microbiota. These alterations in microbiota profile by dietary alterations can be due to impact of different dietary macronutrients, carbohydrates, protein, and fat, which have diverse modulatory effects on gut microbial composition. Food-derived phenolics, which encompass structural variants of flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, coumarins, stilbenes, ellagitannins, and lignans can modify the gut microbiota. Gut microbes have been shown to act on dietary fibers and phenolics to produce functional metabolites that contribute to gut health. Here, we discuss recent studies on the impacts of phenolics and phenolic fiber-rich foods on the human gut microbiota and provide an insight into potential synergistic roles between their bacterial metabolic products in the regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yit Tao Loo
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Howell
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Miin Chan
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ken Ng
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Han Y, Xiao H. Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annu Rev Food Sci Technol 2020; 11:119-143. [DOI: 10.1146/annurev-food-111519-014337] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intake of whole foods, such as fruits and vegetables, may confer health benefits to the host. The beneficial effects of fruits and vegetables were mainly attributed to their richness in polyphenols and microbiota-accessible carbohydrates (MACs). Components in fruits and vegetables modulate composition and associated functions of the gut microbiota, whereas gut microbiota can transform components in fruits and vegetables to produce metabolites that are bioactive and important for health. The progression of multiple diseases, such as obesity and inflammatory bowel disease, is associated with diet and gut microbiota. Although the exact causality between these diseases and specific members of gut microbiota has not been well characterized, accumulating evidence supported the role of fruits and vegetables in modulating gut microbiota and decreasing the risks of microbiota-associated diseases. This review summarizes the latest findings on the effects of whole fruits and vegetables on gut microbiota and associated diseases.
Collapse
Affiliation(s)
- Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
46
|
Serino A, Zhao Y, Hwang J, Cullen A, Deeb C, Akhavan N, Arjmandi B, Salazar G. Gender differences in the effect of blackberry supplementation in vascular senescence and atherosclerosis in ApoE -/- mice. J Nutr Biochem 2020; 80:108375. [PMID: 32248057 DOI: 10.1016/j.jnutbio.2020.108375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
Abstract
As the cardiovascular system ages, it becomes more vulnerable to the effects of oxidative stress and inflammation. The aging process, along with external factors such as radiation exposure and lifestyle, induces vascular senescence and accelerates atherosclerotic plaque accumulation. Expression of nicotinamide adenine dinucleotide phosphate oxidase 1 (Nox1), which produces superoxide, is associated with senescence in vascular smooth muscle cells in vitro and atherosclerosis in ApoE-/- mice in vivo. However, it is unknown whether Nox1 could be down-regulated by nutritional interventions aimed to reduce atherosclerosis. Here we study the effect of blackberry supplementation in Nox1 expression and atherosclerosis. Four-month-old ApoE-/- male and female mice were fed low-fat, high-fat or high-fat supplemented with 2% freeze-dried blackberry powder diets for 5 weeks. Analysis of the aorta showed that diet supplemented with blackberry significantly decreased plaque accumulation, senescence associated-β-galactosidase and Nox1 expression in the aorta of male but not female mice. The lipid profile was unchanged by blackberry in both female and male animals. Thus, the known role of Nox1 in atherosclerosis suggests that the atheroprotective effect of blackberry is mediated by Nox1 down-regulation in male mice and that Nox1 is regulated in a gender-dependent manner in females.
Collapse
Affiliation(s)
- Alexa Serino
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Yitong Zhao
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, CA, USA
| | - Jingwen Hwang
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Abigail Cullen
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Carolyn Deeb
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Neda Akhavan
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Bahram Arjmandi
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL, USA
| | - Gloria Salazar
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA; Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
47
|
Dong Y, Cheng H, Liu Y, Xue M, Liang H. Red yeast rice ameliorates high-fat diet-induced atherosclerosis in Apoe -/- mice in association with improved inflammation and altered gut microbiota composition. Food Funct 2020; 10:3880-3889. [PMID: 31187839 DOI: 10.1039/c9fo00583h] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gut microbiota plays an important role in many metabolic diseases and has been linked to cardiovascular disease, including atherosclerosis. Clinical studies suggest that red yeast rice (RYR) has the potential to reduce blood lipid levels. However, the mechanisms under which RYR regulates atherosclerosis by affecting the composition of the gut microbiome have not been elucidated. In the current study, results showed that treatment with RYR significantly decreased the plaque formation and levels of cholesterol and low-density lipoprotein (LDL) compared with the atherosclerotic model group which were fed with a high-fat diet. In addition, the height of enteral villus in the red Monascus group was increased, indicating that RYR can improve the intestinal barrier function. Further analysis revealed that RYR might attenuate atherosclerosis through inhibiting hydroxy methylglutaryl-CoA reductase and the consequent inflammatory signaling pathways mediated by TLR2 and TLR4. Moreover, the RYR treatment led to significant structural changes on the intestinal microbiota of high-fat diet-fed mice and reduced the relative abundance of Alistipes and Flavonifractor that exhibited positive relationships with the plasma levels of cholesterol and LDL. Collectively, these findings illustrated that RYR could significantly protect against atherosclerosis, which was possibly associated with the alterations in the gut microbiota composition.
Collapse
Affiliation(s)
- Yanhan Dong
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Huimin Cheng
- Department of Human Nutrition, College of Public Health, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Ying Liu
- Basic Medical College, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Meilan Xue
- Basic Medical College, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
48
|
Liang R, Zhang S, Peng X, Yang W, Xu Y, Wu P, Chen J, Cai Y, Zhou J. Characteristics of the gut microbiota in professional martial arts athletes: A comparison between different competition levels. PLoS One 2019; 14:e0226240. [PMID: 31881037 PMCID: PMC6934331 DOI: 10.1371/journal.pone.0226240] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Recent evidence suggests that athletes have microbial features distinct from those of sedentary individuals. However, the characteristics of the gut microbiota in athletes competing at different levels have not been assessed. The aim of this study was to investigate whether the gut microbiome is significantly different between higher-level and lower-level athletes. Faecal microbiota communities were analysed with hypervariable tag sequencing of the V3–V4 region of the 16S rRNA gene among 28 professional martial arts athletes, including 12 higher-level and 16 lower-level athletes. The gut microbial richness and diversity (the Shannon diversity index (p = 0.019) and Simpson diversity index (p = 0.001)) were significantly higher in the higher-level athletes than in the lower-level athletes. Moreover, the genera Parabacteroides, Phascolarctobacterium, Oscillibacter and Bilophila were enriched in the higher-level athletes, whereas Megasphaera was abundant in the lower-level athletes. Interestingly, the abundance of the genus Parabacteroides was positively correlated with the amount of time participants exercised during an average week. Further analysis of the functional prediction revealed that histidine metabolism and carbohydrate metabolism pathways were markedly over-represented in the gut microbiota of the higher-level athletes. Collectively, this study provides the first insight into the gut microbiota characteristics of professional martial arts athletes. The higher-level athletes had increased diversity and higher metabolic capacity of the gut microbiome for it may positively influence athletic performance.
Collapse
Affiliation(s)
- Ru Liang
- Institute of Management, Beijing Sport University, Beijing, China
| | - Shu Zhang
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiangji Peng
- Institute of Martial Arts and Traditional Ethnic Sports, Beijing Sport University, Beijing, China
| | - Wanna Yang
- Department of Infectious Disease, Center for Liver Disease, Peking University First Hospital, Beijing, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ping Wu
- Realbio Genomics Institute, Shanghai, China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yongjiang Cai
- Health Management Center, Peking University Shenzhen Hospital, Shenzhen, China
- * E-mail: (ZJ); (CY)
| | - Jiyuan Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- * E-mail: (ZJ); (CY)
| |
Collapse
|
49
|
Polyphenol Effects on Cholesterol Metabolism via Bile Acid Biosynthesis, CYP7A1: A Review. Nutrients 2019; 11:nu11112588. [PMID: 31661763 PMCID: PMC6893479 DOI: 10.3390/nu11112588] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis, the main contributor to coronary heart disease, is characterised by an accumulation of lipids such as cholesterol in the arterial wall. Reverse cholesterol transport (RCT) reduces cholesterol via its conversion into bile acids (BAs). During RCT in non-hepatic peripheral tissues, cholesterol is transferred to high-density lipoprotein (HDL) particles and returned to the liver for conversion into BAs predominantly via the rate-limiting enzyme, cholesterol 7 α-hydroxylase (CYP7A1). Numerous reports have described that polyphenol induced increases in BA excretion and corresponding reductions in total and LDL cholesterol in animal and in-vitro studies, but the process whereby this occurs has not been extensively reviewed. There are three main mechanisms by which BA excretion can be augmented: (1) increased expression of CYP7A1; (2) reduced expression of intestinal BA transporters; and (3) changes in the gut microbiota. Here we summarise the BA metabolic pathways focusing on CYP7A1, how its gene is regulated via transcription factors, diurnal rhythms, and microRNAs. Importantly, we will address the following questions: (1) Can polyphenols enhance BA secretion by modulating the CYP7A1 biosynthetic pathway? (2) Can polyphenols alter the BA pool via changes in the gut microbiota? (3) Which polyphenols are the most promising candidates for future research? We conclude that while in rodents some polyphenols induce CYP7A1 expression predominantly by the LXRα pathway, in human cells, this may occur through FXR, NF-KB, and ERK signalling. Additionally, gut microbiota is important for the de-conjugation and excretion of BAs. Puerarin, resveratrol, and quercetin are promising candidates for further research in this area.
Collapse
|
50
|
Ferulic acid increases intestinal Lactobacillus and improves cardiac function in TAC mice. Biomed Pharmacother 2019; 120:109482. [PMID: 31568990 DOI: 10.1016/j.biopha.2019.109482] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022] Open
Abstract
Ferulic acid, a main ingredient of Ligusticum, exhibits anti-oxidant and anti-inflammation effects in heart diseases. Some studies indicate that gut microbiome is associated with the generation of ferulic acid. Whether the beneficial effect of ferulic is raised by the alteration of gut microbiota is still unknown. This study examined the effect of sodium ferulate on gut microbiome and cardiac function in TAC mice. Cell Counting Kit-8 (CCK8) assay verified that ferulic acid has low toxicity in vitro and that ferulic acid inhibited the up-regulation of β-MHC and ANP induced by Angiotensin II. In addition, daily supplement of 50 mg/kg sodium ferulate improved the ejection fraction and changed the gut microbiota composition of TAC mice. Relative abundance of Lactobacillus and Parabacteroides are increased in TAC mice gavaged with sodium ferulate. In addition, Lactobacillus is negatively correlated with HW/BW and LW/BW ratio. These results suggest that the beneficial effect of ferulic in TAC mice is probably through the regulation of gut microbiota.
Collapse
|