1
|
Remadevi V, Jaikumar VS, Vini R, Krishnendhu B, Azeez JM, Sundaram S, Sreeja S. Urolithin A, induces apoptosis and autophagy crosstalk in Oral Squamous Cell Carcinoma via mTOR /AKT/ERK1/2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155721. [PMID: 38788395 DOI: 10.1016/j.phymed.2024.155721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in the world with an alarming rate of mortality. Despite the advancement in treatment strategies and drug developments, the overall survival rate remains poor. Therefore, it is imperative to develop alternative or complimentary anti cancer drugs with minimum off target effects. Urolithin A, a microbial metabolite of ellagic acid and ellagitannins produced endogenously by human gut micro biome is considered to have anti-cancerous activity. However anti tumorigenic effect of urolithin A in OSCC is yet to be elucidated. In this study, we examined whether urolithin A inhibits cell growth and induces both apoptosis and autophagy dependent cell death in OSCC cell lines. PURPOSE The present study aims to evaluate the potential of urolithin A to inhibit OSCC and its regulatory effect on OSCC proliferation and invasion in vitro and in vivo mouse models. METHODS We evaluated whether urolithin A could induce cell death in OSCC in vitro and in vivo mouse models. RESULTS Flow cytometric and immunoblot analysis on Urolithin A treated OSCC cell lines revealed that urolithin A markedly induced cell death of OSCC via the induction of endoplasmic reticulum stress and subsequent inhibition of AKT and mTOR signaling as evidenced by decreased levels of phosphorylated mTOR and 4EBP1. This further revealed a possible cross talk between apoptotic and autophagic signaling pathways. In vivo study demonstrated that urolithin A treatment reduced tumor size and showed a decrease in mTOR, ERK1/2 and Akt levels along with a decrease in proliferation marker, Ki67. Taken together, in vitro as well as our in vivo data indicates that urolithin A is a potential anticancer agent and the inhibition of AKT/mTOR/ERK signalling is crucial in Urolithin A induced growth suppression in oral cancer. CONCLUSION Urolithin A exerts its anti tumorigenic activity through the induction of apoptotic and autophagy pathways in OSCC. Our findings suggest that urolithin A markedly induced cell death of oral squamous cell carcinoma via the induction of endoplasmic reticulum stress and subsequent inhibition of AKT and mTOR signaling as evidenced by decreased levels of phosphorylated mTOR and 4EBP1. Urolithin A remarkably suppressed tumor growth in both in vitro and in vivo mouse models signifying its potential as an anticancer agent in the prevention and treatment of OSCC. Henceforth, our findings provide a new insight into the therapeutic potential of urolithin A in the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Viji Remadevi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Vishnu Sunil Jaikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Biju Krishnendhu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Juberiya M Azeez
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Sankar Sundaram
- Department of pathology, Government Medical College, Kottayam, Kerala, India
| | - S Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
2
|
Zhang Y, Wei S, Zhang H, Jo Y, Kang JS, Ha KT, Joo J, Lee HJ, Ryu D. Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging. BMB Rep 2024; 57:207-215. [PMID: 38627947 PMCID: PMC11139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China, Busan 49241, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| |
Collapse
|
3
|
Wang G, Su H, Guo Z, Li H, Jiang Z, Cao Y, Li C. Rubus Occidentalis and its bioactive compounds against cancer: From molecular mechanisms to translational advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155029. [PMID: 38417241 DOI: 10.1016/j.phymed.2023.155029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Cancer ranks as the second leading cause of death globally, imposing a significant public health burden. The rise in cancer resistance to current therapeutic agents underscores the potential role of phytotherapy. Black raspberry (BRB, Rubus Occidentalis) is a fruit rich in anthocyanins, ellagic acid, and ellagitannins. Accumulating evidence suggests that BRB exhibits promising anticancer effects, positioning it as a viable candidate for phytotherapy. PURPOSE This article aims to review the existing research on BRB regarding its role in cancer prevention and treatment. It further analyzes the effective components of BRB, their metabolic pathways, and the potential mechanisms underlying the fruit's anticancer effects. METHODS Ovid MEDLINE, EMBASE, Web of Science, and CENTRAL were searched through the terms of Black Raspberry, Raspberry, and Rubus Occidentali up to January 2023. Two reviewers performed the study selection by screening the title and abstract. Full texts of potentially eligible studies were retrieved to access the details. RESULTS Out of the 767 articles assessed, 73 papers met the inclusion criteria. Among them, 63 papers investigated the anticancer mechanisms, while 10 conducted clinical trials focusing on cancer treatment or prevention. BRB was found to influence multiple cancer hallmarks by targeting various pathways. Decomposition of free radicals and regulation of estrogen metabolism, BRB can reduce DNA damage caused by reactive oxygen species. BRB can also enhance the function of nucleotide excision repair to repair DNA lesions. Through regulation of epigenetics, BRB can enhance the expression of tumor suppressor genes, inducing cell cycle arrest, and promoting apoptosis and pyroptosis. BRB can reduce the energy and nutrients supply to the cancer nest by inhibiting glycolysis and reducing angiogenesis. The immune and inflammatory microenvironment surrounding cancer cells can also be ameliorated by BRB, inhibiting cancer initiation and progression. However, the limited bioavailability of BRB diminishes its anticancer efficacy. Notably, topical applications of BRB, such as gels and suppositories, have demonstrated significant clinical benefits. CONCLUSION BRB inhibits cancer initiation, progression, and metastasis through diverse anticancer mechanisms while exhibiting minimal side effects. Given its potential, BRB emerges as a promising phototherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Guanru Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Hengpei Su
- College of Materials Science and Engineering, Sichuan University, No.29, Jiuyanqiao Wangjiang Rd., Chengdu 610064, China
| | - Zijian Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China.
| |
Collapse
|
4
|
Li J, Yu J, Zou H, Zhang J, Ren L. Estrogen receptor-mediated health benefits of phytochemicals: a review. Food Funct 2023; 14:10681-10699. [PMID: 38047630 DOI: 10.1039/d3fo04702d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Estrogen receptors (ERs) are transcription factors with two subtypes: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are essential for the maintenance of human health and play a regulatory role in common diseases such as breast cancer, osteoporosis, neurodegenerative disorders, liver injuries and lung cancers. A number of phytochemicals extracted from various fruits and vegetables have been demonstrated to exhibit estrogenic effects and are termed phytoestrogens. As modulators of ERs, phytoestrogens can be involved in the prevention and treatment of multiple diseases as complementary or alternative therapeutic agents and have a variety of health benefits for humans. This article reviews the health benefits of phytoestrogens in clinical and epidemiologic studies for several diseases and also provides a detailed description of the molecular mechanisms of their action. A brief comparison of the advantages and disadvantages of natural phytochemicals compared to synthetic drugs is also presented. The role of phytoestrogens in the treatment of diseases and human health requires further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Junfeng Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Ge Y, Ni X, Li J, Ye M, Jin X. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett 2023; 26:530. [PMID: 38020303 PMCID: PMC10644365 DOI: 10.3892/ol.2023.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Endometrial carcinoma (EC) is a group of endometrial epithelial malignancies, most of which are adenocarcinomas and occur in perimenopausal and postmenopausal women. It is one of the most common carcinomas of the female reproductive system. It has been shown that the occurrence and development of EC is closely associated with the interaction between estrogen (estradiol, E2) and estrogen receptors (ERs), particularly ERα. As a key nuclear transcription factor, ERα is a carcinogenic factor in EC. Its interactions with upstream and downstream effectors and co-regulators have important implications for the proliferation, metastasis, invasion and inhibition of apoptosis of EC. In the present review, the structure of ERα and the regulation of ERα in multiple dimensions are described. In addition, the classical E2/ERα signaling pathway and the crosstalk between ERα and other EC regulators are elucidated, as well as the therapeutic targeting of ERα, which may provide a new direction for clinical applications of ERα in the future.
Collapse
Affiliation(s)
- Yidong Ge
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoqi Ni
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jingyun Li
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
6
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lai SW, Lu DY, Yeh WL, Lin C. Inhibitory Effects of Urolithins, Bioactive Gut Metabolites from Natural Polyphenols, against Glioblastoma Progression. Nutrients 2023; 15:4854. [PMID: 38068712 PMCID: PMC10708538 DOI: 10.3390/nu15234854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
We previously reported that proinflammatory cytokines, particularly tumor necrosis factor (TNF)-α, promoted tumor migration, invasion, and proliferation, thus worsening the prognosis of glioblastoma (GBM). Urolithins, the potent metabolites produced by the gut from pomegranate polyphenols, have anticancer properties. To develop an effective therapy for GBM, this study aimed to study the effects of urolithins against GBM. Urolithin A and B significantly reduced GBM migration, reduced epithelial-mesenchymal transition, and inhibited tumor growth. Moreover, urolithin A and B inhibited TNF-α-induced vascular cell adhesion molecule (VCAM)-1 and programmed death ligand 1 (PD-L1) expression, thereby reducing human monocyte (HM) binding to GBM cells. Aryl hydrocarbon receptor (AhR) level had higher expression in patients with glioma than in healthy individuals. Urolithins are considered pharmacological antagonists of AhR. We demonstrated that the inhibition of AhR reduced TNF-α-stimulated VCAM-1 and PD-L1 expression. Furthermore, human macrophage condition medium enhanced expression of PD-L1 in human GBM cells. Administration of the AhR antagonist attenuated the enhancement of PD-L1, indicating the AhR modulation in GBM progression. The modulatory effects of urolithins in GBM involve inhibiting the Akt and epidermal growth factor receptor pathways. The present study suggests that urolithins can inhibit GBM progression and provide valuable information for anti-GBM strategy.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Taichung 404, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 404, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Vini R, Jaikumar VS, Remadevi V, Ravindran S, Azeez JM, Sasikumar A, Sundaram S, Sreeja S. Urolithin A: A promising selective estrogen receptor modulator and 27-hydroxycholesterol attenuator in breast cancer. Phytother Res 2023; 37:4504-4521. [PMID: 37345359 DOI: 10.1002/ptr.7919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/08/2023] [Accepted: 05/27/2023] [Indexed: 06/23/2023]
Abstract
27-hydroxycholesterol (27-HC) is an oxysterol that acts as an endogenous selective estrogen receptor modulator (SERM), and its adverse effects on breast cancer via the estrogen receptor (ER) have provided new insights into the pathology of cholesterol-linked breast cancer. Our earlier in vitro experiments showed that the methanolic extract of pomegranate could exhibit SERM properties and compete with 27-HC. The major constituents of pomegranate are ellagitannins and ellagic acid, which are converted into urolithins by the colonic microbiota. In recent years, urolithins, especially urolithin A (UA) and urolithin B (UB), have been reported to have a plethora of advantageous effects, including antiproliferative and estrogenic activities. In this study, we attempted to determine the potential of urolithins in antagonizing and counteracting the adverse effects of 27-HC in breast cancer cells. Our findings suggested that UA had an antiproliferative capacity and attenuated the proliferative effects of 27-HC, resulting in subsequent loss of membrane potential and apoptosis in breast cancer cells. Further, UA induced estrogen response element (ERE) transcriptional activity and modulated estrogen-responsive genes, exhibiting a SERM-like response concerning receptor binding. Our in vivo hollow fiber assay results showed a loss of cell viability in breast cancer cells upon UA consumption, as well as a reduction in 27-HC-induced proliferative activity. Additionally, it was shown that UA did not induce uterine proliferation or alter blood biochemical parameters. Based on these findings, we can conclude that UA has the potential to act as a potent estrogen receptor alpha (ERα) modulator and 27-HC antagonist. UA is safe to consume and is very well tolerated. This study further opens up the potential of UA as ER modulator and its benefits in estrogen-dependent tissues.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Vishnu Sunil Jaikumar
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Viji Remadevi
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Swathy Ravindran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Juberiya M Azeez
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Anjana Sasikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Shankar Sundaram
- Department of Pathology, Government Medical College, Kottayam, India
| | - Sreeharshan Sreeja
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
8
|
An L, Lu Q, Wang K, Wang Y. Urolithins: A Prospective Alternative against Brain Aging. Nutrients 2023; 15:3884. [PMID: 37764668 PMCID: PMC10534540 DOI: 10.3390/nu15183884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The impact of host-microbiome interactions on cognitive health and disease has received increasing attention. Microbial-derived metabolites produced in the gut are one of crucial mechanisms of the gut-brain axis interaction, showing attractive perspectives. Urolithins (Uros) are gut microbial-derived metabolites of ellagitannins and ellagic acid, whose biotransformation varies considerably between individuals and decreases greatly with age. Recently, accumulating evidence has suggested that Uros may have specific advantages in preventing brain aging including favorable blood-brain barrier permeability, selective brain distribution, and increasingly supporting data from preclinical and clinical studies. However, the usability of Uros in diagnosis, prevention, and treatment of neurodegenerative diseases remains elusive. In this review, we aim to present the comprehensive achievements of Uros in age-related brain dysfunctions and neurodegenerative diseases and discuss their prospects and knowledge gaps as functional food, drugs, or biomarkers against brain aging.
Collapse
Affiliation(s)
- Lei An
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
| | - Qiu Lu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Prendecka-Wróbel M, Pigoń-Zając D, Sondej D, Grzywna K, Kamińska K, Szuta M, Małecka-Massalska T. Can Dietary Actives Affect miRNAs and Alter the Course or Prevent Colorectal Cancer? Int J Mol Sci 2023; 24:10142. [PMID: 37373289 DOI: 10.3390/ijms241210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer is a diet-related cancer. There is much research into the effects of nutrients on the prevention, modulation, and treatment of colorectal cancer. Researchers are trying to find a correlation between epidemiological observations indicating certain dietary components as the originator in the process of developing colorectal cancer, such as a diet rich in saturated animal fats, and dietary components that could eliminate the impact of harmful elements of the daily nutritional routine, i.e., substances such as polyunsaturated fatty acids, curcumin, or resveratrol. Nevertheless, it is very important to understand the mechanisms underlying how food works on cancer cells. In this case, microRNA (miRNA) seems to be a very significant research target. MiRNAs participate in many biological processes connected to carcinogenesis, progression, and metastasis. However, this is a field with development prospects ahead. In this paper, we review the most significant and well-studied food ingredients and their effects on various miRNAs involved in colorectal cancer.
Collapse
Affiliation(s)
- Monika Prendecka-Wróbel
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Daria Sondej
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Karolina Grzywna
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Kamińska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Mariusz Szuta
- Chair of Oral Surgery, Jagiellonian University Medical College, 31-155 Kraków, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
10
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
11
|
The Gut Microbiota Metabolite Urolithin B Prevents Colorectal Carcinogenesis by Remodeling Microbiota and PD-L1/HLA-B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6480848. [PMID: 36778211 PMCID: PMC9908333 DOI: 10.1155/2023/6480848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Colorectal cancer has risen to the third occurring cancer in the world. Fluorouracil (5-Fu), oxaliplatin, and cisplatin are the most effective chemotherapeutic agents for clinical chemotherapy. Nevertheless, due to chemotherapeutic drug resistance, the survival rate of patients with CRC remains very low. In this study, we used the inflammation-induced or mutation-family-inherited murine CRC models to study the anticancer and immunotherapy effects of urolithin B (UB), the final metabolite of polyphenols in the gastrointestinal tract. The label-free proteomics analysis and the gene ontology (GO) classifications were used to test and analyze the proteins affected by UB. And 16S rDNA sequencing and flow cytometry were utilized to uncover gut microbiome composition and immune defense improved by UB administration. The results indicated that urolithin B prevents colorectal carcinogenesis by remodeling gut microbial and tumor immune microenvironments, such as HLA-B, NK cells, regulatory T cells, and γδ TCR cells, and decreasing the PD-L1. The combination of urolithin B with first-line therapeutic drugs improved the colorectal intestinal hematochezia by shaping gut microbiota, providing a strategy for the treatment of immunotherapy treatment for CRC treatments. UB combined with anti-PD-1 antibody could inhibit the growth of colon cancer. Urolithin B may thus contribute to anticancer treatments and provide a high immune response microenvironment for CRC patients' further immunotherapy.
Collapse
|
12
|
Xu X, Liu Z, Yao L. The Synthesis of Urolithins and their Derivatives and the Modes of Antitumor Action. Mini Rev Med Chem 2023; 23:80-87. [PMID: 35578881 DOI: 10.2174/1389557522666220516125500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Urolithins are microbial metabolites derived from berries and pomegranate fruits, which display anti-inflammatory, anti-oxidative, and anti-aging activities. There are eight natural urolithins (urolithin A-E, M5, M6 and M7), which have been isolated by now. Structurally, urolithins are phenolic compounds and belong to 6H-dibenzo [b,d] pyran-6-one. They have drawn considerable attention because of their vast range of biological activities and health benefits. Recent studies also suggest that they possess anti-SARS-CoV-2 and anticancer effects. In this article, the recent advances in the synthesis of urolithins and their derivatives from 2015 to 2021 are reviewed. To improve or overcome the solubility and metabolism stability issues, the modifications of urolithins are mainly centered on the hydroxy group and lactone group, and some compounds have been found to display promising results and the potential for further study. The possible modes of antitumor action of urolithin are also discussed. Several signaling pathways, including PI3K-Akt, Wnt/β-catenin pathways, and multiple receptors (aryl hydrocarbon receptor, estrogen and androgen receptors) and enzymes (tyrosinase and lactate dehydrogenase) are involved in the antitumor activity of urolithins.
Collapse
Affiliation(s)
- Xiangrong Xu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhuanhong Liu
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Lei Yao
- School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
13
|
Yang Y, Ren ZZ, Wei WJ, He ZL, Deng YL, Wang Z, Fan YC, Zhou J, Jiang LH. Study on the biological mechanism of urolithin a on nasopharyngeal carcinoma in vitro. PHARMACEUTICAL BIOLOGY 2022; 60:1566-1577. [PMID: 35952389 PMCID: PMC9377270 DOI: 10.1080/13880209.2022.2106251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Urolithin A (UroA) can inhibit the growth of many human cancer cells, but it has not be reported if UroA inhibits nasopharyngeal carcinoma (NPC) cells. OBJECTIVE To explore the inhibitory effect of UroA on NPC and potential mechanism in vitro. MATERIALS AND METHODS RNA-sequencing-based mechanistic prediction was conducted by comparing KEGG enrichment of 40 μM UroA-treated for 24 h with untreated CNE2 cells. The untreated cells were selected as control. After NPC cells were treated with 20-60 μM UroA, proliferation, migration and invasion of were measured by colony formation, wound healing and transwell experiments. Apoptosis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) were measured by flow cytometry, Hoechst 33342, Rhodamine 123, JC-1 staining and ROS assay methods, respectively. Gene and protein expression were measured by RT-qPCR and Western blotting assay. RESULTS RNA-sequencing and KEGG enrichment revealed UroA mainly altered the ECM receptor interaction pathway. UroA inhibited cells proliferation, epithelial-mesenchymal-transition pathway, migration and invasion with IC50 values of 34.72 μM and 44.91 μM, induced apoptosis, MMP depolarization and increase ROS content at a concentration of 40 μM. UroA up-regulated E-cadherin, Bax/Bcl-2, c-caspase-3 and PARP proteins, while inhibiting COL4A1, MMP2, MMP9, N-cadherin, Vimentin and Snail proteins at 20-60 μM. Moreover, co-treatment of UroA (40 μM) and NAC (5 mM) could reverse the effect of UroA on apoptosis-related proteins. DISCUSSION AND CONCLUSIONS RNA-sequencing technology based on bioinformatic analyses may be applicable for studiying the mechanism of drugs for tumour treatment.
Collapse
Affiliation(s)
- Yang Yang
- School of Pharmacy, Guilin Medical University, Guilin, PR China
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, PR China
| | - Zhen-Zhen Ren
- School of Pharmacy, Guilin Medical University, Guilin, PR China
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, PR China
| | - Wu-Jun Wei
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, PR China
- Department of Laboratory Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, PR China
| | - Zhi-Long He
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, PR China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, PR China
| | - You-Lin Deng
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, PR China
| | - Zhuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, PR China
| | - Yu-Chun Fan
- Medical College, Guangxi University, Nanning, PR China
| | - Jie Zhou
- Medical College, Guangxi University, Nanning, PR China
| | - Li-He Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, PR China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, PR China
- Medical College, Guangxi University, Nanning, PR China
- Key Laboratory of Tumor Immunology and Pathology (Army Medical University), Ministry of Education, Chongqing, PR China
| |
Collapse
|
14
|
García‐Villalba R, Giménez‐Bastida JA, Cortés‐Martín A, Ávila‐Gálvez MÁ, Tomás‐Barberán FA, Selma MV, Espín JC, González‐Sarrías A. Urolithins: a Comprehensive Update on their Metabolism, Bioactivity, and Associated Gut Microbiota. Mol Nutr Food Res 2022; 66:e2101019. [PMID: 35118817 PMCID: PMC9787965 DOI: 10.1002/mnfr.202101019] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Indexed: 12/30/2022]
Abstract
Urolithins, metabolites produced by the gut microbiota from the polyphenols ellagitannins and ellagic acid, are discovered by the research group in humans almost 20 years ago. Pioneering research suggests urolithins as pleiotropic bioactive contributors to explain the health benefits after consuming ellagitannin-rich sources (pomegranates, walnuts, strawberries, etc.). Here, this study comprehensively updates the knowledge on urolithins, emphasizing the review of the literature published during the last 5 years. To date, 13 urolithins and their corresponding conjugated metabolites (glucuronides, sulfates, etc.) have been described and, depending on the urolithin, detected in different human fluids and tissues (urine, blood, feces, breastmilk, prostate, colon, and breast tissues). There has been a substantial advance in the research on microorganisms involved in urolithin production, along with the compositional and functional characterization of the gut microbiota associated with urolithins metabolism that gives rise to the so-called urolithin metabotypes (UM-A, UM-B, and UM-0), relevant in human health. The design of in vitro studies using physiologically relevant assay conditions (molecular forms and concentrations) is still a pending subject, making some reported urolithin activities questionable. In contrast, remarkable progress has been made in the research on the safety, bioactivity, and associated mechanisms of urolithin A, including the first human interventions.
Collapse
Affiliation(s)
- Rocío García‐Villalba
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Juan Antonio Giménez‐Bastida
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Adrián Cortés‐Martín
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - María Ángeles Ávila‐Gálvez
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Francisco A. Tomás‐Barberán
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - María Victoria Selma
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Juan Carlos Espín
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Antonio González‐Sarrías
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| |
Collapse
|
15
|
Gandhi GR, Antony PJ, Ceasar SA, Vasconcelos ABS, Montalvão MM, Farias de Franca MN, Resende ADS, Sharanya CS, Liu Y, Hariharan G, Gan RY. Health functions and related molecular mechanisms of ellagitannin-derived urolithins. Crit Rev Food Sci Nutr 2022; 64:280-310. [PMID: 35959701 DOI: 10.1080/10408398.2022.2106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ellagitannins are vital bioactive polyphenols that are widely distributed in a variety of plant-based foods. The main metabolites of ellagitannins are urolithins, and current research suggests that urolithins provide a variety of health benefits. This review focused on the role of the gut bacteria in the conversion of ellagitannins to urolithins. Based on the results of in vitro and in vivo studies, the health benefits of urolithins, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-aging, cardiovascular protective, neuroprotective, kidney protective, and muscle mass protective effects, were thoroughly outlined, with a focus on their associated molecular mechanisms. Finally, we briefly commented on urolithins' safety. Overall, urolithins' diverse health benefits indicate the potential utilization of ellagitannins and urolithins in the creation of functional foods and nutraceuticals to treat and prevent some chronic diseases.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, India
| | | | | | - Alan Bruno Silva Vasconcelos
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | - Ayane de Sá Resende
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | | | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) affiliated to the Bharathidasan University, Tiruchirapalli, India
| | - Ren-You Gan
- Nepal Jesuit Society, St. Xavier's College, Jawalakhel, Lalitpur Dt. Kathmandu, Nepal
| |
Collapse
|
16
|
Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. Combinatory Exposure to Urolithin A, Alternariol, and Deoxynivalenol Affects Colon Cancer Metabolism and Epithelial Barrier Integrity in vitro. Front Nutr 2022; 9:882222. [PMID: 35811943 PMCID: PMC9263571 DOI: 10.3389/fnut.2022.882222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022] Open
Abstract
The human gastrointestinal tract is an important site of nutrient absorption and a crucial barrier against xenobiotics. It regularly faces “chemical cocktails” composed of food constituents, their human and microbial metabolites, and foodborne contaminants, such as mycotoxins. Hence, the colonic epithelium adapts to dietary molecules tuning its immune response, structural integrity, and metabolism to maintain intestinal homeostasis. While gut microbiota metabolites of berry ellagitannins, such as urolithin A (Uro A) might contribute to physiological epithelial barrier integrity, foodborne co-contaminating mycotoxins like alternariol (AOH) and deoxynivalenol (DON) could hamper epithelial function. Hence, we investigated the response of differentiated Caco-2 cells (clone C2BBe1) in vitro to the three compounds alone or in binary mixtures. In virtue of the possible interactions of Uro A, AOH, and DON with the aryl hydrocarbon receptor (AhR) pathway, potential effects on phase-I-metabolism enzymes and epithelial structural integrity were taken as endpoints for the evaluation. Finally, Liquid chromatography tandem mass spectrometry measurements elucidated the absorption, secretion, and metabolic capacity of the cells under single and combinatory exposure scenarios. Uro A and AOH as single compounds, and as a binary mixture, were capable to induce CYP1A1/1A2/1B1 enzymes triggered by the AhR pathway. In light of its ribosome inhibiting capacity, the trichothecene suppressed the effects of both dibenzo-α-pyrones. In turn, cellular responsiveness to Uro A and AOH could be sustained when co-exposed to DON-3-sulfate, instead of DON. Colonic epithelial structural integrity was rather maintained after incubation with Uro A and AOH: this was reinforced in the combinatory exposure scenario and disrupted by DON, an effect, opposed in combination. Passage through the cells as well as the metabolism of Uro A and AOH were rather influenced by co-exposure to DON, than by interaction with each other. Therefore, we conclude that although single foodborne bioactive substances individually could either support or disrupt the epithelial structure and metabolic capacity of colon cancer, exposure to chemical mixtures changes the experimental outcome and calls for the need of combinatory investigations for proper risk assessment.
Collapse
Affiliation(s)
- Julia Groestlinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Carina Seidl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Vienna, Austria
- *Correspondence: Giorgia Del Favero,
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Doris Marko,
| |
Collapse
|
17
|
Rogovskii V. The therapeutic potential of urolithin A for cancer treatment and prevention. Curr Cancer Drug Targets 2022; 22:717-724. [PMID: 35657053 DOI: 10.2174/1568009622666220602125343] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Urolithin A is the metabolite of natural polyphenol ellagic acid and ellagitannins, generated by gut microbiota. Urolithin A is better absorbed in the gastrointestinal tract than its parent substances. Thus, the variable effects of ellagitannin-reach food (like pomegranate fruit, walnuts, tea, and others) on people's health might be linked with the differences in individual microbiota content. Urolithin A possesses various anti-inflammatory and anticancer effects, shown by in vivo and in vitro studies. OBJECTIVE In the current review, we consider anti-inflammatory and direct anticancer urolithin A effects as well as their molecular mechanisms, which might be the basement of clinical trials, estimating urolithin A anticancer effects. CONCLUSION Urolithin A attenuated the pro-inflammatory factors production (IL-6, IL-1β, NOS2 and others) in vitro studies. Oral urolithin A treatment caused prominent anticancer and anti-inflammatory action in various in vivo studies, including colitis rat model, carrageenan-induced paw edema mice model, models of pancreatic cancer, and models of obesity. The main molecular mechanisms of these effects might be the modulation of aryl hydrocarbon receptors, which antagonism may lead to decreasing of chronic inflammation. Other primary targets of urolithin A might be the processes of protein phosphorylation (for instance, it decreases the phosphorylation of protein kinase B) and p53 stabilization. Anti-inflammatory effects of urolithin A can be reached in physiologically relevant concentrations. This might be of vital importance for preventing immune suppression, associated with chronic inflammation in cancer. Considering the favorable urolithin A safety profile, it is the promising compound for cancer treatment and prevention.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of molecular pharmacology and radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
18
|
Zhang M, Cui S, Mao B, Zhang Q, Zhao J, Zhang H, Tang X, Chen W. Ellagic acid and intestinal microflora metabolite urolithin A: A review on its sources, metabolic distribution, health benefits, and biotransformation. Crit Rev Food Sci Nutr 2022; 63:6900-6922. [PMID: 35142569 DOI: 10.1080/10408398.2022.2036693] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Foods rich in ellagic tannins are first hydrolyzed into ellagic acid in the stomach and small intestine, and then converted into urolithins with high bioavailability by the intestinal flora. Urolithin has beneficially biological effects, it can induce adipocyte browning, improve cholesterol metabolism, inhibit graft tumor growth, relieve inflammation, and downregulate neuronal amyloid protein formation via the β3-AR/PKA/p38MAPK, ERK/AMPKα/SREBP1, PI3K/AKT/mTOR signaling pathways, and TLR4, AHR receptors. But differences have been reported in urolithin production capacity among different individuals. Thus, it is of great significance to explore the biological functions of urolithin, screen the strains responsible for biotransformation of urolithin, and explore the corresponding functional genes. Tannin acyl hydrolase can hydrolyze tannins into ellagic acid, and the genera Gordonibacter and Ellagibacter can metabolize ellagic acid into urolithins. Therefore, application of "single bacterium", "single bacterium + enzyme", and "microflora" can achieve biotransformation of urolithin A. In this review, the source and metabolic pathway of ellagic tannins, and the mechanisms of the biological function of a metabolite, urolithin A, are discussed. The current strategies of biotransformation to obtain urolithin A are expounded to provide ideas for further studies on the relationship between urolithin and human health.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, P. R China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R China
| |
Collapse
|
19
|
Vini R, Azeez JM, Remadevi V, Susmi TR, Ayswarya RS, Sujatha AS, Muraleedharan P, Lathika LM, Sreeharshan S. Urolithins: The Colon Microbiota Metabolites as Endocrine Modulators: Prospects and Perspectives. Front Nutr 2022; 8:800990. [PMID: 35187021 PMCID: PMC8849129 DOI: 10.3389/fnut.2021.800990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) have been used in hormone related disorders, and their role in clinical medicine is evolving. Tamoxifen and raloxifen are the most commonly used synthetic SERMs, and their long-term use are known to create side effects. Hence, efforts have been directed to identify molecules which could retain the beneficial effects of estrogen, at the same time produce minimal side effects. Urolithins, the products of colon microbiota from ellagitannin rich foodstuff, have immense health benefits and have been demonstrated to bind to estrogen receptors. This class of compounds holds promise as therapeutic and nutritional supplement in cardiovascular disorders, osteoporosis, muscle health, neurological disorders, and cancers of breast, endometrium, and prostate, or, in essence, most of the hormone/endocrine-dependent diseases. One of our findings from the past decade of research on SERMs and estrogen modulators, showed that pomegranate, one of the indirect but major sources of urolithins, can act as SERM. The prospect of urolithins to act as agonist, antagonist, or SERM will depend on its structure; the estrogen receptor conformational change, availability and abundance of co-activators/co-repressors in the target tissues, and also the presence of other estrogen receptor ligands. Given that, urolithins need to be carefully studied for its SERM activity considering the pleotropic action of estrogen receptors and its numerous roles in physiological systems. In this review, we unveil the possibility of urolithins as a potent SERM, which we are currently investigating, in the hormone dependent tissues.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Juberiya M. Azeez
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Viji Remadevi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T. R. Susmi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R. S. Ayswarya
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Lakshmi Mohan Lathika
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreeja Sreeharshan
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: Sreeja Sreeharshan
| |
Collapse
|
20
|
Shi PZ, Wang JW, Wang PC, Han B, Lu XH, Ren YX, Feng XM, Cheng XF, Zhang L. Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells through SIRT1/PGC-1α pathway. World J Stem Cells 2021; 13:1928-1946. [PMID: 35069991 PMCID: PMC8727228 DOI: 10.4252/wjsc.v13.i12.1928] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In degenerative intervertebral disc (IVD), an unfavorable IVD environment leads to increased senescence of nucleus pulposus (NP)-derived mesenchymal stem cells (NPMSCs) and the inability to complete the differentiation from NPMSCs to NP cells, leading to further aggravation of IVD degeneration (IDD). Urolithin A (UA) has been proven to have obvious effects in delaying cell senescence and resisting oxidative stress.
AIM To explore whether UA can alleviate NPMSCs senescence and to elucidate the underlying mechanism.
METHODS In vitro, we harvested NPMSCs from rat tails, and divided NPMSCs into four groups: the control group, H2O2 group, H2O2 + UA group, and H2O2 + UA + SR-18292 group. Senescence-associated β-Galactosidase (SA-β-Gal) activity, cell cycle, cell proliferation ability, and the expression of senescence-related and silent information regulator of transcription 1/PPAR gamma coactivator-1α (SIRT1/ PGC-1α) pathway-related proteins and mRNA were used to evaluate the protective effects of UA. In vivo, an animal model of IDD was constructed, and X-rays, magnetic resonance imaging, and histological analysis were used to assess whether UA could alleviate IDD in vivo.
RESULTS We found that H2O2 can cause NPMSCs senescence changes, such as cell cycle arrest, reduced cell proliferation ability, increased SA-β-Gal activity, and increased expression of senescence-related proteins and mRNA. After UA pretreatment, the abovementioned senescence indicators were significantly alleviated. To further demonstrate the mechanism of UA, we evaluated the mitochondrial membrane potential and the SIRT1/PGC-1α pathway that regulates mitochondrial function. UA protected mitochondrial function and delayed NPMSCs senescence by activating the SIRT1/PGC-1α pathway. In vivo, we found that UA treatment alleviated an animal model of IDD by assessing the disc height index, Pfirrmann grade and the histological score.
CONCLUSION In summary, UA could activate the SIRT1/PGC-1α signaling pathway to protect mitochondrial function and alleviate cell senescence and IDD in vivo and vitro.
Collapse
Affiliation(s)
- Peng-Zhi Shi
- Department of Orthopedic, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Jun-Wu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Ping-Chuan Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Bo Han
- Department of Orthopedic, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xu-Hua Lu
- Department of Orthopedics, Changzheng Hospital of The Second Military Medical University, Shanghai 200003, China
| | - Yong-Xin Ren
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| | - Xiao-Fei Cheng
- Department of Orthopedic Surgery, Shanghai Key Laboratory of Orthopedics Implants, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou 225000, Jiangsu Province, China
| |
Collapse
|
21
|
Aichinger G. Natural Dibenzo-α-Pyrones: Friends or Foes? Int J Mol Sci 2021; 22:13063. [PMID: 34884865 PMCID: PMC8657677 DOI: 10.3390/ijms222313063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Natural dibenzo-α-pyrones (DAPs) can be viewed from two opposite angles. From one angle, the gastrointestinal metabolites urolithins are regarded as beneficial, while from the other, the emerging mycotoxin alternariol and related fungal metabolites are evaluated critically with regards to potential hazardous effects. Thus, the important question is: can the structural characteristics of DAP subgroups be held responsible for distinct bioactivity patterns? If not, certain toxicological and/or pharmacological aspects of natural DAPs might yet await elucidation. Thus, this review focuses on comparing published data on the two groups of natural DAPs regarding both adverse and beneficial effects on human health. Literature on genotoxic, estrogenic, endocrine-disruptive effects, as well as on the induction of the cellular anti-oxidative defense system, anti-inflammatory properties, the inhibition of kinases, the activation of mitophagy and the induction of autophagy, is gathered and critically reviewed. Indeed, comparing published data suggests similar bioactivity profiles of alternariol and urolithin A. Thus, the current stratification into hazardous Alternaria toxins and healthy urolithins seems debatable. An extrapolation of bioactivities to the other DAP sub-class could serve as a promising base for further research. Conclusively, urolithins should be further evaluated toward high-dose toxicity, while alternariol derivatives could be promising chemicals for the development of therapeutics.
Collapse
Affiliation(s)
- Georg Aichinger
- Laboratory of Toxicology, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
22
|
Jayatunga DPW, Hone E, Khaira H, Lunelli T, Singh H, Guillemin GJ, Fernando B, Garg ML, Verdile G, Martins RN. Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer's Disease. Nutrients 2021; 13:nu13113744. [PMID: 34836000 PMCID: PMC8617978 DOI: 10.3390/nu13113744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction including deficits of mitophagy is seen in aging and neurodegenerative disorders including Alzheimer’s disease (AD). Apart from traditionally targeting amyloid beta (Aβ), the main culprit in AD brains, other approaches include investigating impaired mitochondrial pathways for potential therapeutic benefits against AD. Thus, a future therapy for AD may focus on novel candidates that enhance optimal mitochondrial integrity and turnover. Bioactive food components, known as nutraceuticals, may serve as such agents to combat AD. Urolithin A is an intestinal microbe-derived metabolite of a class of polyphenols, ellagitannins (ETs). Urolithin A is known to exert many health benefits. Its antioxidant, anti-inflammatory, anti-atherogenic, anti-Aβ, and pro-mitophagy properties are increasingly recognized. However, the underlying mechanisms of urolithin A in inducing mitophagy is poorly understood. This review discusses the mitophagy deficits in AD and examines potential molecular mechanisms of its activation. Moreover, the current knowledge of urolithin A is discussed, focusing on its neuroprotective properties and its potential to induce mitophagy. Specifically, this review proposes potential mechanisms by which urolithin A may activate and promote mitophagy.
Collapse
Affiliation(s)
- Dona Pamoda W. Jayatunga
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Cooperative Research Centre for Mental Health, Carlton, VIC 3053, Australia
| | - Harjot Khaira
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Taciana Lunelli
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- St. Vincent’s Centre for Applied Medical Research, Sydney, NSW 2011, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Manohar L. Garg
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, 8 Verdun Street., Nedlands, WA 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence: ; Tel.: +61-8-9347-4200
| |
Collapse
|
23
|
Hasheminezhad SH, Boozari M, Iranshahi M, Yazarlu O, Sahebkar A, Hasanpour M, Iranshahy M. A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins. Phytother Res 2021; 36:112-146. [PMID: 34542202 DOI: 10.1002/ptr.7290] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 12/26/2022]
Abstract
Urolithins are the gut metabolites produced from ellagitannin-rich foods such as pomegranates, tea, walnuts, as well as strawberries, raspberries, blackberries, and cloudberries. Urolithins are of growing interest due to their various biological activities including cardiovascular protection, anti-inflammatory activity, anticancer properties, antidiabetic activity, and antiaging properties. Several studies mostly based on in vitro and in vivo experiments have investigated the potential mechanisms of urolithins which support the beneficial effects of urolithins in the treatment of several diseases such as Alzheimer's disease, type 2 diabetes mellitus, liver disease, cardiovascular disease, and various cancers. It is now obvious that urolithins can involve several cellular mechanisms including inhibition of MDM2-p53 interaction, modulation of mitogen-activated protein kinase pathway, and suppressing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. Antiaging activity is the most appealing and probably the most important property of urolithin A that has been investigated in depth in recent studies, owing to its unique effects on activation of mitophagy and mitochondrial biogenesis. A recent clinical trial showed that urolithin A is safe up to 2,500 mg/day and can improve mitochondrial biomarkers in elderly patients. Regarding the importance of mitochondria in the pathophysiology of many diseases, urolithins merit further research especially in clinical trials to unravel more aspects of their clinical significance. Besides the nutritional value of urolithins, recent studies proved that urolithins can be used as pharmacological agents to prevent or cure several diseases. Here, we comprehensively review the potential role of urolithins as new therapeutic agents with a special focus on the molecular pathways that have been involved in their biological effects. The pharmacokinetics of urolithins is also included.
Collapse
Affiliation(s)
| | - Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Yazarlu
- Department of General Surgery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Al-Harbi SA, Abdulrahman AO, Zamzami MA, Khan MI. Urolithins: The Gut Based Polyphenol Metabolites of Ellagitannins in Cancer Prevention, a Review. Front Nutr 2021; 8:647582. [PMID: 34164422 PMCID: PMC8215145 DOI: 10.3389/fnut.2021.647582] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer as a disease continues to ravage the world population without regard to sex, age, and race. Due to the growing number of cases worldwide, cancer exerts a significant negative impact on global health and the economy. Interestingly, chemotherapy has been used over the years as a therapeutic intervention against cancer. However, high cost, resistance, and toxic by-effects to treatment have overshadowed some of its benefits. In recent times, efforts have been ongoing in searching for anticancer therapeutics of plant origin, focusing on polyphenols. Urolithins are secondary polyphenol metabolites derived from the gut microbial action on ellagitannins and ellagic acid-rich foods such as pomegranate, berries, and nuts. Urolithins are emerging as a new class of anticancer compounds that can mediate their cancer-preventive activities through cell cycle arrest, aromatase inhibition, induction of apoptosis, tumor suppression, promotion of autophagy, and senescence, transcriptional regulation of oncogenes, and growth factor receptors. In this review, we discussed the growing shreds of evidence supporting these secondary phenolic metabolites' anticancer properties. Furthermore, we have pointed out some of the future directions needed to establish urolithins as anticancer agents.
Collapse
Affiliation(s)
- Sami A Al-Harbi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Mc Cormack B, Maenhoudt N, Fincke V, Stejskalova A, Greve B, Kiesel L, Meresman GF, Vankelecom H, Götte M, Barañao RI. The ellagic acid metabolites urolithin A and B differentially affect growth, adhesion, motility, and invasion of endometriotic cells in vitro. Hum Reprod 2021; 36:1501-1519. [PMID: 33748857 DOI: 10.1093/humrep/deab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION What are the effects of plant-derived antioxidant compounds urolithin A (UA) and B (UB) on the growth and pathogenetic properties of an in vitro endometriosis model? SUMMARY ANSWER Both urolithins showed inhibitory effects on cell behavior related to the development of endometriosis by differentially affecting growth, adhesion, motility, and invasion of endometriotic cells in vitro. WHAT IS KNOWN ALREADY Endometriosis is one of the most common benign gynecological diseases in women of reproductive age and is defined by the presence of endometrial tissue outside the uterine cavity. As current pharmacological therapies are associated with side effects interfering with fertility, we aimed at finding alternative therapeutics using natural compounds that can be administered for prolonged periods with a favorable side effects profile. STUDY DESIGN, SIZE, DURATION In vitro cultures of primary endometriotic stromal cells from 6 patients subjected to laparoscopy for benign pathologies with histologically confirmed endometriosis; and immortalized endometrial stromal (St-T1b) and endometriotic epithelial cells (12Z) were utilized to assess the effects of UA and UB on endometriotic cell properties. Results were validated in three-dimensional (3D) in vitro co-culture spheroids of 12Z and primary endometriotic stroma cells of one patient, and organoids from 3 independent donors with endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS The effects on cell growth were measured by non-radioactive colorimetric assay to measure cellular metabolic activity as an indicator of cell viability (MTT assay) and flow cytometric cell cycle assay on primary cultures, St-T1b, and 12Z. Apoptosis analyses, the impact on in vitro adhesion, migration, and invasion were evaluated in the cell lines. Moreover, Real-Time Quantitative Reverse Transcription polymerase chain reaction (RT-qPCR) assays were performed on primary cultures, St- T1b and 12Z to evaluate a plausible mechanistic contribution by factors related to proteolysis (matrix metalloproteinase 2, 3 and 9 -MMP2, MMP3, MMP9-, and tissue inhibitor of metalloproteinases -TIMP-1-), cytoskeletal regulators (Ras-related C3 botulinum toxin substrate 1 -RAC1-, Rho-associated coiled-coil containing protein kinase 2 -ROCK2-), and cell adhesion molecules (Syndecan 1 -SDC1-, Integrin alpha V-ITGAV-). Finally, the urolithins effects were evaluated on spheroids and organoids by formation, viability, and drug screen assays. MAIN RESULTS AND THE ROLE OF CHANCE 40 µM UA and 20 µM UB produced a significant decrease in cell proliferation in the primary endometriotic cell cultures (P < 0.001 and P < 0.01, respectively) and in the St-T1b cell line (P < 0.001 and P < 0.05, respectively). In St-T1b, UA exhibited a mean half-maximum inhibitory concentration (IC50) of 39.88 µM, while UB exhibited a mean IC50 of 79.92 µM. Both 40 µM UA and 20 µM UB produced an increase in cells in the S phase of the cell cycle (P < 0.01 and P < 0.05, respectively). The same concentration of UA also increased the percentage of apoptotic ST-t1b cells (P < 0.05), while both urolithins decreased cell migration after 24 h (P < 0.001 both). Only the addition of 5 µM UB decreased the number of St-T1b adherent cells. TIMP-1 expression was upregulated in response to treating the cells with 40 µM UA (P < 0.05). Regarding the 12Z endometriotic cell line, only 40 µM UA decreased proliferation (P < 0.01); while both 40 µM UA and 20 µM UB produced an increase in cells in the G2/M phase (P < 0.05 and P < 0.01, respectively). In this cell line, UA exhibited a mean IC50 of 40.46 µM, while UB exhibited a mean IC50 of 54.79 µM. UB decreased cell migration (P < 0.05), and decreased the number of adherent cells (P < 0.05). Both 40 µM UA and 20 µM UB significantly decreased the cellular invasion of these cells; and several genes were altered when treating the cells with 40 µM UA and 10 µM UB. The expression of MMP2 was downregulated by UA (P < 0.001), and expression of MMP3 (UA P < 0.001 and UB P < 0.05) and MMP9 (P < 0.05, both) were downregulated by both urolithins. Moreover, UA significantly downregulated ROCK2 (P < 0.05), whereas UB treatment was associated with RAC1 downregulation (P < 0.05). Finally, the matrix adhesion receptors and signaling (co)receptors SDC1 and ITGAV were downregulated upon treatment with either UA or UB (P < 0.01 and P < 0.05, respectively in both cases). Regarding the effects of urolithins on 3D models, we have seen that they significantly decrease the viability of endometriosis spheroids (80 µM UA and UB: P < 0.05 both) as well as affecting their area (40 µM UA: P < 0.05, and 80 µM UA: P < 0.01) and integrity (40 µM UA and UB: P < 0.05, 80 µM UA and UB: P < 0.01). On the other hand, UA and UB significantly inhibited organoid development/outgrowth (40 and 80 µM UA: P < 0.0001 both; 40 µM UB: P < ns-0.05-0.001, and 80 µM UB: P < 0.01-0.001-0.001), and all organoid lines show urolithins sensitivity resulting in decreasing viability (UA exhibited a mean IC50 of 33.93 µM, while UB exhibited a mean IC50 of 52.60 µM). LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This study was performed on in vitro endometriosis models. WIDER IMPLICATIONS OF THE FINDINGS These in vitro results provide new insights into the pathogenetic pathways affected by these compounds and mark their use as a potential new therapeutic strategy for the treatment of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This study was funded EU MSCA-RISE-2015 project MOMENDO (691058). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Barbara Mc Cormack
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - N Maenhoudt
- Laboratory of Tissue Plasticity in Health and Disease, Stem Cell and Developmental Biology Cluster, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - V Fincke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - A Stejskalova
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - B Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - L Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - G F Meresman
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - H Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Stem Cell and Developmental Biology Cluster, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - M Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - R I Barañao
- Instituto de Biología y Medicina Experimental (IBYME)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
26
|
Ying X, Che X, Wang J, Zou G, Yu Q, Zhang X. CDK1 serves as a novel therapeutic target for endometrioid endometrial cancer. J Cancer 2021; 12:2206-2215. [PMID: 33758599 PMCID: PMC7974891 DOI: 10.7150/jca.51139] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Endometrial cancer (EC) is one of the most common and prevalent gynecologic malignancies worldwide. The aim of this study was to identify a novel therapeutic target for endometrioid endometrial cancer. Materials and Methods: Bioinformatic analysis was performed and CDK1 was screen out as one of the hub genes in the pathogenesis of EC. Immunohistochemistry was used to verify the expression of CDK1 in endometrial cancer tissue. Cell viability and colony formation were used to study the effects of CDK1 on the proliferation and colony formation of endometrial cancer cells in vitro. Apoptosis and cell cycle assays were used to elucidate the mechanism of CDK1 affecting cell proliferation. Tumor xenograft transplantation assay was performed to show the effects of CDK1 on the growth of endometrial cancer cells in vivo. Results: CDK1 was over expressed in endometrioid endometrial cancer, and accumulation of cytoplasmic CDK1 was associated with histological grade of EC. CDK1 promoted endometrial cancer cell growth and colony formation in vitro. The inhibition of CDK1 activity induced cell apoptosis and caused G2/M phase arrest of cell cycle in endometrial cancer cells. The inhibition of CDK1 activity also inhibited endometrial cancer growth in xenograft models. Conclusion: CDK1 was involved in the pathogenesis of endometrioid endometrial cancer and provided a novel therapeutic target for endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Xue Ying
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xuan Che
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006.,Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang, P.R. China, 314000
| | - Jianzhang Wang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Gen Zou
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Qin Yu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xinmei Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| |
Collapse
|
27
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
28
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
29
|
Dellafiora L, Milioli M, Falco A, Interlandi M, Mohamed A, Frotscher M, Riccardi B, Puccini P, Rio DD, Galaverna G, Dall'Asta C. A Hybrid In Silico/In Vitro Target Fishing Study to Mine Novel Targets of Urolithin A and B: A Step Towards a Better Comprehension of Their Estrogenicity. Mol Nutr Food Res 2020; 64:e2000289. [PMID: 32640069 DOI: 10.1002/mnfr.202000289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/23/2020] [Indexed: 12/27/2022]
Abstract
SCOPE Urolithin A and B are gut metabolites of ellagic acid and ellagitannins associated with many beneficial effects. Evidence in vitro pointed to their potential as estrogenic modulators. However, both molecular mechanisms and biological targets involved in such activity are still poorly characterized, preventing a comprehensive understanding of their bioactivity in living organisms. This study aimed at rationally identifying novel biological targets underlying the estrogenic-modulatory activity of urolithins. METHODS AND RESULTS The work relies on an in silico/in vitro target fishing study coupling molecular modeling with biochemical and cell-based assays. Estrogen sulfotransferase and 17β-hydroxysteroid dehydrogenase are identified as potentially subject to inhibition by the investigated urolithins. The inhibition of the latter undergoes experimental confirmation either in a cell-free or cell-based assay, validating computational outcomes. CONCLUSIONS The work describes target fishing as an effective tool to identify unexpected targets of food bioactives detailing the interaction at a molecular level. Specifically, it described, for the first time, 17β-hydroxysteroid dehydrogenase as a target of urolithins and highlighted the need of further investigations to widen the understanding of urolithins as estrogen modulators in living organisms.
Collapse
Affiliation(s)
- Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Marco Milioli
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici Spa, Parma, 43122, Italy
| | - Angela Falco
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici Spa, Parma, 43122, Italy
| | | | - Abdelrahman Mohamed
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken, D-66123, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C23, Saarbrücken, D-66123, Germany
| | - Benedetta Riccardi
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici Spa, Parma, 43122, Italy
| | - Paola Puccini
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici Spa, Parma, 43122, Italy
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, Parma, 43126, Italy
| | - Gianni Galaverna
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| | - Chiara Dall'Asta
- Department of Food and Drug, University of Parma, Parma, 43124, Italy
| |
Collapse
|
30
|
Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, Giacco R, Mennella I, Ferracane R, Pons N, Pasolli E, Rivellese A, Dragsted LO, Vitaglione P, Ehrlich SD, Ercolini D. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 2020; 69:1258-1268. [PMID: 32075887 PMCID: PMC7306983 DOI: 10.1136/gutjnl-2019-320438] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This study aimed to explore the effects of an isocaloric Mediterranean diet (MD) intervention on metabolic health, gut microbiome and systemic metabolome in subjects with lifestyle risk factors for metabolic disease. DESIGN Eighty-two healthy overweight and obese subjects with a habitually low intake of fruit and vegetables and a sedentary lifestyle participated in a parallel 8-week randomised controlled trial. Forty-three participants consumed an MD tailored to their habitual energy intakes (MedD), and 39 maintained their regular diets (ConD). Dietary adherence, metabolic parameters, gut microbiome and systemic metabolome were monitored over the study period. RESULTS Increased MD adherence in the MedD group successfully reprogrammed subjects' intake of fibre and animal proteins. Compliance was confirmed by lowered levels of carnitine in plasma and urine. Significant reductions in plasma cholesterol (primary outcome) and faecal bile acids occurred in the MedD compared with the ConD group. Shotgun metagenomics showed gut microbiome changes that reflected individual MD adherence and increase in gene richness in participants who reduced systemic inflammation over the intervention. The MD intervention led to increased levels of the fibre-degrading Faecalibacterium prausnitzii and of genes for microbial carbohydrate degradation linked to butyrate metabolism. The dietary changes in the MedD group led to increased urinary urolithins, faecal bile acid degradation and insulin sensitivity that co-varied with specific microbial taxa. CONCLUSION Switching subjects to an MD while maintaining their energy intake reduced their blood cholesterol and caused multiple changes in their microbiome and metabolome that are relevant in future strategies for the improvement of metabolic health.
Collapse
Affiliation(s)
| | - Manolo Laiola
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Henrik Munch Roager
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Hugo Roume
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | | | | | - Ilario Mennella
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicolas Pons
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Angela Rivellese
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy .,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | | | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy .,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
31
|
Sanchez-Fernandez A, Roncero-Martin R, Moran JM, Lavado-García J, Puerto-Parejo LM, Lopez-Espuela F, Aliaga I, Pedrera-Canal M. Nursing Genetic Research: New Insights Linking Breast Cancer Genetics and Bone Density. Healthcare (Basel) 2020; 8:healthcare8020172. [PMID: 32549322 PMCID: PMC7349482 DOI: 10.3390/healthcare8020172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 11/21/2022] Open
Abstract
Nursing research is expected to provide options for the primary prevention of disease and health promotion, regardless of pathology or disease. Nurses have the skills to develop and lead research that addresses the relationship between genetic factors and health. Increasing genetic knowledge and research capacity through interdisciplinary cooperation as well as the development of research resources, will accelerate the rate at which nurses contribute to the knowledge about genetics and health. There are currently different fields in which knowledge can be expanded by research developed from the nursing field. Here, we present an emerging field of research in which it is hypothesized that genetics may affect bone metabolism. Better insight of genetic factors that are contributing to metabolic bone diseases would allow for focused nursing care and preventive interventions.
Collapse
Affiliation(s)
| | - Raúl Roncero-Martin
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Jose M. Moran
- Departamento de Estomatología II, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-927-257450
| | - Jesus Lavado-García
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Luis Manuel Puerto-Parejo
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Fidel Lopez-Espuela
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| | - Ignacio Aliaga
- Departamento de Estomatología II, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María Pedrera-Canal
- Metabolic Bone Diseases Research Group, Nursing Department, Nursing and Occupational Therapy College, University of Extremadura, Avd. Universidad s/n, 10003 Cáceres, Spain; (R.R.-M.); (J.L.-G.); (L.M.P.-P.); (F.L.-E.); (M.P.-C.)
| |
Collapse
|
32
|
Mc Cormack BA, Bilotas MA, Madanes D, Ricci AG, Singla JJ, Barañao RI. Potential use of ellagic acid for endometriosis treatment: its effect on a human endometrial cell cycle, adhesion and migration. Food Funct 2020; 11:4605-4614. [DOI: 10.1039/d0fo00267d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
EA treatment decreases cell adhesion and migration of endometrial cells and alters the progression of an endometrial stromal cell line cycle.
Collapse
Affiliation(s)
- B. A. Mc Cormack
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - M. A. Bilotas
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - D. Madanes
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - A. G. Ricci
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| | - J. J. Singla
- Hospital de Clínicas “José de San Martín”
- Buenos Aires C1120AAR
- Argentina
| | - R. I. Barañao
- Laboratorio de Inmunología de la Reproducción
- Instituto de Biología y Medicina Experimental
- (IBYME-CONICET)
- Buenos Aires C1428ADN
- Argentina
| |
Collapse
|
33
|
Tong Z, Liu Y, Yu X, Martinez JD, Xu J. The transcriptional co-activator NCOA6 promotes estrogen-induced GREB1 transcription by recruiting ERα and enhancing enhancer-promoter interactions. J Biol Chem 2019; 294:19667-19682. [PMID: 31744881 DOI: 10.1074/jbc.ra119.010704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/13/2019] [Indexed: 11/06/2022] Open
Abstract
Estrogen and its cognate receptor, ERα, regulate cell proliferation, differentiation, and carcinogenesis in the endometrium by controlling gene transcription. ERα requires co-activators to mediate transcription via mechanisms that are largely uncharacterized. Herein, using growth-regulating estrogen receptor binding 1 (GREB1) as an ERα target gene in Ishikawa cells, we demonstrate that nuclear receptor co-activator 6 (NCOA6) is essential for estradiol (E2)/ERα-activated GREB1 transcription. We found that NCOA6 associates with the GREB1 promoter and enhancer in an E2-independent manner and that NCOA6 knockout reduces chromatin looping, enhancer-promoter interactions, and basal GREB1 expression in the absence of E2. In the presence of E2, ERα bound the GREB1 enhancer and also associated with its promoter, and p300, myeloid/lymphoid or mixed-lineage leukemia protein 4 (MLL4), and RNA polymerase II were recruited to the GREB1 enhancer and promoter. Consequently, the levels of the histone modifications H3K4me1/3, H3K9ac, and H3K27ac were significantly increased; enhancer and promoter regions were transcribed; and GREB1 mRNA was robustly transcribed. NCOA6 knockout reduced ERα recruitment and abolished all of the aforementioned E2-induced events, making GREB1 completely insensitive to E2 induction. We also found that GREB1-deficient Ishikawa cells are much more resistant to chemotherapy and that human endometrial cancers with low GREB1 expression predict poor overall survival. These results indicate that NCOA6 has an essential role in ERα-mediated transcription by increasing enhancer-promoter interactions through chromatin looping and by recruiting RNA polymerase II and the histone-code modifiers p300 and MLL4. Moreover, GREB1 loss may predict chemoresistance of endometrial cancer.
Collapse
Affiliation(s)
- Zhangwei Tong
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Yonghong Liu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Xiaobin Yu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jarrod D Martinez
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jianming Xu
- Department of Molecular and Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
34
|
Liu Y, Zhao R, Chi S, Zhang W, Xiao C, Zhou X, Zhao Y, Wang H. UBE2C Is Upregulated by Estrogen and Promotes Epithelial-Mesenchymal Transition via p53 in Endometrial Cancer. Mol Cancer Res 2019; 18:204-215. [PMID: 31662448 DOI: 10.1158/1541-7786.mcr-19-0561] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/17/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022]
Abstract
Ubiquitin-conjugating enzyme E2C (UBE2C) plays important roles in tumor progression; nevertheless, its function in endometrial cancer remains unclear. This study elucidated the impact of UBE2C on endometrial cancer and its underlying mechanism. Human endometrial cancer and normal endometrial tissues were acquired from patients at Wuhan Union Hospital and UBE2C expression was detected by Western blotting and qRT-PCR. Endometrial cancer cells were transfected with a UBE2C overexpression plasmid or UBE2C-specific short hairpin RNA (shRNA) to up- or downregulate UBE2C expression, respectively. CCK8 and transwell assays were applied to assess the effects of UBE2C on cell proliferation, migration, and invasion. We found a significant elevation of UBE2C expression in patients with endometrial cancer, and that UBE2C upregulation was associated with advanced histologic grade, FIGO stage, recurrence, and shorter overall survival. UBE2C knockdown inhibited endometrial cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), whereas UBE2C overexpression exerted the opposite effects. UBE2C downregulation increased p53 and its downstream p21 expression, with p53 overexpression reversing the EMT-promoting effects of UBE2C. UBE2C enhanced p53 ubiquitination to facilitate its degradation in endometrial cancer cells. Estradiol (E2) induced UBE2C expression via estrogen receptor α, which binds directly to the UBE2C promoter element. Silencing of UBE2C inhibited E2-promoted migration, invasion, and EMT in vitro and in vivo. IMPLICATIONS: UBE2C-mediated tumor EMT promotion by estrogen is a novel mechanism for the progression of estrogen-induced endometrial cancer, which could offer new biomarkers for diagnosis and therapy of endometrial cancer in the future.
Collapse
Affiliation(s)
- Yan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuqi Chi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengyu Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
35
|
Protective effect of urolithin a on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food Chem Toxicol 2019; 129:108-114. [DOI: 10.1016/j.fct.2019.04.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/31/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
|
36
|
Lv MY, Shi CJ, Pan FF, Shao J, Feng L, Chen G, Ou C, Zhang JF, Fu WM. Urolithin B suppresses tumor growth in hepatocellular carcinoma through inducing the inactivation of Wnt/β-catenin signaling. J Cell Biochem 2019; 120:17273-17282. [PMID: 31218741 DOI: 10.1002/jcb.28989] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Consumption of dietary ellagitannins (ETs) has been proven to benefit multiple chronic health disorders including cancers and cardiovascular diseases. Urolithins, gut microbiota metabolites derived from ETs, are considered as the molecules responsible for these health effects. Previous studies have demonstrated that urolithins exhibit antiproliferative effects on prostate, breast, and colon cancers. However, as for hepatocellular carcinoma (HCC), it remains elusive. Herein, we aim to investigate the function of urolithin B (UB), a member of urolithins family, in HCC. The effects of UB on cell viability, cell cycle and apoptosis were evaluated in HCC cells, and we found UB could inhibit the proliferation of HCC cells, which resulted from cell cycle arrest and apoptosis. Furthermore, UB could increase phosphorylated β-catenin expression and block its translocation from nuclear to cytoplasm, thus inducing the inactivation of Wnt/β-catenin signaling. Using a xenograft mice model, UB was found to suppress tumor growth in vivo. In conclusion, our data demonstrated that UB could inhibit the proliferation of HCC cells in vitro and in vivo via inactivating Wnt/β-catenin signaling, suggesting UB could be a promising candidate in the development of anticancer drugs targeting HCC.
Collapse
Affiliation(s)
- Min-Yi Lv
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Chuan-Jian Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Fei-Fei Pan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jiang Shao
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lu Feng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Guoqin Chen
- Department of Central Hospital of Panyu, Cardiovascular Medicine, Guangzhou, People's Republic of China
| | - Caiwen Ou
- Zhujiang Hospital, Southern Medical University, Key Laboratory of Construction and Detection of Guangdong Province, Guangdong Province Center of Biomedical Engineering for Cardiovascular Diseases, No. 1023, Shatai Nan Road, Guangzhou, People's Republic of China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wei-Ming Fu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Liu A, Zhang D, Yang X, Song Y. Estrogen receptor alpha activates MAPK signaling pathway to promote the development of endometrial cancer. J Cell Biochem 2019; 120:17593-17601. [PMID: 31140648 DOI: 10.1002/jcb.29027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Endometrial cancer (EC) is a common malignant tumor of the female reproductive system in the world. For most of the treated patients, although the survival rate is improved, most patients still have a poor prognosis. The pathogenesis of EC has always been a strong scientific focus, but there is no clear conclusion. Therefore, in view of modularization, this study is to conduct an in-depth analysis on the effects of estrogen receptor alpha (ERα) regarding EC. The purpose is to identify the molecular course of EC. We obtained 10 co-expression modules, in which ANO2, EMP3, and other genes are significantly differentially expressed in patients with EC. Additionally, there are active regulatory effects in dysfunction modules, thus genes such as ANO2 and EMP3 would be identified as key genes, which are associated with the development of EC. Enrichment results showed that the module genes were significantly involved in RNA splicing, covalent chromatin modification, histone modification, and organelle fission, and other biological processes, as well as significantly regulated mitogen-activated protein kinases (MAPK) signaling pathway, Endocytosis, Rap1 signaling pathway, and viral carcinogenesis, and other signaling pathways. Finally, we identified noncoding RNA pivot including FENDRR, miR-520c-3p. Besides, transcription factors pivot including NFKB1, E2F1, and RELA which significantly regulate dysfunction module genes. Overall, our work deciphered a co-expression network involving differential gene regulation in ERα-associated EC. It helps reveal the core modules and potential regulatory factors of the diseases and enhances our understanding of the pathogenesis. More importantly, we revealed that ERα activates the MAPK signaling pathway to promote the development of EC. It helps to provide a new reference for later research.
Collapse
Affiliation(s)
- Ai Liu
- Department of Gynaecology and Obstetrics, People's Hospital of Zoucheng, Jining, Shandong, China
| | - Dan Zhang
- Department of Gynaecology, People's Hospital of Guan, LangFang, Hebei, China
| | - Xiufen Yang
- Department of Oncology, YanZhou Hospital of Traditional Chinese Medicine, Jining, Shandong, China
| | - Ying Song
- Department of Gynaecology and Obstetrics, People's Hospital of Zoucheng, Jining, Shandong, China
| |
Collapse
|
38
|
Huang YW, Chen JH, Rader JS, Aguilera-Barrantes I, Wang LS. Preventive Effects by Black Raspberries of Endometrial Carcinoma Initiation and Promotion Induced by a High-Fat Diet. Mol Nutr Food Res 2019; 63:e1900013. [PMID: 30951235 DOI: 10.1002/mnfr.201900013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Indexed: 11/11/2022]
Abstract
SCOPE The chemopreventive effects of black raspberries (BRBs) have not been studied in endometrial tumorigenesis. Here, they are examined in a mouse model of endometrial cancer. METHODS AND RESULTS Wild-type and Pten heterozygous (+/-) female mice are weaned at 3 weeks and fed with four AIN-93G diets: 93G; 93G+5% BRBs powder; high-fat (HF); and HF+5% BRBs. Body weight and diet consumption are recorded weekly until the mice are euthanized at 28 weeks of age. Mice fed with HF diets are found to significantly gain body weight over time. BRBs are not found to affect the development of obesity. Mice in the HF+BRBs group consume less food than the HF-only mice. HF+BRBs diets suppress uterine tumor initiation and promotion more than the HF-only diet by inhibiting cell proliferation. It also reduces HF-induced levels of plasma leptin and 17β-estradiol (E2). Urolithin A, a metabolite of BRBs, suppresses cell proliferation induced by leptin and E2. CONCLUSION BRBs are preventive in HF-mediated uterine tumorigenesis because they suppress cell growth and plasma leptin and E2 levels.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jo-Hsin Chen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
39
|
Gramec Skledar D, Tomašič T, Sollner Dolenc M, Peterlin Mašič L, Zega A. Evaluation of endocrine activities of ellagic acid and urolithins using reporter gene assays. CHEMOSPHERE 2019; 220:706-713. [PMID: 30611068 DOI: 10.1016/j.chemosphere.2018.12.185] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Urolithins are metabolites produced in the gut following consumption of ellagitannins and ellagic-acid-rich food, such as pomegranates, berries, and nuts. Compelling biological activities of urolithins together with variabilities between individuals in the metabolic capacity of the resident gut microbiota to produce urolithins, have suggested potential benefits of direct consumption of urolithins. Based on the structures of ellagic acid and urolithins, they might be expected to show endocrine effects. We report on their impact on the estrogen, androgen, glucocorticoid and thyroid-hormone receptors, as determined in vitro using reporter gene assays in the Hela9903 (estrogen receptor), MDA-kb2 (androgen and glucocorticoid receptors) and GH3.TRE-Luc (thyroid hormone receptor) cell lines. Urolithins A and B, but not ellagic acid and urolithin D, showed estrogenic activities on estrogen receptor subtype α under our assay conditions, with EC50 values of 5.59 μM and 32.60 μM, respectively. Moreover, ellagic acid and urolithins A and D showed anti-thyroid hormonal activities (IC50 values of 37.45 μM, 30.32 μM and 8.80 μM, respectively). Glucocorticoid and androgen agonist and antagonist activities were assessed using a luciferase reporter gene assay in the MDA-kb2 cell line. None of these tested compounds showed glucocorticoid agonist or antagonist activities, and ellagic acid showed weak androgen agonist activity, although only at the highest concentration tested. Detected estrogen and antithyroid activities warrant further risk assessment in relation to the exposure of urolithins in humans.
Collapse
Affiliation(s)
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
40
|
Shahraki A, Ebrahimi A. Binding of ellagic acid and urolithin metabolites to the CK2 protein, based on the ONIOM method and molecular docking calculations. NEW J CHEM 2019. [DOI: 10.1039/c9nj03508g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using three-layer ONIOM and molecular docking calculations to investigate the binding of urolithins to the active site of the CK2 protein.
Collapse
Affiliation(s)
- Asiyeh Shahraki
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| | - Ali Ebrahimi
- Department of Chemistry
- Computational Quantum Chemistry Laboratory
- University of Sistan and Baluchestan
- Zahedan
- Iran
| |
Collapse
|
41
|
Natural Products to Fight Cancer: A Focus on Juglans regia. Toxins (Basel) 2018; 10:toxins10110469. [PMID: 30441778 PMCID: PMC6266065 DOI: 10.3390/toxins10110469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Even if cancer represents a burden for human society, an exhaustive cure has not been discovered yet. Low therapeutic index and resistance to pharmacotherapy are two of the major limits of antitumour treatments. Natural products represent an excellent library of bioactive molecules. Thus, tapping into the natural world may prove useful in identifying new therapeutic options with favourable pharmaco-toxicological profiles. Juglans regia, or common walnut, is a very resilient tree that has inhabited our planet for thousands of years. Many studies correlate walnut consumption to beneficial effects towards several chronic diseases, such as cancer, mainly due to the bioactive molecules stored in different parts of the plant. Among others, polyphenols, quinones, proteins, and essential fatty acids contribute to its pharmacologic activity. The present review aims to offer a comprehensive perspective about the antitumour potential of the most promising compounds stored in this plant, such as juglanin, juglone, and the ellagitannin-metabolites urolithins or deriving from walnut dietary intake. All molecules and a chronic intake of the fruit provide tangible anticancer effects. However, the scarcity of studies on humans does not allow results to be conclusive.
Collapse
|
42
|
Battino M, Forbes-Hernández TY, Gasparrini M, Afrin S, Cianciosi D, Zhang J, Manna PP, Reboredo-Rodríguez P, Varela Lopez A, Quiles JL, Mezzetti B, Bompadre S, Xiao J, Giampieri F. Relevance of functional foods in the Mediterranean diet: the role of olive oil, berries and honey in the prevention of cancer and cardiovascular diseases. Crit Rev Food Sci Nutr 2018; 59:893-920. [PMID: 30421983 DOI: 10.1080/10408398.2018.1526165] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The traditional Mediterranean diet (MedDiet) is a well-known dietary pattern associated with longevity and improvement of life quality as it reduces the risk of the most common chronic pathologies, such as cancer and cardiovascular diseases (CVDs), that represent the principal cause of death worldwide. One of the most characteristic foods of MedDiet is olive oil, a very complex matrix, which constitutes the main source of fats and is used in the preparation of foods, both raw as an ingredient in recipes, and in cooking. Similarly, strawberries and raspberries are tasty and powerful foods which are commonly consumed in the Mediterranean area in fresh and processed forms and have attracted the scientific and consumer attention worldwide for their beneficial properties for human health. Besides olive oil and berries, honey has lately been introduced in the MedDiet thanks to its relevant nutritional, phytochemical and antioxidant profile. It is a sweet substance that has recently been classified as a functional food. The aim of this review is to present and discuss the recent evidence, obtained from in vitro, in vivo and epidemiological studies, on the potential roles exerted by these foods in the prevention and progression of different types of cancer and CVDs.
Collapse
Affiliation(s)
- Maurizio Battino
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Tamara Y Forbes-Hernández
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Massimiliano Gasparrini
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Sadia Afrin
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Danila Cianciosi
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Jiaojiao Zhang
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Piera P Manna
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| | - Patricia Reboredo-Rodríguez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,b Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science , University of Vigo, Ourense Campus , Ourense , Spain
| | - Alfonso Varela Lopez
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy.,c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Josè L Quiles
- c Department of Physiology , Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada , Granada , Spain
| | - Bruno Mezzetti
- d Dipartimento di Scienze Agrarie, Alimentari e Ambientali , Università Politecnica delle Marche , Ancona , Italy
| | - Stefano Bompadre
- e Dipartimento di Scienze Biomediche e Sanità Pubblica , Università Politecnica delle Marche , Ancona , Italy
| | - Jianbo Xiao
- f Institute of Chinese Medical Sciences , University of Macau , Taipa , Macau , China
| | - Francesca Giampieri
- a Department of Clinical Sciences, Faculty of Medicine , Università Politecnica delle Marche , Ancona , Ancona , Italy
| |
Collapse
|
43
|
Liu H, Kang H, Song C, Lei Z, Li L, Guo J, Xu Y, Guan H, Fang Z, Li F. Urolithin A Inhibits the Catabolic Effect of TNFα on Nucleus Pulposus Cell and Alleviates Intervertebral Disc Degeneration in vivo. Front Pharmacol 2018; 9:1043. [PMID: 30283339 PMCID: PMC6157327 DOI: 10.3389/fphar.2018.01043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP) is a common worldwide disease that causes an enormous social economic burden. Intervertebral disc degeneration (IDD) is considered as a major cause of LBP. The process of IDD is complicated and involves both inflammation and senescence. The production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)α and interleukin (IL)-1β, is increased in the degenerating intervertebral disc, inducing extracellular matrix degradation. Urolithin A (UA) is a metabolite compound resulting from the degradation of ellagitannins by gut bacteria. UA has been reported to be useful for the treatment of diseases associated with inflammation, senescence, and oxidative damage. Therefore, we hypothesized that UA may be an effective treatment for IDD. This study examined the effects of UA on IDD in vitro and in vivo and explored their underlying mechanisms. Our findings indicated that UA could attenuate cellular senescence induced by hydrogen peroxide in nucleus pulposus cells. UA treatment decreased TNFα-induced matrix metalloproteinase production and the loss of collagen II. At the molecular level, UA considerably blocked the phosphorylation of the extracellular signal-regulated kinase, c-JUN N-terminal kinase, and Akt pathways. In vivo study illustrated that UA treatment could ameliorate IDD in a needle-punctured rat tail model, which was evaluated by X-ray imaging, magnetic resonance imaging, and histological analysis. Thus, the results of our study revealed that UA may be a useful therapeutic agent for the treatment of IDD.
Collapse
Affiliation(s)
- Huiyong Liu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuowei Lei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Guo
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Cheng M, Michalski S, Kommagani R. Role for Growth Regulation by Estrogen in Breast Cancer 1 (GREB1) in Hormone-Dependent Cancers. Int J Mol Sci 2018; 19:ijms19092543. [PMID: 30154312 PMCID: PMC6163654 DOI: 10.3390/ijms19092543] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Sex hormones play important roles in the onset and progression of several cancers, such as breast, ovarian, and prostate cancer. Although drugs targeting sex hormone function are useful in treating cancer, tumors often develop resistance. Thus, we need to define the downstream effectors of sex hormones in order to develop new treatment strategies for these cancers. Recent studies unearthed one potential mediator of steroid hormone action in tumors: growth regulation by estrogen in breast cancer 1 (GREB1). GREB1 is an early estrogen-responsive gene, and its expression is correlated with estrogen levels in breast cancer patients. Additionally, GREB1 responds to androgen in prostate cancer cells, and can stimulate the proliferation of breast, ovarian, and prostate cancer cells. Recent studies have shown that GREB1 also responds to progesterone in human endometrial cells, suggesting that GREB1 is a pan steroid-responsive gene. This mini-review examines evidence that GREB1 participates in several hormone-dependent cancers and could be targeted to treat these cancers.
Collapse
Affiliation(s)
- Meng Cheng
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stephanie Michalski
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Ramakrishna Kommagani
- Center for Reproductive Health Sciences, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
45
|
Gerhauser C. Impact of dietary gut microbial metabolites on the epigenome. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170359. [PMID: 29685968 PMCID: PMC5915727 DOI: 10.1098/rstb.2017.0359] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/18/2022] Open
Abstract
Within the past decade, epigenetic mechanisms and their modulation by natural products have gained increasing interest. Dietary bioactive compounds from various sources, including green tea, soya, fruit and berries, cruciferous vegetables, whole grain foods, fish and others, have been shown to target enzymes involved in epigenetic gene regulation, including DNA methyltransferases, histone acetyltransferases, deacetylases and demethylases in vitro and in cell culture. Also, many dietary agents were shown to alter miRNA expression. In vivo studies in animal models and humans are still limited. Recent research has indicated that the gut microbiota and gut microbial metabolites might be important mediators of diet-epigenome interactions. Inter-individual differences in the gut microbiome might affect release, metabolism and bioavailability of dietary agents and explain variability in response to intervention in human studies. Only a few microbial metabolites, including folate, phenolic acids, S-(-)equol, urolithins, isothiocyanates, and short- and long-chain fatty acids have been tested with respect to their potential to influence epigenetic mechanisms. Considering that a complex mixture of intermediary and microbial metabolites is present in human circulation, a more systematic interdisciplinary investigation of nutri-epigenetic activities and their impact on human health is called for.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
46
|
Boakye YD, Groyer L, Heiss EH. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochim Biophys Acta Gen Subj 2017; 1862:61-70. [PMID: 29031765 DOI: 10.1016/j.bbagen.2017.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND An extract of Phyllanthus muellerianus and its constituent geraniin have been reported to exert anti-inflammatory activity in vivo. However, orally consumed geraniin, an ellagitannin, shows low bioavailability and undergoes metabolization to urolithins by gut microbiota. This study aimed at comparing geraniin and urolithin A with respect to inhibition of M1 (LPS) polarization of murine J774.1 macrophages and shedding more light on possible underlying mechanisms. METHODS Photometric, fluorimetric as well as luminescence-based assays monitored production of reactive oxygen species (ROS) and nitric oxide (NO), cell viability or reporter gene expression. Western blot analyses and confocal microscopy showed abundance and localization of target proteins, respectively. RESULTS Urolithin A is a stronger inhibitor of M1 (LPS) macrophage polarization (production of NO, ROS and pro-inflammatory proteins) than geraniin. Urolithin A leads to an elevated autophagic flux in macrophages. Inhibition of autophagy in M1 (LPS) macrophages overcomes the suppressed nuclear translocation of p65 (NF-kB; nuclear factor kB), the reduced expression of pro-inflammatory genes as well as the diminished NO production brought about by urolithin A. The increased autophagic flux is furthermore associated with impaired Akt/mTOR (mammalian target of rapamycin) signaling in urolithin A-treated macrophages. CONCLUSIONS AND GENERAL SIGNIFICANCE Intestinal metabolization may boost the potential health benefit of widely consumed dietary ellagitannins, as suggested by side by side comparison of geraniin and urolithin A in M1(LPS) macrophages. Increased activity of the autophagic cellular recycling machinery aids the anti-inflammatory bioactivity of urolithin A.
Collapse
Affiliation(s)
- Yaw Duah Boakye
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Laura Groyer
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
47
|
Wu S, Tian L. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum). Molecules 2017; 22:molecules22101606. [PMID: 28946708 PMCID: PMC6151597 DOI: 10.3390/molecules22101606] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
Having served as a symbolic fruit since ancient times, pomegranate (Punica granatum) has also gained considerable recognition as a functional food in the modern era. A large body of literature has linked pomegranate polyphenols, particularly anthocyanins (ATs) and hydrolyzable tannins (HTs), to the health-promoting activities of pomegranate juice and fruit extracts. However, it remains unclear as to how, and to what extent, the numerous phytochemicals in pomegranate may interact and exert cooperative activities in humans. In this review, we examine the structural and analytical information of the diverse phytochemicals that have been identified in different pomegranate tissues, to establish a knowledge base for characterization of metabolite profiles, discovery of novel phytochemicals, and investigation of phytochemical interactions in pomegranate. We also assess recent findings on the function and molecular mechanism of ATs as well as urolithins, the intestinal microbial derivatives of pomegranate HTs, on human nutrition and health. A better understanding of the structural diversity of pomegranate phytochemicals as well as their bioconversions and bioactivities in humans will facilitate the interrogation of their synergistic/antagonistic interactions and accelerate their applications in dietary-based cancer chemoprevention and treatment in the future.
Collapse
Affiliation(s)
- Sheng Wu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Li Tian
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China.
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China.
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
48
|
Li SZ, Liu W, Li Z, Li WH, Wang Y, Zhou L, Gui JF. greb1 regulates convergent extension movement and pituitary development in zebrafish. Gene 2017; 627:176-187. [DOI: 10.1016/j.gene.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/18/2017] [Accepted: 06/08/2017] [Indexed: 12/15/2022]
|
49
|
Wang ST, Chang WC, Hsu C, Su NW. Antimelanogenic Effect of Urolithin A and Urolithin B, the Colonic Metabolites of Ellagic Acid, in B16 Melanoma Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6870-6876. [PMID: 28726389 DOI: 10.1021/acs.jafc.7b02442] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Antimelanogenic agents from natural sources have been widely investigated. Urolithin A (UA) and B (UB), the main gut microflora metabolites of dietary ellagic acid derivatives, have various bioactivities such as anti-inflammatory and antiaging effects. In this study, the metabolites were found to possess depigmentation efficacy by suppressing tyrosinase activity. Both UA and UB could attenuate melanogenesis in B16 melanoma cells to 55.1 ± 3.8 and 76.4 ± 17.4% of control at noncytotoxic dosage, 10 μM, respectively. UA showed comparable efficacy to positive control, 5 μM of kojic acid treatment (51.2 ± 7.8). RT-PCR results revealed that UA and UB inhibited melanin formation by affecting the catalytic activity of tyrosinase rather than its mRNA expression. Kinetics for UA and UB on tyrosinase activity revealed that their inhibition behavior toward cellular tyrosinase involved competitive inhibition. UA and UB may be potent tyrosinase inhibitors and they possess significant antimelanogenesis ability as novel skin-whitening ingredients.
Collapse
Affiliation(s)
- Shang-Ta Wang
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Chia Chang
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chen Hsu
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Nan-Wei Su
- Department of Agricultural Chemistry, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
50
|
Cui GH, Chen WQ, Shen ZY. Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharmacol Rep 2017; 70:519-524. [PMID: 29660655 DOI: 10.1016/j.pharep.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/26/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND This study investigates the therapeutic potential of urothelin A in attenuating atherosclerotic lesion in wistar rat models and explore the role of Scavenger receptor-class B type I (SR-BI) and activation of Nrf-2 singling pathway. METHODS Wistar rats (n=48) were feed with high cholesterol diet supplemented with Vitamin D3 and subjected to balloon injury of the aorta. Three days prior to the aortal injury, rats (n=16) were administered urothelin A (3mg/kg/d; po). Positive control were rats receiving high cholesterol diet and balloon injury of the aorta (n=16). The sham group (n=16) consisted of rats fed on basal diet. After twelve weeks blood was collected from all animals for estimation of lipid and angiotensin II (Ang II) levels along, subsequently all animals were sacrificed and morphologic analysis of the aorta was performed. Expression of SR-BI and phosphorylated extracellular signal regulated kinase 1/2 (p-ERK1/2) protein were evaluated by Western blot. RESULTS After twelve weeks of treatment with urolithin A, there was a significant decrease in the plasma lipid and Ang II levels and improvement of aortic lesion compared with the sham group. There was an increased expression of SR-BI and inhibition of p-ERK1/2 (p<0.05). The expression of SR-BI was inversely correlated with levels of Ang II. CONCLUSION From the results it can be safely concluded that administration of urolithin A attenuates atherosclerosis via upregulation of SR-BI expression and inhibition of p-ERK1/2 levels.
Collapse
Affiliation(s)
- Guang-Hao Cui
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Wei-Qian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhen-Ya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|