1
|
Yan M, Hu J, Wang L, Zhang T, Xiao Z, Yuan Y, Yue T. Metabolic profiling of abdominal subcutaneous adipose tissue reveals effects of apple polyphenols for reversing high-fat diet induced obesity in C57BL/6 J mice. Food Chem 2025; 473:143055. [PMID: 39879748 DOI: 10.1016/j.foodchem.2025.143055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
Apple polyphenols (APP) can reduce obesity. However, the effects of APP on abdominal subcutaneous adipose tissue (aSAT) at metabolic level were unclear. In this study, 5-week APP intervenes were conducted on 10-week high-fat diet (HFD) feeding mice with doses of 200 and 500 mg/kg b.w./day, followed by ultra-high-performance liquid chromatography-mass spectrometry based untargeted metabolomics analysis. As expected, APP obviously reversed aSAT weight and index, as well as activities of myeloperoxidase, glutathione peroxidase, superoxide dismutase and catalase. Euclidean distance between HFD and normal chow diet (NCD) group was shortened. 64 and 127 differential metabolites were found in 200 and 500 mg/kg b.w./day group, with 12 and 13 changed pathways, respectively. Specifically, APP restored glycolysis, tricarboxylic acid cycle, amino acid metabolism, and lipid metabolism as dose-dependent manner. Finally, glucose-6-phosphate, xanthine and tyrosine were selected as critical junctures. Collectively, these findings underscore the potential of APP in reversing molecular alterations in aSAT.
Collapse
Affiliation(s)
- Min Yan
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Jinpeng Hu
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Lan Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Ting Zhang
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Zhengcao Xiao
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
2
|
Li D, Yi G, Cao G, Midgley AC, Yang Y, Yang D, Liu W, He Y, Yao X, Li G. Dual-Carriers of Tartary Buckwheat-Derived Exosome-Like Nanovesicles Synergistically Regulate Glucose Metabolism in the Intestine-Liver Axis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410124. [PMID: 40079102 DOI: 10.1002/smll.202410124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/26/2025] [Indexed: 03/14/2025]
Abstract
The utilization of plant-derived exosome-like nanovesicles (ELNs) as nanocarriers for oral delivery of bioactives has garnered significant attention. However, their distinctive lipid membrane composition may result in elevated membrane permeability within the gastrointestinal environment, leading to the leakage of carried bioactives. Inspired by the concept of projectile design, Tartary buckwheat-derived ELNs (TB-ELNs) based dual-carriers are fabricated by loading chlorogenic acid (CGA) into the cores and bonding selenium nanoparticles (SeNPs) to the lipid membrane. The results indicate that SeNPs bond markedly augments the membrane rigidity, and therefore enhances the stability of TB-ELNs and the retention rate of the loaded CGA during gastrointestinal digestion. In vitro and in vivo studies indicates that the TB-ELNs based dual-carriers are internalized by epithelial cells and transcytosis via the endoplasmic reticulum, and show the synergistic regulatory effect on high-fat diet-induced hyperglycemia in the intestine-liver axis. These results may be attributed to the fact that SeNPs combination reduces the gastrointestinal degradation of the carried bioactives. Moreover, SeNPs with antioxidant property can protect ELNs and their carried bioactives from oxidative damage, thereby enhancing their biological activities. Collectively, this study offers a new strategy to develop highly efficient oral delivery systems for bioactives to alleviate hyperglycemia and diabetes.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Gaoyang Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yongli Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Dan Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Wenguang Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yujuan He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
3
|
Mhawish R, Komarnytsky S. Small Phenolic Metabolites at the Nexus of Nutrient Transport and Energy Metabolism. Molecules 2025; 30:1026. [PMID: 40076251 PMCID: PMC11901895 DOI: 10.3390/molecules30051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Over time, human metabolism evolved to accommodate the challenges and benefits of plant foods that contain high amounts of carbohydrates and polyphenols. The latter are typically metabolized into small phenolic metabolites, including phenolic acids and their endogenous and microbial derivatives, that influence interconnected metabolic pathways involved in nutrient transport, energy metabolism, and neurotransmitter balance. Unlike other natural products, their biological effects arise from weak interactions with multiple molecular pathways rather than a single high-affinity receptor, making them versatile regulators of metabolic health. These compounds also modulate glucose transporters and carbohydrate metabolism, playing a crucial role in postprandial glucose and insulin responses. This review addresses the critical role of phenolic metabolites in metabolic health, with a focus on glucose homeostasis, insulin sensitivity, and carbohydrate metabolism. Incorporating polyphenols and phenolic acids into dietary strategies offers significant potential for improving insulin sensitivity, reducing metabolic disorder risks, and promoting whole-body glucose homeostasis. Furthermore, understanding how phenolic metabolites interact with metabolic pathways is essential for developing future effective nutritional strategies to support metabolic health.
Collapse
Affiliation(s)
- Reham Mhawish
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA;
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| |
Collapse
|
4
|
Lopez-Rodulfo IM, Stentoft EW, Martinez MM. Comparative assessment of polyphenol bioaccessibility in cold-pressed apple fractions using static and semi-dynamic digestion models. Food Res Int 2025; 202:115743. [PMID: 39967186 DOI: 10.1016/j.foodres.2025.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
The INFOGEST semi-dynamic digestion model more closely aligns the kinetics of nutrient digestion with structural changes in the food matrix during gastric digestion, which can significantly influence polyphenol bioaccessibility. In this study, the static and semi-dynamic INFOGEST models were compared to assess polyphenol bioaccessibility across various matrix scenarios, using different apple fractions. Each digesta, regardless of the model used, underwent re-solubilization, centrifugal filtration, and UHPLC-ESI-QTOF-MS/MS analysis to approximate transepithelial absorption and facilitate untargeted polyphenol screening and semi-quantification. The semi-dynamic model was initially optimized using whole apple. Overhead stirring with a paddle led to greater browning and degradation of phenolic acids and dihydrochalcones than magnetic stirring, the latter showing bolus stratification and closer physiological conditions for oxygenation and intragastric chyme homogenization. The suitability of a 2 kcal/min gastric emptying rate was tested with pomace, resulting in 8.25 min total gastric emptying time due to low caloric content. Compared to the gastric emptying time of whole apple (139.5 min), the caloric-driven emptying of pomace produced similar polyphenol bioaccessibility but a three-fold higher coefficient of variation (19.5 % vs. 69.4 %). Finally, using several apple fractions, the semi-dynamic setup with magnetic stirring and a fixed gastric emptying rate of 139.5 min showed greater extraction of hydroxybenzoic acids and dihydrochalcones from apple and of hydroxybenzoic and hydroxycinnamic acids from pomace than the static model. However, flavanols in juice degraded more extensively under semi-dynamic conditions. Minimal differences were observed between models for an apple polyphenol extract, indicating that in the absence of matrix, the static setup might be preferred.
Collapse
Affiliation(s)
- Ivan M Lopez-Rodulfo
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark
| | - Emil W Stentoft
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200 Denmark; Food Technology Area, Department of Agricultural Engineering, University of Valladolid, Spain.
| |
Collapse
|
5
|
Fraga CG, Cremonini E, Galleano M, Oteiza PI. Natural Products and Diabetes: (-)-Epicatechin and Mechanisms Involved in the Regulation of Insulin Sensitivity. Handb Exp Pharmacol 2025; 287:159-173. [PMID: 38421444 DOI: 10.1007/164_2024_707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Type 2 diabetes (T2D) is a disease that occurs when cells do not respond normally to insulin, a condition called insulin resistance, which leads to high blood glucose levels. Although it can be treated pharmacologically, dietary habits beyond carbohydrate restriction can be highly relevant in the management of T2D. Emerging evidence supports the possibility that natural products (NPs) could contribute to managing blood glucose or counteract the undesirable effects of hyperglycemia and insulin resistance. This chapter summarizes the relevant preclinical evidence involving the flavonoid (-)-epicatechin (EC) in the optimization of glucose homeostasis, reducing insulin resistance and/or diabetes-associated disorders. Major effects of EC are observed on (i) intestinal functions, including digestive enzymes, glucose transporters, microbiota, and intestinal permeability, and (ii) redox homeostasis, including oxidative stress and inflammation. There is still a need for further clinical studies to confirm the in vitro and rodent data, allowing recommendations for EC, particularly in prediabetic and T2D patients. The collection of similar data and the lack of clinical evidence for EC is also applicable to other NPs.
Collapse
Affiliation(s)
- Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
- Department of Nutrition, University of California, Davis, CA, USA.
| | | | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, USA
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| |
Collapse
|
6
|
Gallego-Lobillo P, Lopez-Rodulfo IM, Martinez MM. Rat small intestine extract as a source of mammalian α- and β-glycosidases to study polyphenol bioaccessibility and deglycosylation in vitro: A case study with matrix-devoid and matrix-defined apple fractions. Food Res Int 2025; 199:115346. [PMID: 39658150 DOI: 10.1016/j.foodres.2024.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Most polyphenols are glycosylated, affecting their uptake, metabolism, and biological activity. However, the attached sugar must be removed before absorption and functionality can take place. Yet, despite the biological and chemical implications of polyphenol (de-)glycosylation, most in vitro digestion assays omit the utilization of intestinal brush border α- and/or β-glycosidases to study polyphenol bioaccessibility and deglycosylation. This study investigated the effect of rat small intestine extract (RSIE) as an affordable source of mammalian α- and β-glycosidases in different food matrices: matrix-devoid whole apple extract, whole apple, apple juice, and apple pomace. Using the INFOGEST 2.0 model, transepithelial polyphenol absorption, UHPLC-ESI-QTOF-MS/MS, and the inclusion of RSIE at the 15 U*mL-1 maltase activity reported in the human epithelium, the role of RSIE in polyphenol bioaccessibility and deglycosylation was explored. Moreover, the effect of the plant cell wall (PCW) matrix on the role of RSIE was mechanistically investigated by comparing whole apple (or pomace) with their respective extracts. 36 glycosylated polyphenols were identified, including 33 β-O-glycosides and 3 α-O-glycosides. The content of bioaccessible polyphenol β-O-glycosides and α-O-glycosides was significantly lower (p < 0.001) when RSIE was present, which resulted in a concomitant generation of the aglycone forms (phloretin, quercetin, ferulic acid, caffeic acid and p-coumaric acid). However, the concentration of aglycones was much lower than the reduction in the concentration of glycosylated polyphenols, strongly suggesting that polyphenols bind to RSIE. Matrix-devoid whole apple extract, or pomace extract, exhibited higher polyphenol bioaccessibility than whole apple or pomace, likely due to reduced interactions between polyphenols and the food matrix. Importantly, these differences in bioaccessibility diminished with RSIE, suggesting that RSIE α-glycosidases cleaved α-glucans and disrupted the PCW structure.
Collapse
Affiliation(s)
- Pablo Gallego-Lobillo
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| | - Ivan M Lopez-Rodulfo
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark.
| | - Mario M Martinez
- Centre for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark; Food Technology Area, Department of Agricultural Engineering, University of Valladolid, Spain.
| |
Collapse
|
7
|
Comi L, Giglione C, Klinaku FT, Pialorsi F, Tollemeto V, Zurlo M, Seneci A, Magni P. Valorizing Agro‐Food Waste for Nutraceutical Development: Sustainable Approaches for Managing Metabolic Dysfunction‐Associated Steatotic Liver Disease and Related Co‐Morbidities. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
ABSTRACTThis comprehensive investigation delves into the interconnectedness of different features of cardiometabolic syndrome, such as metabolic dysfunction‐associated steatotic liver disease (MASLD), atherosclerotic cardiovascular disease (ASCVD), and gut dysbiosis, highlighting the crucial role of nutraceuticals in their management and prevention. Given the significant overlap in the pathophysiology of these conditions, the treatment with nutraceuticals, especially those derived from agro‐food waste, offers a promising, sustainable, and innovative approach to healthcare. The 2030 Agenda for Sustainable Development and the One Health concept are key frameworks for selecting the most interesting supply chain for the production of nutraceuticals from agro‐food waste, ensuring environmental sustainability, and innovative agricultural practices. In this review, the therapeutic potential of kiwifruit and apples has been explored, detailing how their bioactive compounds, like polyphenols, fiber, pectin, kaempferol, phloretin, and phlorizin, may contribute to the management of MASLD, ASCVD, and gut dysbiosis. Various extraction methods for active ingredients, including chemical, water, and enzyme extractions, are analyzed for their respective benefits and drawbacks. By integrating scientific research, sustainable agricultural practices, and innovative extraction methods, we can develop effective strategies to combat these pervasive health issues. This holistic approach not only enhances individual health outcomes but also supports broader environmental and societal goals, promoting a healthier future for all.
Collapse
Affiliation(s)
- Laura Comi
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Claudia Giglione
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | - Fationa Tolaj Klinaku
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
| | | | | | | | | | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences Università degli Studi di Milano Milan Italy
- IRCCS MultiMedica, Sesto San Giovanni Milan Italy
| |
Collapse
|
8
|
Osakabe N, Ohmoto M, Shimizu T, Iida N, Fushimi T, Fujii Y, Abe K, Calabrese V. Gastrointestinal hormone-mediated beneficial bioactivities of bitter polyphenols. FOOD BIOSCI 2024; 61:104550. [DOI: 10.1016/j.fbio.2024.104550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Kim KJ, Kim JY. Polyphenols in foods: a potential strategy for preventing and managing the postprandial hyperglycemic response. Food Sci Biotechnol 2024; 33:2699-2713. [PMID: 39184987 PMCID: PMC11339232 DOI: 10.1007/s10068-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant health risk worldwide, and effective management strategies are needed. Polyphenols exhibit diverse biological functions, are abundant in various plants, and influence carbohydrate digestion and absorption. This review provides a comprehensive overview of clinical evidence regarding the relationship between dietary polyphenols and the postprandial hyperglycemic response. Human intervention studies have demonstrated the benefits of polyphenol-rich foods in improving glucose and insulin metabolism, underscoring their role in preventing T2DM. These findings highlight the potential of polyphenol-rich foods for managing hyperglycemia and mitigating T2DM risk and provide insight into effective dietary strategies for glycemic control and overall health.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
10
|
Zhang Y, Wu Y, Li B, Tian J. Phloretin prolongs lifespan of Caenorhabditis elegans via inhibition of NDUFS1 and NDUFS6 at mitochondrial complex Ⅰ. Free Radic Biol Med 2024; 221:283-295. [PMID: 38705496 DOI: 10.1016/j.freeradbiomed.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Phloretin has been widely perceived as an antioxidant. However, the bioavailability of phloretin in vivo is generally far too low to elicit a direct antioxidant effect by scavenging reactive oxygen species (ROS). Here we showed that administration of phloretin of apple polyphenols extended lifespan of Caenorhabditis elegans and promoted fitness. Specially phloretin enhanced the survival rates of nematodes under oxidants in an inverted U-shaped dose-response manner. The lifespan-extending effects of phloretin were mediated by ROS via mitochondrial complex I inhibition. The increase of ROS stimulated p38 MAPK/PMK-1 as well as transcription factors of NRF2/SKN-1 and FOXO/DAF-16. Consistent with the involvement of NRF2/SKN-1 and FOXO/DAF-16 in lifespan-extending effects, activities of superoxide dismutase (SOD) and catalase (CAT) were enhanced by phloretin. The exogenous application of antioxidants butylated hydroxyanisole and N-acetylcysteine abolished the increase of ROS, the enhancement of SOD and CAT activities, and the lifespan extending effects of phloretin. Meanwhile, with the inhibition of mitochondrial complex I, ATP was instantly decreased. Both energy sensors of AMPK/AAK-2 and SIRT1/SIR-2.1 were involved in the lifespan extension by phloretin. Transcriptomic, real-time qPCR and molecular docking analyses demonstrated that the binding of phloretin at complex I located at NDUFS1/NUO-5, NDUFS2/GAS-1, and NDUFS6/NDUF-6. The molecular dynamic simulation and binding free energy calculations showed that phloretin had high binding affinities towards NDUFS1 (-7.21 kcal/mol) and NDUFS6 (-7.02 kcal/mol). Collectively, our findings suggested phloretin had effects of life expectancy enhancement and fitness promotion via redox regulations in vivo. NDUFS1/NUO-5 and NDUFS6/NDUF-6 might be new targets in the lifespan and wellness regulations.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China; Functional Food Engineering & Technology Research Center of Hubei Province, China.
| |
Collapse
|
11
|
Farazi M, Houghton MJ, Nicolotti L, Murray M, Cardoso BR, Williamson G. Inhibition of human starch digesting enzymes and intestinal glucose transport by walnut polyphenols. Food Res Int 2024; 189:114572. [PMID: 38876610 DOI: 10.1016/j.foodres.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
One approach to controlling type 2 diabetes (T2D) is to lower postprandialglucose spikesby slowing down the digestion of carbohydrates and the absorption of glucose in the small intestine. The consumption of walnuts is associated with a reduced risk of chronic diseases such as T2D, suggested to be partly due to the high content of (poly)phenols. This study evaluated, for the first time, the inhibitory effect of a (poly)phenol-rich walnut extract on human carbohydrate digesting enzymes (salivary and pancreatic α-amylases, brush border sucrase-isomaltase) and on glucose transport across fully differentiated human intestinal Caco-2/TC7 monolayers. The walnut extract was rich in multiple (poly)phenols (70 % w/w) as analysed by Folin-Ciocalteau and by LCMS. It exhibited potent inhibition of both human salivary (IC50: 32.2 ± 2.5 µg walnut (poly)phenols (WP)/mL) and pancreatic (IC50: 56.7 ± 1.7 µg WP/mL) α-amylases, with weaker effects on human sucrase (IC50: 990 ± 20 µg WP/mL), maltase (IC50: 1300 ± 80 µg WP/mL), and isomaltase (IC25: 830 ± 60 µg WP/mL) activities. Selected individual walnut (poly)phenols inhibited human salivary α-amylase in the order: 1,3,4,6-tetragalloylglucose > ellagic acid pentoside > 1,2,6-tri-O-galloyl-β-D-glucopyranose, with no inhibition by ellagic acid, gallic acid and 4-O-methylgallic acid. The (poly)phenol-rich walnut extract also attenuated (up to 59 %) the transfer of 2-deoxy-D-glucose across differentiated Caco-2/TC7 cell monolayers. This is the first report on the effect of (poly)phenol-rich extracts from any commonly-consumed nut kernel on any human starch-digesting enzyme, and suggests a mechanism through which walnut consumption may lower postprandial glucose spikes and contribute to their proposed health benefits.
Collapse
Affiliation(s)
- Mena Farazi
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Luca Nicolotti
- The Australian Wine Research Institute, Adelaide, SA 5064, Australia; Metabolomics Australia, The Australian Wine Research Institute, Adelaide, SA 5064, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Department of Health Sciences and Biostatistics, Swinburne University of Technology, John St, Hawthorn, VIC 3122, Australia
| | - Barbara R Cardoso
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, BASE Facility, Level 1, 264 Ferntree Gully Road, Notting Hill, VIC 3168, Australia; Victorian Heart Institute, Monash University, Level 2, Victorian Heart Hospital, 631 Blackburn Road, Clayton, VIC 3168 Australia.
| |
Collapse
|
12
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
13
|
Sanni O, Nkomozepi P, Islam MS. Ethyl Acetate Fractions of Tectona Grandis Crude Extract Modulate Glucose Absorption and Uptake as Well as Antihyperglycemic Potential in Fructose-Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2023; 25:28. [PMID: 38203195 PMCID: PMC10778942 DOI: 10.3390/ijms25010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a global health challenge with increased morbidity and mortality rates yearly. Herbal medicine has provided an alternative approach to treating T2D with limited access to formal healthcare. Tectona grandis is being used traditionally in the treatment of diabetes. The present study investigated the antidiabetic potential of T. grandis leaves in different solvent extractions, and the crude extract that demonstrated the best activity was further fractionated through solvent-solvent partitioning. The ethyl acetate fraction of the ethanol crude extract showed the best antidiabetic activity in inhibiting α-glucosidase, delaying glucose absorption at the small intestine's lumen, and enhancing the muscle's postprandial glucose uptake. The ethyl acetate fraction was further elucidated for its ability to reduce hyperglycemia in diabetic rats. The ethyl acetate fraction significantly reduced high blood glucose levels in diabetic rats with concomitant modulation in stimulated insulin secretions through improved pancreatic β-cell function, insulin sensitivity by increasing liver glycogen content, and reduced elevated levels of liver glucose-6-phosphatase activity. These activities could be attributed to the phytochemical constituents of the plant.
Collapse
Affiliation(s)
- Olakunle Sanni
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa; (O.S.); (P.N.)
| | - Md. Shahidul Islam
- Department of Biochemistry, School of Life Sciences, University of Kwazulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
14
|
Macià A, Romero MP, Pedret A, Solà R, Clifford MN, Rubió-Piqué L. Assessment of human inter-individual variability of phloretin metabolites in urine after apple consumption. AppleCOR study. Food Funct 2023; 14:10387-10400. [PMID: 37933196 DOI: 10.1039/d3fo02985a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Purpose: This study aimed to assess the inter-individual variation in phloretin absorption and metabolism and to seek possible phloretin metabotypes following apple snack consumption. Methods: The excreted phloretin metabolites in 24 h urine samples were determined by UPLC-MS/MS in 62 volunteers after acute and sustained (6 weeks) interventions in a randomized and parallel study with a daily supplementation of 80 g of a low-phloretin (39.5 μmol) or a high-phloretin (103 μmol) freeze-dried apple snacks. Results: absorption estimated as phloridzin equivalents for 62 volunteers varied almost 70-fold ranging from 0.1% to 6.94% of phloretin glycoside intake. Volunteers were stratified into low, medium and high producers and by the balance between glucuronidation and sulphation. For 74% of the volunteers phloretin-O-glucuronide was the dominant urinary metabolite, especially at the higher phloretin glycoside intake and for higher producers. Sulphate conjugation assumed greater significance for the remaining volunteers especially for low producers. Females dominated glucuronide profile (64.1%) and males dominated the low excretion group. Analysis of plasma glucose and insulin at the start and end of the sustained study showed a trend towards modest reductions for high producers. Furthermore, plausible factors contributing to the inter-individual variation in phloretin uptake are discussed. Conclusions: extensive inter-individual variability exists in the excretion of phloretin phase-II conjugates following consumption of apple snacks, which could be related to oral microbiota phloridzin-hydrolysing activity, lactase non-persistence trait or the metabotype to which the subject belongs. There were inconsistent effects on post-prandial serum glucose concentrations but there was a tendency for decreases to be associated with higher excretion of phloretin phase-II conjugates. Trial registration: The acute and sustained studies were registered at ClinicalTrials.gov Identifier: NCT03795324.
Collapse
Affiliation(s)
- Alba Macià
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| | - María-Paz Romero
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| | - Anna Pedret
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), C/Sant Llorenç 21, 4320-Reus, Spain
| | - Rosa Solà
- Universitat Rovira i Virgili, Facultat de Medicina i Ciències de la Salut, Functional Nutrition, Oxidation, and Cardiovascular Diseases Group (NFOC-Salut), C/Sant Llorenç 21, 4320-Reus, Spain
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Victoria, Australia
| | - Laura Rubió-Piqué
- Department of Food Technology, Engineering and Science, University of Lleida, Agrotecnio-CERCA Center, Antioxidants Research Group, Av. Alcalde Rovira Roure 191, Lleida, 25198, Spain.
| |
Collapse
|
15
|
Li F, Zeng K, Ming J. Lowering glycemic levels via gastrointestinal tract factors: the roles of dietary fiber, polyphenols, and their combination. Crit Rev Food Sci Nutr 2023; 65:575-611. [PMID: 37966135 DOI: 10.1080/10408398.2023.2278169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Dietary fiber (DF) and polyphenols (DP) are typical blood sugar-lowering components, and both play distinct yet interconnected roles in exerting their blood sugar-lowering effects. We comprehensively summarized the single and combined effects of DF and DP on blood glucose homeostasis through regulating the relevant factors in the upper gastrointestinal tract (UGT) and lower gastrointestinal tract (LGT). In the UGT, DF slowed down glucose metabolism by enhancing digesta viscosity and hindering enzyme-substrate interaction. DP primarily targeted enzymes and substrates. When combined, DP enhanced the adsorption capacity of DF for glucose. DF weakened DP's inhibitory effect on enzymes. Both DF and DP disrupted glucose intestinal uptake via physical or genomic modulation, but the co-consumption of DF and DP demonstrated a lower inhibitory effect on glucose uptake than DP alone. In the LGT, DF and DP showed synergistic or antagonistic effects on gut microbiota. Remarkably, whole foods exhibited potent prebiotic effects due to their compound-rich matrix, potentially enhancing glucose homeostasis and expanding dietary options for glucose regulation research.
Collapse
Affiliation(s)
- Fuhua Li
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Research Group Food Chem and Human Nutrition, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, People's Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Pinto AM, Hobden MR, Brown KD, Farrimond J, Targett D, Corpe CP, Ellis PR, Todorova Y, Socha K, Bahsoon S, Haworth C, Marcel M, Nie X, Hall WL. Acute effects of drinks containing blackcurrant and citrus (poly)phenols and dietary fibre on postprandial glycaemia, gut hormones, cognitive function and appetite in healthy adults: two randomised controlled trials. Food Funct 2023; 14:10163-10176. [PMID: 37902089 DOI: 10.1039/d3fo03085g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
(Poly)phenol (PP)-rich blackcurrant (BC) extracts reduce postprandial glucose concentrations. Combinations with other fruit (poly)phenols and fruit fibre may enhance the effect. This study investigated the acute effects of combinations of BC extracts, high (H-BC) and low (L-BC) (poly)phenol concentrations, sweet orange extracts (SO) and fibre-rich orange pulp (F) in reducing postprandial glycaemia. In two randomised, double-blind, crossover design studies, healthy participants consumed seven types of 200 mL beverages: in the GLU-FX trial, H-BC (1600 mg PP); L-BC (800 mg PP); SO (800 mg PP); BC + SO (1600 mg PP) or CON (placebo); in the GLU-MIX trial, BC + F (800 mg PP), F (1.5 g fibre), or CON2 (placebo), immediately followed by consumption of 75 g available carbohydrate (starch and sugars). Blood was sampled at baseline and postprandially to measure changes in glucose, insulin, and gut hormones; appetite changes were assessed by visual analogue scales and, in GLU-MIX, ad libitum food intake and cognitive function were assessed. Twenty-nine and thirty-seven adults completed GLU-FX and GLU-MIX, respectively. L-BC reduced early postprandial glycaemia (0-30 min) with no differences in glucose incremental Cmax or total glycaemic response. No significant effect was observed following other drinks relative to CON. L-BC and H-BC drinks inhibited insulin secretion up to 30 min and GIP up to 120 min. In GLU-MIX, BC + F improved some indicators of cognitive function but not all. Measures of appetite were unaffected. The impact of (poly)phenol-rich BC extracts on total postprandial glycaemia in healthy participants was minimal and not enhanced when administered in combination with an orange (poly)phenol extract or orange pulp. Clinical Trials registered at https://www.clinicaltrials.gov: NCT03184064 (GLU-FX) and NCT03572296 (GLU-MIX).
Collapse
Affiliation(s)
- Ana M Pinto
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
- Laboratório de Nutrição, Instituto de Saúde Ambiental, Laboratório Associado TERRA, Centro Académico de Medicina de Lisboa, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Mark R Hobden
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Katherine D Brown
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
- Lucozade Ribena Suntory (UK), 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK
| | - Jonathan Farrimond
- Lucozade Ribena Suntory (UK), 2 Longwalk Road, Stockley Park, Uxbridge UB11 1BA, UK
| | - Darren Targett
- Primoris Contract Solutions Ltd., 22 Redwood Drive, Ascot, Berkshire, SL5 0LW, UK
| | - Christopher P Corpe
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Peter R Ellis
- Biopolymers Group, Departments of Biochemistry and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, SE1 9NH, London, UK
| | - Yvanna Todorova
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Klaudia Socha
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Shatha Bahsoon
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Claudia Haworth
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Morgane Marcel
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Xirui Nie
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| | - Wendy L Hall
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
17
|
Chavanelle V, Langhi C, Michaux A, Ripoche D, Otero YF, Joubioux FL, Maugard T, Guigas B, Giera M, Peltier S, Sirvent P. A novel polyphenol-rich combination of 5 plant extracts prevents high-fat diet-induced body weight gain by regulating intestinal macronutrient absorption in mice. Nutr Res 2023; 118:70-84. [PMID: 37598559 DOI: 10.1016/j.nutres.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
Global prevalence of obesity and type 2 diabetes are rapidly increasing to pandemic proportions. A novel supplement composed of 5 plant extracts from olive leaf, bilberry, artichoke, chrysanthellum, and black pepper was designed to prevent type 2 diabetes development in people at risk. It was previously shown to improve body weight and glucose control in preclinical rodent models, with these effects being accompanied by increased fecal energy excretion and in vitro inhibition of several digestive enzymes. Thus, we hypothesized that, in mice fed a high-fat diet (HFD), a single dose of this botanical supplementation would decrease the responses to oral fat and carbohydrate tolerance tests, and that chronic supplementation would result in increased fecal triglyceride content. We showed that acute administration in HFD-fed mice (1.452 g/kg body weight) markedly reduced circulating triglycerides following an oral lipid gavage, whereas glycemic responses to various carbohydrate tests were only mildly affected. When incorporated into the food (2.5%) of HFD-fed mice, chronic supplementation prevented body weight gain and improved glucose homeostasis and lipid tolerance. Fecal free fatty acid content, but not triglyceride, was significantly increased in supplemented animals, suggesting reduced lipid absorption in the digestive tract. Congruently, this botanical supplementation downregulated several genes associated with fatty acid transport whose expression was increased by HFD, principally in the jejunum. This study provides novel insights as for the mode of action behind the antiobesity effect of this plant-based supplementation, in HFD-fed mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thierry Maugard
- La Rochelle Université - LIENSs UMR CNRS 7266, La Rochelle, France
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | | |
Collapse
|
18
|
Wang R, Li M, Brennan MA, Dhital S, Kulasiri D, Brennan CS, Guo B. Complexation of starch and phenolic compounds during food processing and impacts on the release of phenolic compounds. Compr Rev Food Sci Food Saf 2023; 22:3185-3211. [PMID: 37254305 DOI: 10.1111/1541-4337.13180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023]
Abstract
Phenolic compounds can form complexes with starch during food processing, which can modulate the release of phenolic compounds in the gastrointestinal tract and regulate the bioaccessibility of phenolic compounds. The starch-phenolic complexation is determined by the structure of starch, phenolic compounds, and the food processing conditions. In this review, the complexation between starch and phenolic compounds during (hydro)thermal and nonthermal processing is reviewed. A hypothesis on the complexation kinetics is developed to elucidate the mechanism of complexation between starch and phenolic compounds considering the reaction time and the processing conditions. The subsequent effects of complexation on the physicochemical properties of starch, including gelatinization, retrogradation, and digestion, are critically articulated. Further, the release of phenolic substances and the bioaccessibility of different types of starch-phenolics complexes are discussed. The review emphasizes that the processing-induced structural changes of starch are the major determinant modulating the extent and manner of complexation with phenolic compounds. The controlled release of complexes formed between phenolic compounds and starch in the digestive tracts can modify the functionality of starch-based foods and, thus, can be used for both the modulation of glycemic response and the targeted delivery of phenolic compounds.
Collapse
Affiliation(s)
- Ruibin Wang
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ming Li
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Margaret Anne Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Charles Stephen Brennan
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Science, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Boli Guo
- Institute of Food Science and Technology, CAAS/ Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
19
|
Haș IM, Teleky BE, Vodnar DC, Ștefănescu BE, Tit DM, Nițescu M. Polyphenols and Cardiometabolic Health: Knowledge and Concern among Romanian People. Nutrients 2023; 15:2281. [PMID: 37242164 PMCID: PMC10221773 DOI: 10.3390/nu15102281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The cardiometabolic health of the population is a crucial indicator of public health, considering the significant impact of cardiovascular disease (CVD) and diabetes on global mortality. Determining the population's knowledge and the predictors of these pathologies is essential in developing effective educational and clinical strategies for the prevention and management of cardiometabolic risk (CMR). Polyphenols are natural compounds with a multitude of beneficial effects on cardiometabolic health. This study explored the current knowledge, understanding, and awareness of CMR, the benefits of polyphenols among Romanians, and how sociodemographic and clinical characteristics influence this aspect. Five hundred forty-six subjects responded anonymously to an online questionnaire designed to assess their knowledge. The data were collected and analyzed based on gender, age, education level, and BMI status. Most respondents expressed concern to a great or very great extent about their health (78%) and food (60%), with significant differences (p < 0.05) depending on age, educational level, and BMI status. Of the respondents, 64.8% declared that they were familiar with the CMR term. Still, the results showed a weak correlation between the stated risk factors and the self-assessment of increased risk (r = 0.027) for CVD or diabetes. Only 35% of the respondents reported a good or very good knowledge of the term "polyphenols", 86% recognized the antioxidant effect, and significantly fewer (26%) recognized the prebiotic effect. Developing and implementing targeted educational strategies to enhance learning and individual behaviors related to CMR factors and the benefits of polyphenols is necessary.
Collapse
Affiliation(s)
- Ioana Mariana Haș
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania;
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.-C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.-C.V.)
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bianca Eugenia Ștefănescu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.-E.T.); (D.-C.V.)
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 N. Jiga St., 410028 Oradea, Romania
| | - Maria Nițescu
- Department of Preclinical–Complementary Sciences, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
| |
Collapse
|
20
|
Mena P, Crozier A. Do (Poly)phenols Matter for Nutrition Research? News from the Front. Mol Nutr Food Res 2022; 66:e2200617. [DOI: 10.1002/mnfr.202200617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pedro Mena
- Human Nutrition Unit Department of Food and Drug University of Parma Parma 43124 Italy
- Microbiome Research Hub University of Parma Parma 43124 Italy
| | - Alan Crozier
- Department of Chemistry King Saud University Riyadh 12372 Saudi Arabia
- School of Medicine, Dentistry and Nursing University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
21
|
Ma Y, Lee E, Yoshikawa H, Noda T, Miyamoto J, Kimura I, Hatano R, Miki T. Phloretin suppresses carbohydrate-induced GLP-1 secretion via inhibiting short chain fatty acid release from gut microbiome. Biochem Biophys Res Commun 2022; 621:176-182. [DOI: 10.1016/j.bbrc.2022.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
|