1
|
Koush Y, Rothman DL, Behar KL, de Graaf RA, Hyder F. Human brain functional MRS reveals interplay of metabolites implicated in neurotransmission and neuroenergetics. J Cereb Blood Flow Metab 2022; 42:911-934. [PMID: 35078383 PMCID: PMC9125492 DOI: 10.1177/0271678x221076570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
While functional MRI (fMRI) localizes brain activation and deactivation, functional MRS (fMRS) provides insights into the underlying metabolic conditions. There is much interest in measuring task-induced and resting levels of metabolites implicated in neuroenergetics (e.g., lactate, glucose, or β-hydroxybutyrate (BHB)) and neurotransmission (e.g., γ-aminobutyric acid (GABA) or pooled glutamate and glutamine (Glx)). Ultra-high magnetic field (e.g., 7T) has boosted the fMRS quantification precision, reliability, and stability of spectroscopic observations using short echo-time (TE) 1H-MRS techniques. While short TE 1H-MRS lacks sensitivity and specificity for fMRS at lower magnetic fields (e.g., 3T or 4T), most of these metabolites can also be detected by J-difference editing (JDE) 1H-MRS with longer TE to filter overlapping resonances. The 1H-MRS studies show that JDE can detect GABA, Glx, lactate, and BHB at 3T, 4T and 7T. Most recently, it has also been demonstrated that JDE 1H-MRS is capable of reliable detection of metabolic changes in different brain areas at various magnetic fields. Combining fMRS measurements with fMRI is important for understanding normal brain function, but also clinically relevant for mechanisms and/or biomarkers of neurological and neuropsychiatric disorders. We provide an up-to-date overview of fMRS research in the last three decades, both in terms of applications and technological advances. Overall the emerging fMRS techniques can be expected to contribute substantially to our understanding of metabolism for brain function and dysfunction.
Collapse
Affiliation(s)
- Yury Koush
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kevin L Behar
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Robin A de Graaf
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLoS One 2020; 15:e0242309. [PMID: 33180836 PMCID: PMC7660554 DOI: 10.1371/journal.pone.0242309] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Neuronal activity within the physiologic range stimulates lactate production that, via metabolic pathways or operating through an array of G-protein-coupled receptors, regulates intrinsic excitability and synaptic transmission. The recent discovery that lactate exerts a tight control of ion channels, neurotransmitter release, and synaptic plasticity-related intracellular signaling cascades opens up the possibility that lactate regulates synaptic potentiation at central synapses. Here, we demonstrate that extracellular lactate (1–2 mM) induces glutamatergic potentiation on the recurrent collateral synapses of hippocampal CA3 pyramidal cells. This potentiation is independent of lactate transport and further metabolism, but requires activation of NMDA receptors, postsynaptic calcium accumulation, and activation of a G-protein-coupled receptor sensitive to cholera toxin. Furthermore, perfusion of 3,5- dihydroxybenzoic acid, a lactate receptor agonist, mimics this form of synaptic potentiation. The transduction mechanism underlying this novel form of synaptic plasticity requires G-protein βγ subunits, inositol-1,4,5-trisphosphate 3-kinase, PKC, and CaMKII. Activation of these signaling cascades is compartmentalized in a synapse-specific manner since lactate does not induce potentiation at the mossy fiber synapses of CA3 pyramidal cells. Consistent with this synapse-specific potentiation, lactate increases the output discharge of CA3 neurons when recurrent collaterals are repeatedly activated during lactate perfusion. This study provides new insights into the cellular mechanisms by which lactate, acting via a membrane receptor, contributes to the memory formation process.
Collapse
|
3
|
Fernandes CC, Lanz B, Chen C, Morris PG. Measurement of brain lactate during visual stimulation using a long TE semi-LASER sequence at 7 T. NMR IN BIOMEDICINE 2020; 33:e4223. [PMID: 31995265 PMCID: PMC7079106 DOI: 10.1002/nbm.4223] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/14/2023]
Abstract
Estimation of metabolic changes during neuronal activation represents a challenge for in vivo MRS, especially for metabolites with low concentration and signal overlap, such as lactate. In this work, we aimed to evaluate the feasibility of detecting lactate during brain activation using a long TE (144 ms) semi-LASER sequence at 7 T. 1H spectra were acquired on healthy volunteers ( N=6 ) during a paradigm with 15 min of visual stimulation. Outer-volume signals were further attenuated by the use of saturation slabs, and macromolecular signals in the vicinity of the inverted lactate peak were individually fitted with simulated Lorentzian peaks. All spectra were free of artefacts and highly reproducible across subjects. Lactate was accurately quantified with an average Cramér-Rao lower bound of 8%. Statistically significant ( P<0.05 , one-tailed t -test) increases in lactate ( ∼ 10%) and glutamate ( ∼ 3%) levels during stimulation were detected in the visual cortex. Lactate and glutamate changes were consistent with previous measurements. We demonstrated that quantification of a clear and non-contaminated lactate peak obtained with a long TE sequence has the potential of improving the accuracy of functional MRS studies targeting non-oxidative reaction pathways.
Collapse
Affiliation(s)
- Carolina C. Fernandes
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottingham, NG7 2RDNottinghamshireUnited Kingdom
| | - Bernard Lanz
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottingham, NG7 2RDNottinghamshireUnited Kingdom
| | - Chen Chen
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottingham, NG7 2RDNottinghamshireUnited Kingdom
| | - Peter G. Morris
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottingham, NG7 2RDNottinghamshireUnited Kingdom
| |
Collapse
|
4
|
Lee CY, Soliman H, Geraghty BJ, Chen AP, Connelly KA, Endre R, Perks WJ, Heyn C, Black SE, Cunningham CH. Lactate topography of the human brain using hyperpolarized 13C-MRI. Neuroimage 2020; 204:116202. [DOI: 10.1016/j.neuroimage.2019.116202] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/19/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022] Open
|
5
|
Abstract
PURPOSE OF REVIEW The goal of the present paper is to review current literature supporting the occurrence of fundamental changes in brain energy metabolism during the transition from wakefulness to sleep. RECENT FINDINGS Latest research in the field indicates that glucose utilization and the concentrations of several brain metabolites consistently change across the sleep-wake cycle. Lactate, a product of glycolysis that is involved in synaptic plasticity, has emerged as a good biomarker of brain state. Sleep-induced changes in cerebral metabolite levels result from a shift in oxidative metabolism, which alters the reliance of brain metabolism upon carbohydrates. We found wide support for the notion that brain energetics is state dependent. In particular, fatty acids and ketone bodies partly replace glucose as cerebral energy source during sleep. This mechanism plausibly accounts for increases in biosynthetic pathways and functional alterations in neuronal activity associated with sleep. A better account of brain energy metabolism during sleep might help elucidate the long mysterious restorative effects of sleep for the whole organism.
Collapse
Affiliation(s)
- Nadia Nielsen Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, 14640, USA
| | - Mauro DiNuzzo
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen N, Denmark.
| |
Collapse
|
6
|
Herrera-López G, Galván EJ. Modulation of hippocampal excitability via the hydroxycarboxylic acid receptor 1. Hippocampus 2018; 28:557-567. [PMID: 29704292 DOI: 10.1002/hipo.22958] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 01/15/2023]
Abstract
In addition to its prominent role as an energetic substrate in the brain, lactate is emerging as a signaling molecule capable of controlling neuronal excitability. The finding that the lactate-activated receptor (hydroxycarboxylic acid receptor 1; HCA1) is widely expressed in the brain opened up the possibility that lactate exerts modulation of neuronal activity via a transmembranal receptor-linked mechanism. Here, we show that lactate causes biphasic modulation of the intrinsic excitability of CA1 pyramidal cells. In the low millimolar range, lactate or the HCA1 agonist 3,5-DHBA reduced the input resistance and membrane time constant. In addition, activation of HCA1 significantly blocked the fast inactivating sodium current and increased the delay from inactivation to a conducting state of the sodium channel. As the observed actions occurred in the presence of 4-CIN, a blocker of the neuronal monocarboxylate transporter, the possibility that lactate acted via neuronal metabolism is unlikely. Consistently, modulation of the intrinsic excitability was abolished when CA1 pyramidal cells were dialyzed with pertussis toxin, indicating the dependency of a Gαi/o -protein-coupled receptor. The activation of HCA1 appears to serve as a restraining mechanism during enhanced network activity and may function as a negative feedback for the astrocytic production of lactate.
Collapse
Affiliation(s)
- Gabriel Herrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City 14330, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City 14330, México
| |
Collapse
|
7
|
Stanley JA, Raz N. Functional Magnetic Resonance Spectroscopy: The "New" MRS for Cognitive Neuroscience and Psychiatry Research. Front Psychiatry 2018; 9:76. [PMID: 29593585 PMCID: PMC5857528 DOI: 10.3389/fpsyt.2018.00076] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/23/2018] [Indexed: 01/30/2023] Open
Abstract
Proton magnetic resonance spectroscopy (1H MRS) is a well-established technique for quantifying the brain regional biochemistry in vivo. In most studies, however, the 1H MRS is acquired during rest with little to no constraint on behavior. Measured metabolite levels, therefore, reflect steady-state concentrations whose associations with behavior and cognition are unclear. With the recent advances in MR technology-higher-field MR systems, robust acquisition techniques and sophisticated quantification methods-1H MRS is now experiencing a resurgence. It is sensitive to task-related and pathology-relevant regional dynamic changes in neurotransmitters, including the most ubiquitous among them, glutamate. Moreover, high temporal resolution approaches allow tracking glutamate modulations at a time scale of under a minute during perceptual, motor, and cognitive tasks. The observed task-related changes in brain glutamate are consistent with new metabolic steady states reflecting the neural output driven by shifts in the local excitatory and inhibitory balance on local circuits. Unlike blood oxygen level differences-base functional MRI, this form of in vivo MRS, also known as functional MRS (1H fMRS), yields a more direct measure of behaviorally relevant neural activity and is considerably less sensitive to vascular changes. 1H fMRS enables noninvasive investigations of task-related glutamate changes that are relevant to normal and impaired cognitive performance, and psychiatric disorders. By targeting brain glutamate, this approach taps into putative neural correlates of synaptic plasticity. This review provides a concise survey of recent technological advancements that lay the foundation for the successful use of 1H fMRS in cognitive neuroscience and neuropsychiatry, including a review of seminal 1H fMRS studies, and the discussion of biological significance of task-related changes in glutamate modulation. We conclude with a discussion of the promises, limitations, and outstanding challenges of this new tool in the armamentarium of cognitive neuroscience and psychiatry research.
Collapse
Affiliation(s)
- Jeffrey A Stanley
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Naftali Raz
- Department of Psychology, Wayne State University, Detroit, MI, United States.,Institute of Gerontology, Wayne State University, Detroit, MI, United States.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
8
|
Angleys H, Jespersen SN, Østergaard L. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake. Front Comput Neurosci 2016; 10:103. [PMID: 27790110 PMCID: PMC5062759 DOI: 10.3389/fncom.2016.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 11/13/2022] Open
Abstract
Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%.
Collapse
Affiliation(s)
- Hugo Angleys
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University Aarhus, Denmark
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus UniversityAarhus, Denmark; Department of Physics and Astronomy, Aarhus UniversityAarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Aarhus UniversityAarhus, Denmark; Department of Neuroradiology, Aarhus University HospitalAarhus, Denmark
| |
Collapse
|
9
|
Schaller B, Xin L, O'Brien K, Magill AW, Gruetter R. Are glutamate and lactate increases ubiquitous to physiological activation? A (1)H functional MR spectroscopy study during motor activation in human brain at 7Tesla. Neuroimage 2014; 93 Pt 1:138-45. [PMID: 24555953 DOI: 10.1016/j.neuroimage.2014.02.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies at high field (7Tesla) have reported small metabolite changes, in particular lactate and glutamate (below 0.3μmol/g) during visual stimulation. These studies have been limited to the visual cortex because of its high energy metabolism and good magnetic resonance spectroscopy (MRS) sensitivity using surface coil. The aim of this study was to extend functional MRS (fMRS) to investigate for the first time the metabolite changes during motor activation at 7T. Small but sustained increases in lactate (0.17μmol/g±0.05μmol/g, p<0.001) and glutamate (0.17μmol/g±0.09μmol/g, p<0.005) were detected during motor activation followed by a return to the baseline after the end of activation. The present study demonstrates that increases in lactate and glutamate during motor stimulation are small, but similar to those observed during visual stimulation. From the observed glutamate and lactate increase, we inferred that these metabolite changes may be a general manifestation of the increased neuronal activity. In addition, we propose that the measured metabolite concentration increases imply an increase in ΔCMRO2 that is transiently below that of ΔCMRGlc during the first 1 to 2min of the stimulation.
Collapse
Affiliation(s)
- Benoît Schaller
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Federale de Lausanne, Station 6, 1015 Lausanne, Switzerland.
| | - Lijing Xin
- Department of Radiology, University Hospitals of Lausanne Rue du Bugnon 21, 1011 Lausanne, Switzerland.
| | - Kieran O'Brien
- Centre d'Imagerie BioMédicale, University of Geneva, Geneva 14, Geneva, Switzerland.
| | - Arthur W Magill
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Federale de Lausanne, Station 6, 1015 Lausanne, Switzerland; Department of Radiology, University Hospitals of Lausanne Rue du Bugnon 21, 1011 Lausanne, Switzerland.
| | - Rolf Gruetter
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Federale de Lausanne, Station 6, 1015 Lausanne, Switzerland; Department of Radiology, University Hospitals of Lausanne Rue du Bugnon 21, 1011 Lausanne, Switzerland; Department of Radiology, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland.
| |
Collapse
|
10
|
Rodrigues TB, Valette J, Bouzier-Sore AK. (13)C NMR spectroscopy applications to brain energy metabolism. FRONTIERS IN NEUROENERGETICS 2013; 5:9. [PMID: 24367329 PMCID: PMC3856424 DOI: 10.3389/fnene.2013.00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/15/2013] [Indexed: 12/31/2022]
Abstract
(13)C nuclear magnetic resonance (NMR) spectroscopy is the method of choice for studying brain metabolism. Indeed, the most convincing data obtained to decipher metabolic exchanges between neurons and astrocytes have been obtained using this technique, thus illustrating its power. It may be difficult for non-specialists, however, to grasp thefull implication of data presented in articles written by spectroscopists. The aim of the review is, therefore, to provide a fundamental understanding of this topic to facilitate the non-specialists in their reading of this literature. In the first part of this review, we present the metabolic fate of (13)C-labeled substrates in the brain in a detailed way, including an overview of some general neurochemical principles. We also address and compare the various spectroscopic strategies that can be used to study brain metabolism. Then, we provide an overview of the (13)C NMR experiments performed to analyze both intracellular and intercellular metabolic fluxes. More particularly, the role of lactate as a potential energy substrate for neurons is discussed in the light of (13)C NMR data. Finally, new perspectives and applications offered by (13)C hyperpolarization are described.
Collapse
Affiliation(s)
- Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute and Department of Biochemistry, University of CambridgeCambridge, UK
| | - Julien Valette
- Commissariat à l’Energie Atomique, Institut d’Imagerie Biomédicale, Molecular Imaging Research CenterFontenay-Aux-Roses, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, Université Bordeaux Segalen - Centre National de la Recherche ScientifiqueBordeaux, France
| |
Collapse
|
11
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
12
|
Lanz B, Gruetter R, Duarte JMN. Metabolic Flux and Compartmentation Analysis in the Brain In vivo. Front Endocrinol (Lausanne) 2013; 4:156. [PMID: 24194729 PMCID: PMC3809570 DOI: 10.3389/fendo.2013.00156] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/07/2013] [Indexed: 12/16/2022] Open
Abstract
Through significant developments and progresses in the last two decades, in vivo localized nuclear magnetic resonance spectroscopy (MRS) became a method of choice to probe brain metabolic pathways in a non-invasive way. Beside the measurement of the total concentration of more than 20 metabolites, (1)H MRS can be used to quantify the dynamics of substrate transport across the blood-brain barrier by varying the plasma substrate level. On the other hand, (13)C MRS with the infusion of (13)C-enriched substrates enables the characterization of brain oxidative metabolism and neurotransmission by incorporation of (13)C in the different carbon positions of amino acid neurotransmitters. The quantitative determination of the biochemical reactions involved in these processes requires the use of appropriate metabolic models, whose level of details is strongly related to the amount of data accessible with in vivo MRS. In the present work, we present the different steps involved in the elaboration of a mathematical model of a given brain metabolic process and its application to the experimental data in order to extract quantitative brain metabolic rates. We review the recent advances in the localized measurement of brain glucose transport and compartmentalized brain energy metabolism, and how these reveal mechanistic details on glial support to glutamatergic and GABAergic neurons.
Collapse
Affiliation(s)
- Bernard Lanz
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Geneva, Geneva, Switzerland
| | - João M. N. Duarte
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology, University of Lausanne, Lausanne, Switzerland
- *Correspondence: João M. N. Duarte, Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Bâtiment CH, Station 6, CH-1015 Lausanne, Switzerland e-mail:
| |
Collapse
|
13
|
Schaller B, Mekle R, Xin L, Kunz N, Gruetter R. Net increase of lactate and glutamate concentration in activated human visual cortex detected with magnetic resonance spectroscopy at 7 tesla. J Neurosci Res 2013; 91:1076-83. [PMID: 23378234 DOI: 10.1002/jnr.23194] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/21/2012] [Indexed: 11/08/2022]
Abstract
After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.
Collapse
Affiliation(s)
- Benoît Schaller
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Dash MB, Bellesi M, Tononi G, Cirelli C. Sleep/wake dependent changes in cortical glucose concentrations. J Neurochem 2012; 124:79-89. [PMID: 23106535 DOI: 10.1111/jnc.12063] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/17/2012] [Accepted: 10/12/2012] [Indexed: 11/30/2022]
Abstract
Most of the energy in the brain comes from glucose and supports glutamatergic activity. The firing rate of cortical glutamatergic neurons, as well as cortical extracellular glutamate levels, increase with time spent awake and decline throughout non rapid eye movement sleep, raising the question whether glucose levels reflect behavioral state and sleep/wake history. Here chronic (2-3 days) electroencephalographic recordings in the rat cerebral cortex were coupled with fixed-potential amperometry to monitor the extracellular concentration of glucose ([gluc]) on a second-by-second basis across the spontaneous sleep-wake cycle and in response to 3 h of sleep deprivation. [Gluc] progressively increased during non rapid eye movement sleep and declined during rapid eye movement sleep, while during wake an early decline in [gluc] was followed by an increase 8-15 min after awakening. There was a significant time of day effect during the dark phase, when rats are mostly awake, with [gluc] being significantly lower during the last 3-4 h of the night relative to the first 3-4 h. Moreover, the duration of the early phase of [gluc] decline during wake was longer after prolonged wake than after consolidated sleep. Thus, the sleep/wake history may affect the levels of glucose available to the brain upon awakening.
Collapse
Affiliation(s)
- Michael B Dash
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| | | | | | | |
Collapse
|
15
|
Oxygen consumption and blood flow coupling in human motor cortex during intense finger tapping: implication for a role of lactate. J Cereb Blood Flow Metab 2012; 32:1859-68. [PMID: 22781333 PMCID: PMC3463880 DOI: 10.1038/jcbfm.2012.89] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rates of cerebral blood flow (CBF) and glucose consumption (CMR(glc)) rise in cerebral cortex during continuous stimulation, while the oxygen-glucose index (OGI) declines as an index of mismatched coupling of oxygen consumption (cerebral metabolic rate of oxygen-CMRO(2)) to CBF and CMR(glc). To test whether the mismatch reflects a specific role of aerobic glycolysis during functional brain activation, we determined CBF and CMRO(2) with positron emission tomography (PET) when 12 healthy volunteers executed finger-to-thumb apposition of the right hand. Movements began 1, 10, or 20 minutes before administration of the radiotracers. In primary and supplementary motor cortices and cerebellum, CBF had increased at 1 minute of exercise and remained elevated for the duration of the 20-minute session. In contrast, the CMRO(2) numerically had increased insignificantly in left M1 and supplementary motor area at 1 minute, but had declined significantly at 10 minutes, returning to baseline at 20 minutes. As measures of CMR(glc) are impossible during short-term activations, we used measurements of CBF as indices of CMR(glc). The decline of CMRO(2) at 10 minutes paralleled a calculated decrease of OGI at this time. The implied generation of lactate in the tissue suggested an important hypothetical role of the metabolite as regulator of CBF during activation.
Collapse
|
16
|
Biedermann S, Weber-Fahr W, Zheng L, Hoyer C, Vollmayr B, Gass P, Ende G, Sartorius A. Increase of hippocampal glutamate after electroconvulsive treatment: a quantitative proton MR spectroscopy study at 9.4 T in an animal model of depression. World J Biol Psychiatry 2012; 13:447-57. [PMID: 21767208 DOI: 10.3109/15622975.2011.580778] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Recent evidence suggests that alterations in hippocampal glutamate and γ-aminobutyric acid (GABA) are associated with the pathomechanism of depression and treatment effects of electroconvulsive therapy (ECT). Thus, proton magnetic resonance spectroscopy (¹H MRS) at a 9.4 T animal system seems a promising tool to study underlying mechanisms since it allows for an accurate quantification of metabolites with distinction of glutamate, GABA and glutamine, as well as separation of taurine from choline. METHODS A well-validated animal model of treatment resistant depression (congenital learned helpless rats = cLH) was investigated by hippocampal in vivo ¹H MRS with and without a 1-week course of electroconvulsive shocks (ECS), an animal model of ECT, and compared to wild type (WT) animals, while saline and clomipramine injections served as additional controls. RESULTS Untreated cLH rats showed significantly lower glucose and higher taurine concentrations compared to WT animals. Besides alterations on these metabolites, ECS increased glutamate in WT and cLH and choline in cLH rats. Moreover, correlations between glutamate and GABA concentrations with learned helpless behaviour were revealed. CONCLUSIONS These findings support the idea of disordered hippocampal metabolism in an animal model of treatment resistant depression and suggest an early impact of ECS on MR-detectable hippocampal metabolites.
Collapse
Affiliation(s)
- Sarah Biedermann
- Central Institute of Mental Health, Department of Neuroimaging, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Simultaneous measurement of glucose blood-brain transport constants and metabolic rate in rat brain using in-vivo 1H MRS. J Cereb Blood Flow Metab 2012; 32:1778-87. [PMID: 22714049 PMCID: PMC3434624 DOI: 10.1038/jcbfm.2012.82] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral glucose consumption and glucose transport across the blood-brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMR(glc)) and glucose transport constants (K(T): half-saturation constant; T(max): maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMR(glc), K(T), and T(max) via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo (1)H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMR(glc), T(max), and K(T) were determined to be 0.44 ± 0.17 μmol/g per minute, 1.35 ± 0.47 μmol/g per minute, and 13.4 ± 6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMR(glc) and T(max) are more reliable than that of K(T). The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application.
Collapse
|
18
|
The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 2012; 61:342-62. [DOI: 10.1016/j.neuroimage.2011.12.038] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022] Open
|
19
|
Quantitative fMRI and oxidative neuroenergetics. Neuroimage 2012; 62:985-94. [PMID: 22542993 DOI: 10.1016/j.neuroimage.2012.04.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/22/2022] Open
Abstract
The discovery of functional magnetic resonance imaging (fMRI) has greatly impacted neuroscience. The blood oxygenation level-dependent (BOLD) signal, using deoxyhemoglobin as an endogenous paramagnetic contrast agent, exposes regions of interest in task-based and resting-state paradigms. However the BOLD contrast is at best a partial measure of neuronal activity, because the functional maps obtained by differencing or correlations ignore the total neuronal activity in the baseline state. Here we describe how studies of brain energy metabolism at Yale, especially with (13)C magnetic resonance spectroscopy and related techniques, contributed to development of quantitative functional brain imaging with fMRI by providing a reliable measurement of baseline energy. This narrative takes us on a journey, from molecules to mind, with illuminating insights about neuronal-glial activities in relation to energy demand of synaptic activity. These results, along with key contributions from laboratories worldwide, comprise the energetic basis for quantitative interpretation of fMRI data.
Collapse
|
20
|
Clark VP, Coffman BA, Trumbo MC, Gasparovic C. Transcranial direct current stimulation (tDCS) produces localized and specific alterations in neurochemistry: a ¹H magnetic resonance spectroscopy study. Neurosci Lett 2011; 500:67-71. [PMID: 21683766 DOI: 10.1016/j.neulet.2011.05.244] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/05/2011] [Accepted: 05/29/2011] [Indexed: 01/12/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been found to produce significant changes in behavior, including a large increase of learning and performance for a difficult visual perceptual task (Clark et al., NeuroImage 2010). The mechanisms by which tDCS produces these behavioral effects are currently uncertain. One hypothesis is that anodal tDCS leads to increased metabolic activity in the brain, which enhances cognitive and memory processes. Here we examined the neuronal mechanisms by which tDCS influences learning by measuring changes in brain metabolite concentrations using proton magnetic resonance spectroscopy (¹H MRS). As perception and learning can also influence neurochemistry, here we applied tDCS during rest. MRS data was obtained before and after 2.0 mA of anodal tDCS was applied for 30 min over electrode site P4, with the cathode placed on the contralateral arm. MRS data were acquired from the right parietal lobe beneath the anodal tDCS electrode, and from the homologous regions of the left hemisphere once before and once after tDCS. Significantly higher combined glutamate and glutamine levels were found in right parietal cortex, beneath the stimulating electrode, with non-significant increases in homologous regions of the opposite hemisphere. In addition, a significant interaction between hemispheres was found for tDCS effects on tNAA. These results suggest that changes in glutamatergic activity and tNAA may be related to the mechanisms by which tDCS influences learning and behavior.
Collapse
Affiliation(s)
- Vincent P Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
21
|
Reyngoudt H, Paemeleire K, Dierickx A, Descamps B, Vandemaele P, De Deene Y, Achten E. Does visual cortex lactate increase following photic stimulation in migraine without aura patients? A functional (1)H-MRS study. J Headache Pain 2011; 12:295-302. [PMID: 21301922 PMCID: PMC3094653 DOI: 10.1007/s10194-011-0295-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/09/2011] [Indexed: 11/30/2022] Open
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) has been used in a number of studies to assess noninvasively the temporal changes of lactate (Lac) in the activated human brain. Migraine neurobiology involves lack of cortical habituation to repetitive stimuli and a mitochondrial component has been put forward. Our group has recently demonstrated a reduction in the high-energy phosphates adenosine triphosphate (ATP) and phosphocreatine (PCr) in the occipital lobe of migraine without aura (MwoA) patients, at least in a subgroup, in a phosphorus MRS ((31)P-MRS) study. In previous studies, basal Lac levels or photic stimulation (PS)-induced Lac levels were found to be increased in patients with migraine with aura (MwA) and migraine patients with visual symptoms and paraesthesia, paresia and/or dysphasia, respectively. The aim of this study was to perform functional (1)H-MRS at 3 T in 20 MwoA patients and 20 control subjects. Repetitive visual stimulation was applied using MR-compatible goggles with 8 Hz checkerboard stimulation during 12 min. We did not observe any significant differences in signal integrals, ratios and absolute metabolite concentrations, including Lac, between MwoA patients and controls before PS. Lac also did not increase significantly during and following PS, both for MwoA patients and controls. Subtle Lac changes, smaller than the sensitivity threshold (i.e. estimated at 0.1-0.2 μmol/g at 3 T), cannot be detected by MRS. Our study does, however, argue against a significant switch to non-aerobic glucose metabolism during long-lasting PS of the visual cortex in MwoA patients.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- Department of Radiology and Nuclear Medicine, MR-department (-1K12B), Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mangia S, Giove F, Tkác I, Logothetis NK, Henry PG, Olman CA, Maraviglia B, Di Salle F, Uğurbil K. Metabolic and hemodynamic events after changes in neuronal activity: current hypotheses, theoretical predictions and in vivo NMR experimental findings. J Cereb Blood Flow Metab 2009; 29:441-63. [PMID: 19002199 PMCID: PMC2743443 DOI: 10.1038/jcbfm.2008.134] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the energy metabolism and the hemodynamic outcomes of excitatory and inhibitory neuronal activity is critical not only for our basic understanding of overall brain function, but also for the understanding of many brain disorders. Methodologies of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are powerful tools for the noninvasive investigation of brain metabolism and physiology. However, the temporal and spatial resolution of in vivo MRS and MRI is not suitable to provide direct evidence for hypotheses that involve metabolic compartmentalization between different cell types, or to untangle the complex neuronal microcircuitry, which results in changes of electrical activity. This review aims at describing how the current models of brain metabolism, mainly built on the basis of in vitro evidence, relate to experimental findings recently obtained in vivo by (1)H MRS, (13)C MRS, and MRI. The hypotheses related to the role of different metabolic substrates, the metabolic neuron-glia interactions, along with the available theoretical predictions of the energy budget of neurotransmission will be discussed. In addition, the cellular and network mechanisms that characterize different types of increased and suppressed neuronal activity will be considered within the sensitivity-constraints of MRS and MRI.
Collapse
Affiliation(s)
- Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang ZJ, Vigneron DB, Miller SP, Mukherjee P, Charlton NN, Lu Y, Barkovich AJ. Brain metabolite levels assessed by lactate-edited MR spectroscopy in premature neonates with and without pentobarbital sedation. AJNR Am J Neuroradiol 2008; 29:798-801. [PMID: 18184837 DOI: 10.3174/ajnr.a0912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Pentobarbital is known to affect cerebral metabolism; pentobarbital sedation is, however, frequently used for MR imaging and MR spectroscopy, especially in children. Accurate assessment of the brain metabolite levels is important, particularly in neonates with suspected brain injury. We investigated whether pentobarbital sedation has any effect on the ratios of spectral metabolites lactate, N-acetylaspartate, or choline in a group of premature neonates. MATERIALS AND METHODS MR spectroscopy was performed in 43 premature neonates, all with normal concurrent MR imaging and normal neurodevelopmental outcome at 12 months of age. Of those neonates, 14 (33%) required pentobarbital (Nembutal 1 mg/kg) sedation during MR spectroscopy; the remaining 29 neonates did not receive any sedation. Ratios of lactate, choline, and N-acetylaspartate were calculated in the basal ganglia, thalami, and corticospinal tracts and compared between those neonates with and without sedation. RESULTS Small amounts of brain lactate were detected in all of the premature neonates. The basal ganglia lactate/choline and lactate/N-acetylaspartate ratios were significantly lower, by 17% and 25% respectively, in the neonates with pentobarbital sedation compared with the age-matched neonates without sedation (P < .05). Sedation did not affect the lactate level in the thalami or the corticospinal tracts. The N-acetylaspartate/choline ratios were unaffected by pentobarbital sedation. CONCLUSION Pentobarbital sedation is associated with lower lactate/choline and lactate/N-acetylaspartate ratios in the basal ganglia of premature neonates, as determined by proton MR spectroscopy. Investigators should be aware of this phenomenon for accurate interpretation of their MR spectroscopy results.
Collapse
Affiliation(s)
- Z J Wang
- Department of Radiology, University of California San Francisco, San Francisco, CA 94143-0628, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Baslow MH, Hrabe J, Guilfoyle DN. Dynamic relationship between neurostimulation and N-acetylaspartate metabolism in the human visual cortex: evidence that NAA functions as a molecular water pump during visual stimulation. J Mol Neurosci 2007; 32:235-45. [PMID: 17873369 DOI: 10.1007/s12031-007-0049-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 11/30/1999] [Accepted: 05/22/2007] [Indexed: 11/25/2022]
Abstract
N-acetyl-l-aspartic acid (NAA), an amino acid synthesized and stored primarily in neurons in the brain, has been proposed to be a molecular water pump (MWP) whose function is to rapidly remove water from neurons against a water gradient. In this communication, we describe the results of a functional (1)H proton magnetic resonance spectroscopy (fMRS) study, and provide evidence that in the human visual cortex, over a 10-min period of visual stimulation, there are stimulation-induced graded changes in the NAA MRS signal from that of a preceding 10-min baseline period with a decline in the NAA signal of 13.1% by the end of the 10-min stimulation period. Upon cessation of visual stimulation, the NAA signal gradually increases during a 10-min recovery period and once again approaches the baseline level. Because the NAA MRS signal reflects the NAA concentration, these changes indicate rapid focal changes in its concentration, and transient changes in its intercompartmental metabolism. These include its rates of synthesis and efflux from neurons and its hydrolysis by oligodendrocytes. During stimulation, the apparent rate of NAA efflux and hydrolysis increased 14.2 times, from 0.55 to 7.8 micromol g(-1) h(-1). During recovery, the apparent rate of synthesis increased 13.3 times, from 0.55 to 7.3 micromol g(-1) h(-1). The decline in the NAA signal during stimulation suggests that a rapid increase in the rate of NAA-obligated water release to extracellular fluid (ECF) is the initial and seminal event in response to neurostimulation. It is concluded that the NAA metabolic cycle in the visual cortex is intimately linked to rates of neuronal signaling, and that the functional cycle of NAA is associated with its release to ECF, thus supporting the hypothesis that an important function of the NAA metabolic cycle is that of an efflux MWP.
Collapse
Affiliation(s)
- Morris H Baslow
- Center for Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
25
|
Juchem C, Logothetis NK, Pfeuffer J. 1H-MRS of the macaque monkey primary visual cortex at 7 T: strategies and pitfalls of shimming at the brain surface. Magn Reson Imaging 2007; 25:902-12. [PMID: 17467220 DOI: 10.1016/j.mri.2007.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2007] [Indexed: 11/25/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is ideally suited for physiology-neurochemistry experiments with the living brain and particularly for studies on the primary visual cortex (striate cortex or area V1). Yet, the highly convoluted form of the human V1 has thus far prevented the performance of MRS investigations that are spatially confined within the gray matter of this area. Typically, these studies are compromised by partial volume contaminations originating from white matter tissue, cerebrospinal fluid and other cortical areas. In this study, was exploited the relative flatness of V1 in macaques to enable single-voxel 1H-MRS from a small volume (5 x 1.6 x 5 mm3, 40 microl) that was entirely confined within the V1 gray matter of anesthetized monkeys. Linewidths of 13.5+/-1.9 Hz and 13.0+/-1.3 Hz for water and creatine, respectively, were achieved with a two-step shimming strategy for voxels at the brain surface. The quality of the obtained results paves the way for further neuroscientific research, including studies on the cortical microcircuits and the dynamic longitudinal changes occurring during cortical reorganization and plasticity.
Collapse
Affiliation(s)
- Christoph Juchem
- Department Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | | | | |
Collapse
|
26
|
Katz-Brull R, Alsop DC, Marquis RP, Lenkinski RE. Limits on activation-induced temperature and metabolic changes in the human primary visual cortex. Magn Reson Med 2006; 56:348-55. [PMID: 16791859 DOI: 10.1002/mrm.20972] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Changes in cerebral blood flow (CBF) and metabolism are now widely used to map and quantify neural activity, although the underlying mechanism for these changes is still incompletely understood. Magnetic resonance spectroscopy (MRS) at 3T, synchronized with a 32-s block design visual stimulation paradigm, was employed to investigate activation-induced changes in temperature and metabolism in the human primary visual cortex. A marginally significant increase in the local temperature of the visual cortex was found (0.1 degrees C, P = 0.09), excluding the possibility of a temperature decrease (95% confidence interval (CI) = 0.0-0.2 degrees C), which was previously suggested. A comparison with models of thermal equilibrium in the presence of blood flow suggests that an increase in heat production during activation, greater than or at least equal to that produced by the complete oxidative metabolism of the elevated glucose (Glc) utilization accompanying activation, would be required to offset the cooling effects of the increased blood flow. The total pools of glutamate (Glu), glutamine (Gln), myo-Inositol (mI), N-acetylaspartate (NAA), choline (Cho), and lactate (Lac) were not significantly affected by activation. Limits on Lac concentration changes were too weak to constrain theories of the metabolic use of elevated Glc consumption during stimulation, and emphasize the challenges of measuring even large Lac changes accompanying stimulation.
Collapse
Affiliation(s)
- Rachel Katz-Brull
- Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
27
|
Maddock RJ, Buonocore MH, Lavoie SP, Copeland LE, Kile SJ, Richards AL, Ryan JM. Brain lactate responses during visual stimulation in fasting and hyperglycemic subjects: a proton magnetic resonance spectroscopy study at 1.5 Tesla. Psychiatry Res 2006; 148:47-54. [PMID: 17020804 PMCID: PMC1851693 DOI: 10.1016/j.pscychresns.2006.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/24/2006] [Accepted: 02/20/2006] [Indexed: 11/18/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) studies showing increased lactate during neural activation support a broader role for lactate in brain energy metabolism than was traditionally recognized. Proton MRS measures of brain lactate responses have been used to study regional brain metabolism in clinical populations. This study examined whether variations in blood glucose influence the lactate response to visual stimulation in the visual cortex. Six subjects were scanned twice, receiving either saline or 21% glucose intravenously. Using (1)H-MRS at 1.5 Tesla with a long echo time (TE=288 ms), the lactate doublet was visible at 1.32 ppm in the visual cortex of all subjects. Lactate increased significantly from resting to visual stimulation. Hyperglycemia had no effect on this increase. The order of the slice-selective gradients for defining the spectroscopy voxel had a pronounced effect on the extent of contamination by signal originating outside the voxel. The results of this preliminary study demonstrate a method for observing a consistent activity-stimulated increase in brain lactate at 1.5 T and show that variations in blood glucose across the normal range have little effect on this response.
Collapse
Affiliation(s)
- Richard J Maddock
- Department of Psychiatry and Behavioral Sciences, University of California Davis, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG. Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 2006; 26:865-77. [PMID: 16407855 DOI: 10.1038/sj.jcbfm.9600263] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Prior 13C magnetic resonance spectroscopy (MRS) experiments, which simultaneously measured in vivo rates of total glutamate-glutamine cycling (V(cyc(tot))) and neuronal glucose oxidation (CMR(glc(ox), N)), revealed a linear relationship between these fluxes above isoelectricity, with a slope of approximately 1. In vitro glial culture studies examining glutamate uptake indicated that glutamate, which is cotransported with Na+, stimulated glial uptake of glucose and release of lactate. These in vivo and in vitro results were consolidated into a model: recycling of one molecule of neurotransmitter between glia and neurons was associated with oxidation of one glucose molecule in neurons; however, the glucose was taken up only by glia and all the lactate (pyruvate) generated by glial glycolysis was transferred to neurons for oxidation. The model was consistent with the 1:1 relationship between DeltaCMR(glc(ox), N) and DeltaV(cyc(tot)) measured by 13C MRS. However, the model could not specify the energetics of glia and gamma-amino butyric acid (GABA) neurons because quantitative values for these pathways were not available. Here, we review recent 13C and 14C tracer studies that enable us to include these fluxes in a more comprehensive model. The revised model shows that glia produce at least 8% of total oxidative ATP and GABAergic neurons generate approximately 18% of total oxidative ATP in neurons. Neurons produce at least 88% of total oxidative ATP, and take up approximately 26% of the total glucose oxidized. Glial lactate (pyruvate) still makes the major contribution to neuronal oxidation, but approximately 30% less than predicted by the prior model. The relationship observed between DeltaCMR(glc(ox), N) and DeltaV(cyc(tot)) is determined by glial glycolytic ATP as before. Quantitative aspects of the model, which can be tested by experimentation, are discussed.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Urrila AS, Hakkarainen A, Heikkinen S, Huhdankoski O, Kuusi T, Stenberg D, Häkkinen AM, Porkka-Heiskanen T, Lundbom N. Preliminary findings of proton magnetic resonance spectroscopy in occipital cortex during sleep deprivation. Psychiatry Res 2006; 147:41-6. [PMID: 16797940 DOI: 10.1016/j.pscychresns.2006.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 01/19/2006] [Accepted: 01/19/2006] [Indexed: 11/18/2022]
Abstract
Proton magnetic resonance spectroscopy ((1)H MRS) has revealed biochemical alterations in various psychiatric disorders. Changes in brain metabolites may be caused not only by the disease's progression or response to treatment, but also by physiological variability. The aim of this study was to use (1)H MRS to assess the effects of specific short-term physiological states on major metabolites. Eight healthy women underwent (1)H MRS at the beginning and end of a 40-h period of sleep deprivation. The ratios of N-acetyl-aspartate (NAA), total creatine (tCr), and choline-containing compounds (Cho) to water (H(2)O) were determined from the occipital cortex during both baseline and photic stimulation conditions. During sleep deprivation, NAA/H(2)O decreased by 7% and Cho/H(2)O by 12%. Photic stimulation had no effect on the measured metabolites in the alert state, but in the sleep-deprived state the level of Cho/H(2)O increased during neuronal activation. The results suggest that NAA/H(2)O and Cho/H(2)O may depend on the state of alertness.
Collapse
Affiliation(s)
- Anna S Urrila
- Institute of Biomedicine, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mangia S, Tkác I, Gruetter R, Van De Moortele PF, Giove F, Maraviglia B, Uğurbil K. Sensitivity of single-voxel 1H-MRS in investigating the metabolism of the activated human visual cortex at 7 T. Magn Reson Imaging 2006; 24:343-8. [PMID: 16677939 DOI: 10.1016/j.mri.2005.12.023] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) has been used in a number of studies to noninvasively assess the temporal changes of lactate in the activated human brain. However, the results have not been consistent. The aim of the present study was to test the sensitivity of 1H-MRS during functional experiments at the highest magnetic field currently available for human studies (7 T). Stability and reproducibility of the measurements were evaluated from LCModel analysis of time series of spectra measured during a visual stimulation paradigm and by examination of the difference between spectra obtained at rest and during activation. The sensitivity threshold to detect concentration changes was 0.2 micromol/g for most of the quantified metabolites. The possible variations of metabolite concentrations during visual stimulation were within the same range (+/-0.2 micromol/g). In addition, the influence of a small line-narrowing effect due to the blood oxygenation level-dependent (BOLD) T2* changes on the estimated concentrations was simulated. Quantification of metabolites was, in general, not affected beyond 1% by line-width changes within 0.5 Hz.
Collapse
Affiliation(s)
- Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Berry I, Roux FE, Boulanouar K, Ranjeva JP, Ibarrola D, Manelfe C. IRM fonctionnelle de l'encéphale : principes et principaux résultats des nouvelles techniques. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1879-8551(06)73999-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Xu S, Yang J, Li CQ, Zhu W, Shen J. Metabolic alterations in focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats measured by 1H MRS at 11.7 T. Neuroimage 2005; 28:401-9. [PMID: 16182571 DOI: 10.1016/j.neuroimage.2005.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 04/08/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022] Open
Abstract
Previously, magnetic resonance spectroscopy studies of alterations in cerebral metabolite concentration during functional activation have been focused on phosphocreatine using 31P MRS and lactate using 1H MRS with controversial results. Recently, significant improvements on the spectral resolution and sensitivity of in vivo spectroscopy have been made at ultrahigh magnetic field strength. Using highly resolved localized short-TE 1H MRS at 11.7 T, we report metabolic responses of rat somatosensory cortex to forepaw stimulation in alpha-chloralose-anesthetized rats. The phosphocreatine/creatine ratio was found to be significantly decreased by 15.1 +/- 4.6% (mean +/- SEM, P < 0.01). Lactate remained very low (approximately <0.3 micromol/g w/w) with no statistically significant changes observed during forepaw stimulation at a temporal resolution of 10.7 min. An increase in glutamine and a decrease in glutamate and myo-inositol were also detected in the stimulated state. Our results suggest that, under the experimental conditions used in this study, increased energy consumption due to focal activation causes a shift in the creatine kinase reaction towards the direction of adenosine triphosphate production. At the same time, metabolic matching prevails during increased energy consumption with no significant increase in the glycolytic product lactate in the focally activated primary somatosensory cortex of alpha-chloralose-anesthetized rats.
Collapse
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, Building 10, Room 2D51A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
33
|
Matsumura A, Isobe T, Takano S, Kawamura H, Anno I. Non-invasive quantification of lactate by proton MR spectroscopy and its clinical applications. Clin Neurol Neurosurg 2005; 107:379-84. [PMID: 16023531 DOI: 10.1016/j.clineuro.2004.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 09/02/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Lactate is an important metabolite in clinical cases indicating the status of metabolic impairment. We applied a clinically relevant simple method for lactate quantification using magnetic resonance spectroscopy (MRS). We used two long in-phase echo time (TE=272,544 ms) to calculate T2 relaxation time and the absolute concentration of lactate. This method was optimized using phantom study and applied to clinical cases. This technique does not require complicated processing and could be applied in daily clinical practice. Moreover, this technique enables lactate quantification in cases (e.g. tumor) where lipid peak is overlapped with the lactate peak at short echo times.
Collapse
Affiliation(s)
- Akira Matsumura
- Department of Neurosurgery, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Science City, Ibaraki, 305-8575, Japan.
| | | | | | | | | |
Collapse
|
34
|
Sijens PE. Combining New MRI Methods - MR Spectroscopy, Functional MRI, Diffusion Tensor Imaging. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1617-0830.2005.00039.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Abstract
Neurovascular and neurometabolic coupling help the brain to maintain an appropriate energy flow to the neural tissue under conditions of increased neuronal activity. Both coupling phenomena provide us, in addition, with two macroscopically measurable parameters, blood flow and intermediate metabolite fluxes, that are used to dynamically image the functioning brain. The main energy substrate for the brain is glucose, which is metabolized by glycolysis and oxidative breakdown in both astrocytes and neurons. Neuronal activation triggers increased glucose consumption and glucose demand, with new glucose being brought in by stimulated blood flow and glucose transport over the blood-brain barrier. Glucose is shuttled over the barrier by the GLUT-1 transporter, which, like all transporter proteins, has a ceiling above which no further stimulation of the transport is possible. Blood-brain barrier glucose transport is generally accepted as a nonrate-limiting step but to prevent it from becoming rate-limiting under conditions of neuronal activation, it might be necessary for the transport parameters to be adapted to the increased glucose demand. It is proposed that the blood-brain barrier glucose transport parameters are dynamically adapted to the increased glucose needs of the neural tissue after activation according to a neurobarrier coupling scheme. This review presents neurobarrier coupling within the current knowledge on neurovascular and neurometabolic coupling, and considers arguments and evidence in support of this hypothesis.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Physiology and Pathophysiology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
36
|
Boucard CC, Mostert JP, Cornelissen FW, De Keyser J, Oudkerk M, Sijens PE. Visual stimulation, 1H MR spectroscopy and fMRI of the human visual pathways. Eur Radiol 2004; 15:47-52. [PMID: 15480690 DOI: 10.1007/s00330-004-2494-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 08/04/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
The purpose was to assess changes in lactate content and other brain metabolites under visual stimulation in optical chiasm, optic radiations and occipital cortex using multiple voxel MR spectroscopy (MRS). 1H chemical shift imaging (CSI) examinations of transverse planes centered to include the above structures were performed in four subjects at an echo time of 135 ms. Functional MRI (fMRI) was used to confirm the presence of activity in the visual cortex during the visual stimulation. Spectral maps of optical chiasm were of poor quality due to field disturbances caused by nearby large blood vessels and/or eye movements. The optic radiations and the occipital lobe did not show any significant MR spectral change upon visual stimulation, i.e., the peak areas of inositol, choline, creatine, glutamate and N-acetylaspartate were not affected. Reproducible lactate signals were not observed. fMRI confirmed the presence of strong activations in stimulated visual cortex. Prolonged visual stimulation did not cause significant changes in MR spectra. Any signal observed near the 1.33 ppm resonance frequency of the lactate methyl-group was artifactual, originating from lipid signals from outside the volume of interest (VOI). Previous claims about changes in lactate levels in the visual cortex upon visual stimulation may have been based on such erroneous observations.
Collapse
Affiliation(s)
- Christine C Boucard
- Laboratory for Experimental Ophthalmology, University of Groningen, Postbus 30001, Groningen, 9700 RB, The Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Viola A, Nicoli F, Denis B, Confort-Gouny S, Le Fur Y, Ranjeva JP, Viout P, Cozzone PJ. High cerebral scyllo-inositol: a new marker of brain metabolism disturbances induced by chronic alcoholism. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:47-61. [PMID: 15340856 DOI: 10.1007/s10334-004-0044-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 11/25/2022]
Abstract
Cerebral metabolic changes that concur to motor and/or cognitive disorders in actively drinking alcoholics are not well established. We tested the hypothesis that chronic alcoholics exhibit profound alterations in the cerebral metabolism of scyllo-inositol. Brain metabolism was explored in nine actively drinking and 11 recently detoxified chronic alcoholics by in vivo brain (1)H-MRS and in vitro(1)H-MRS of blood serum and cerebrospinal fluid. The cohort was composed of individuals with acute, subacute or chronic encephalopathy or without any clinical encephalopathy. Chronic alcoholism is associated with a hitherto unrecognized accumulation of brain scyllo-inositol. Our results suggest that scyllo-inositol is produced within the central nervous system and shows a diffuse but heterogenous distribution in brain where it can persist several weeks after detoxification. Its highest levels were observed in subjects with a clinically symptomatic alcohol-related encephalopathy. When detected, brain scyllo-inositol takes part in a metabolic encephalopathy since it is associated with reduced N-acetylaspartate and increased creatine. High levels of cerebral scyllo-inositol are correlated with altered glial and neuronal metabolism. Our findings suggest that the accumulation of scyllo-inositol may precede and take part in the development of symptomatic alcoholic metabolic encephalopathy.
Collapse
Affiliation(s)
- A Viola
- Centre de Résonance Magnétique, Biologique et Médicale UMR CNRS 6612, Faculté de Médecine, 27 Bd J. Moulin, 13005 Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Giove F, Mangia S, Bianciardi M, Garreffa G, Di Salle F, Morrone R, Maraviglia B. The physiology and metabolism of neuronal activation: in vivo studies by NMR and other methods. Magn Reson Imaging 2004; 21:1283-93. [PMID: 14725935 DOI: 10.1016/j.mri.2003.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this article, a review is made of the current knowledge concerning the physiology and metabolism of neuronal activity, as provided by the application of NMR approaches in vivo. The evidence furnished by other functional spectroscopic and imaging techniques, such as PET and optical methods, are also discussed. In spite of considerable amounts of studies presented in the literature, several controversies concerning the mechanisms underlying brain function still remain, mainly due to the difficult assessment of the single vascular and metabolic dynamics which generally influence the functional signals. In this framework, methodological and technical improvements are required to provide new and reliable experimental elements, which can support or eventually modify the current models of activation.
Collapse
Affiliation(s)
- F Giove
- Dipartimento di Fisica, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Uğurbil K, Adriany G, Andersen P, Chen W, Garwood M, Gruetter R, Henry PG, Kim SG, Lieu H, Tkac I, Vaughan T, Van De Moortele PF, Yacoub E, Zhu XH. Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 2003; 21:1263-81. [PMID: 14725934 DOI: 10.1016/j.mri.2003.08.027] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rae C, Digney AL, McEwan SR, Bates TC. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci 2003; 270:2147-50. [PMID: 14561278 PMCID: PMC1691485 DOI: 10.1098/rspb.2003.2492] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Creatine supplementation is in widespread use to enhance sports-fitness performance, and has been trialled successfully in the treatment of neurological, neuromuscular and atherosclerotic disease. Creatine plays a pivotal role in brain energy homeostasis, being a temporal and spatial buffer for cytosolic and mitochondrial pools of the cellular energy currency, adenosine triphosphate and its regulator, adenosine diphosphate. In this work, we tested the hypothesis that oral creatine supplementation (5 g d(-1) for six weeks) would enhance intelligence test scores and working memory performance in 45 young adult, vegetarian subjects in a double-blind, placebo-controlled, cross-over design. Creatine supplementation had a significant positive effect (p < 0.0001) on both working memory (backward digit span) and intelligence (Raven's Advanced Progressive Matrices), both tasks that require speed of processing. These findings underline a dynamic and significant role of brain energy capacity in influencing brain performance.
Collapse
Affiliation(s)
- Caroline Rae
- Discipline of Biochemistry, School of Molecular and Microbial Biosciences G08, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
41
|
Mangia S, Garreffa G, Bianciardi M, Giove F, Di Salle F, Maraviglia B. The aerobic brain: lactate decrease at the onset of neural activity. Neuroscience 2003; 118:7-10. [PMID: 12676131 DOI: 10.1016/s0306-4522(02)00792-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The metabolic events of neuronal energetics during functional activity are still partially unexplained. In particular, lactate (and not glucose) was recently proposed as the main substrate for neurons during activity. By means of proton magnetic resonance spectroscopy, lactate was reported to increase during the first minutes of prolonged stimulation, but the studies reported thus far suffered from low temporal resolution. In the present study we used a time-resolved proton magnetic resonance spectroscopy strategy in order to analyse the evolution of lactate during the early seconds following a brief visual stimulation (event-related design). A significant decrease in lactate concentration was observed 5 s after the stimulation, while a recovering of the baseline was observed at 12 s.
Collapse
Affiliation(s)
- S Mangia
- Dipartimento di Fisica, Università di Roma La Sapienza, Rome, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Urrila AS, Hakkarainen A, Heikkinen S, Vuori K, Stenberg D, Häkkinen AM, Lundbom N, Porkka-Heiskanen T. Metabolic imaging of human cognition: an fMRI/1H-MRS study of brain lactate response to silent word generation. J Cereb Blood Flow Metab 2003; 23:942-8. [PMID: 12902838 DOI: 10.1097/01.wcb.0000080652.64357.1d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) allows in vivo assessment of the metabolism related to human brain functions. Visual, auditory, tactile, and motor stimuli induce a temporary increase in the brain lactate level, which may act as a rapid source of energy for the activated neurons. The authors studied the metabolism of the frontal lobes during cognitive stimulation and measured local lactate levels with standard 1H-MRS, after localizing the activated area by functional MRI. Lactate levels were monitored while the subjects either silently listed numbers (baseline) or performed a silent word-generation task (stimulus-activation). The cognitive stimulus-activation produced a 50% increase in the brain lactate level in the left inferior frontal gyrus. The results show that metabolic imaging of neuronal activity related to cognition is possible using 1H-MRS.
Collapse
Affiliation(s)
- Anna S Urrila
- Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Localized 13C nuclear magnetic resonance (NMR) spectroscopy provides a unique window for studying cerebral carbohydrate metabolism through, e.g. the completely non-invasive measurement of cerebral glucose and glycogen metabolism. In addition, label incorporation into amino acid neurotransmitters such as glutamate (Glu), GABA and aspartate can be measured providing information on Krebs cycle flux and oxidative metabolism. Given the compartmentation of key enzymes such as pyruvate carboxylase and glutamine synthetase, the detection of label incorporation into glutamine indicated that neuronal and glial metabolism can be measured in vivo. The purpose of this paper is to provide a critical overview of these recent advances into measuring compartmentation of brain energy metabolism using localized in vivo 13C NMR spectroscopy. The studies reviewed herein showed that anaplerosis is significant in brain, as is oxidative ATP generation in glia and the rate of glial glutamine synthesis attributed to the replenishment of the neuronal Glu pool and that brain glycogen metabolism is slow under resting conditions. This new modality promises to provide a new investigative tool to study aspects of normal and diseased brain hitherto unaccessible, such as the interplay between glutamatergic action, glucose and glycogen metabolism during brain activation, and the derangements thereof in patients with hepatic encephalopathy, neurodegenerative diseases and diabetes.
Collapse
Affiliation(s)
- Rolf Gruetter
- Department of Radiology, Center for MR Research, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
44
|
Mintun MA, Vlassenko AG, Shulman GL, Snyder AZ. Time-related increase of oxygen utilization in continuously activated human visual cortex. Neuroimage 2002; 16:531-7. [PMID: 12030835 DOI: 10.1006/nimg.2002.1114] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxygen utilization increase is fractionally much less than that seen in glucose metabolism and blood flow soon after onset of neuronal activation, however its behavior during continued activation is less certain. We evaluated the effects of 25 min of visual stimulation on CBF, CMRO(2), and OEF using [(15)O] water and [(15)O] oxygen PET. Seven healthy volunteers underwent a PET session consisting of serial [(15)O] water and [(15)O] oxygen scans at the fixation-only baseline visual state and after 1, 13, and 25 min of the continuous visual stimulation using a black-white vertical grating. CBF, CMRO(2), and OEF values were calculated for the entire brain and for regions of interest in visual cortex centered over the area of activation. After 1 min of stimulation, CMRO(2) increased only 4.7% compared to baseline and CBF increased 40.7%. However, after 25 min of stimulation the increase in CMRO(2) compared to baseline was 15.0%, having tripled from that measured at 1 min (P < 0.05). CBF did not significantly change during this time. OEF was 48.3% at baseline. It decreased to 37.1% after 1 min of visual stimulation (P < 0.01) and then returned almost to baseline values after 25 min of activation OEF (45.7%). There were no significant variations in whole-brain values during the study. We suggest that in the activated brain, the increased energy demands initially are not fully met with oxidative metabolism and must predominantly be supported by increased glycolysis. With continued activation, oxygen utilization increases reducing the need for excess glycolysis.
Collapse
Affiliation(s)
- Mark A Mintun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
45
|
Seaquist ER, Damberg GS, Tkac I, Gruetter R. The effect of insulin on in vivo cerebral glucose concentrations and rates of glucose transport/metabolism in humans. Diabetes 2001; 50:2203-9. [PMID: 11574399 DOI: 10.2337/diabetes.50.10.2203] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The continuous delivery of glucose to the brain is critically important to the maintenance of normal metabolic function. However, elucidation of the hormonal regulation of in vivo cerebral glucose metabolism in humans has been limited by the lack of direct, noninvasive methods with which to measure brain glucose. In this study, we sought to directly examine the effect of insulin on glucose concentrations and rates of glucose transport/metabolism in human brain using (1)H-magnetic resonance spectroscopy at 4 Tesla. Seven subjects participated in paired hyperglycemic (16.3 +/- 0.3 mmol/l) clamp studies performed with and without insulin. Brain glucose remained constant throughout (5.3 +/- 0.3 micromol/g wet wt when serum insulin = 16 +/- 7 pmol/l vs. 5.5 +/- 0.3 micromol/g wet wt when serum insulin = 668 +/- 81 pmol/l, P = NS). Glucose concentrations in gray matter-rich occipital cortex and white matter-rich periventricular tissue were then simultaneously measured in clamps, where plasma glucose ranged from 4.4 to 24.5 mmol/l and insulin was infused at 0.5 mU. kg(-1). min(-1). The relationship between plasma and brain glucose was linear in both regions. Reversible Michaelis-Menten kinetics fit these data best, and no differences were found in the kinetic constants calculated for each region. These data support the hypothesis that the majority of cerebral glucose uptake/metabolism is an insulin-independent process in humans.
Collapse
Affiliation(s)
- E R Seaquist
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
46
|
Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. THE ANATOMICAL RECORD 2001; 265:54-84. [PMID: 11323770 DOI: 10.1002/ar.1058] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Magnetic resonance (MR; synonymous with NMR = nuclear magnetic resonance) is a universal physical technique best known for non-invasive detection and anatomical mapping of water protons (H). MR-spectroscopy (MRS) records protons from tissue chemicals other than water, intrinsic phosphorus containing metabolites, sodium, potassium, carbon, nitrogen, and fluorine. MRS is therefore an imaging technique with the potential to record human and animal biochemistry in vivo. As a result of wide availability of MRI equipment in research laboratories and hospitals, MRS is a serious competitor with PET to define normal body composition and its perturbation by pharmacological and pathological events. This article describes practical aspects of in vivo MRS with particular emphasis on the brain, where novel metabolites have been described. A survey of these new aspects of neurochemistry emphasize their practical utility as neuronal and axonal markers, measures of energy status, membrane constituents, and osmolytes, as well as some xenobiotics, such as alcohol. The concept of multinuclear in vivo MRS is illustrated by diagnosis and therapeutic monitoring of several human brain disorders. Although these methods are currently most frequently encountered in human studies, as well as with transgenic and knockout mouse models, MRS adds a new dimension to anatomic and histopathologic descriptions.
Collapse
Affiliation(s)
- B Ross
- University of Southern California, Los Angeles, USA.
| | | |
Collapse
|
47
|
Abstract
A frequency-selective multiple-quantum-coherence spectral editing pulse sequence, Ssel-MQC, was implemented for the detection of the betaH1-glucose resonance at 4.63 ppm in rat brain in vivo. Unwanted signal suppression and glucose coherence transfer pathway selection were performed with magnetic field gradients. To optimize sensitivity, the sequence was executed with surface coil signal reception and adiabatic RF pulse transmission. The glucose editing capabilities of Ssel-MQC were first evaluated in vitro. Ssel-MQC achieved excellent water suppression (suppression factor >10(5)), at the expense of an approximately 60% loss of the glucose signal due to incomplete coherence transfer pathway selection. Next, the sequence was used for in vivo glucose detection in normal rat brain during D-glucose infusion and in the brain of diabetic rats prior to and following insulin infusion.
Collapse
Affiliation(s)
- R A de Graaf
- Department of Experimental In Vivo NMR, Image Sciences Institute, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Proton NMR chemical shift and J-coupling values are presented for 35 metabolites that can be detected by in vivo or in vitro NMR studies of mammalian brain. Measurements were obtained using high-field NMR spectra of metabolites in solution, under conditions typical for normal physiological temperature and pH. This information is presented with an accuracy that is suitable for computer simulation of metabolite spectra to be used as basis functions of a parametric spectral analysis procedure. This procedure is verified by the analysis of a rat brain extract spectrum, using the measured spectral parameters. In addition, the metabolite structures and example spectra are presented, and clinical applications and MR spectroscopic measurements of these metabolites are reviewed.
Collapse
Affiliation(s)
- V Govindaraju
- Department of Radiology, University of California San Francisco and DVA Medical Center, 4150 Clement St (114M), San Francisco, CA 94121, USA
| | | | | |
Collapse
|
49
|
Friedman SD, Dager SR, Richards TL, Petropoulos H, Posse S. Modeling brain compartmental lactate response to metabolic challenge: a feasibility study. Psychiatry Res 2000; 98:55-66. [PMID: 10708926 DOI: 10.1016/s0925-4927(99)00053-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic resonance spectroscopy has been used to characterize abnormal brain lactate response in panic disorder (PD) subjects following lactate infusion. The present study integrated water quantification and tissue segmentation to evaluate compartmental lactate response within brain and cerebrospinal fluid (CSF). As there is evidence of brain parenchymal pH changes during lactate infusion, water scans were collected at baseline and post-infusion to address brain water stability. Water levels remained essentially stable across the protocol suggesting internal water provides an improved reference signal for measuring dynamic changes in response to metabolic challenge paradigms such as lactate infusion. To model brain lactate changes by compartments, we took the null hypothesis that lactate rises occur only in tissue. The approach referenced lactate amplitude (potentially from both compartments) to 'voxel' water (water scan corrected for differential T(2) between CSF brain at long-echo times - synonymous to a short-echo water scan). If the magnitude of lactate rise in CSF was equal to or greater than brain, voxels with substantial CSF fractions should demonstrate an equivalent or elevated response to voxels comprised only of tissue. The magnitude of lactate increases paralleled voxel tissue fraction suggesting the abnormal lactate rise observed in PD is tissue-based. The feasibility of lactate quantification and compartmental modeling are discussed.
Collapse
Affiliation(s)
- S D Friedman
- Department of Psychiatry and Behavioral Sciences, 4225 Roosevelt Way NE-Suite 306-C, University of Washington, Seattle, WA 98105-6099, USA
| | | | | | | | | |
Collapse
|
50
|
Chiappa KH, Hill RA, Huang-Hellinger F, Jenkins BG. Photosensitive epilepsy studied by functional magnetic resonance imaging and magnetic resonance spectroscopy. Epilepsia 1999; 40 Suppl 4:3-7. [PMID: 10487166 DOI: 10.1111/j.1528-1157.1999.tb00899.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE To study metabolic and hemodynamic correlates of photic stimulation-triggered discharges. METHODS Simultaneous EEG, functional MRI (tMRI) and magnetic resonance spectroscopy (MRS) were performed in nine patients with photosensitive epilepsy and in 12 normal subjects. RESULTS Prominent visual cortex activation was seen in all normal subjects and patients, and no tMRI-registered hemodynamic abnormalities were correlated with the brief photoparoxysmal spike-wave activity evoked in the photosensitive patients. However, irrespective of the presence of a spike-wave response to the photic stimulation, the photosensitive patients showed four findings not seen in the normal subjects: (a) slightly, but significantly, elevated lactate levels in the occipital cortex in the resting state; (b) an increased area of visual cortical activation with photic stimulation; (c) simultaneous with the occipital cortex stimulus-induced increased fMRI signal, there were noncontiguous areas of signal attenuation most prominent in perirolandic regions; and (d) a marked decrement (undershoot) of fMRI signal intensity immediately after the photic stimulation in the occipital cortex and in the region of the posterior cingulate gyrus. CONCLUSIONS These findings suggest abnormal interictal metabolism and increased vascular reactivity in the photosensitive patients.
Collapse
Affiliation(s)
- K H Chiappa
- Neurology Department, Massachuetts General Hospital, Boston 02214, USA.
| | | | | | | |
Collapse
|