1
|
Nga HT, Nguyen TL, Yi HS. T-Cell Senescence in Human Metabolic Diseases. Diabetes Metab J 2024; 48:864-881. [PMID: 39192822 PMCID: PMC11449820 DOI: 10.4093/dmj.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/17/2024] [Indexed: 08/29/2024] Open
Abstract
Immunosenescence denotes a state of dysregulated immune cell function characterized by a confluence of factors, including arrested cell cycle, telomere shortening, markers of cellular stress, mitochondrial dysfunction, loss of proteostasis, epigenetic reprogramming, and secretion of proinflammatory mediators. This state primarily manifests during the aging process but can also be induced in various pathological conditions, encompassing chronic viral infections, autoimmune diseases, and metabolic disorders. Age-associated immune system alterations extend to innate and adaptive immune cells, with T-cells exhibiting heightened susceptibility to immunosenescence. In particular, senescent T-cells have been identified in the context of metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Recent investigations suggest a direct link between T-cell senescence, inflammation, and insulin resistance. The perturbation of biological homeostasis by senescent T-cells appears intricately linked to the initiation and progression of metabolic diseases, particularly through inflammation-mediated insulin resistance. Consequently, senescent T-cells are emerging as a noteworthy therapeutic target. This review aims to elucidate the intricate relationship between metabolic diseases and T-cell senescence, providing insights into the potential roles of senescent T-cells in the pathogenesis of metabolic disorders. Through a comprehensive examination of current research findings, this review seeks to contribute to a deeper understanding of the complex interplay between immunosenescence and metabolic health.
Collapse
Affiliation(s)
- Ha Thi Nga
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
2
|
Guevara-Cruz M, Hernández-Gómez KG, Condado-Huerta C, González-Salazar LE, Peña-Flores AK, Pichardo-Ontiveros E, Serralde-Zúñiga AE, Sánchez-Tapia M, Maya O, Medina-Vera I, Noriega LG, López-Barradas A, Rodríguez-Lima O, Mata I, Olin-Sandoval V, Torres N, Tovar AR, Velázquez-Villegas LA. Intermittent fasting, calorie restriction, and a ketogenic diet improve mitochondrial function by reducing lipopolysaccharide signaling in monocytes during obesity: A randomized clinical trial. Clin Nutr 2024; 43:1914-1928. [PMID: 39003957 DOI: 10.1016/j.clnu.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota. METHODS AND FINDINGS A randomized controlled clinical trial was conducted in which individuals with obesity were assigned to one of the 4 groups for 1 month. Subsequently, the subjects received rifaximin and continued with the assigned diet for another month. The oxygen consumption rate (OCR) was evaluated in isolated monocytes, as was the gut microbiota composition in feces and anthropometric and biochemical parameters. Forty-four subjects completed the study, and those who underwent CR, IF and KD interventions had an increase in the maximal respiration OCR (p = 0.025, n2p = 0.159 [0.05, 0.27] 95% confidence interval) in monocytes compared to that in the AL group. The improvement in mitochondrial function was associated with a decrease in monocyte dependence on glycolysis after the IF and KD interventions. Together, diet and rifaximin increased the gut microbiota diversity in the IF and KD groups (p = 0.0001), enriched the abundance of Phascolarctobacterium faecium (p = 0.019) in the CR group and Ruminococcus bromii (p = 0.020) in the CR and KD groups, and reduced the abundance of lipopolysaccharide (LPS)-producing bacteria after CR, IF and KD interventions compared to the AL group at the end of the study according to ANCOVA with covariate adjustment. Spearman's correlation between the variables measured highlighted LPS as a potential modulator of the observed effects. In line with this findings, serum LPS and intracellular signaling in monocytes decreased with the three interventions (CR, p = 0.002; IF, p = 0.001; and KD, p = 0.001) compared to those in the AL group at the end of the study. CONCLUSIONS We conclude that these dietary interventions positively regulate mitochondrial bioenergetic health and improve the metabolic profile of monocytes in individuals with obesity via modulation of the gut microbiota. Moreover, the evaluation of mitochondrial function in monocytes could be used as an indicator of metabolic and inflammatory status, with potential applications in future clinical trials. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov (NCT05200468).
Collapse
Affiliation(s)
- Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Karla G Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Citlally Condado-Huerta
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Luis E González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Ana Karen Peña-Flores
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Aurora E Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Otoniel Maya
- Chalmers e-Commons. Chalmers University of Technology, Gotemburg, Vastra Gotaland, Sweden
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Irma Mata
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Viridiana Olin-Sandoval
- Laboratorio 43. Departamento de Biotecnología y Bioingeniería, Cinvestav-Zacatenco, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Olejnik AE, Kuźnar-Kamińska B. Association of Obesity and Severe Asthma in Adults. J Clin Med 2024; 13:3474. [PMID: 38930006 PMCID: PMC11204497 DOI: 10.3390/jcm13123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The incidence of obesity and asthma continues to enhance, significantly impacting global public health. Adipose tissue is an organ that secretes hormones and cytokines, causes meta-inflammation, and contributes to the intensification of bronchial hyperreactivity, oxidative stress, and consequently affects the different phenotypes of asthma in obese people. As body weight increases, the risk of severe asthma increases, as well as more frequent exacerbations requiring the use of glucocorticoids and hospitalization, which consequently leads to a deterioration of the quality of life. This review discusses the relationship between obesity and severe asthma, the underlying molecular mechanisms, changes in respiratory function tests in obese people, its impact on the occurrence of comorbidities, and consequently, a different response to conventional asthma treatment. The article also reviews research on possible future therapies for severe asthma. The manuscript is a narrative review of clinical trials in severe asthma and comorbid obesity. The articles were found in the PubMed database using the keywords asthma and obesity. Studies on severe asthma were then selected for inclusion in the article. The sections: 'The classification connected with asthma and obesity', 'Obesity-related changes in pulmonary functional tests', and 'Obesity and inflammation', include studies on subjects without asthma or non-severe asthma, which, according to the authors, familiarize the reader with the pathophysiology of obesity-related asthma.
Collapse
Affiliation(s)
- Aneta Elżbieta Olejnik
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland;
| | | |
Collapse
|
4
|
Madruga MP, Grun LK, Santos LSMD, Friedrich FO, Antunes DB, Rocha MEF, Silva PL, Dorneles GP, Teixeira PC, Oliveira TF, Romão PRT, Santos L, Moreira JCF, Michaelsen VS, Cypel M, Antunes MOB, Jones MH, Barbé-Tuana FM, Bauer ME. Excess of body weight is associated with accelerated T-cell senescence in hospitalized COVID-19 patients. Immun Ageing 2024; 21:17. [PMID: 38454515 PMCID: PMC10921685 DOI: 10.1186/s12979-024-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight. RESULTS Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56+CD16-) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56+CD16+), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4+CD38+ cells than controls. Contrasting changes were reported in CD25+CD127low/neg regulatory T cells, with increased and decreased proportions found in CD4+ and CD8+ T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4+ and CD8+) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8+CD57+NKG2A+ cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19. CONCLUSIONS These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.
Collapse
Affiliation(s)
- Mailton Prestes Madruga
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Lucas Kich Grun
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Letícya Simone Melo Dos Santos
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | | | - Douglas Bitencourt Antunes
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Marcella Elesbão Fogaça Rocha
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Pedro Luis Silva
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Gilson P Dorneles
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paula Coelho Teixeira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Tiago Franco Oliveira
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro R T Romão
- Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo - Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (IB-UFRGS), Porto Alegre, RS, Brazil
| | - Vinicius Schenk Michaelsen
- Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Marcelo Cypel
- Toronto General Hospital Research Institute, Department of Surgery, University Health Network, University of Toronto, Toronto, Canada
| | - Marcos Otávio Brum Antunes
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marcus Herbert Jones
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Florencia María Barbé-Tuana
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil
| | - Moisés Evandro Bauer
- Laboratory of Immunobiology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, building 12 (4th floor), Porto Alegre, 90619-900, RS, Brazil.
| |
Collapse
|
5
|
Aronoff JE, McDade TW, Adair LS, Lee NR, Carba DB, MacIsaac JL, Dever K, Atashzay P, Kobor MS, Kuzawa CW. Socioeconomic status is negatively associated with immunosenescence but positively associated with inflammation among middle-aged women in Cebu, Philippines. Brain Behav Immun 2024; 115:101-108. [PMID: 37820972 PMCID: PMC10841485 DOI: 10.1016/j.bbi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Socioeconomic status (SES) gradients in health are well-documented, and while biological pathways are incompletely understood, chronic inflammation and accelerated immune aging (immunosenescence) among lower SES individuals have been implicated. However, previous findings have come from samples in higher income countries, and it is unclear how generalizable they are to lower- and middle-income countries (LMIC) with different infectious exposures and where adiposity-an important contributor to chronic inflammation-might show different SES patterning. To address this gap, we explored associations between SES and inflammation and immunosenescence in a sample of women in Cebu, Philippines. METHODS Data came from the mothers of the Cebu Longitudinal Health and Nutrition Survey birth cohort (mean age: 47.7, range: 35-69 years). SES was measured as a combination of annual household income, education level, and assets. Chronic inflammation was measured using C-reactive protein (CRP) in plasma samples from 1,834 women. Immunosenescence was measured by the abundance of exhausted CD8T (CD8 + CD28-CD45RA-) and naïve CD8T and CD4T cells, estimated from DNA methylation in whole blood in a random subsample of 1,028. Possible mediators included waist circumference and a collection of proxy measures of pathogen exposure. RESULTS SES was negatively associated with the measures of immunosenescence, with slight evidence for mediation by a proxy measure for pathogen exposure from the household's drinking water source. In contrast, SES was positively associated with CRP, which was explained by the positive association with waist circumference. CONCLUSIONS Similar to higher income populations, in Cebu there is an SES-gradient in pathogen exposures and immunosenescence. However, lifestyle changes occurring more rapidly among higher SES individuals is contributing to a positive association between SES and adiposity and inflammation. Our results suggest more studies are needed to clarify the relationship between SES and inflammation and immunosenescence across LMIC.
Collapse
Affiliation(s)
- Jacob E Aronoff
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA.
| | - Thomas W McDade
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| | - Linda S Adair
- Department of Nutrition, Gillings School of Global Public Health, Carolina Population Center, CB #8120, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nanette R Lee
- Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
| | - Delia B Carba
- Office of Population Studies Foundation, University of San Carlos, Cebu City, Philippines
| | - Julia L MacIsaac
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Kristy Dever
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Parmida Atashzay
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Edwin S.H. Leong Centre for Healthy Aging, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, IL, USA; Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
6
|
Grun LK, Maurmann RM, Scholl JN, Fogaça ME, Schmitz CRR, Dias CK, Gasparotto J, Padoin AV, Mottin CC, Klamt F, Figueiró F, Jones MH, Filippi-Chiela EC, Guma FCR, Barbé-Tuana FM. Obesity drives adipose-derived stem cells into a senescent and dysfunctional phenotype associated with P38MAPK/NF-KB axis. Immun Ageing 2023; 20:51. [PMID: 37821967 PMCID: PMC10566105 DOI: 10.1186/s12979-023-00378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Adipose-derived stem cells (ADSC) are multipotent cells implicated in tissue homeostasis. Obesity represents a chronic inflammatory disease associated with metabolic dysfunction and age-related mechanisms, with progressive accumulation of senescent cells and compromised ADSC function. In this study, we aimed to explore mechanisms associated with the inflammatory environment present in obesity in modulating ADSC to a senescent phenotype. We evaluated phenotypic and functional alterations through 18 days of treatment. ADSC were cultivated with a conditioned medium supplemented with a pool of plasma from eutrophic individuals (PE, n = 15) or with obesity (PO, n = 14), and compared to the control. RESULTS Our results showed that PO-treated ADSC exhibited decreased proliferative capacity with G2/M cycle arrest and CDKN1A (p21WAF1/Cip1) up-regulation. We also observed increased senescence-associated β-galactosidase (SA-β-gal) activity, which was positively correlated with TRF1 protein expression. After 18 days, ADSC treated with PO showed augmented CDKN2A (p16INK4A) expression, which was accompanied by a cumulative nuclear enlargement. After 10 days, ADSC treated with PO showed an increase in NF-κB phosphorylation, while PE and PO showed an increase in p38MAPK activation. PE and PO treatment also induced an increase in senescence-associated secretory phenotype (SASP) cytokines IL-6 and IL-8. PO-treated cells exhibited decreased metabolic activity, reduced oxygen consumption related to basal respiration, increased mitochondrial depolarization and biomass, and mitochondrial network remodeling, with no superoxide overproduction. Finally, we observed an accumulation of lipid droplets in PO-treated ADSC, implying an adaptive cellular mechanism induced by the obesogenic stimuli. CONCLUSIONS Taken together, our data suggest that the inflammatory environment observed in obesity induces a senescent phenotype associated with p38MAPK/NF-κB axis, which stimulates and amplifies the SASP and is associated with impaired mitochondrial homeostasis.
Collapse
Affiliation(s)
- L K Grun
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
| | - R M Maurmann
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - J N Scholl
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M E Fogaça
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C R R Schmitz
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C K Dias
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - J Gasparotto
- Institute of Biomedical Sciences, Federal University at Alfenas, Alfenas, Brazil
| | - A V Padoin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - C C Mottin
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - F Klamt
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F Figueiró
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M H Jones
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - E C Filippi-Chiela
- Institute of Basic Health Sciences, Department of Morphological Sciences, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Center for Biotechnology, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F C R Guma
- Graduate Program in Biological Sciences: Biochemistry, Federal University at Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F M Barbé-Tuana
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Graduate Program in Cellular and Molecular Biology, School of Health, Sciences, and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- Group of Inflammation and Cellular Senescence, Immunobiology Laboratory, School of Health Sciences and Life, Pontifical Catholic University at Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
7
|
Borja-Magno AI, Furuzawa-Carballeda J, Guevara-Cruz M, Arias C, Granados J, Bourges H, Tovar AR, Sears B, Noriega LG, Gómez FE. Supplementation with EPA and DHA omega-3 fatty acids improves peripheral immune cell mitochondrial dysfunction and inflammation in subjects with obesity. J Nutr Biochem 2023; 120:109415. [PMID: 37437746 DOI: 10.1016/j.jnutbio.2023.109415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Omega-3 fatty acids (w-3 FA) have anti-inflammatory effects and improve mitochondrial function. Nonetheless, little is known about their effect on mitochondrial bioenergetics of peripheral blood mononuclear cells (PBMCs) in individuals with obesity. Thus, this study aimed to determine the mitochondrial bioenergetics status and cell subset composition of PBMCs during obesity, before and after 1 month supplementation with w-3 FA. We performed a case-control study with twelve women with normal BMI (lean group) and 19 with grade 2 obesity (obese group), followed by a before-after prospective study where twelve subjects with obesity received a 1 month intervention with 5.25 g of w-3 FA (3.5 g eicosapentaenoic (EPA) and 1.75 g docosahexaenoic (DHA) acids), and obtained PBMCs from all participants. Mitochondrial bioenergetic markers, including basal and ATP-production associated respiration, proton leak, and nonmitochondrial respiration, were higher in PBMCs from the obese group vs. the lean group. The bioenergetic health index (BHI), a marker of mitochondrial function, was lower in the obese vs. the lean group. In addition, Th1, Th2, Th17, CD4+ Tregs, CD8+ Tregs, and Bregs, M1 monocytes and pDCreg cells were higher in PBMCs from the obese group vs. the lean group. The w-3 FA intervention improved mitochondrial function, mainly by decreasing nonmitochondrial respiration and increasing the reserve respiratory capacity and BHI. The intervention also reduced circulating pro-inflammatory and anti-inflammatory lymphocyte and monocytes subsets in individuals with obesity. The mitochondrial dysfunction of PBMCs and the higher proportion of peripheral pro-inflammatory and anti-inflammatory immune cells in subjects with obesity, improved with 1 month supplementation with EPA and DHA.
Collapse
Affiliation(s)
- Angélica I Borja-Magno
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Janette Furuzawa-Carballeda
- Department of Experimental Surgery, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Martha Guevara-Cruz
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Clorinda Arias
- Department of Genomics Medicine and Environmental Toxicology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacan, Ciudad de México, Mexico
| | - Julio Granados
- Department of Transplants, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Hector Bourges
- Divission of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Armando R Tovar
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico
| | - Barry Sears
- Inflammation Research Foundation, Peabody, Massachusetts, USA
| | - Lilia G Noriega
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico.
| | - Francisco Enrique Gómez
- Department of Nutritional Physiology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
9
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
10
|
He D, Qiu Y, Yan M, Zhou T, Cheng Z, Li J, Wu Q, Liu Z, Zhu Y. Associations of metabolic heterogeneity of obesity with frailty progression: Results from two prospective cohorts. J Cachexia Sarcopenia Muscle 2023; 14:632-641. [PMID: 36575595 PMCID: PMC9891922 DOI: 10.1002/jcsm.13169] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Previous studies indicated that obesity would accelerate frailty progression. However, obesity is heterogeneous by different metabolic status. The associations of metabolic heterogeneity of obesity with frailty progression remain unclear. METHODS A total of 6730 participants from the China Health and Retirement Longitudinal Study (CHARLS) and 4713 from the English Longitudinal Study of Ageing (ELSA) were included at baseline. Metabolic heterogeneity of obesity was evaluated based on four obesity and metabolic phenotypes as metabolically healthy normal weight (MHNW), metabolically unhealthy normal weight (MUNW), metabolically healthy overweight/obesity (MHOO), and metabolically unhealthy overweight/obesity (MUOO). Frailty status was assessed by the frailty index (FI) ranging from 0 to 100 and frailty was defined as FI ≥ 25. Linear mixed-effect models were used to analyse the associations of metabolic heterogeneity of obesity with frailty progression. RESULTS In the CHARLS, MUOO and MUNW presented the accelerated FI progression with additional annual increases of 0.284 (95% CI: 0.155 to 0.413, P < 0.001) and 0.169 (95% CI: 0.035 to 0.303, P = 0.013) as compared with MHNW. MHOO presented no accelerated FI progression (β: -0.011, 95% CI: -0.196 to 0.173, P = 0.904) as compared with MHNW. In the ELSA, the accelerated FI progression was marginally significant for MUOO (β: 0.103, 95% CI: -0.005 to 0.210, P = 0.061) and MUNW (β: 0.157, 95% CI: -0.011 to 0.324, P = 0.066), but not for MHOO (β: -0.047, 95% CI: -0.157 to 0.062, P = 0.396) in comparison with MHNW. The associations of MUOO and MUNW with the accelerated FI progression were stronger after excluding the baseline frail participants in both cohorts. The metabolic status changed over time. When compared with stable MHNW, participants who changed from MHNW to MUNW presented the accelerated FI progression with additional annual increases of 0.356 (95% CI: 0.113 to 0.599, P = 0.004) and 0.255 (95% CI: 0.033 to 0.477, P = 0.024) in the CHARLS and ELSA, respectively. The accelerated FI progression was also found in MHOO participants who transitioned to MUOO (CHARLS, β: 0.358, 95% CI: 0.053 to 0.663, P = 0.022; ELSA, β: 0.210, 95% CI: 0.049 to 0.370, P = 0.011). CONCLUSIONS Metabolically unhealthy overweight/obesity and normal weight, but not metabolically healthy overweight/obesity, accelerated frailty progression as compared with metabolically healthy normal weight. Regardless of obesity status, transitions from healthy metabolic status to unhealthy metabolic status accelerated frailty progression as compared with stable metabolically healthy normal weight. Our findings highlight the important role of metabolic status in frailty progression and recommend the stratified management of obesity based on metabolic status.
Collapse
Affiliation(s)
- Di He
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yiwen Qiu
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Mengsha Yan
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Tianjing Zhou
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zongxue Cheng
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jun Li
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Qiong Wu
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics, Second Affiliated Hospital and Department of Big Data in Health Science, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, and Department of Respiratory Diseases of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.,Cancer Center, Zhejiang University, Zhejiang, China
| |
Collapse
|
11
|
Schmitz CRR, Maurmann RM, Guma FTCR, Bauer ME, Barbé-Tuana FM. cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Front Immunol 2023; 14:1132653. [PMID: 36926349 PMCID: PMC10011111 DOI: 10.3389/fimmu.2023.1132653] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Aging is associated with an increased incidence of autoimmune diseases, despite the progressive decline of immune responses (immunosenescence). This apparent paradox can be explained by the age-related chronic low-grade systemic inflammation (inflammaging) and progressive dysregulation of innate signaling. During cellular aging, there is an accumulation of damaged DNA in the cell's cytoplasm, which serves as ubiquitous danger-associated molecule, promptly recognized by DNA sensors. For instance, the free cytoplasmic DNA can be recognized, by DNA-sensing molecules like cGAS-STING (cyclic GMP-AMP synthase linked to a stimulator of interferon genes), triggering transcriptional factors involved in the secretion of pro-inflammatory mediators. However, the contribution of this pathway to the aging immune system remains largely unknown. Here, we highlight recent advances in understanding the biology of the cGAS-STING pathway, its influence on the senescence-associated secretory phenotype (SASP), and its modulation of the immune system during sterile inflammation. We propose that this important stress sensor of DNA damage is also a trigger of immunosenescence and inflammaging.
Collapse
Affiliation(s)
- Carine Raquel Richter Schmitz
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moura Maurmann
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Fatima T C R Guma
- Programa de Pós-Graduação em Ciência Biológicas - Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Moisés Evandro Bauer
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Instituto Nacional de Ciência e Tecnologia - Neuroimunomodulação (INCT-NIM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.,Programa de Pós-Graduação em Gerontologia Biomédica, Escola de Medicina, Pontifícia Universidade do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Florencia Maria Barbé-Tuana
- Laboratório de Imunobiologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular da Escola de Ciências da Saúde da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Pediatria e Saúde da Criança da Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Neuroimmune contributions to Alzheimer's disease: a focus on human data. Mol Psychiatry 2022; 27:3164-3181. [PMID: 35668160 PMCID: PMC9168642 DOI: 10.1038/s41380-022-01637-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
The past decade has seen the convergence of a series of new insights that arose from genetic and systems analyses of Alzheimer's disease (AD) with a wealth of epidemiological data from a variety of fields; this resulted in renewed interest in immune responses as important, potentially causal components of AD. Here, we focus primarily on a review of human data which has recently yielded a set of robust, reproducible results that exist in a much larger universe of conflicting reports stemming from small studies with important limitations in their study design. Thus, we are at an important crossroads in efforts to first understand at which step of the long, multiphasic course of AD a given immune response may play a causal role and then modulate this response to slow or block the pathophysiology of AD. We have a wealth of new experimental tools, analysis methods, and capacity to sample human participants at large scale longitudinally; these resources, when coupled to a foundation of reproducible results and novel study designs, will enable us to monitor human immune function in the CNS at the level of complexity that is required while simultaneously capturing the state of the peripheral immune system. This integration of peripheral and central perturbations in immune responses results in pathologic responses in the central nervous system parenchyma where specialized cellular microenvironments composed of multiple cell subtypes respond to these immune perturbations as well as to environmental exposures, comorbidities and the impact of the advancing life course. Here, we offer an overview that seeks to illustrate the large number of interconnecting factors that ultimately yield the neuroimmune component of AD.
Collapse
|
13
|
Van Laecke S, Van Damme K, Dendooven A. Immunosenescence: an unexplored role in glomerulonephritis. Clin Transl Immunology 2022; 11:e1427. [PMID: 36420421 PMCID: PMC9676375 DOI: 10.1002/cti2.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
Immunosenescence is a natural ageing phenomenon with alterations in innate and especially adaptive immunity and contributes to reduced antimicrobial defence and chronic low‐grade inflammation. This is mostly reflected by an increase in organ‐directed and/or circulating reactive and cytolytic terminally differentiated T cells that have lost their expression of the costimulatory receptor CD28. Apart from being induced by a genetic predisposition, ageing or viral infections (particularly cytomegalovirus infection), immunosenescence is accelerated in many inflammatory diseases and uraemia. This translates into an enhancement of vascular inflammation and cardiovascular disease varying from endothelial dysfunction to plaque rupture. Emerging data point to a mechanistic role of CD28null T cells in glomerulonephritis, where they initiate and propagate local inflammation in concordance with dendritic cells and macrophages. They are suitably equipped to escape immunological dampening by the absence of homing to lymph nodes, anti‐apoptotic properties and resistance to suppression by regulatory T cells. Early accumulation of senescent CD28null T cells precedes glomerular or vascular injury, and targeting these cells could open avenues for early treatment interventions that aim at abrogating a detrimental vicious cycle.
Collapse
Affiliation(s)
| | - Karel Van Damme
- Renal Division Ghent University Hospital Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, Center for Inflammation Research VIB Center for Inflammation Research Ghent Belgium
| | | |
Collapse
|
14
|
Alarcon PC, Damen MSMA, Madan R, Deepe GS, Spearman P, Way SS, Divanovic S. Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunol 2021; 14:1224-1234. [PMID: 33958704 PMCID: PMC8100369 DOI: 10.1038/s41385-021-00404-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological evidence establishes obesity as an independent risk factor for increased susceptibility and severity to viral respiratory pneumonias associated with H1N1 influenza and SARS-CoV-2 pandemics. Given the global obesity prevalence, a better understanding of the mechanisms behind obese susceptibility to infection is imperative. Altered immune cell metabolism and function are often perceived as a key causative factor of dysregulated inflammation. However, the contribution of adipocytes, the dominantly altered cell type in obesity with broad inflammatory properties, to infectious disease pathogenesis remains largely ignored. Thus, skewing of adipocyte-intrinsic cellular metabolism may lead to the development of pathogenic inflammatory adipocytes, which shape the overall immune responses by contributing to either premature immunosenescence, delayed hyperinflammation, or cytokine storm in infections. In this review, we discuss the underappreciated contribution of adipocyte cellular metabolism and adipocyte-produced mediators on immune system modulation and how such interplay may modify disease susceptibility and pathogenesis of influenza and SARS-CoV-2 infections in obese individuals.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, Cincinnati, OH, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul Spearman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Medical Scientist Training Program, Cincinnati, OH, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
15
|
DASH Diet as a Proposal for Improvement in Cellular Immunity and Its Association with Metabolic Parameters in Persons with Overweight and Obesity. Nutrients 2021; 13:nu13103540. [PMID: 34684542 PMCID: PMC8539000 DOI: 10.3390/nu13103540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
The development of obesity entails a chronic low-grade inflammatory state with increased pro-inflammatory cells, mainly in visceral adipose tissue (VAT). Additionally, dietary patterns have an influence on the regulation of chronic inflammation. Dietary Approaches to Stop Hypertension (DASH) include foods with an anti-inflammatory profile and that have positive impacts on body composition (BC), suggesting improvements in inflammatory processes. OBJECTIVE To analyze the impact of the DASH diet on cellular immunity, anthropometric, biochemical and BC parameters in patients with overweight and obesity, who could present metabolic syndrome. METHODOLOGY Lymphocyte subpopulations, biochemical parameters, anthropometric parameters, and BC before and 8 weeks after intervention with the DASH diet in persons with overweight and obesity were measured. RESULTS Fifty-nine young adults participated in the study. After the intervention, no significant changes in biochemical parameters were observed, although a significant decrease in nearly all of the anthropometric and BC variables was found: waist circumference (p < 0.001), percentage and kilograms of fat (p < 0.001 and p < 0.025, respectively), VAT (p < 0.020), and weight (p < 0.001), as well as total lymphocytes and double-positive TCD4+ cells. A relation between changes in leukocyte subpopulations (monocytes, natural killer, helper and cytotoxic lymphocytes, and naive TCD4+ cells) and metabolic improvements (glucose, triglycerides, total cholesterol and LDL-c) was also found. CONCLUSIONS The DASH diet promotes positive changes in lymphocyte subpopulations, anthropometric parameters and BC in persons with overweight and obesity. Future studies should elucidate the cellular and molecular mechanisms through which the DASH diet produces inmunometabolic improvement.
Collapse
|
16
|
Thomas AL, Alarcon PC, Divanovic S, Chougnet CA, Hildeman DA, Moreno-Fernandez ME. Implications of Inflammatory States on Dysfunctional Immune Responses in Aging and Obesity. FRONTIERS IN AGING 2021; 2:732414. [PMID: 35822048 PMCID: PMC9261339 DOI: 10.3389/fragi.2021.732414] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Aging and obesity are two conditions characterized by chronic, low-grade inflammation. While both conditions are also associated with dysfunctional immune responses, the shared and distinct underlying mechanisms are just starting to be uncovered. In fact, recent findings have suggested that the effects of obesity on the immune system can be thought of as a state of accelerated aging. Here we propose that chronic, low-grade inflammation seen in obesity and aging is complex, affects multiple cell types, and results in an altered basal immune state. In aging, part of this altered state is the emergence of regulatory immune populations that lead to further immune dysfunction in an attempt to reduce chronic inflammation. While in obesity, part of the altered state is the effect of expanding adipose tissue on immune cell function. Thus, in this review, we compare, and contrast altered immune states in aging and obesity and discuss their potential contribution to a shared clinical problem- decreased vaccine responsiveness.
Collapse
Affiliation(s)
- Alyssa L. Thomas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pablo C. Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A. Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Transplant Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
17
|
Bantulà M, Roca-Ferrer J, Arismendi E, Picado C. Asthma and Obesity: Two Diseases on the Rise and Bridged by Inflammation. J Clin Med 2021; 10:jcm10020169. [PMID: 33418879 PMCID: PMC7825135 DOI: 10.3390/jcm10020169] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Asthma and obesity are two epidemics affecting the developed world. The relationship between obesity and both asthma and severe asthma appears to be weight-dependent, causal, partly genetic, and probably bidirectional. There are two distinct phenotypes: 1. Allergic asthma in children with obesity, which worsens a pre-existing asthma, and 2. An often non allergic, late-onset asthma developing as a consequence of obesity. In obesity, infiltration of adipose tissue by macrophages M1, together with an increased expression of multiple mediators that amplify and propagate inflammation, is considered as the culprit of obesity-related inflammation. Adipose tissue is an important source of adipokines, such as pro-inflammatory leptin, produced in excess in obesity, and adiponectin with anti-inflammatory effects with reduced synthesis. The inflammatory process also involves the synthesis of pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and TGFβ, which also contribute to asthma pathogenesis. In contrast, asthma pro-inflammatory cytokines such as IL-4, IL-5, IL-13, and IL-33 contribute to maintain the lean state. The resulting regulatory effects of the immunomodulatory pathways underlying both diseases have been hypothesized to be one of the mechanisms by which obesity increases asthma risk and severity. Reduction of weight by diet, exercise, or bariatric surgery reduces inflammatory activity and improves asthma and lung function.
Collapse
Affiliation(s)
- Marina Bantulà
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Roca-Ferrer
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Servei de Pneumologia, Hospital Clinic, 08036 Barcelona, Spain
| | - César Picado
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.B.); (J.R.-F.); (E.A.)
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-227-5400
| |
Collapse
|
18
|
de Candia P, Prattichizzo F, Garavelli S, Matarese G. T Cells: Warriors of SARS-CoV-2 Infection. Trends Immunol 2021; 42:18-30. [PMID: 33277181 PMCID: PMC7664351 DOI: 10.1016/j.it.2020.11.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Severe infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is characterized by massive cytokine release and T cell loss. The exaggerated host immune response, incapable of viral clearance, instead aggravates respiratory distress, as well as cardiac, and/or damage to other organs. The mortality pattern of SARS-CoV-2 infection, higher in older versus younger adults and almost absent in children, is possibly caused by the effects of age and pre-existing comorbidities on innate and adaptive immunity. Here, we speculate that the abnormal and excessive immune response to SARS-CoV-2 infection partly depends on T cell immunological memory, which is more pronounced in adults compared with children, and may significantly contribute to immunopathology and massive collateral damage in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy.
| |
Collapse
|
19
|
Chiu YL, Tsai WC, Hung RW, Chen IY, Shu KH, Pan SY, Yang FJ, Ting TT, Jiang JY, Peng YS, Chuang YF. Emergence of T cell immunosenescence in diabetic chronic kidney disease. IMMUNITY & AGEING 2020; 17:31. [PMID: 33088331 PMCID: PMC7574244 DOI: 10.1186/s12979-020-00200-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Background Type 2 diabetes is an important challenge given the worldwide epidemic and is the most important cause of end-stage renal disease (ESRD) in developed countries. It is known that patients with ESRD and advanced renal failure suffer from immunosenescence and premature T cell aging, but whether such changes develop in patients with less severe chronic kidney disease (CKD) is unclear. Method 523 adult patients with type 2 diabetes were recruited for this study. Demographic data and clinical information were obtained from medical chart review. Immunosenescence, or aging of the immune system was assessed by staining freshly-obtained peripheral blood with immunophenotyping panels and analyzing cells using multicolor flow cytometry. Result Consistent with previously observed in the general population, both T and monocyte immunosenescence in diabetic patients positively correlate with age. When compared to diabetic patients with preserved renal function (estimated glomerular filtration rate > 60 ml/min), patients with impaired renal function exhibit a significant decrease of total CD3+ and CD4+ T cells, but not CD8+ T cell and monocyte numbers. Immunosenescence was observed in patients with CKD stage 3 and in patients with more severe renal failure, especially of CD8+ T cells. However, immunosenescence was not associated with level of proteinuria level or glucose control. In age, sex and glucose level-adjusted regression models, stage 3 CKD patients exhibited significantly elevated percentages of CD28-, CD127-, and CD57+ cells among CD8+ T cells when compared to patients with preserved renal function. In contrast, no change was detected in monocyte subpopulations as renal function declined. In addition, higher body mass index (BMI) is associated with enhanced immunosenescence irrespective of CKD status. Conclusion The extent of immunosenescence is not significantly associated with proteinuria or glucose control in type 2 diabetic patients. T cells, especially the CD8+ subsets, exhibit aggravated characteristics of immunosenescence during renal function decline as early as stage 3 CKD. In addition, inflammation increases since stage 3 CKD and higher BMI drives the accumulation of CD8+CD57+ T cells. Our study indicates that therapeutic approaches such as weight loss may be used to prevent the emergence of immunosenescence in diabetes before stage 3 CKD.
Collapse
Affiliation(s)
- Yen-Ling Chiu
- Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan.,Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wan-Chuan Tsai
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Center for General Education, Lee-Ming Institute of Technology, New Taipei City, Taiwan
| | - Ruo-Wei Hung
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - I-Yu Chen
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Kai-Hsiang Shu
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Szu-Yu Pan
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Feng-Jung Yang
- Department of Medicine, National Taiwan University Hospital Yun Lin Branch, Douliu, Taiwan
| | - Te-Tien Ting
- School of Big Data Management, Soochow University, Taipei, Taiwan
| | - Ju-Ying Jiang
- Division of Endocrinology and Metabolism, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yu-Sen Peng
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan.,Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City, Taiwan.,Department of Healthcare Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
20
|
Barbé-Tuana F, Funchal G, Schmitz CRR, Maurmann RM, Bauer ME. The interplay between immunosenescence and age-related diseases. Semin Immunopathol 2020; 42:545-557. [PMID: 32747977 PMCID: PMC7398288 DOI: 10.1007/s00281-020-00806-z] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The aging immune system (immunosenescence) has been implicated with increased morbidity and mortality in the elderly. Of note, T cell aging and low-grade inflammation (inflammaging) are implicated with several age-related conditions. The expansion of late-differentiated T cells (CD28−), regulatory T cells, increased serum levels of autoantibodies, and pro-inflammatory cytokines were implicated with morbidities during aging. Features of accelerated immunosenescence can be identified in adults with chronic inflammatory conditions, such as rheumatoid arthritis, and are predictive of poor clinical outcomes. Therefore, there is an interplay between immunosenescence and age-related diseases. In this review, we discuss how the aging immune system may contribute to the development and clinical course of age-related diseases such as neurodegenerative diseases, rheumatoid arthritis, cancer, cardiovascular, and metabolic diseases.
Collapse
Affiliation(s)
- Florencia Barbé-Tuana
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Giselle Funchal
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Carine Raquel Richter Schmitz
- Graduate Program in Cell Biology: Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Moura Maurmann
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Moisés E Bauer
- Laboratory of Immunobiology, Graduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. .,Graduate Program in Biomedical Gerontology, PUCRS, Porto Alegre, Brazil.
| |
Collapse
|
21
|
Tam BT, Morais JA, Santosa S. Obesity and ageing: Two sides of the same coin. Obes Rev 2020; 21:e12991. [PMID: 32020741 DOI: 10.1111/obr.12991] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
Abstract
Conditions and comorbidities of obesity mirror those of ageing and age-related diseases. Obesity and ageing share a similar spectrum of phenotypes such as compromised genomic integrity, impaired mitochondrial function, accumulation of intracellular macromolecules, weakened immunity, shifts in tissue and body composition, and enhanced systemic inflammation. Moreover, it has been shown that obesity reduces life expectancy by 5.8 years in men and 7.1 years in women after the age of 40. Shorter life expectancy could be because obesity holistically accelerates ageing at multiple levels. Besides jeopardizing nuclear DNA and mitochondrial DNA integrity, obesity modifies the DNA methylation pattern, which is associated with epigenetic ageing in different tissues. Additionally, other signs of ageing are seen in individuals with obesity including telomere shortening, systemic inflammation, and functional declines. This review aims to show how obesity and ageing are "two sides of the same coin" through discussing how obesity predisposes an individual to age-related conditions, illness, and disease. We will further demonstrate how the mechanisms that perpetuate the early-onset of chronic diseases in obesity parallel those of ageing.
Collapse
Affiliation(s)
- Bjorn T Tam
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada
| | - Jose A Morais
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Division of Geriatric Medicine and Research Institute, McGill University Health Centre, Quebec, Montreal, Canada
| | - Sylvia Santosa
- Department of Health, Kinesiology, and Applied Physiology, Concordia University, Quebec, Montreal, Canada.,Metabolism, Obesity, and Nutrition Lab, PERFORM Centre, Concordia University, Quebec, Montreal, Canada.,Research Centre, Centre intégré universitarie de santé et de services sociaux du Nord-de-I'Île-de-Montréal, Hôpital du Sacré-Cœur de Monréal (CIUSS-NIM, HSCM), Quebec, Montreal, Canada
| |
Collapse
|
22
|
Lin Y, Ren N, Li S, Chen M, Pu P. Novel anti-obesity effect of scutellarein and potential underlying mechanism of actions. Biomed Pharmacother 2019; 117:109042. [PMID: 31228804 DOI: 10.1016/j.biopha.2019.109042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Scutellarein (Sc), a natural compound and an active ingredient of Erigeron breviscapus (vant.), shows anti-inflammatory and antioxidant properties and has the potential for obesity treatment. However, no previous in vivo study has been conducted to assess the role of Sc in obesity. This study investigated the effects of Sc on obesity and associated hyperlipidemia and fatty liver and explores the underlying mechanisms of action in a mouse model. METHODS The study was conducted using a well-established mouse model of obesity induced by high-fat diet (HFD) feeding. Anti-obesity effects were assessed using body weight, abdominal circumference, white adipose tissue, adiposity index, and fatty liver index. Lipid lowering and liver protective effects were examined by blood sample analysis. Lipid dystopia deposition was confirmed by liver pathological sections. The signaling pathways of lipid metabolism and cytokine/inflammatory mediator were evaluated using Real-Time PCR and Western blot. RESULTS Central obesity, dyslipidemia, inflammation, and hepatic steatosis were developed in mice fed with HFD. Administration of Sc at a dose of 50 mg/kg for 16 weeks effectively attenuated all obesity indicators tested. Further studies revealed the antagonistic effect of Sc on hyperlipidemia was a result of the repression of the lipid synthesis pathway, de novo pathway, HMGCR, promoting fatty acid oxidation (PPARα, CPT-1a) and increased cholesterol output (PPARγ-LXRα-ABCA1). The anti-inflammatory effect was attributed to blocking the expression of inflammatory genes, including TNF-α, IL-6, NF-κB. CONCLUSIONS These results suggest that Sc possesses important novel anti-obesity effects accompanying lipid lowering and anti-inflammation-based liver protective effects. These favorable effects are causally associated with the suppression of gene expression of inflammatory cytokines and fine regulation of genes responsible for energy metabolism. Our results advance the understanding of the pharmacological actions of Sc, and provides a role for Sc in effective management of obesity.
Collapse
Affiliation(s)
- Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Nina Ren
- Guangdong Online Hospital, Guangdong Second Provincial People's Hospital, Guangzhou, 510317, PR China
| | - Siyu Li
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ming Chen
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Peng Pu
- Department of Cardiology, First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
23
|
Tashiro H, Shore SA. Obesity and severe asthma. Allergol Int 2019; 68:135-142. [PMID: 30509734 PMCID: PMC6540088 DOI: 10.1016/j.alit.2018.10.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity is an important global health issue for both children and adults. Obesity increases the prevalence and incidence of asthma and also increases the risk for severe asthma. Here we describe the features of severe asthma phenotypes for which obesity is a defining characteristic, including steroid resistance, airway inflammation, and co-morbidities. We also review current concepts regarding the mechanistic basis for the impact of obesity in severe asthma, including possible roles for vitamin D deficiency, systemic inflammation, and the microbiome. Finally, we describe data indicating a role for diet, weight loss, and exercise in the treatment of severe asthma with obesity. Better understanding of the mechanistic basis for the role of obesity in severe asthma could lead to new therapeutic options for this population.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephanie A Shore
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
24
|
Grun LK, Teixeira NDR, Mengden LV, de Bastiani MA, Parisi MM, Bortolin R, Lavandoski P, Pierdoná V, Alves LB, Moreira JCF, Mottin CC, Jones MH, Klamt F, Padoin AV, Guma FCR, Barbé-Tuana FM. TRF1 as a major contributor for telomeres' shortening in the context of obesity. Free Radic Biol Med 2018; 129:286-295. [PMID: 30268887 DOI: 10.1016/j.freeradbiomed.2018.09.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023]
Abstract
Obesity is a prevalent multifactorial chronic disorder characterized by metabolic dysregulation. Sustained pro-oxidative mediators trigger harmful consequences that reflect at systemic level and contribute for the establishment of a premature senescent phenotype associated with macromolecular damage (DNA, protein, and lipids). Telomeres are structures that protect chromosome ends and are associated with a six-protein complex called the shelterin complex and subject to regulation. Under pro-oxidant conditions, telomere attrition and the altered expression of the shelterin proteins are central for the establishment of many pathophysiological conditions such as obesity. Thus, considering that individuals with obesity display a systemic oxidative stress profile that may compromise the telomeres length or its regulation, the aim of this study was to investigate telomere homeostasis in patients with obesity and explore broad/systemic associations with the expression of shelterin genes and the plasma redox state. We performed a cross-sectional study in 39 patients with obesity and 27 eutrophic subjects. Telomere length (T/S ratio) and gene expression of shelterin components were performed in peripheral blood mononuclear cells by qPCR. The oxidative damage (lipid peroxidation and protein carbonylation) and non-enzymatic antioxidant system (total radical-trapping antioxidant potential/reactivity, sulfhydryl and GSH content) were evaluated in plasma. Our results demonstrate that independently of comorbidities, individuals with obesity had significantly shorter telomeres, augmented expression of negative regulators of the shelterin complex, increased lipid peroxidation and higher oxidized protein levels associated with increased non-enzymatic antioxidant defenses. Principal component analysis revealed TRF1 as a major contributor for firstly telomeres shortening. In conclusion, our study is first showing a comprehensive analysis of telomeres in the context of obesity, associated with dysregulation of the shelterin components that was partially explained by TRF1 upregulation that could not be reversed by the observed adaptive non-enzymatic antioxidant response.
Collapse
Affiliation(s)
- Lucas Kich Grun
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Group of Inflammation and Cellular Senescence and Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Nevton da Rosa Teixeira
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Group of Inflammation and Cellular Senescence and Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lúcia von Mengden
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Cellular Biochemistry, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marco Antônio de Bastiani
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Cellular Biochemistry, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana Migliorini Parisi
- Interdisciplinary Group of Health (GIS), Center of Education and Research of the Institute of Cardiology of Cruz Alta, University of Cruz Alta (UNICRUZ), Cruz Alta, Brazil
| | - Rafael Bortolin
- Department of Civil and Environmental Engineering, Universidad de la Costa, Barranquilla, Atlántico, Colombia
| | - Patrícia Lavandoski
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Group of Inflammation and Cellular Senescence and Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vinícius Pierdoná
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Group of Inflammation and Cellular Senescence and Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Letícia Biscaino Alves
- Center of Obesity and Metabolic Syndrome, São Lucas Hospital at Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) and Postgraduate Program: Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Cellular Stress, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Cláudio Corá Mottin
- Center of Obesity and Metabolic Syndrome, São Lucas Hospital at Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) and Postgraduate Program: Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil; Laboratory of Respiratory Physiology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Marcus Herbert Jones
- Laboratory of Respiratory Physiology, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fábio Klamt
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Cellular Biochemistry, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Alexandre Vontobel Padoin
- Center of Obesity and Metabolic Syndrome, São Lucas Hospital at Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) and Postgraduate Program: Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fátima Costa Rodrigues Guma
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Group of Inflammation and Cellular Senescence and Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Biochemistry and Cellular Biology of Lipids, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Florencia María Barbé-Tuana
- Postgraduate Program: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Group of Inflammation and Cellular Senescence and Laboratory of Molecular Biology and Bioinformatics, Department of Biochemistry/ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Postgraduate Program in Cellular and Molecular Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|