1
|
Ebersole JL, Kirakodu SS, Zhang X, Dawson D, Miller CS. Salivary microbiome and biomarker characteristics of diabetics with periodontitis. Mol Oral Microbiol 2025; 40:37-49. [PMID: 39351619 DOI: 10.1111/omi.12485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE To examine the characteristics of the salivary microbiome in Type 2 diabetes mellitus (T2DM) patients with or without periodontitis. BACKGROUND Periodontitis has been identified as clear sequelae of T2DM. This chronic oral disease also impacts the management of the clinical features of diabetes. The oral microbiome characteristics in T2DM with and without periodontitis, as well as the response of this oral microbiome to nonsurgical therapy have not been well described. Knowledge of key oral biological features could help address the observed poorer clinical presentation of T2DM patients. METHODS The oral microbiome in saliva of adult cohorts periodontally healthy/non-diabetic (non-periodontitis; NP; n = 31), T2DM without periodontitis (DWoP; n = 32), and T2DM with periodontitis (DWP; n = 29) were characterized by microbial molecular analysis using V3-V4 sequencing and Luminex or ELISA techniques for salivary host analytes. RESULTS Phyla distribution showed DWP with significantly lower levels of Firmicutes and Actinobacteria and higher levels of Fusobacteria and Spirochetes compared to the healthier groups. Approximately 10% of the detected microbial species showed significant differences in frequency and level of colonization among the DWP, DWoP, and NP samples. A subset of bacteria were significantly correlated with clinical disease features, as well as a specific repertoire of salivary analytes, in particular matrix metalloproteinase (MMP)8/MMP9, interleukin-1ß, B-cell activating factor, and resistin differed between the groups and were related to specific taxa. Principal component analysis that identified a majority of the DWP subjects microbiome was unique based upon an array of 27 taxa out of up to 255 detected in the saliva samples. CONCLUSION T2DM patients with periodontitis show unique oral microbiome and salivary analyte composition compared to diabetics or non-diabetic persons without periodontitis. Specific members of the oral microbiome relate directly to the clinical disease features and/or salivary biomolecules in T2DM individuals.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Xiahou Zhang
- Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Dolph Dawson
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, Center for Oral Health Research, of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Craig S Miller
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Oral Health Practice, Center for Oral Health Research, of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Cibulkova I, Rehorova V, Soukupova H, Waldauf P, Cahova M, Manak J, Matejovic M, Duska F. Allogenic faecal microbiota transplantation for antibiotic-associated diarrhoea in critically ill patients (FEBATRICE)-Study protocol for a multi-centre randomised controlled trial (phase II). PLoS One 2024; 19:e0310180. [PMID: 39729440 DOI: 10.1371/journal.pone.0310180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/25/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea. METHODS Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea. We will exclude patients with ongoing sepsis, need of systemic antibiotics, or those after recent bowel surgery or any other reason that prevents the FMT. Randomisation will be in 1:1 ratio. Patients in the control group will receive standard treatment based on oral diosmectite. In the intervention group, patients will receive, in addition to the standard of care, faecal microbiota transplantation via rectal tube, in the form of a preparation mixed from 7 thawed aliquots (50 mL) made from fresh stool of 7 healthy unrelated donors and quarantined deep frozen for 3 to 12 months. Primary outcome is treatment failure defined as intervention not delivered or diarrhoea persisting at day 7 after randomisation. Secondary outcomes include safety measures such as systemic inflammatory response, adverse events, and also diarrhoea recurrence within 28 days. Exploratory outcomes focus on gut barrier function and composition of intestinal microbiota. DISCUSSION Faecal microbiota transplantation has been effective for dysbiosis in non-critically ill patients with recurrent C. difficile infections and it is plausible to hypothesize that it will be equally effective for symptoms of dysbiosis in the critically ill patients. In addition, animal experiments and observational data suggest other benefits such as reduced colonization with multi-drug resistant bacteria and improved gut barrier and immune function. The frozen faeces from unrelated donors are immediately available when needed, unlike those from the relatives, who require lengthy investigation. Using multiple donors maximises graft microbiota diversity. Nonetheless, in vulnerable critically ill patients, Faecal microbiota transplantation might lead to bacterial translocation and unforeseen complications. From growing number of case series it is clear that its off label use in the critically ill patients is increasing and that there is a burning need to objectively assess its efficacy and safety, which this trial aims. TRIAL REGISTRATION www.clinicaltrials.gov (NCT05430269).
Collapse
Affiliation(s)
- Ivana Cibulkova
- Division of Gastroenterology, Department of Internal Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Rehorova
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Hana Soukupova
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Microbiology, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Petr Waldauf
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Monika Cahova
- Department of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Manak
- 3rd Department of Internal Medicine-Metabolism and Gerontology, Charles University Teaching Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Matejovic
- 1st Department of Internal Medicine, Faculty of Medicine in Pilsen, Pilsen University Hospital, Pilsen, Czech Republic
| | - Frantisek Duska
- The Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Anaesthesia and Intensive Care Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| |
Collapse
|
3
|
Lee B, Jo D, Park J, Kim OY, Song J. Gut microbiota and their relationship with circulating adipokines in an acute hepatic encephalopathy mouse model induced by surgical bile duct ligation. Heliyon 2024; 10:e38534. [PMID: 39391493 PMCID: PMC11466606 DOI: 10.1016/j.heliyon.2024.e38534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
Background and aims Various studies have shown the importance of the gut microbiota in human health. However, little is known about gut microbiome patterns and their effect on circulating adipo-myokine levels in hepatic encephalopathy (HE). We investigated the relationship between the gut microbiota and adipo-myokine levels using a mouse model of HE induced by surgical bile duct ligation (BDL). Methods and results Wild-type C57BL/6J mice were subjected to sham surgery or BDL. Severe body weight loss, suppressed feed intake, and liver failure were observed in BDL mice compared with sham control mice. Additionally, changes in gut microbial communities and serum adipo-myokine levels were noted in BDL mice. In the BDL mouse gut, we identified 15 differentially abundant taxa including the phylum Verrucomicrobiota, the classes Actinomycetes and Verrucomicrobiae, the order Verrucomicrobiales, the families Akkermansiaceae, Bacteroidaceae, Rikenellaceae, and Oscillospiraceae, the genera Alistipes, Akkermansia, Muribaculum, and Phocaeicola, and the species Akkermansia muciniphila, Alistipes okayasuensis, and Muribaculum gordoncarteri by LEfSe analysis (LDA score≥4.0). Higher levels of certain adipo-myokines such as BDNF were detected in the serum of BDL mice. Spearman correlation analysis revealed that certain adipo-myokines (e.g., FSTL1) were positively correlated with the class Actinomycetes, the family Rikenellaceae, the genus Alistipes, and the species Alistipes okayasuensis. Interestingly, A. okayasuensis and M. gordoncarteri, recently isolated microbes, showed richness in the gut of BDL mice and demonstrated positive correlations with adipo-myokines such as FGF21. Conclusions Overall, our results suggest that alteration of the gut microbiota in patients with HE may be closely correlated to the levels of adipo-myokines in the blood.
Collapse
Affiliation(s)
- Bokyung Lee
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - Jihyun Park
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
- Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, 49315, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
4
|
Batitucci G, Almeida OG, De Martinis ECP, Solar I, Cintra DE, de Freitas EC. Intermittent fasting and high-intensity interval training do not alter gut microbiota composition in adult women with obesity. Am J Physiol Endocrinol Metab 2024; 327:E241-E257. [PMID: 38922577 DOI: 10.1152/ajpendo.00310.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Obesity is advancing at an accelerated pace, and yet its treatment is still an emerging field. Although studies have demonstrated the role of the microbiota in the pathogenesis of obesity, this is the first study to show the effects of intermittent fasting (IF), combined or not with exercise, and high-intensity interval training (HIIT) on the gut microbiota composition in women with obesity. Our hypothesis is that IF combined with HIIT can promote the remodeling of the composition and function of the gut microbiota. Thirty-six women with obesity, aged between 18 and 40 yr, participated in the study. They were randomly divided into three groups: 1) IF associated with HIIT group [IF + exercise group (EX), n = 15]; 2) HIIT group (EX, n = 11); and 3) IF group (IF, n = 10). Interventions took place over 8 wk, and all assessments were performed preintervention and postintervention. The HIIT circuit was performed 3 times/wk, for 25 min/session. The IF protocol was a 5:2 (2 times/wk). Multiplex analysis of inflammatory cytokines, sequencing of the 16S rRNA gene, and gas chromatography to measure fecal concentrations of short-chain fatty acids (SCFAs) were performed. This study was registered on ClinicalTrials.gov (NCT05237154). Exercise increased fecal acetate concentrations (P = 0.04), but no changes were observed in the composition and functional profile of the microbiota. The interventions did not change the composition of the microbiota, but exercise may play a modulatory role in the production of acetate. This investigation provides clinical insights into the use of IF and HIIT for women with obesity.NEW & NOTEWORTHY This is the first investigation about alternate-day fasting combined with HITT on the gut microbiota of obese women. The study contributes to the advancement of human science involving IF and HIIT, popular strategies for managing obesity. Previous evidence has explored IF in modulating the microbiota in animal models or specific populations and clinical conditions. Despite the subtle outcomes, this study has relevance and originality in the field of gut microbiota knowledge.
Collapse
Affiliation(s)
- Gabriela Batitucci
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
| | - Otávio G Almeida
- Ribeirão Preto School of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Elaine C P De Martinis
- Ribeirão Preto School of Pharmaceutical Sciences, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Isabela Solar
- Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Dennys E Cintra
- Nutritional Genomics Laboratory and Nutrigenomics and Lipids Center, Faculty of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Ellen Cristini de Freitas
- Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of Sao Paulo, Araraquara, Brazil
- Laboratory of Exercise Physiology and Metabolism, School of Physical Education and Sports of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
5
|
Xu J, Zou Z, Li X, Sun X, Wang X, Qin F, Abulizi A, Chen Q, Pan Z, Shen H, Lv Y, Yan R. Effect of Gegen Qinlian Decoction on the regulation of gut microbiota and metabolites in type II diabetic rats. Front Microbiol 2024; 15:1429360. [PMID: 39234553 PMCID: PMC11371796 DOI: 10.3389/fmicb.2024.1429360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/12/2024] [Indexed: 09/06/2024] Open
Abstract
Gegen Qinlian Decoction (GGQLT) is a traditional Chinese herbal medicine that has been reported to have a significant therapeutic effect in the management of type II diabetes mellitus (T2DM). In this study, we constructed a T2DM rat model by feeding a high-fat diet and injecting streptozotocin (STZ) and tested the effects of feeding GGQLT and fecal transplantation on the physiological indices, microbiota, and metabolism of rats. The results showed that the administration of GGQLT can significantly improve the growth performance of rats and has a remarkable antihyperlipidemic effect. In addition, GGQLT altered the composition of gut microbiota by increasing beneficial bacteria such as Coprococcus, Bifidobacterium, Blautia, and Akkermansia. In addition, GGQLT elevated levels of specific bile acids by metabolomic analysis, potentially contributing to improvements in lipid metabolism. These findings suggest that GGQLT may have beneficial effects on T2DM by influencing lipid metabolism and gut microbiota. However, further studies are needed to elucidate its mechanisms and assess clinical applications.
Collapse
Affiliation(s)
- Jinyao Xu
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhenkai Zou
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Xuanyi Li
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiangjun Sun
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xufeng Wang
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Feng Qin
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Abulikemu Abulizi
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Qian Chen
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zhigang Pan
- Department of Hepatobiliary Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | | | | | - Ruicheng Yan
- The First Clinical Medical School, Hubei University of Chinese Medicine, Wuhan, China
- Department of Gastrointestinal Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
6
|
Singh S, Olayinka OT, Fr J, Nisar MR, Kotha R, Saad-Omer SI, Nath TS. Food Additives' Impact on Gut Microbiota and Metabolic Syndrome: A Systematic Review. Cureus 2024; 16:e66822. [PMID: 39280570 PMCID: PMC11398613 DOI: 10.7759/cureus.66822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The human gut microbiota (GM) might play a significant role in the development or remission of metabolic syndrome (MetS) and associated disorders. Contributing factors include diets rich in unhealthy, processed foods that contain preservatives, emulsifiers, and stabilizers. Diet influences the GM's composition, diversity, and species richness in a time-dependent manner. Food additives can alter the GM and contribute to the pathophysiology of MetS by disrupting the intestinal barrier and inducing low-grade systemic inflammation. Our systematic review aims to clarify the relationships among food additives, GM, and MetS. We summarize current knowledge on how food additives interact with GM and the pathogenic role of the microbiota in the development of MetS, including obesity and type 2 diabetes. This review also discusses how disturbances in GM caused by stabilizers and emulsifiers may link to MetS, highlighting the impact of this condition on the development of diabetes and obesity. Furthermore, this review seeks a detailed explanation of how dietary choices related to GM dysbiosis may contribute to MetS. However, more comprehensive and well-designed in vitro, animal, and clinical studies are needed for a better understanding, as research on the role of GM in MetS is still emerging.
Collapse
Affiliation(s)
- Shivani Singh
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Oluwatoba T Olayinka
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jaslin Fr
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mah Rukh Nisar
- Neurology/Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rudrani Kotha
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sabaa I Saad-Omer
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | |
Collapse
|
7
|
Effenberger M, Grander C, Hausmann B, Enrich B, Pjevac P, Zoller H, Tilg H. Apelin and the gut microbiome: Potential interaction in human MASLD. Dig Liver Dis 2024; 56:932-940. [PMID: 38087672 DOI: 10.1016/j.dld.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 05/28/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a leading cause of chronic liver disease with increasing numbers worldwide. Adipokines like apelin (APLN) can act as key players in the complex pathophysiology of MASLD. AIMS Investigating the role of APLN in MASLD. METHODS Fecal and blood samples were collected in a MASLD cohort and healthy controls (HC). MASLD patients with liver fibrosis and MASLD-associated hepatocellular carcinoma (HCC) were included into the study. Systemic concentration of Apelin, Apelin receptor (APLNR) and circulating cytokines were measured in serum samples. RESULTS Apelin concentration correlated with the Fib-4 score and was elevated in MASLD patients (mild fibrosis, mF (Fib-4 <3.25) and severe fibrosis, sF (Fib-4 >3.25)) as well as in MASLD-associated HCC patients compared to HC. In accordance APLNR and circulating cytokines were also elevated in mF and sF. In contrast apelin levels were negatively associated with liver survival at three and five years. Changes in taxa composition at phylum level showed an increase of Enterobactericae, Prevotellaceae and Lactobacillaceae in patients with sF compared to mF. We could also observe an association between apelin concentrations and bacterial lineages (phyla). CONCLUSIONS Circulating apelin is associated with liver fibrosis and HCC. In addition, there might exist an interaction between systemic apelin and the gut microbiome.
Collapse
Affiliation(s)
- Maria Effenberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria; Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Zeng L, Ma J, Wei T, Wang H, Yang G, Han C, Zhu T, Tian H, Zhang M. The effect of canagliflozin on gut microbiota and metabolites in type 2 diabetic mice. Genes Genomics 2024; 46:541-555. [PMID: 38483772 DOI: 10.1007/s13258-024-01491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Sodium glucose cotransporter 2 inhibitor (SGLT2i) represent a new type of hypoglycemic medicine that can cause massive loss of glucose from the urine, which have several benefits of reducing body weight and improving the prognosis of cardiovascular and kidney diseases. Although they are oral medicated hypoglycemic agents, their effects on the gut microbiome and function have been unclear. OBJECTIVE In order to describe the effects of canagliflozin on intestinal flora and metabolites, diabetic mice were randomized to receive canagliflozin or isoconcentration carboxymethylcellulose sodium by gavage for 8 weeks. Feces were collected for 16 S rRNA gene and LC-MS/MS analysis and enriched metabolic pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG). Liver, muscle, intestinal, fat were collected for qRT-PCR according to KEGG enriched metabolic pathways. RESULTS Our results showed that canagliflozin significantly increased GLP-1 level and impacted on the composition of gut microbiota and metabolites. It mainly increased Muribaculum, Ruminococcaceae_UCG_014, Lachnospiraceae-UCG-001, decreased ursodeoxycholic acids (UDCA) and hyodeoxycholic acids (HDCA), and increased fatty acids metabolites in feces. CONCLUSION In conclusion, we analyzed the changes of intestinal microbial composition and metabolites in diabetic mice after canagliflozin intervention and found that canagliflozin influenced intestinal fatty acid and bile acid (BA) metabolism. This study will provide reference for subsequent SGLT2i and intestinal related research.
Collapse
Affiliation(s)
- Li Zeng
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tiantian Wei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hao Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guitao Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chongxiang Han
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Min Zhang
- Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
Karaman I, Pathak A, Bayik D, Watson DC. Harnessing Bacterial Extracellular Vesicle Immune Effects for Cancer Therapy. Pathog Immun 2024; 9:56-90. [PMID: 38690563 PMCID: PMC11060327 DOI: 10.20411/pai.v9i1.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
There are a growing number of studies linking the composition of the human microbiome to disease states and treatment responses, especially in the context of cancer. This has raised significant interest in developing microbes and microbial products as cancer immunotherapeutics that mimic or recapitulate the beneficial effects of host-microbe interactions. Bacterial extracellular vesicles (bEVs) are nano-sized, membrane-bound particles secreted by essentially all bacteria species and contain a diverse bioactive cargo of the producing cell. They have a fundamental role in facilitating interactions among cells of the same species, different microbial species, and even with multicellular host organisms in the context of colonization (microbiome) and infection. The interaction of bEVs with the immune system has been studied extensively in the context of infection and suggests that bEV effects depend largely on the producing species. They thus provide functional diversity, while also being nonreplicative, having inherent cell-targeting qualities, and potentially overcoming natural barriers. These characteristics make them highly appealing for development as cancer immunotherapeutics. Both natively secreted and engineered bEVs are now being investigated for their application as immunotherapeutics, vaccines, drug delivery vehicles, and combinations of the above, with promising early results. This suggests that both the intrinsic immunomodulatory properties of bEVs and their ability to be modified could be harnessed for the development of next-generation microbe-inspired therapies. Nonetheless, there remain major outstanding questions regarding how the observed preclinical effectiveness will translate from murine models to primates, and humans in particular. Moreover, research into the pharmacology, toxicology, and mass manufacturing of this potential novel therapeutic platform is still at early stages. In this review, we highlight the breadth of bEV interactions with host cells, focusing on immunologic effects as the main mechanism of action of bEVs currently in preclinical development. We review the literature on ongoing efforts to develop natively secreted and engineered bEVs from a variety of bacterial species for cancer therapy and finally discuss efforts to overcome outstanding challenges that remain for clinical translation.
Collapse
Affiliation(s)
- Irem Karaman
- Bahcesehir University School of Medicine, Istanbul, Turkey
| | - Asmita Pathak
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| | - Dionysios C. Watson
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Florida
| |
Collapse
|
10
|
Mirzaei S, DeVon HA, Cantor RM, Cupido AJ, Pan C, Ha SM, Silva LF, Hilser JR, Hartiala J, Allayee H, Rey FE, Laakso M, Lusis AJ. Relationships and Mendelian Randomization of Gut Microbe-Derived Metabolites with Metabolic Syndrome Traits in the METSIM Cohort. Metabolites 2024; 14:174. [PMID: 38535334 PMCID: PMC10972019 DOI: 10.3390/metabo14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 07/17/2024] Open
Abstract
The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass index (BMI) (β = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (β = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (β = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23, p = 4.4 × 10-33), and BMI (β = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (β = -0.19, p = 3.8 × 10-51) and triglycerides (β = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.
Collapse
Affiliation(s)
- Sahereh Mirzaei
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Holli A. DeVon
- School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Rita M. Cantor
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arjen J. Cupido
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1007 AZ Amsterdam, The Netherlands
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Lilian Fernandes Silva
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - James R. Hilser
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jaana Hartiala
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Hooman Allayee
- Department of Population & Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Federico E. Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Markku Laakso
- Department of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90055, USA
- Department of Human Genetics and Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Abot A, Pomié N, Astre G, Jaomanjaka F, Marchand P, Cani PD, Roudier N, Knauf C. Limosilactobacillus reuteri BIO7251 administration improves metabolic phenotype in obese mice fed a high fat diet: an inter-organ crosstalk between gut, adipose tissue and nervous system. Int J Food Sci Nutr 2024; 75:58-69. [PMID: 37921224 DOI: 10.1080/09637486.2023.2276672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Gut microbiota is implicated in the control of host physiology by releasing bioactive actors that could exert a direct or indirect effect on tissue. A dysfunction of the gut microbiota to tissue axis could participate in the development of pathological states such as obesity and diabetes. The aim of this study was to identify the metabolic effect of Limosilactobacillus reuteri (known as Lactobacillus reuteri) BIO7251 (L. reuteri BIO7251) isolated from Corsican clementine orange. Body weight gain, adiposity, glucose tolerance, glucose absorption and food intake were measured in mice fed a high-fat diet in response to a preventive oral administration of L. reuteri BIO7251. This strain of bacteria exerts a beneficial effect on body weight gain by decreasing the subcutaneous adipose tissue mass. The treatment with L. reuteri BIO7251 decreases glucose absorption and food intake in obese/diabetic mice. L. reuteri BIO7251 could be tested as new probiotic strain that could manage body weight during obesity.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Brussels, NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, France/Belgium, Metabolism and Nutrition Research group, Louvain Drug Research Institute (LDRI), Brussels, Belgium
- WELBIO-Walloon Excellence in Life Sciences and Biotechnology (WELBIO) department, WEL Research Institute (WELRI), Brussels, Belgium
| | | | - Claude Knauf
- NeuroMicrobiota, International Research Program (IRP) INSERM/UCLouvain, INSERM U1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier, Toulouse III, CHU Purpan, Toulouse, France
| |
Collapse
|
12
|
Ren S, Zhang L, Tang X, Zhao Y, Cheng Q, Speakman JR, Zhang Y. Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167776. [PMID: 37848151 DOI: 10.1016/j.scitotenv.2023.167776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Most wild animals follow Bergmann's rule and grow in body size as cold stress increases. However, the underlying thermogenic strategies and their relationship with the gut microbiota have not been comprehensively elucidated. Herein, we used the plateau pikas as a model to investigate body mass, thermogenic capacity, host transcriptome, gut microbiota and metabolites collected from seven sites ranging from 3100 to 4700 m on the Qinghai-Tibetan Plateau (QTP) in summer and winter to test the seasonal thermogenesis strategy in small herbivorous mammals. The results showed that the increase in pika body mass with altitude followed Bergmann's rule in summer and an inverted parabolic shape was observed in winter. However, physiological parameters and transcriptome profiles indicated that the thermogenic capacity of pikas increased with altitude in summer and decreased with altitude in winter. The abundance of Firmicutes declined, whereas that of Bacteroidetes significantly increased with altitude in summer. Phenylalanine, tyrosine, and proline were enriched in summer, whereas carnitine and succinate were enriched in winter. Spearman's correlation analysis revealed significant positive correlations between Prevotella, Bacteroides, Ruminococcus, Alistipes and Akkermansia and metabolites of amino acids, pika physiological parameters, and transcriptome profiles. Moreover, metabolites of amino acids further showed significant positive correlations with pika physiological parameters and transcriptome profiles. Our study highlights that the changes in body mass and thermogenic capacity with altitude distinctly differentiate small herbivorous mammals between summer and winter on the QTP, and that the gut microbiota may regulate host thermogenesis through its metabolites.
Collapse
Affiliation(s)
- Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China.
| |
Collapse
|
13
|
Boopathy LK, Roy A, Gopal T, Kandy RRK, Arumugam MK. Potential molecular mechanisms of myrtenal against colon cancer: A systematic review. J Biochem Mol Toxicol 2024; 38:e23525. [PMID: 37665681 DOI: 10.1002/jbt.23525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Colon cancer is a serious health problem across the globe with various dietary lifestyle modifications. It arises as an inflammation mediated crypts in the colon epithelial cells and undergoes uncontrolled cell division and proliferation. Bacterial enzymes contribute to a major outbreak in colon cancer development upon the release of toxic metabolites from the gut microflora. Pathogen associated molecular patterns and damage associated molecular patterns triggers the NLPR3 inflammasome pathways that releases pro-inflammatory cytokines to induce cancer of the colon. Contributing to this, specific chemokines and receptor complexes attribute to cellular proliferation and metastasis. Bacterial enzymes synergistically attack the colon mucosa and degenerate the cellular integrity causing lysosomal discharge. These factors further instigate the Tol like receptors (TLRs) and Nod like receptors (NLRs) to promote angiogenesis and supply nutrients for the cancer cells. Myrtenal, a monoterpene, is gaining more importance in recent times and it is being widely utilized against many diseases such as cancers, neurodegenerative diseases and diabetes. Based on the research data's, the reviews focus on the anticancer property of myrtenal by emphasizing its therapeutic properties which downregulate the inflammasome pathways and other signalling pathways. Combination therapy is gaining more importance as they can target every variant in the cellular stress condition. Clinical studies with compounds like myrtenal of the monoterpenes family is provided with positive results which might open an effective anticancer drug therapy. This review highlights myrtenal and its biological potency as a cost effective drug for prevention and treatment of colon cancer.
Collapse
Affiliation(s)
- Lokesh Kumar Boopathy
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Thiyagarajan Gopal
- Centre for Laboratory Animal Technology and Research, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rakhee Rathnam Kalari Kandy
- Department of Biochemistry and Molecular Biology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Madan Kumar Arumugam
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Avtanski D, Stojchevski R. Significance of Adipose Tissue as an Endocrine Organ. CONTEMPORARY ENDOCRINOLOGY 2024:1-46. [DOI: 10.1007/978-3-031-72570-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Nowiński A, Chabowski D, Giebułtowicz J, Aleksandrowicz M, Ufnal M. Deoxycholic Acid, a Secondary Bile Acid, Increases Cardiac Output and Blood Pressure in Rats. Nutrients 2023; 16:32. [PMID: 38201862 PMCID: PMC10781055 DOI: 10.3390/nu16010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Deoxycholic acid (DCA) is a secondary bile acid produced by gut bacteria. Elevated serum concentrations of DCA are observed in cardiovascular disease (CVD). We hypothesized that DCA might influence hemodynamic parameters in rats. METHODS The concentration of DCA in systemic blood was measured with liquid chromatography coupled with mass spectrometry. Arterial blood pressure (BP), heart rate (HR) and echocardiographic parameters were evaluated in anesthetized, male, 3-4-month-old Sprague-Dawley rats administered intravenously (IV) or intracerebroventricularly (ICV) with investigated compounds. Mesenteric artery (MA) reactivity was tested ex vivo. RESULTS The baseline plasma concentration of DCA was 0.24 ± 0.03 mg/L. The oral antibiotic treatment produced a large decrease in the concentration. Administered IV, the compound increased BP and HR in a dose-dependent manner. DCA also increased heart contractility and cardiac output. None of the tested compounds-prazosin (an alpha-blocker), propranolol (beta-adrenolytic), atropine (muscarinic receptor antagonist), glibenclamide (K-ATP inhibitor) or DY 268 (FXR antagonist), glycyrrhetinic acid (11HSD2 inhibitor)-significantly diminished the DCA-induced pressor effect. ICV infusion did not exert significant HR or BP changes. DCA relaxed MAs. Systemic vascular resistance did not change significantly. CONCLUSIONS DCA elevates BP primarily by augmenting cardiac output. As a metabolite derived from gut bacteria, DCA potentially serves as a mediator in the interaction between the gut microbiota and the host's circulatory system.
Collapse
Affiliation(s)
- Artur Nowiński
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-106 Warsaw, Poland; (D.C.); (M.U.)
| | - Dawid Chabowski
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-106 Warsaw, Poland; (D.C.); (M.U.)
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| | - Marta Aleksandrowicz
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-106 Warsaw, Poland; (D.C.); (M.U.)
| |
Collapse
|
16
|
Morissette A, André DM, Agrinier AL, Varin TV, Pilon G, Flamand N, Houde VP, Marette A. The metabolic benefits of substituting sucrose for maple syrup are associated with a shift in carbohydrate digestion and gut microbiota composition in high-fat high-sucrose diet-fed mice. Am J Physiol Endocrinol Metab 2023; 325:E661-E671. [PMID: 37877794 DOI: 10.1152/ajpendo.00065.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023]
Abstract
Overconsumption of added sugars is now largely recognized as a major culprit in the global situation of obesity and metabolic disorders. Previous animal studies reported that maple syrup (MS) is less deleterious than refined sugars on glucose metabolism and hepatic health, but the mechanisms remain poorly studied. Beyond its content in sucrose, MS is a natural sweetener containing several bioactive compounds, such as polyphenols and inulin, which are potential gut microbiota modifiers. We aimed to investigate the impact of MS on metabolic health and gut microbiota in male C57Bl/6J mice fed a high-fat high-sucrose (HFHS + S) diet or an isocaloric HFHS diet in which a fraction (10% of the total caloric intake) of the sucrose was substituted by MS (HFHS + MS). Insulin and glucose tolerance tests were performed at 5 and 7 wk into the diet, respectively. The fecal microbiota was analyzed by whole-genome shotgun sequencing. Liver lipids and inflammation were determined, and hepatic gene expression was assessed by transcriptomic analysis. Maple syrup was less deleterious on insulin resistance and decreased liver steatosis compared with mice consuming sucrose. This could be explained by the decreased intestinal α-glucosidase activity, which is involved in carbohydrate digestion and absorption. Metagenomic shotgun sequencing analysis revealed that MS intake increased the abundance of Faecalibaculum rodentium, Romboutsia ilealis, and Lactobacillus johnsonii, which all possess gene clusters involved in carbohydrate metabolism, such as sucrose utilization and butyric acid production. Liver transcriptomic analyses revealed that the cytochrome P450 (Cyp450) epoxygenase pathway was differently modulated between HFHS + S- and HFHS + MS-fed mice. These results show that substituting sucrose for MS alleviated dysmetabolism in diet-induced obese mice, which were associated with decreased carbohydrate digestion and shifting gut microbiota.NEW & NOTEWORTHY The natural sweetener maple syrup has sparked much interest as an alternative to refined sugars. This study aimed to investigate whether the metabolic benefits of substituting sucrose with an equivalent dose of maple syrup could be linked to changes in gut microbiota composition and digestion of carbohydrates in obese mice. We demonstrated that maple syrup is less detrimental than sucrose on metabolic health and possesses a prebiotic-like activity through novel gut microbiota and liver mechanisms.
Collapse
Affiliation(s)
- Arianne Morissette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Diana Majolli André
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Anne-Laure Agrinier
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Thibault V Varin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
| | - Nicolas Flamand
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, Québec, Canada
| | - Vanessa P Houde
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Québec Heart and Lung Institute, Université Laval, Pavilion Marguerite d'Youville, Québec City, Québec, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec City, Québec, Canada
| |
Collapse
|
17
|
Freitas PLD, Barros MVC, Fróes RBL, França LM, Paes AMDA. Prebiotic effects of plant-derived (poly)phenols on host metabolism: Is there a role for short-chain fatty acids? Crit Rev Food Sci Nutr 2023; 63:12285-12293. [PMID: 35833476 DOI: 10.1080/10408398.2022.2100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota has been extensively investigated during the last decade because of its effects on host neuroendocrine pathways and other processes. The imbalance between beneficial and pathogenic bacteria, known as dysbiosis, may be a determining predisposing factor for many noncommunicable chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, and Alzheimer's disease. On the other hand, interventions aiming to reestablish the balance between microbiota components have been suggested as potential preventive therapeutic strategies against these disorders. Among these interventions, dietary supplementation with (poly)phenols has been highlighted due to the modulatory effects exerted by those compounds on the gut microbiota. In addition, (poly)phenol consumption is associated with increased production of short-chain fatty acids (SCFAs), a set of microbial metabolites whose actions are ascribed to improving the abovementioned metabolic disorders. Thus, this review discusses the modulation of the gut microbiota by prebiotic (poly)phenols based on in vivo studies performed with isolated (poly)phenolic compounds, their interaction with the gut microbiota and the production of SCFAs in pursuit of the molecular mechanisms underlying the health effects of (poly)phenols on host metabolism.
Collapse
Affiliation(s)
- Perla Lopes de Freitas
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Marcus Vinicius Câmara Barros
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Rômulo Brênno Lopes Fróes
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology (LeFisio), Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís, Brazil
| |
Collapse
|
18
|
Wu W, Chen Z, Han J, Qian L, Wang W, Lei J, Wang H. Endocrine, genetic, and microbiome nexus of obesity and potential role of postbiotics: a narrative review. Eat Weight Disord 2023; 28:84. [PMID: 37861729 PMCID: PMC10589153 DOI: 10.1007/s40519-023-01593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Zhengfang Chen
- Department of Endocrinology, Changshu First People's Hospital, Changshu, 215501, Jiangsu, People's Republic of China.
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Huaguan Wang
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Luo Y, Zeng Y, Peng J, Zhang K, Wang L, Feng T, Nhamdriel T, Fan G. Phytochemicals for the treatment of metabolic diseases: Evidence from clinical studies. Biomed Pharmacother 2023; 165:115274. [PMID: 37542856 DOI: 10.1016/j.biopha.2023.115274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
With the continuous improvement of people's living standard, the incidence of metabolic diseases is gradually increasing in recent years. There is growing interest in finding drugs to treat metabolic diseases from natural compounds due to their good efficacy and limited side effects. Over the past few decades, many phytochemicals derived from natural plants, such as berberine, curcumin, quercetin, resveratrol, rutin, and hesperidin, have been shown to have good pharmacological activity against metabolic diseases in preclinical studies. More importantly, clinical trials using these phytochemicals to treat metabolic diseases have been increasing. This review comprehensively summarizes the clinical progress of phytochemicals derived from natural plants in the treatment of several metabolic diseases, including type 2 diabetes mellitus (T2DM), obesity and non-alcoholic fatty liver disease (NAFLD). Accumulating clinical evidence shows that a total of 18 phytochemicals have good therapeutic effects on the three metabolic diseases by lowering blood glucose and lipid levels, reducing insulin resistance, enhancing insulin sensitivity, increasing energy expenditure, improving liver function, and relieving inflammation and oxidative stress. The information will help us better understand the medicinal value of these phytochemicals and promote their clinical application in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yuting Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yujiao Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tu Feng
- School of Ecological Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Tsedien Nhamdriel
- Department of Tibetan medicine, University of Tibetan Medicine, Lhasa 850000, China.
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, China.
| |
Collapse
|
20
|
Xiang H, Guo R, Liu L, Guo T, Huang Q. MSIF-LNP: microbial and human health association prediction based on matrix factorization noise reduction for similarity fusion and bidirectional linear neighborhood label propagation. Front Microbiol 2023; 14:1216811. [PMID: 37389340 PMCID: PMC10303805 DOI: 10.3389/fmicb.2023.1216811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Abstract
Studies have shown that microbes are closely related to human health. Clarifying the relationship between microbes and diseases that cause health problems can provide new solutions for the treatment, diagnosis, and prevention of diseases, and provide strong protection for human health. Currently, more and more similarity fusion methods are available to predict potential microbe-disease associations. However, existing methods have noise problems in the process of similarity fusion. To address this issue, we propose a method called MSIF-LNP that can efficiently and accurately identify potential connections between microbes and diseases, and thus clarify the relationship between microbes and human health. This method is based on matrix factorization denoising similarity fusion (MSIF) and bidirectional linear neighborhood propagation (LNP) techniques. First, we use non-linear iterative fusion to obtain a similarity network for microbes and diseases by fusing the initial microbe and disease similarities, and then reduce noise by using matrix factorization. Next, we use the initial microbe-disease association pairs as label information to perform linear neighborhood label propagation on the denoised similarity network of microbes and diseases. This enables us to obtain a score matrix for predicting microbe-disease relationships. We evaluate the predictive performance of MSIF-LNP and seven other advanced methods through 10-fold cross-validation, and the experimental results show that MSIF-LNP outperformed the other seven methods in terms of AUC. In addition, the analysis of Cystic fibrosis and Obesity cases further demonstrate the predictive ability of this method in practical applications.
Collapse
Affiliation(s)
- Hui Xiang
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Rong Guo
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| | - Li Liu
- College of Physical Education, Suzhou University, Suzhou, Anhui, China
| | - Tengjie Guo
- College of Physical Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Quan Huang
- College of Physical Education, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
21
|
Noor J, Chaudhry A, Batool S, Noor R, Fatima G. Exploring the Impact of the Gut Microbiome on Obesity and Weight Loss: A Review Article. Cureus 2023; 15:e40948. [PMID: 37503494 PMCID: PMC10368799 DOI: 10.7759/cureus.40948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
The global obesity pandemic has prompted efforts to search for novel intervention options, including maximizing the health benefits of certain gut microbes and their metabolic byproducts. Our increased understanding of gut microbiota can potentially lead to revolutionary advancements in weight management and general well-being. We studied the association between gut microbiota and obesity, as well as the possible benefits of probiotics, prebiotics, and synbiotics in the prevention and management of obesity in this review. We observed a relationship between the metabolism of nutrients, energy consumption, and gut flora. Numerous mechanisms, including the synthesis of short-chain fatty acids, hormone stimulation, and persistent low-grade inflammation, have been postulated to explain the role of gut bacteria in the etiology of obesity. It has been discovered that the diversity and composition of the intestinal microbiome vary in response to various forms of obesity therapy, which raises concerns about the potential impact of these changes on weight loss. According to research, probiotics, prebiotics, and synbiotics may alter the release of hormones, neurotransmitters, and inflammatory factors, thereby diminishing the stimuli of food consumption that lead to weight gain. More clinical research is required to determine the optimal probiotic, prebiotic, and synbiotic supplementation dosages, formulations, and regimens for long-term weight management and to determine how different gastrointestinal microbiome bacterial species may influence weight gain.
Collapse
Affiliation(s)
- Jawad Noor
- Internal Medicine, St. Dominic Hospital, Jackson, USA
| | | | - Saima Batool
- Pathology, Nishtar Medical University, Multan, PAK
| | - Riwad Noor
- Medicine/Public Health, Nishtar Hospital, Multan, PAK
| | - Ghulam Fatima
- Internal Medicine, Abbasi Shaheed Hospital, Karachi, PAK
| |
Collapse
|
22
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
23
|
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. J Transl Med 2023; 21:240. [PMID: 37009872 PMCID: PMC10068184 DOI: 10.1186/s12967-023-04088-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the main types of Noncommunicable diseases (NCDs), is a systemic inflammatory disease characterized by dysfunctional pancreatic β-cells and/or peripheral insulin resistance, resulting in impaired glucose and lipid metabolism. Genetic, metabolic, multiple lifestyle, and sociodemographic factors are known as related to high T2DM risk. Dietary lipids and lipid metabolism are significant metabolic modulators in T2DM and T2DM-related complications. Besides, accumulated evidence suggests that altered gut microbiota which plays an important role in the metabolic health of the host contributes significantly to T2DM involving impaired or improved glucose and lipid metabolism. At this point, dietary lipids may affect host physiology and health via interaction with the gut microbiota. Besides, increasing evidence in the literature suggests that lipidomics as novel parameters detected with holistic analytical techniques have important roles in the pathogenesis and progression of T2DM, through various mechanisms of action including gut-brain axis modulation. A better understanding of the roles of some nutrients and lipidomics in T2DM through gut microbiota interactions will help develop new strategies for the prevention and treatment of T2DM. However, this issue has not yet been entirely discussed in the literature. The present review provides up-to-date knowledge on the roles of dietary lipids and lipidomics in gut-brain axis in T2DM and some nutritional strategies in T2DM considering lipids- lipidomics and gut microbiota interactions are given.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey.
| | - Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, 05100, Amasya, Turkey
| | - Ozge Yesildemir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bursa Uludag University, 16059, Bursa, Turkey
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| | - Emine Kocyigit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ordu University, 52200, Ordu, Turkey
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| |
Collapse
|
24
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Cao S, Guo D, Yin H, Ding X, Bai S, Zeng Q, Liu J, Zhang K, Mao X, Wang J. Improvement in ovarian function following fecal microbiota transplantation from high-laying rate breeders. Poult Sci 2022; 102:102467. [PMID: 36682132 PMCID: PMC9876952 DOI: 10.1016/j.psj.2022.102467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The underlying mechanism between the gut microbiota and reproductive function is not yet well-known. This study was conducted to investigate the effect of the administration of fecal microbiota transplantation (FMT) from highly laying rate donors on the cecal microbiota, intestinal health and ovarian function in broiler breeders. A total of 60 broiler breeders (53 wk of age) were selected by their laying rate [high (HP, 90.67 ± 0.69%; n = 10) and low (LP, 70.23 ± 0.87%; n = 20)]. The LP breeders were then be transplanted with fecal microbiota from HP hens (FMTHP; n = 10) or the same dosage of PBS (FMTCON; n = 10) for 28 d. The results revealed that FMT from HP donors increased egg-laying rate and serum hormone levels [17β-estradiol (E2), anti-Müller hormone], also decreased proinflammatory cytokine levels (interleukin-6, interleukin-8, tumor necrosis factor-α) of LP breeders (P < 0.05). The FMTHP group breeders had higher villus height, villus height/crypt depth ratio, and upregulated mRNA expression of jejunum barrier-related gene (ZO-2 and mucin-2) and estrogen, follicle-stimulating hormone (FSH) and anti-Müller hormone (AMH) receptor genes (ESR1, ESR2, FSHR, AMHR) (P < 0.05) than FMTCON group. FMT from HP donors led to higher mRNA expression of Bcl2 and sirtuin1 (SIRT1), while it downregulated the proapoptotic genes (Bax, caspase-3, caspase-8, and caspase-9) mRNA expressions in ovary compared with the FMTCON breeders (P < 0.05), and this pattern was also observed in HP donors. Also, HP breeder had higher observed_species and alpha-diversity indexes (Chao1 and ACE) than FMTCON group, while FMTHP can increase observed_species and alpha-diversity indexes (Chao1 and ACE) than FMTCON group (P < 0.05). The bacteria enrichment of Firmicutes (phylum), Bacteroidetes (phylum), Lactobacillus (genus), Enterococcus (genus), and Bacteroides (genus) were increased by FMTHP treatment. The genera Butyricicoccus, Enterococcus, and Lactobacillus were positively correlated with egg-laying rate. Therefore, cecal microbiomes of breeders with high egg-laying performance have more diverse activities, which may be related to the metabolism and health of the host; and FMT from high-yield donors can increase the hormone secretion, intestinal health, and ovarian function to improve egg-laying performance and the SIRT1-related apoptosis and cytokine signaling pathway were involved in this process.
Collapse
Affiliation(s)
- Shanchuan Cao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China,School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China,Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| | - Dan Guo
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huadong Yin
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Keying Zhang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangbing Mao
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
26
|
Jian Z, Zeng L, Xu T, Sun S, Yan S, Zhao S, Su Z, Ge C, Zhang Y, Jia J, Dou T. The intestinal microbiome associated with lipid metabolism and obesity in humans and animals. J Appl Microbiol 2022; 133:2915-2930. [PMID: 35882518 DOI: 10.1111/jam.15740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 01/07/2023]
Abstract
Intestinal microbiota is considered to play an integral role in maintaining health of host by modulating several physiological functions including nutrition, metabolism and immunity. Accumulated data from human and animal studies indicate that intestinal microbes can affect lipid metabolism in host through various direct and indirect biological mechanisms. These mechanisms include the production of various signalling molecules by the intestinal microbiome, which exert a strong effect on lipid metabolism, bile secretion in the liver, reverse transport of cholesterol and energy expenditure and insulin sensitivity in peripheral tissues. This review discusses the findings of recent studies suggesting an emerging role of intestinal microbiota and its metabolites in regulating lipid metabolism and the association of intestinal microbiota with obesity. Additionally, we discuss the controversies and challenges in this research area. However, intestinal micro-organisms are also affected by some external factors, which in turn influence the regulation of microbial lipid metabolism. Therefore, we also discuss the effects of probiotics, prebiotics, diet structure, exercise and other factors on intestinal microbiological changes and lipid metabolism regulation.
Collapse
Affiliation(s)
- Zonghui Jian
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Li Zeng
- The Chenggong Department, Kunming Medical University Affiliated Stomatological Hospital, Kunming, People's Republic of China.,Yunnan Key Laboratory of Stomatology, Kunming, People's Republic of China
| | - Taojie Xu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Shuai Sun
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Shixiong Yan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Changrong Ge
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Yunmei Zhang
- Department of Cardiovascular, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Junjing Jia
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Tengfei Dou
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|
27
|
Abudujilile D, Wang W, Aimaier A, Chang L, Dong Y, Wang Y, Fan X, Ma Y, Wang Y, Ziyayiding D, Ma Y, Lv J, Li J. Cistanche tubulosa phenylethanoid glycosides suppressed adipogenesis in 3T3-L1 adipocytes and improved obesity and insulin resistance in high-fat diet induced obese mice. BMC Complement Med Ther 2022; 22:270. [PMID: 36229811 PMCID: PMC9564091 DOI: 10.1186/s12906-022-03743-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cistanche tubulosa is an editable and medicinal traditional Chinese herb and phenylethanoid glycosides are its major components, which have shown various beneficial effects such as anti-tumor, anti-oxidant and neuroprotective activities. However, the anti-obesity effect of C. tubulosa phenylethanoid glycosides (CTPG) and their regulatory effect on gut microbiota are still unclear. In the present study, we investigated its anti-obesity effect and regulatory effect on gut microbiota by 3T3-L1 cell model and obesity mouse model. Methods 3T3-L1 adipocytes were used to evaluate CTPG effects on adipogenesis and lipids accumulation. Insulin resistant 3T3-L1 cells were induced and used to measure CTPG effects on glucose consumption and insulin sensitivity. High-fat diet (HFD)-induced C57BL/6 obese mice were used to investigate CTPG effects on fat deposition, glucose and lipid metabolism, insulin resistance and intestinal microorganism. Results In vitro data showed that CTPG significantly decreased the triglyceride (TG) and non-esterified fatty acid (NEFA) contents of the differentiated 3T3-L1 adipocytes in a concentration-dependent manner without cytotoxicity, and high concentration (100 µg/ml) of CTPG treatment dramatically suppressed the level of monocyte chemoattractant protein-1 (MCP-1) in 3T3-L1 mature adipocytes. Meanwhile, CTPG increased glucose consumption and decreased NEFA level in insulin resistant 3T3-L1 cells. We further found that CTPG protected mice from the development of obesity by inhibiting the expansion of adipose tissue and adipocyte hypertrophy, and improved hepatic steatosis by activating AMPKα to reduce hepatic fat accumulation. CTPG ameliorated HFD-induced hyperinsulinemia, hyperglycemia, inflammation and insulin resistance by activating IRS1/Akt/GLUT4 insulin signaling pathway in white adipose tissue. Moreover, gut microbiota structure and metabolic functions in HFD-induced obese mice was changed by CTPG, especially short chain fatty acids-producing bacteria including Blautia, Roseburia, Butyrivibrio and Bacteriodes were significantly increased by CTPG treatment. Conclusions CTPG effectively suppressed adipogenesis and lipid accumulation in 3T3-L1 adipocytes and ameliorated HFD-induced obesity and insulin resistance through activating AMPKα and IRS1/AKT/GLUT4 signaling pathway and regulating the composition and metabolic functions of gut microbiota. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03743-6.
Collapse
Affiliation(s)
- Dilinazi Abudujilile
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Weilan Wang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Alimu Aimaier
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Lili Chang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yuliang Dong
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yiye Wang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Xu Fan
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yu Ma
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yongli Wang
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Dilinigeer Ziyayiding
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Yuan Ma
- grid.413254.50000 0000 9544 7024College of Resource and Environment Sciences, Xinjiang University, Urumqi, 830017 China
| | - Jie Lv
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| | - Jinyao Li
- grid.413254.50000 0000 9544 7024Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017 China
| |
Collapse
|
28
|
Defeudis G, Rossini M, Khazrai YM, Pipicelli AMV, Brucoli G, Veneziano M, Strollo F, Bellia A, Bitterman O, Lauro D, Mora D, Santarelli E. The gut microbiome as possible mediator of the beneficial effects of very low calorie ketogenic diet on type 2 diabetes and obesity: a narrative review. Eat Weight Disord 2022; 27:2339-2346. [PMID: 35773554 DOI: 10.1007/s40519-022-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/11/2022] [Indexed: 10/17/2022] Open
Abstract
Several studies have shown a strong correlation between the different types of diets and gut microbiota composition on glycemia and weight loss. In this direction, low-carbohydrate and ketogenic diets have gained popularity, despite studies published so far leading to controversial results on subjects with diabetes. In this narrative review, firstly, we aimed to analyze the role of very-low-calorie ketogenic diets (VLCKDs) in type 2 diabetes (T2DM) and obesity management. Secondly, in this context, we focused attention on gut microbiota as a function of VLCKD, particularly in T2DM and obesity treatment. Finally, we reported all this evidence to underline the importance of gut microbiota to exalt new nutritional strategies for "tailor-made" management, treatment, and rehabilitation in subjects with T2DM and obesity, even with diabetic complications. In conclusion, this narrative review outlined the beneficial impact of VLCKD on gut microbiota even in subjects with T2DM and obesity, and, despite inner VLCKD short-duration feature allowing no sound-enough provisions for long-term outcomes, witnessed in favor of the short-term safety of VLCKD in those patients.Level of evidence Level V: Opinions of authorities, based on descriptive studies, narrative reviews, clinical experience, or reports of expert committees.
Collapse
Affiliation(s)
- G Defeudis
- Unit of Endocrinology and Diabetes, Department of Medicine, University Campus Bio-Medico di Roma, Rome, Italy.
| | - M Rossini
- Diet and Diabetes Unit, ASL RM1, Rome, Italy
| | - Y M Khazrai
- Unit of Food Science and Nutrition, Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico di Roma, Rome, Italy
| | - A M V Pipicelli
- UOC di Nefrologia, Dialisi e Trapianto, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - G Brucoli
- Diet and Diabetes Unit, ASL RM1, Rome, Italy
| | - M Veneziano
- Diet and Diabetes Unit, ASL RM1, Rome, Italy
| | - F Strollo
- Endocrinology and Diabetes Unit, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Bi D, Yang X, Yao L, Hu Z, Li H, Xu X, Lu J. Potential Food and Nutraceutical Applications of Alginate: A Review. Mar Drugs 2022; 20:md20090564. [PMID: 36135753 PMCID: PMC9502916 DOI: 10.3390/md20090564] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Alginate is an acidic polysaccharide mainly extracted from kelp or sargassum, which comprises 40% of the dry weight of algae. It is a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages, possessing various applications in the food and nutraceutical industries due to its unique physicochemical properties and health benefits. Additionally, alginate is able to form a gel matrix in the presence of Ca2+ ions. Alginate properties also affect its gelation, including its structure and experimental conditions such as pH, temperature, crosslinker concentration, residence time and ionic strength. These features of this polysaccharide have been widely used in the food industry, including in food gels, controlled-release systems and film packaging. This review comprehensively covers the analysis of alginate and discussed the potential applications of alginate in the food industry and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Hui Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Correspondence: (X.X.); (J.L.); Tel.: +86-755-86532680 (X.X.); +64-9-9219999 (ext. 7381) (J.L.)
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1142, New Zealand
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- Correspondence: (X.X.); (J.L.); Tel.: +86-755-86532680 (X.X.); +64-9-9219999 (ext. 7381) (J.L.)
| |
Collapse
|
30
|
Abstract
The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
31
|
de Freitas PL, Miranda JPN, França LM, Paes AMDA. Plant-Derived (Poly)phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota. Nutrients 2022; 14:nu14173510. [PMID: 36079768 PMCID: PMC9460414 DOI: 10.3390/nu14173510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-derived (poly)phenolic compounds have been undoubtedly shown to promote endocrine homeostasis through the improvement of diverse metabolic outcomes. Amongst diverse potential mechanisms, the prebiotic modulatory effects exerted by these compounds on the gut microbiota have supported their nutraceutical application in both experimental and clinical approaches. However, the comprehension of the microbiota modulatory patterns observed upon (poly)phenol-based dietary interventions is still in its infancy, which makes the standardization of the metabolic outcomes in response to a given (poly)phenol a herculean task. Thus, this narrative review sought to gather up-to-date information on the relationship among (poly)phenols intake, their modulatory effect on the gut microbiota diversity, and consequent metabolic outcomes as a supportive tool for the future design of experimental approaches and even clinical trials.
Collapse
Affiliation(s)
- Perla Lopes de Freitas
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - João Paulo Nascimento Miranda
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Lucas Martins França
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
| | - Antonio Marcus de Andrade Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Health Sciences Graduate Program, Biological and Health Sciences Center, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Correspondence:
| |
Collapse
|
32
|
Ben Fradj S, Nédélec E, Salvi J, Fouesnard M, Huillet M, Pallot G, Cansell C, Sanchez C, Philippe C, Gigot V, Lemoine A, Trompier D, Henry T, Petrilli V, Py BF, Guillou H, Loiseau N, Ellero-Simatos S, Nahon JL, Rovère C, Grober J, Boudry G, Douard V, Benani A. Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1? Antioxid Redox Signal 2022; 37:349-369. [PMID: 35166124 DOI: 10.1089/ars.2021.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Although prebiotics, probiotics, and fecal transplantation can alter the sensation of hunger and/or feeding behavior, the role of the constitutive gut microbiota in the short-term regulation of food intake during normal physiology is still unclear. Results: An antibiotic-induced microbiota depletion study was designed to compare feeding behavior in conventional and microbiota-depleted mice. Tissues were sampled to characterize the time profile of microbiota-derived signals in mice during consumption of either standard or high-fat food for 1 h. Pharmacological and genetic tools were used to evaluate the contribution of postprandial endotoxemia and inflammatory responses in the short-term regulation of food intake. We observed constitutive microbial and macronutrient-dependent control of food intake at the time scale of a meal; that is, within 1 h of food introduction. Specifically, microbiota depletion increased food intake, and the microbiota-derived anorectic effect became significant during the consumption of high-fat but not standard food. This anorectic effect correlated with a specific postprandial microbial metabolic signature, and did not require postprandial endotoxemia or an NOD-, LRR-, and Pyrin domain-containing protein 3-inflammasome-mediated inflammatory response. Innovation and Conclusion: These findings show that the gut microbiota controls host appetite at the time scale of a meal under normal physiology. Interestingly, a microbiota-derived anorectic effect develops specifically with a high-fat meal, indicating that gut microbiota activity is involved in the satietogenic properties of foods. Antioxid. Redox Signal. 37, 349-369.
Collapse
Affiliation(s)
- Selma Ben Fradj
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Emmanuelle Nédélec
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Juliette Salvi
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Mélanie Fouesnard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Gaëtan Pallot
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Céline Cansell
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Clara Sanchez
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Catherine Philippe
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vincent Gigot
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Aleth Lemoine
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Doriane Trompier
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Virginie Petrilli
- Centre de Recherche en Cancérologie de Lyon, Inserm (U1052), CNRS (UMR5286), Université de Lyon 1, Lyon, France
| | - Benedicte F Py
- CIRI, Centre International de Recherche en Infectiologie, Inserm (U1111), CNRS (UMR5308), ENS de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse 3, INRAE (UMR1331), ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Nahon
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Carole Rovère
- IPMC, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS (UMR7275), Université Côte d'Azur, Valbonne, France
| | - Jacques Grober
- Centre de Recherche Lipides, Nutrition, Cancer, INSERM (UMR1231), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE (UMR1341), INSERM (UMR1241), Université de Rennes 1, St-Gilles, France
| | - Véronique Douard
- Institut Micalis, INRAE (UMR1319), AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Benani
- CSGA, Centre des Sciences du Goût et de l'Alimentation, CNRS (UMR6265), INRAE (UMR1324), Institut Agro Dijon, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
33
|
Effects of Probiotic Supplementation during Pregnancy on the Future Maternal Risk of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23158253. [PMID: 35897822 PMCID: PMC9330652 DOI: 10.3390/ijms23158253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics are live microorganisms that induce health benefits in the host. Taking probiotics is generally safe and well tolerated by pregnant women and their children. Consumption of probiotics can result in both prophylactic and therapeutic effects. In healthy adult humans, the gut microbiome is stable at the level of the dominant taxa: Bacteroidetes, Firmicutes and Actinobacteria, and has a higher presence of Verrucomicrobia. During pregnancy, an increase in the number of Proteobacteria and Actinobacteria phyla and a decrease in the beneficial species Roseburia intestinalis and Faecalibacterium prausnitzii are observed. Pregnancy is a "window" to the mother's future health. The aim of this paper is to review studies assessing the potentially beneficial effects of probiotics in preventing the development of diseases that appear during pregnancy, which are currently considered as risk factors for the development of metabolic syndrome, and consequently, reducing the risk of developing maternal metabolic syndrome in the future. The use of probiotics in gestational diabetes mellitus, preeclampsia and excessive gestational weight gain is reviewed. Probiotics are a relatively new intervention that can prevent the development of these disorders during pregnancy, and thus, would reduce the risk of metabolic syndrome resulting from these disorders in the mother's future.
Collapse
|
34
|
Little RB, Murillo AL, Van Der Pol WJ, Lefkowitz EJ, Morrow CD, Yi N, Carson TL. Diet Quality and the Gut Microbiota in Women Living in Alabama. Am J Prev Med 2022; 63:S37-S46. [PMID: 35725139 PMCID: PMC9219556 DOI: 10.1016/j.amepre.2022.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The gut microbiota is associated with obesity and modulated by individual dietary components. However, the relationships between diet quality and the gut microbiota and their potential interactions with weight status in diverse populations are not well understood. This study examined the associations between overall diet quality, weight status, and the gut microbiota in a racially balanced sample of adult females. METHODS Female participants (N=71) residing in Birmingham, Alabama provided demographics, anthropometrics, biospecimens, and dietary data in this observational study from March 2014 to August 2014, and data analysis was conducted from August 2017 to March 2019. Weight status was defined as a BMI (weight [kg]/height [m2]) <30 kg/m2 for non-obese participants and ≥30 kg/m2 for participants who were obese. Dietary data collected included an Automated Self-Administered 24-Hour recall and Healthy Eating Index-2010 (HEI-2010) score. Diet quality was defined as having a high HEI score (≥median) or a low HEI score (<median). The fecal microbiota was collected, and the 16S ribosomal RNA gene was amplified to profile the microbiota composition. Differences in diet quality based on weight status were assessed using 2-sample t-tests. The associations between diet quality, gut microbiota, and weight status were analyzed using negative binomial models. RESULTS Participants (43 Black, 28 White) aged 40.39±13.86 years who were non-obese (56%) and obese (44%) were studied. Greater alpha diversity was observed among those with higher Healthy Eating Index scores (p=0.037) but did not differ by weight status. Higher abundances of Bacteroidetes (p=0.006) and Firmicutes (p=0.042) were associated with a higher HEI score. Higher Bacteriodetes levels were observed among non-obese (p=0.006). CONCLUSIONS Diet quality measured by the HEI was associated with alpha diversity of the gut microbiota among adult females. Abundances of phyla that have been linked with weight status (Bacteroidetes and Firmicutes) were positively associated with diet quality.
Collapse
Affiliation(s)
- Rebecca B Little
- Division of Preventive Medicine, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Anarina L Murillo
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Pediatrics, Warren Alpert Medical School, Brown University, Providence, Rhode Island; Center for Statistical Sciences, School of Public Health, Brown University, Providence, Rhode Island.
| | - William J Van Der Pol
- Biomedical Informatics, UAB Center for Clinical and Translational Science, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Elliot J Lefkowitz
- Biomedical Informatics, UAB Center for Clinical and Translational Science, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Microbiology, School of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Nengjun Yi
- Department of Biostatistics, School of Public Health, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Tiffany L Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
35
|
Renu S, Deblais L, Patil V, Schrock J, Kathayat D, Srivastava V, Feliciano-Ruiz N, Han Y, Ramesh A, Lakshmanappa YS, Ghimire S, Dhakal S, Rajashekara G, Renukaradhya GJ. Gut Microbiota of Obese Children Influences Inflammatory Mucosal Immune Pathways in the Respiratory Tract to Influenza Virus Infection: Optimization of an Ideal Duration of Microbial Colonization in a Gnotobiotic Pig Model. Microbiol Spectr 2022; 10:e0267421. [PMID: 35579462 PMCID: PMC9241774 DOI: 10.1128/spectrum.02674-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
The impact of obesity on the human microbiota, immune maturation, and influenza virus infection has not been yet established in natural host animal models of influenza. In this study, gnotobiotic (Gn) pigs were colonized with human fecal microbiota (HFM) of obese (oHFM) or healthy lean (hHFM) children and infected at different periods (2-, 3-, and 5-weeks post-transplantation) using a zoonotic influenza virus strain. The infected oHFM pigs were characterized by lower levels of Firmicutes (Lactococcus, Lactobacillus, Turicibacter, and Streptococcus) and Actinobacteria (Bifidobacterium), which was associated with higher levels of Proteobacteria (Klebsiella), Bacteroidetes, and Verrucomicrobia (Akkermansia) compared with the infected hHFM group (P < 0.01). Furthermore, these genera significantly correlated with the expression of immune effectors, immune regulators, and inflammatory mediators, and displayed opposite trends between oHFM and hHFM groups (P < 0.01). The lymphoid and myeloid immune cell frequencies were differently modulated by the oHFM and hHFM colonization, especially apparent in the 5-weeks HFM colonized piglets. In addition, oHFM group had higher pro-inflammatory cytokines (IL-6, IL-12, TNF-α, and IFNγ) gene expression in the respiratory tract compared with the hHFM colonized pigs was detected. In conclusion, pigs colonized for longer duration, established oHFM increased the immune maturation favoring the activation of inflammatory mediators, however, the influenza virus load remained comparable with the hHFM group. Further, a longer duration of microbial colonization (5 weeks) may be required to reveal the impact of microbiome on the host immune maturation and susceptibility to influenza virus infection in the humanized Gn pig model. IMPORTANCE The diversity of gut microbiome of obese people differs markedly from that of lean healthy individuals which, in turn, influences the severity of inflammatory diseases because of differential maturation of immune system. The mouse model provides crucial insights into the mechanism(s) regulating the immune systems mediated by the gut microbiota but its applicability to humans is questionable because immune cells in mice are poorly activated in microbiota humanized mice. Several important strains of Bifidobacterium, Lactobacillus, and Clostridium fails to colonize the murine gut. Thus, understanding the role of certain important commensal gut bacterial species influences upon health and disease, a suitable large animal model like pig that supports the growth and colonization of most of the important human gut bacteria and possess comparable immunology and physiology to humans is beneficial to improve health.
Collapse
Affiliation(s)
- Sankar Renu
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Loic Deblais
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Veerupaxagouda Patil
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Jennifer Schrock
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Dipak Kathayat
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Vishal Srivastava
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Ninoshkaly Feliciano-Ruiz
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Yi Han
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Anikethana Ramesh
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Yashavanth S. Lakshmanappa
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Shristi Ghimire
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Santosh Dhakal
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, Ohio, USA
| |
Collapse
|
36
|
Shahid A, Inam‐Ur‐Raheem M, Iahtisham‐Ul‐Haq , Nawaz MY, Rashid MH, Oz F, Proestos C, Aadil RM. Diet and lifestyle modifications: An update on non‐pharmacological approach in the management of osteoarthritis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Arashi Shahid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Muhammad Inam‐Ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Iahtisham‐Ul‐Haq
- Kauser Abdulla Malik School of Life Sciences Forman Christian College (A Chartered University) Punjab Pakistan
| | - Muhammad Yasir Nawaz
- Department of Pathology Faculty of Veterinary Science, University of Agriculture Faisalabad Faisalabad Pakistan
| | - Muhammad Hamdan Rashid
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture Ataturk University Erzurum Turkey
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry National and Kapodistrian University of Athens Zografou Athens Greece
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
37
|
Babenko AY. Metformin in prediabetes: key mechanisms for the prevention of diabetes and cardiometabolic risks. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2022:96-103. [DOI: 10.21518/2079-701x-2022-16-10-96-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Today, prediabetes is regarded by the world medical community as early diabetes mellitus. The accumulated research evidence shows that prediabetes is characterized by a spectrum of complications that are similar to those of diabetes mellitus, which means that the deterioration of cardiovascular prognosis starts already at the stage of prediabetes. In the current timeframe, metformin is actually the only drug that is widely prescribed for the treatment of prediabetes to prevent type 2 diabetes mellitus and cardiovascular diseases associated with insulin resistance and hyperinsulinemia. Meanwhile, metabolically unhealthy obesity characterized by hyperinsulinemia and insulin resistance is associated with a significantly unfavourable course of prediabetes, as well as the highest risk of developing both type 2 diabetes mellitus and cardiovascular diseases, development/ progression of chronic kidney disease. The theme of this review is the priority of metformin for the management of the most prognostically unfavourable phenotypes of prediabetes. The review is also devoted to the description of the most significant mechanisms that provide effects of metformin underlying the management of key disorders that determine the unfavourable prognosis of prediabetes. In particular, it sets forth the role of unhealthy nutrition, its effects on the development of imbalance of the composition of gut microbiota, which, in turn, entails a cascade of metabolic disorders underlying the development of metabolic ill health. The review sets forth the key role of metformin as a drug that protects against the development of these disorders. The information presented in this review will be useful to personalize the choice of both the scope and nature of interventions in patients with different phenotypic characteristics.
Collapse
|
38
|
Thomas MS, Blesso CN, Calle MC, Chun OK, Puglisi M, Fernandez ML. Dietary Influences on Gut Microbiota with a Focus on Metabolic Syndrome. Metab Syndr Relat Disord 2022; 20:429-439. [PMID: 35704900 DOI: 10.1089/met.2021.0131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is a clear correlation between gut microbiota, diet, and metabolic outcomes. A diet high in fiber has been shown to decrease inflammation, increase insulin sensitivity, and reduce dyslipidemias whereas a diet high in fat and sugar leads to dyslipidemia, insulin resistance, and low-grade inflammation. There is recent evidence suggesting that the human gut microbiota has a significant role in the development or the resolution of metabolic syndrome (MetS) and associated conditions. Leading a stressful, sedentary lifestyle with limited or no physical activity and consuming an unhealthy diet high in saturated fat, simple carbohydrates, and sodium and low in dietary fiber and in high-quality protein are some of the contributing factors. Unhealthy diets have been shown to induce alterations in the gut microbiota and contribute to the pathogenesis of MetS by altering microbiota composition and disrupting the intestinal barrier, which leads to low-grade systemic inflammation. In contrast, healthy diets can lead to changes in microbiota that increase gut barrier function and increase the production of anti-inflammatory biomarkers. This review aims at providing a more in-depth discussion of diet-induced dysbiosis of the gut microbiota and its effect on MetS. Here, we discuss the possible mechanisms involved in the development of the metabolic biomarkers that define MetS, with an emphasis on the role of sugar and dietary fiber in microbiome-mediated changes in low-grade systemic inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Minu S Thomas
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Mariana C Calle
- Health Sciences Department ST 110-M, Worcester University, Worcester, Massachusetts, USA
| | - Ock K Chun
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Michael Puglisi
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
39
|
Segura Munoz RR, Mantz S, Martínez I, Li F, Schmaltz RJ, Pudlo NA, Urs K, Martens EC, Walter J, Ramer-Tait AE. Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes. THE ISME JOURNAL 2022; 16:1594-1604. [PMID: 35210551 PMCID: PMC9122919 DOI: 10.1038/s41396-022-01208-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 12/03/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023]
Abstract
It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their composition. Through experiments in gnotobiotic mice with complex microbiomes, we demonstrated that strains of Akkermansia muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of these species. Strains of A. muciniphila showed strict competitive exclusion, while B. vulgatus strains coexisted but populations were still influenced by competitive interactions. These differences in competitive behavior were reflective of genomic variation within the two species, indicating considerable niche overlap for A. muciniphila strains and a broader niche space for B. vulgatus strains. Priority effects were detected for both species as strains’ competitive fitness increased when colonizing first, which resulted in stable persistence of the A. muciniphila strain colonizing first and competitive exclusion of the strain arriving second. Based on these observations, we devised a subtractive strategy for A. muciniphila using antibiotics and showed that a strain from an assembled community can be stably replaced by another strain. By demonstrating that competitive outcomes in gut ecosystems depend on niche differences and are historically contingent, our study provides novel information to explain the ecological characteristics of gut microbiomes and a basis for their modulation.
Collapse
Affiliation(s)
- Rafael R Segura Munoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sara Mantz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ines Martínez
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Robert J Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Nicholas A Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Karthik Urs
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, Canada. .,APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland.
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA. .,Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
40
|
Vetrani C, Di Nisio A, Paschou SA, Barrea L, Muscogiuri G, Graziadio C, Savastano S, Colao A. From Gut Microbiota through Low-Grade Inflammation to Obesity: Key Players and Potential Targets. Nutrients 2022; 14:2103. [PMID: 35631244 PMCID: PMC9145366 DOI: 10.3390/nu14102103] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
During the last decades, the gut microbiota has gained much interest in relation to human health. Mounting evidence has shown a strict association between gut microbiota and obesity and its related diseases. Inflammation has been appointed as the driving force behind this association. Therefore, a better understanding of the mechanisms by which gut microbiota might influence inflammation in the host could pave for the identification of effective strategies to reduce inflammation-related diseases, such as obesity and obesity-related diseases. For this purpose, we carried out an extensive literature search for studies published in the English language during the last 10 years. Most relevant studies were used to provide a comprehensive view of all aspects related to the association of gut microbiota and low-grade inflammation with obesity. Accordingly, this narrative review reports the evidence on the key players supporting the role of gut microbiota in the modulation of inflammation in relation to obesity and its complications. Moreover, therapeutic approaches to reduce microbiota-related inflammation are discussed to provide potential targets for future research.
Collapse
Affiliation(s)
- Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
| | - Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, 35128 Padova, Italy;
| | - Stavroula A. Paschou
- Endocrine Unit and Diabetes Centre, Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, 80143 Napoli, Italy;
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
| | - Chiara Graziadio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, 80131 Naples, Italy; (C.V.); (C.G.); (S.S.); (A.C.)
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
| | | |
Collapse
|
41
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
42
|
Inczefi O, Bacsur P, Resál T, Keresztes C, Molnár T. The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Front Nutr 2022; 9:718710. [PMID: 35548572 PMCID: PMC9082752 DOI: 10.3389/fnut.2022.718710] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The leakage of the intestinal barrier and the disruption of the gut microbiome are increasingly recognized as key factors in different pathophysiological conditions, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), chronic liver diseases, obesity, diabetes mellitus, types of cancer, and neuropsychiatric disorders. In this study, the mechanisms leading to dysbiosis and "leaky gut" are reviewed, and a short summary of the current knowledge regarding different diseases is provided. The simplest way to restore intestinal permeability and the microbiota could be ideal nutrition. Further therapeutic options are also available, such as the administration of probiotics or postbiotics or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Orsolya Inczefi
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Péter Bacsur
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Resál
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csilla Keresztes
- Department for Medical Communication and Translation Studies, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Molnár
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary,*Correspondence: Tamás Molnár,
| |
Collapse
|
43
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
44
|
Liu M, Shi Y, Wu K, Xie W, Ser HL, Jiang Q, Wu L. From Mouth to Brain: Distinct Supragingival Plaque Microbiota Composition in Cerebral Palsy Children With Caries. Front Cell Infect Microbiol 2022; 12:814473. [PMID: 35480234 PMCID: PMC9037539 DOI: 10.3389/fcimb.2022.814473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Children with cerebral palsy (CP) present a higher prevalence and severity of caries. Although researchers have studied multiple risk factors for caries in CP, the role of microorganisms in caries remains one of the critical factors worth exploring. In order to explore the differences in the supragingival plaque microbiota (SPM), supragingival plaque samples were collected from 55 CP children and 23 non-CP children for 16S rRNA sequencing. Distinct SPM composition was found between CP children with severe caries (CPCS) and non-CP children with severe caries (NCPCS). Further subanalysis was also done to identify if there were any differences in SPM among CP children with different degrees of caries, namely, caries-free (CPCF), mild to moderate caries (CPCM), and severe caries (CPCS). After selecting the top 15 most abundant species in all groups, we found that CPCS was significantly enriched for Fusobacterium nucleatum, Prevotella intermedia, Campylobacter rectus, Porphyromonas endodontalis, Catonella morbi, Alloprevotella tannerae, Parvimonas micra, Streptobacillus moniliformis, and Porphyromonas canoris compared to NCPCS. By comparing CPCF, CPCM, and CPCS, we found that the core caries-associated microbiota in CP children included Prevotella, Alloprevotella, Actinomyces, Catonella, and Streptobacillus, while Capnocytophaga and Campylobacter were dental health-associated microbiota in CP children. Alpha diversity analysis showed no significant difference between NCPCS and CPCS, but the latter had a much simpler core correlation network than that of NCPCS. Among CP children, CPCM and CPCF displayed lower bacterial diversity and simpler correlation networks than those of CPCS. In summary, the study showed the specific SPM characteristics of CPCS compared to NCPCS and revealed the core SPM in CP children with different severities of caries (CPCF, CPCM, and CPCS) and their correlation network. Hopefully, the study would shed light on better caries prevention and therapies for CP children. Findings from the current study offer exciting insights that warrant larger cohort studies inclusive of saliva and feces samples to investigate the potential pathogenic role of oral microbiota through the oral-gut-brain axis in CP children with caries.
Collapse
Affiliation(s)
- Mingxiao Liu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Yuhan Shi
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Kaibin Wu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Wei Xie
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Hooi-Leng Ser
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Lihong Wu
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
- Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| |
Collapse
|
45
|
The Influence of Gut Dysbiosis in the Pathogenesis and Management of Ischemic Stroke. Cells 2022; 11:cells11071239. [PMID: 35406804 PMCID: PMC8997586 DOI: 10.3390/cells11071239] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Recent research on the gut microbiome has revealed the influence of gut microbiota (GM) on ischemic stroke pathogenesis and treatment outcomes. Alterations in the diversity, abundance, and functions of the gut microbiome, termed gut dysbiosis, results in dysregulated gut–brain signaling, which induces intestinal barrier changes, endotoxemia, systemic inflammation, and infection, affecting post-stroke outcomes. Gut–brain interactions are bidirectional, and the signals from the gut to the brain are mediated by microbially derived metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs); bacterial components, such as lipopolysaccharide (LPS); immune cells, such as T helper cells; and bacterial translocation via hormonal, immune, and neural pathways. Ischemic stroke affects gut microbial composition via neural and hypothalamic–pituitary–adrenal (HPA) pathways, which can contribute to post-stroke outcomes. Experimental and clinical studies have demonstrated that the restoration of the gut microbiome usually improves stroke treatment outcomes by regulating metabolic, immune, and inflammatory responses via the gut–brain axis (GBA). Therefore, restoring healthy microbial ecology in the gut may be a key therapeutic target for the effective management and treatment of ischemic stroke.
Collapse
|
46
|
Lebrun LJ, Moreira S, Tavernier A, Niot I. Postprandial consequences of lipid absorption in the onset of obesity: Role of intestinal CD36. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159154. [DOI: 10.1016/j.bbalip.2022.159154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
47
|
Qiao Y, Zhang Z, Zhai Y, Yan X, Zhou W, Liu H, Guan L, Peng L. Apigenin Alleviates Obesity-Associated Metabolic Syndrome by Regulating the Composition of the Gut Microbiome. Front Microbiol 2022; 12:805827. [PMID: 35046924 PMCID: PMC8762173 DOI: 10.3389/fmicb.2021.805827] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
The gut microbiota, often viewed as a “digestive organ,” can influence the development of obesity and related metabolic disorders. Diet is significantly important in shaping the structure and modulating the function of the gut microbiota. Apigenin (Api) widely exists in fruits and vegetables as a naturally occurring flavonoid and has anti-obesogenic, anti-inflammatory, and anti-carcinogenic properties. Its low bioavailability means it has enough time to interact with the intestine thus becomes a potential substrate for the gut intestine; thus, contributing to gut health. Here, we show that Api reduces whole-body weight, low-grade inflammation, and insulin resistance in high-fat diet (HFD)-induced obese mice. Our results reflect that Api supplementation can substantially improve intestinal dysbiosis triggered by HFD and restores gut barrier damage by alleviating metabolic endotoxemia. Augmentation of Akkermansia and Incertae_Sedis along with reduction of Faecalibaculum and Dubosiella at the genus level potentially mediated the protective effects of Api on metabolic syndrome. Furthermore, we show that the impact of Api on the reduction of body weight and the modification of gut microbiota could be transferred from Api-administered mice to HFD-feeding mice via horizontal fecal microbiota transplantation. Taken together, our data highlight the prebiotic role of Api and show its contribution to the restraint of gut dysbiosis and metabolic deterioration associated with obesity in mice.
Collapse
Affiliation(s)
- Yuan Qiao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Zhichun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yuanyuan Zhai
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Xu Yan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Wenling Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Lingling Guan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
48
|
SEKI M, MIWA A, OHSAKA F, KARATSU Y, TSURUTA T, HINO S, MORITA T, SONOYAMA K. Local free fatty acids trigger the expression of lipopolysaccharide-binding protein in murine white adipose tissue. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:54-65. [PMID: 35433160 PMCID: PMC8970656 DOI: 10.12938/bmfh.2021-061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/26/2021] [Indexed: 11/05/2022]
Abstract
Although lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase protein mainly
produced by hepatocytes, it has also been proposed to be a pro-inflammatory adipokine.
Obesity and the consumption of a high-fat diet (HFD) are reportedly associated with
elevated levels of LPS in plasma and free fatty acids (FFAs) in white adipose tissue
(WAT). We examined whether circulating LPS or local FFAs are responsible for the
HFD-induced increase of LBP in WAT. Male C57BL/6J mice were fed either a normal-fat diet
(NFD) or an HFD. The mRNA levels in the liver and mesenteric WAT (mWAT), total FFA content
in mWAT, and LBP and LPS concentrations in plasma were determined. The
Lbp mRNA level in mWAT was higher in mice fed the HFD than in those fed
the NFD for 3, 7, or 28 days or 14 weeks, whereas the hepatic Lbp mRNA
level did not differ between the groups. The Lbp mRNA level in mWAT was
also increased by the HFD in germ-free mice, which do not have gut microbiota, the source
of LPS. The plasma LPS level did not show a significant correlation with the mWAT
Lbp mRNA level. The total FFA content in mWAT was higher in mice fed
the HFD than in those fed the NFD and positively correlated with the Lbp
mRNA level. Supplementation with palmitic acid increased the Lbp mRNA
level in 3T3-L1 adipocytes. We propose that local FFAs, but not circulating LPS, are the
trigger for increased Lbp expression in mWAT of mice fed the HFD.
Collapse
Affiliation(s)
- Manami SEKI
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Akiho MIWA
- Graduate School of Life Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Fumina OHSAKA
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Yugo KARATSU
- Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Takeshi TSURUTA
- Graduate School of Environmental and Life Science, Okayama University, 2-1-1 Tsushima-Naka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Shingo HINO
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Tatsuya MORITA
- College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka-shi, Shizuoka 422-8529, Japan
| | - Kei SONOYAMA
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
49
|
Westaway JAF, Huerlimann R, Kandasamy Y, Miller CM, Norton R, Watson D, Infante-Vilamil S, Rudd D. To Probiotic or Not to Probiotic: A Metagenomic Comparison of the Discharge Gut Microbiome of Infants Supplemented With Probiotics in NICU and Those Who Are Not. Front Pediatr 2022; 10:838559. [PMID: 35345612 PMCID: PMC8957066 DOI: 10.3389/fped.2022.838559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Preterm birth is associated with the development of both acute and chronic disease, and the disruption of normal gut microbiome development. Recent studies have sought to both characterize and understand the links between disease and the microbiome. Probiotic treatment may correct for these microbial imbalances and, in turn, mitigate disease. However, the criteria for probiotic supplementation in NICU's in North Queensland, Australia limits its usage to the most premature (<32 weeks gestation) and small for gestational age infants (<1,500 g). Here we use a combination of amplicon and shotgun metagenomic sequencing to compare the gut microbiome of infants who fulfill the criteria for probiotic-treatment and those who do not. The aims of this study were to determine if probiotic-supplemented preterm infants have significantly different taxonomic and functional profiles when compared to non-supplemented preterm infants at discharge. METHODS Preterm infants were recruited in North Queensland, Australia, with fecal samples collected just prior to discharge (36 ± 0.5 weeks gestation), to capture potential changes that could be probiotic induced. All samples underwent 16S rRNA gene amplicon sequencing, with a subset also used for shotgun metagenomics. Mixed effects models were used to assess the effect of probiotics on alpha diversity, beta diversity and taxonomic abundance, whilst accounting for other known covariates. RESULTS Mixed effects modeling demonstrated that probiotic treatment had a significant effect on overall community composition (beta diversity), characterized by greater alpha diversity and differing abundances of several taxa, including Bifidobacterium and Lactobacillus, in supplemented infants. CONCLUSION Late preterm-infants who go without probiotic-supplementation may be missing out on stabilizing-effects provided through increased alpha diversity and the presence of commensal microbes, via the use of probiotic-treatment. These findings suggest that late-preterm infants may benefit from probiotic supplementation. More research is needed to both understand the consequences of the differences observed and the long-term effects of this probiotic-treatment.
Collapse
Affiliation(s)
- Jacob A F Westaway
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - Roger Huerlimann
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Yoga Kandasamy
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia.,Neonatology, Townsville University Hospital, Townsville, QLD, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia
| | - Robert Norton
- Microbiology, Pathology Queensland, Herston, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David Watson
- Maternal-Fetal Medicine, Townsville University Hospital, Townsville, QLD, Australia
| | - Sandra Infante-Vilamil
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
50
|
Infection with the enteric pathogen C. rodentium promotes islet-specific autoimmunity by activating a lymphatic route from the gut to pancreatic lymph node. Mucosal Immunol 2022; 15:471-479. [PMID: 35140345 PMCID: PMC9038524 DOI: 10.1038/s41385-022-00490-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
In nonobese diabetic (NOD) mice, C. rodentium promotes priming of islet-specific T-cells in pancreatic lymph nodes (PaLN), which is a critical step in initiation and perpetuation of islet-autoimmunity. To investigate mechanisms by which C. rodentium promotes T-cell priming in PaLN, we used fluorescent imaging of lymphatic vasculature emanating from colon, followed dendritic cell (DC) migration from colon using photoconvertible-reporter mice, and evaluated the translocation of bacteria to lymph nodes with GFP-C. rodentium and in situ hybridization of bacterial DNA. Fluorescent dextran injected in the colon wall accumulated under subcapsular sinus of PaLN indicating the existence of a lymphatic route from colon to PaLN. Infection with C. rodentium induced DC migration from colon to PaLN and bacterial DNA was detected in medullary sinus and inner cortex of PaLN. Following infection with GFP-C. rodentium, fluorescence appeared in macrophages and gut-derived (CD103+) and resident (CD103-/XCR1+) DC, indicating transportation of bacteria from colon to PaLN both by DC and by lymph itself. This induced proinflammatory cytokine transcripts, activation of DC and islet-specific T-cells in PaLN of NOD mice. Our findings demonstrate the existence of a direct, enteric pathogen-activated route for lymph, cells, and bacteria from colon, which promotes activation of islet-specific T-cells in PaLN.
Collapse
|