1
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
2
|
Ali SB, Mohamed AS, Fahmy SR, El-Garhy M, Mousa MR, Abdel-Ghaffar F. Anthelmintic and Hepatoprotective Activities of the Green-Synthesized Zinc Oxide Nanoparticles Against Parascaris equorum Infection in Rats. Acta Parasitol 2024; 69:283-301. [PMID: 38057445 PMCID: PMC11001740 DOI: 10.1007/s11686-023-00728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
MAIN CONCLUSIONS Green-synthesized zinc oxide nanoparticle is a promising treatment modality against parasitic infection through its powerful anthelmintic, antioxidant, healing promotion, and anti-inflammation effects. BACKGROUND Nanoparticles have many properties, depending on their size, shape, and morphology, allowing them to interact with microorganisms, plants, and animals. OBJECTIVES Investigation of the therapeutic effects of green-synthesized zinc oxide nanoparticles (ZnO NPs) on Parascaris equorum infection in rats. METHODS Thirty-six rats were divided into two divisions: the first division is noninfected groups were allocated into three groups. Group 1: Control, group 2: ZnO NPs (30 mg/kg), and group 3: ZnO NPs (60 mg/kg). The second division is infected groups were allocated into three groups. Group 1: vehicle, group 2: ZnO NPs (30 mg/kg), and group 3: ZnO NPs (60 mg/kg). FINDINGS Ten days post-infection, two larvae per gram of liver tissue were present in the vehicle group compared to the control group. No larvae were recovered from ZnO NPs (30 mg/kg), and one larva/g.tissue from ZnO NPs (60 mg/kg)-treated groups compared to untreated infected animals. Green-synthesized ZnO NPs caused a significant decrease in liver functions, low-density lipoprotein (LDL), cholesterol, triglycerides, malondialdehyde (MDA), and nitric oxide (NO). While it caused a significant increase in hemoglobin (HB), high-density lipoprotein (HDL), butyrylcholinesterase (BCHE), glutathione (GSH), catalase (CAT), and glutathione S-transferase (GST) in infected treated rats. The histological inflammation and fibroplasia scores showed a significant enhancement during the treatment with ZnO NPs (30, 60 mg/kg) compared to the infected untreated animals that scored the highest pathological destruction score. Immunohistochemical markers of NF-κB showed a significant decrease during the treatment with ZnO NPs (30, 60 mg/kg) compared to the infected untreated animals.
Collapse
Affiliation(s)
- Sara Bayoumi Ali
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | | | - Sohair R Fahmy
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Manal El-Garhy
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed R Mousa
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
3
|
Arief Waskito B, Sargowo D, Kalsum U, Tjokroprawiro A. Anti-atherosclerotic activity of aqueous extract of Ipomoea batatas (L.) leaves in high-fat diet-induced atherosclerosis model rats. J Basic Clin Physiol Pharmacol 2023; 34:725-734. [PMID: 34986543 DOI: 10.1515/jbcpp-2021-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cardiovascular diseases, especially atherosclerosis, are the leading cause of human mortality in Indonesia. Ipomoea batatas (L.) is a food plant used in Indonesian traditional medicine to treat cardiovascular diseases and related conditions. We assessed the anti-atherosclerotic activity of the aqueous extract of I. batatas leaves in a rat model of high-fat diet-induced atherosclerosis and its mechanism. METHODS The presence of amino acid content in the I. batatas L. purple variant was determined by liquid chromatography high-resolution mass spectrometry (LC-HRMS). Thirty male Wistar rats were divided into five groups (n=6/group), i.e., standard diet group (SD), high-fat diet group (HF), and HF plus I. batatas L. extracts orally (625; 1,250; or 2,500 mg/kg) groups. The numbers of macrophages and aortic wall thickness were analyzed histologically. Immunohistochemical analyses were performed to assess foam cells-oxidized low-density lipoprotein (oxLDL), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF) expression in the aorta. RESULTS LC-HRMS analysis showed nine amino acid content were identified from I. batatas L. In vivo study revealed that oral administration of I. batatas L. leaf extract alleviated foam cells-oxLDL formation and aortic wall thickness caused by high-fat diet atherosclerosis rats. Further, I. batatas L. leaf extract promoted the number of macrophages and modulated VEGF and eNOS expression in the aorta. CONCLUSIONS I. batatas L. leaf extract shows a positive anti-atherosclerosis effect. Furthermore, the mechanism may promote the macrophages, eNOS, VEGF expressions, and inhibition of foam cells-oxLDL formation and aortic wall thickness with the best dosage at 2,500 mg/kg. This could represent a novel approach to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Budi Arief Waskito
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Wijaya Kusuma University, Surabaya, East Java, Indonesia
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Umi Kalsum
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Askandar Tjokroprawiro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
4
|
Szewczyk-Roszczenko OK, Roszczenko P, Shmakova A, Finiuk N, Holota S, Lesyk R, Bielawska A, Vassetzky Y, Bielawski K. The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells 2023; 12:2312. [PMID: 37759535 PMCID: PMC10527932 DOI: 10.3390/cells12182312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.
Collapse
Affiliation(s)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Anna Shmakova
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine;
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Yegor Vassetzky
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| |
Collapse
|
5
|
Kang L, Yi J, Lau CW, He L, Chen Q, Xu S, Li J, Xia Y, Zhang Y, Huang Y, Wang L. AMPK-Dependent YAP Inhibition Mediates the Protective Effect of Metformin against Obesity-Associated Endothelial Dysfunction and Inflammation. Antioxidants (Basel) 2023; 12:1681. [PMID: 37759984 PMCID: PMC10525300 DOI: 10.3390/antiox12091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia is a crucial risk factor for cardiovascular diseases. Chronic inflammation is a central characteristic of obesity, leading to many of its complications. Recent studies have shown that high glucose activates Yes-associated protein 1 (YAP) by suppressing AMPK activity in breast cancer cells. Metformin is a commonly prescribed anti-diabetic drug best known for its AMPK-activating effect. However, the role of YAP in the vasoprotective effect of metformin in diabetic endothelial cell dysfunction is still unknown. The present study aimed to investigate whether YAP activation plays a role in obesity-associated endothelial dysfunction and inflammation and examine whether the vasoprotective effect of metformin is related to YAP inhibition. Reanalysis of the clinical sequencing data revealed YAP signaling, and the YAP target genes CTGF and CYR61 were upregulated in aortic endothelial cells and retinal fibrovascular membranes from diabetic patients. YAP overexpression impaired endothelium-dependent relaxations (EDRs) in isolated mouse aortas and increased the expression of YAP target genes and inflammatory markers in human umbilical vein endothelial cells (HUVECs). High glucose-activated YAP in HUVECs and aortas was accompanied by increased production of oxygen-reactive species. AMPK inhibition was found to induce YAP activation, resulting in increased JNK activity. Metformin activated AMPK and promoted YAP phosphorylation, ultimately improving EDRs and suppressing the JNK activity. Targeting the AMPK-YAP-JNK axis could become a therapeutic strategy for alleviating vascular dysfunction in obesity and diabetes.
Collapse
Affiliation(s)
- Lijing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Juanjuan Yi
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Chi-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Lei He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui 230027, China;
| | - Jun Li
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong 999077, China; (J.Y.); (J.L.)
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (C.-W.L.); (Y.X.)
| | - Yuanting Zhang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong 999077, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (L.K.); (L.H.); (Q.C.)
| |
Collapse
|
6
|
Gao Y, Su X, Xue T, Zhang N. The beneficial effects of astragaloside IV on ameliorating diabetic kidney disease. Biomed Pharmacother 2023; 163:114598. [PMID: 37150034 DOI: 10.1016/j.biopha.2023.114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the major cause of chronic kidney disease or end-stage renal disease. There is still a need for innovative treatment strategies for preventing, arresting, treating, and reversing DKD, and a plethora of scientific evidence has revealed that Chinese herbal monomers can attenuate DKD in multiple ways. Astragaloside IV (AS-IV) is one of the active ingredients of Astragalus membranaceus and was selected as a chemical marker in the Chinese Pharmacopeia for quality control purposes. An increasing amount of studies indicate that AS-IV is a promising novel drug for the treatment of DKD. AS-IV has been shown to improve DKD by combating oxidative stress, attenuating endoplasmic reticulum stress, regulating calcium homeostasis, alleviating inflammation, improving vascular function, improving epithelial to mesenchymal transition and so on. This review briefly summarizes the pathogenesis of DKD, systematically reviews the mechanisms by which AS-IV improves DKD, and aims to facilitate related pharmacological research and development to promote the utilization of Chinese herbal monomers in DKD.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xin Su
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Taiqi Xue
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
7
|
Li R, Zhao A, Diao X, Song J, Wang C, Li Y, Qi X, Guan Z, Zhang T, He Y. Polymorphism of NOS3 gene and its association with essential hypertension in Guizhou populations of China. PLoS One 2023; 18:e0278680. [PMID: 36758021 PMCID: PMC9910734 DOI: 10.1371/journal.pone.0278680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE A case-control study was conducted to evaluate the relationship between endothelial nitric oxide synthase (NOS3) gene polymorphism and essential hypertension in the Han, Miao, and Buyi populations in Guizhou China. METHODS DNA was collected from the blood samples of 353 essential hypertension patients and 342 healthy controls from Guizhou province of China. Eight polymorphisms of the NOS3 gene were genotyped using the Sequenom MassARRAY platform. For genetic analysis, SPSS 26.0, Haploview, SNPStats, SHEsis, and MDR were utilized. RESULTS All SNPs (rs11771443, rs1808593, rs753482, rs3918186, rs3918188, rs3918227, rs7830, and rs891512) satisfied the Hardy-Weinberg equilibrium test (P > 0.05). The allele and genotype frequencies of rs7830 and rs1808593 in case-control groups demonstrated significant differences (P < 0.05). Compared to the TT genotype of rs1808593, the TG or GG genotype reduced the risk of hypertension in the Miao population (OR = 0.410, 95% CI: 0.218-0.770, P = 0.006). Compared to the GG or GT genotype of rs7830, the TT genotype increased the risk of hypertension in the overall populations (OR = 1.716, 95%CI: 1.139-2.586, P = 0.010). The CATT (rs3918227-rs391818186-rs1808593-rs7830) haplotype was a risk factor for hypertension in the Miao and Han populations (OR = 1.471, 95%CI: 1.010-2.143, P = 0.044 and OR = 1.692, 95%CI: 1.124-2.545, P = 0.011). The CAGG haplotype in the Miao population was a protective factor against hypertension (OR = 0.555, 95%CI: 0.330-0.934, P = 0.025). The rs3918188, rs1808593, and rs7830 in the Miao population showed an interaction effect on hypertension (P < 0.001). The rs11771443, rs3918188, and rs7830 in the Buyi and Han populations showed an interaction effect on hypertension (P = 0.013 and P < 0.001). CONCLUSION The single nucleotide polymorphisms rs1808593 and rs7830 of NOS3 gene are associated with essential hypertension in Guizhou ethnic populations.
Collapse
Affiliation(s)
- Ruichao Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ansu Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyan Diao
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Juhui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Chanjuan Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanhong Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail: (YH); (TZ)
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail: (YH); (TZ)
| |
Collapse
|
8
|
Loo JH, Wang Z, Chong RS. Caveolin-1 in vascular health and glaucoma: A critical vascular regulator and potential therapeutic target. Front Med (Lausanne) 2023; 10:1087123. [PMID: 36760400 PMCID: PMC9902660 DOI: 10.3389/fmed.2023.1087123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Caveolin-1 (Cav-1) is an integral scaffolding membrane protein found in most cell types. Cav-1 has been found to contribute significantly to ocular function, with mutations of Cav-1 being associated with a genetic risk of glaucoma development. Raised intraocular pressure (IOP) is a major modifiable risk factor for glaucoma. Cav-1 may be involved in both IOP-dependent and independent mechanisms involving vascular dysregulation. Systemic vascular diseases including hypertension, diabetes and hyperlipidaemia, have been shown to be associated with glaucoma development. Cav-1 is closely interlinked with endothelial nitric oxide synthase pathways that mediate vascular function and prevent cardiovascular diseases. Endothelial nitric oxide synthase and endothelin-1 are key vasoactive molecules expressed in retinal blood vessels that function to autoregulate ocular blood flow (OBF). Disruptions in the homeostasis of OBF have led to a growing concept of impaired neurovascular coupling in glaucoma. The imbalance between perfusion and neuronal stimulation arising from Cav-1 depletion may result in relative ischemia of the optic nerve head and glaucomatous injury. OBF is also governed by circadian variation in IOP and systemic blood pressure (BP). Cav-1 has been shown to influence central BP variability and other circadian rhythms such as the diurnal phagolysosomal digestion of photoreceptor fragments and toxic substrates to maintain ocular health. Overall, the vast implications of Cav-1 on various ocular mechanisms leading to glaucoma suggest a potential for new therapeutics to enhance Cav-1 expression, which has seen success in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Hong Loo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Rachel S. Chong
- Glaucoma Department, Singapore National Eye Center, Singapore, Singapore,Ocular Imaging Department, Singapore Eye Research Institute, Singapore, Singapore,*Correspondence: Rachel S. Chong ✉
| |
Collapse
|
9
|
Liu J, Liu Z, Sun W, Luo L, An X, Yu D, Wang W. Role of sex hormones in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1135530. [PMID: 37143724 PMCID: PMC10151816 DOI: 10.3389/fendo.2023.1135530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 05/06/2023] Open
Abstract
Diabetic nephropathy (DN) is the most common microvascular complication in diabetes and one of the leading causes of end-stage renal disease. The standard treatments for patients with classic DN focus on blood glucose and blood pressure control, but these treatments can only slow the progression of DN instead of stopping or reversing the disease. In recent years, new drugs targeting the pathological mechanisms of DN (e.g., blocking oxidative stress or inflammation) have emerged, and new therapeutic strategies targeting pathological mechanisms are gaining increasing attention. A growing number of epidemiological and clinical studies suggest that sex hormones play an important role in the onset and progression of DN. Testosterone is the main sex hormone in males and is thought to accelerate the occurrence and progression of DN. Estrogen is the main sex hormone in females and is thought to have renoprotective effects. However, the underlying molecular mechanism by which sex hormones regulate DN has not been fully elucidated and summarized. This review aims to summarize the correlation between sex hormones and DN and evaluate the value of hormonotherapy in DN.
Collapse
Affiliation(s)
- Jiahui Liu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhe Liu
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Weixia Sun
- Nephrology Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Luo
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingna An
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
| | - Dehai Yu
- Public Research Platform, First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Dehai Yu, ; Wanning Wang,
| | - Wanning Wang
- Nephrology Department, First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Dehai Yu, ; Wanning Wang,
| |
Collapse
|
10
|
Adams JA, Uryash A, Lopez JR. Non-Invasive Pulsatile Shear Stress Modifies Endothelial Activation; A Narrative Review. Biomedicines 2022; 10:biomedicines10123050. [PMID: 36551807 PMCID: PMC9775985 DOI: 10.3390/biomedicines10123050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The monolayer of cells that line both the heart and the entire vasculature is the endothelial cell (EC). These cells respond to external and internal signals, producing a wide array of primary or secondary messengers involved in coagulation, vascular tone, inflammation, and cell-to-cell signaling. Endothelial cell activation is the process by which EC changes from a quiescent cell phenotype, which maintains cellular integrity, antithrombotic, and anti-inflammatory properties, to a phenotype that is prothrombotic, pro-inflammatory, and permeable, in addition to repair and leukocyte trafficking at the site of injury or infection. Pathological activation of EC leads to increased vascular permeability, thrombosis, and an uncontrolled inflammatory response that leads to endothelial dysfunction. This pathological activation can be observed during ischemia reperfusion injury (IRI) and sepsis. Shear stress (SS) and pulsatile shear stress (PSS) are produced by mechanical frictional forces of blood flow and contraction of the heart, respectively, and are well-known mechanical signals that affect EC function, morphology, and gene expression. PSS promotes EC homeostasis and cardiovascular health. The archetype of inducing PSS is exercise (i.e., jogging, which introduces pulsations to the body as a function of the foot striking the pavement), or mechanical devices which induce external pulsations to the body (Enhanced External Pulsation (EECP), Whole-body vibration (WBV), and Whole-body periodic acceleration (WBPA aka pGz)). The purpose of this narrative review is to focus on the aforementioned noninvasive methods to increase PSS, review how each of these modify specific diseases that have been shown to induce endothelial activation and microcirculatory dysfunction (Ischemia reperfusion injury-myocardial infarction and cardiac arrest and resuscitation), sepsis, and lipopolysaccharide-induced sepsis syndrome (LPS)), and review current evidence and insight into how each may modify endothelial activation and how these may be beneficial in the acute and chronic setting of endothelial activation and microvascular dysfunction.
Collapse
Affiliation(s)
- Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence:
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
11
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
12
|
Association of Nitric Oxide Synthase Polymorphism and Coagulopathy in Patients with Osteonecrosis of the Femoral Head. J Clin Med 2022; 11:jcm11174963. [PMID: 36078892 PMCID: PMC9457043 DOI: 10.3390/jcm11174963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic polymorphism of nitric oxide synthase (NOS) can cause reduction of nitric oxide (NO) levels and may be associated with osteonecrosis of the femoral head (ONFH). However, the association of coagulopathy and NOS polymorphism in ONFH patients has not been confirmed. Between November 2005 and October 2013, 155 patients with ONFH were recruited in the study of serum coagulation profiles and NOS polymorphism. Another 43 patients who had dysplasia, osteoarthritis, or trauma of hip joints were included as controls. PCR genotyping for the analysis of NOS 27-bp polymorphism in intron 4 was performed. The analysis of coagulation profiles included fibrinogen, fibrinogen degradation product (FDP), protein S, protein C, and anti-thrombin III. The results showed that 27-bp repeat polymorphism was significantly associated with ONFH (OR 4.32). ONFH patients had significantly higher fibrinogen, FDP, protein S, and anti-thrombin III levels than that of the controls. The incidence of coagulopathy was significantly higher in ONFH patients (73.2%), and the odds ratio increased from 2.38 to 7.33 when they had 27-bp repeat polymorphism. Patients with hyperfibrinogenemia, elevated FDP levels, and with the risk factor of alcohol or steroid use had significantly higher risks of bilateral hip involvement. This study demonstrated the presence of NOS polymorphism, and a resultant reduction in NO production was associated with coagulopathy, which in turn might contribute to higher risks of bilateral ONFH. Our data suggests that checking NOS polymorphism and coagulopathy may provide a new avenue in managing ONFH.
Collapse
|
13
|
Sarmah N, Nauli AM, Ally A, Nauli SM. Interactions among Endothelial Nitric Oxide Synthase, Cardiovascular System, and Nociception during Physiological and Pathophysiological States. Molecules 2022; 27:2835. [PMID: 35566185 PMCID: PMC9105107 DOI: 10.3390/molecules27092835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide synthase (NOS) plays important roles within the cardiovascular system in physiological states as well as in pathophysiologic and specific cardiovascular (CV) disease states, such as hypertension (HTN), arteriosclerosis, and cerebrovascular accidents. This review discusses the roles of the endothelial NOS (eNOS) and its effect on cardiovascular responses that are induced by nociceptive stimuli. The roles of eNOS enzyme in modulating CV functions while experiencing pain will be discussed. Nociception, otherwise known as the subjective experience of pain through sensory receptors, termed "nociceptors", can be stimulated by various external or internal stimuli. In turn, events of various cascade pathways implicating eNOS contribute to a plethora of pathophysiological responses to the noxious pain stimuli. Nociception pathways involve various regions of the brain and spinal cord, including the dorsolateral periaqueductal gray matter (PAG), rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla, and intermediolateral column of the spinal cord. These pathways can interrelate in nociceptive responses to pain stimuli. The alterations in CV responses that affect GABAergic and glutamatergic pathways will be discussed in relation to mechanical and thermal (heat and cold) stimuli. Overall, this paper will discuss the aggregate recent and past data regarding pain pathways and the CV system.
Collapse
Affiliation(s)
- Niribili Sarmah
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Andromeda M. Nauli
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA;
| | - Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Yang C, Lavayen BP, Liu L, Sanz BD, DeMars KM, Larochelle J, Pompilus M, Febo M, Sun YY, Kuo YM, Mohamadzadeh M, Farr SA, Kuan CY, Butler AA, Candelario-Jalil E. Neurovascular protection by adropin in experimental ischemic stroke through an endothelial nitric oxide synthase-dependent mechanism. Redox Biol 2021; 48:102197. [PMID: 34826783 PMCID: PMC8633041 DOI: 10.1016/j.redox.2021.102197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
Adropin is a highly-conserved peptide that has been shown to preserve endothelial barrier function. Blood-brain barrier (BBB) disruption is a key pathological event in cerebral ischemia. However, the effects of adropin on ischemic stroke outcomes remain unexplored. Hypothesizing that adropin exerts neuroprotective effects by maintaining BBB integrity, we investigated the role of adropin in stroke pathology utilizing loss- and gain-of-function genetic approaches combined with pharmacological treatment with synthetic adropin peptide. Long-term anatomical and functional outcomes were evaluated using histology, MRI, and a battery of sensorimotor and cognitive tests in mice subjected to ischemic stroke. Brain ischemia decreased endogenous adropin levels in the brain and plasma. Adropin treatment or transgenic adropin overexpression robustly reduced brain injury and improved long-term sensorimotor and cognitive function in young and aged mice subjected to ischemic stroke. In contrast, genetic deletion of adropin exacerbated ischemic brain injury, irrespective of sex. Mechanistically, adropin treatment reduced BBB damage, degradation of tight junction proteins, matrix metalloproteinase-9 activity, oxidative stress, and infiltration of neutrophils into the ischemic brain. Adropin significantly increased phosphorylation of endothelial nitric oxide synthase (eNOS), Akt, and ERK1/2. While adropin therapy was remarkably protective in wild-type mice, it failed to reduce brain injury in eNOS-deficient animals, suggesting that eNOS is required for the protective effects of adropin in stroke. These data provide the first causal evidence that adropin exerts neurovascular protection in stroke through an eNOS-dependent mechanism. We identify adropin as a novel neuroprotective peptide with the potential to improve stroke outcomes.
Collapse
Affiliation(s)
- Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Bianca P Lavayen
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Brian D Sanz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kelly M DeMars
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA; Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Min Kuo
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL, USA
| | - Susan A Farr
- Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA; Saint Louis Veterans Affairs Medical Center, Research Service, John Cochran Division, MO, USA; Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, USA; Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Adebayo A, Varzideh F, Wilson S, Gambardella J, Eacobacci M, Jankauskas SS, Donkor K, Kansakar U, Trimarco V, Mone P, Lombardi A, Santulli G. l-Arginine and COVID-19: An Update. Nutrients 2021; 13:nu13113951. [PMID: 34836206 PMCID: PMC8619186 DOI: 10.3390/nu13113951] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
l-Arginine is involved in many different biological processes and recent reports indicate that it could also play a crucial role in the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein, we present an updated systematic overview of the current evidence on the functional contribution of L-Arginine in COVID-19, describing its actions on endothelial cells and the immune system and discussing its potential as a therapeutic tool, emerged from recent clinical experimentations.
Collapse
Affiliation(s)
- Ayobami Adebayo
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Scott Wilson
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Michael Eacobacci
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Kwame Donkor
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Urna Kansakar
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Valentina Trimarco
- Department of Neuroscience, "Federico II" University, 80131 Naples, Italy
| | - Pasquale Mone
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Angela Lombardi
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Advanced Biomedical Sciences, "Federico II" University and International Translational Research and Medical Education (ITME) Consortium, 80100 Naples, Italy
| |
Collapse
|
16
|
Chen SY, Wang J, Jia F, Shen ZD, Zhang WB, Wang YX, Ren KF, Fu GS, Ji J. Bioinspired NO release coating enhances endothelial cells and inhibits smooth muscle cells. J Mater Chem B 2021; 10:2454-2462. [PMID: 34698745 DOI: 10.1039/d1tb01828k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Thrombus and restenosis after stent implantation are the major complications because traditional drugs such as rapamycin delay the process of endothelialization. Nitric oxide (NO) is mainly produced by endothelial nitric oxide synthase (eNOS) on the membrane of endothelial cells (ECs) in the cardiovascular system and plays an important role in vasomotor function. It strongly inhibits the proliferation of smooth muscle cells (SMCs) and ameliorates endothelial function when ECs get hurt. Inspired by this, introducing NO to traditional stent coating may alleviate endothelial insufficiency caused by rapamycin. Here, we introduced SNAP as the NO donor, mimicking how NO affects in vivo, into rapamycin coating to alleviate endothelial damage while inhibiting SMC proliferation. Through wicking effects, SNAP was absorbed into a hierarchical coating that had an upper porous layer and a dense polymer layer with rapamycin at the bottom. Cells were cultured on the coatings, and it was observed that the injured ECs were restored while the growth of SMCs further diminished. Genome analysis was conducted to further clarify possible signaling pathways: the effect of cell growth attenuated by NO may cause by affecting cell cycle and enhancing inflammation. These findings supported the idea that introducing NO to traditional drug-eluting stents alleviates incomplete endothelialization and further inhibits the stenosis caused by the proliferation of SMCs.
Collapse
Affiliation(s)
- Sheng-Yu Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fan Jia
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-da Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Wen-Bin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ke-Feng Ren
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. .,MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jian Ji
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China. .,MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Yao F, Abdel-Rahman AA. Tetrahydrobiopterin paradoxically mediates cardiac oxidative stress and mitigates ethanol-evoked cardiac dysfunction in conscious female rats. Eur J Pharmacol 2021; 909:174406. [PMID: 34364878 PMCID: PMC8434968 DOI: 10.1016/j.ejphar.2021.174406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023]
Abstract
Oxidation of tetrahydrobiopterin (BH4), a cofactor of nitric oxide synthase (NOS), by reactive oxidative species (ROS), leads to NOS uncoupling and superoxide production instead of NO. Further, oxidative stress plays a major role in ethanol-evoked cardiac dysfunction in proestrus female rats, and acute ethanol administration reduces brain BH4 level. Therefore, we discerned the unknown role of BH4 in ethanol-evoked cardiac dysfunction by pharmacologically increasing BH4 levels or inhibiting its effect in proestrus female rats. Acute ethanol (1.5 g/kg, i.v, 30 min) caused myocardial dysfunction (lowered dP/dtmax and LVDP) and hypotension, along with increases in myocardial: (i) levels of NO, ROS and malondialdehyde (MDA), (ii) activities of catalase, ALDH2 and NADPH oxidase (Nox), and (iii) phosphorylation of eNOS, nNOS. Further, ethanol suppressed myocardial arginase and superoxide dismutase (SOD) activities and enhanced eNOS uncoupling. While ethanol had no effect on cardiac BH4 levels, BH4 (19 mg/kg, i.v) supplementation paradoxically caused cardiac oxidative stress, but mitigated the cardiac dysfunction/hypotension and most of the adverse molecular responses caused by ethanol. Equally important, the BH4 inhibitor DAHP (1 g/kg, i.p) exacerbated the adverse molecular and cardiovascular effects caused by ethanol. Our pharmacological studies support a protective role for the NOS co-factor BH4 against ethanol-evoked cardiac dysfunction and hypotension in female rats.
Collapse
Affiliation(s)
- Fanrong Yao
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
18
|
Hashemi SR, Arab HA, Seifi B, Muhammadnejad S. A comparison effects of l-citrulline and l-arginine against cyclosporine-induced blood pressure and biochemical changes in the rats. HIPERTENSION Y RIESGO VASCULAR 2021; 38:170-177. [PMID: 34561200 DOI: 10.1016/j.hipert.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The use of cyclosporine A (CsA) is associated with different adverse effects including hypertension and nephrotoxicity. The present study aimed to compare the inhibitory effects of l-arginine &l-citrulline on CsA-induced blood pressure and biochemical changes in the serum of rats. METHODS Thirty-six rats were divided into 6 groups received daily: (1) 1ml distilled water, (2) 200mg/kg l-citrulline IP, (3) 25mg/kg CsA SC, (4) CsA+l-citrulline with the same dose of the former groups, (5) 200mg/kg l-arginine IP and (6) l-arginie+CsA with the same doses of group 4 for 7 days. RESULTS The changes in the blood pressure, heart rate, creatinine, BUN, glucose and C-reactive protein (CRP) of the serum were determined in the treated animals. Significant (p<0.001) increase was shown in the blood pressure and heart rate of CsA treated rats compared to the control group. There were also a significant (p<0.05) increase in the creatinine, BUN and glucose, but a decrease in the CRP value in the CsA-treated group. However, l-citrulline significantly (p<0.001) inhibited the changes in the blood pressure and heart rate in CsA-treated as well as it was able to reduce blood pressure in non-treated group significantly (p<0.01). l-citrulline also inhibited the increased levels of BUN and creatinine induced by CsA, while, l-arginine was able to prevent the increased blood pressure and creatinine occurs after administration of CsA. CONCLUSIONS These findings suggest that the l-citrulline is more efficient than l-arginine against the adverse effects induced by cyclosporine.
Collapse
Affiliation(s)
- S R Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - H A Arab
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - B Seifi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Muhammadnejad
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kilic U, Elibol B, Beker M, Altug-Tasa B, Caglayan AB, Beker MC, Yilmaz B, Kilic E. Inflammatory Cytokines are in Action: Brain Plasticity and Recovery after Brain Ischemia Due to Delayed Melatonin Administration. J Stroke Cerebrovasc Dis 2021; 30:106105. [PMID: 34547676 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Post-ischemic inflammation leads to apoptosis as an indirect cause of functional disabilities after the stroke. Melatonin may be a good candidate for the stroke recovery because of its anti-inflammatory effects. Therefore, we investigated the effect of melatonin on inflammation in the functional recovery of brain by evaluating ipsilesional and contralesional alterations. MATERIALS AND METHODS Melatonin (4 mg/kg/day) was intraperitoneally administered into the mice from the 3rd to the 55th day of the post-ischemia after 30 min of middle cerebral artery occlusion. RESULTS Melatonin produced a functional recovery by reducing the emigration of the circulatory leukocytes and the local microglial activation within the ischemic brain. Overall, the expression of the inflammation-related genes reduced upon melatonin treatment in the ischemic hemisphere. On the other hand, the expression level of the inflammatory cytokine genes raised in the contralateral hemisphere at the 55th day of the post-ischemia. Furthermore, melatonin triggers an increase in the iNOS expression and a decrease in the nNOS expression in the ipsilateral hemisphere at the earlier times in the post-ischemic recovery. At the 55th day of the post-ischemic recovery, melatonin administration enhanced the eNOS and nNOS protein expressions. CONCLUSIONS The present molecular, biological, and histological data have revealed broad anti-inflammatory effects of melatonin in both hemispheres with distinct temporal and spatial patterns at different phases of post-stroke recovery. These outcomes also established that melatonin act recruitment of contralesional rather than of ipsilesional.
Collapse
Affiliation(s)
- Ulkan Kilic
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey.
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey.
| | - Merve Beker
- Department of Medical Biology, Hamidiye International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey.
| | - Burcugul Altug-Tasa
- Cellular Therapy and Stem Cell Production Application and Research Centre, ESTEM, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Ahmet Burak Caglayan
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Mustafa Caglar Beker
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey.
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
20
|
Tekkeşin F, Yurdakok M, Gumus E, Babaoglu MO, Bozkurt A, Caliskan Kadayifcilar S, Eldem MB, Korkmaz A, Yigit S, Tekinalp G. Endothelial nitric oxide synthase G894T, intron 4 VNTR, and T786C polymorphisms in retinopathy of prematurity. J Neonatal Perinatal Med 2021; 15:249-255. [PMID: 34542035 DOI: 10.3233/npm-210801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Our objective in this study was to assess the association between eNOS gene, that achieves synthesis of nitric oxide especially in the endothelial cells known to have an important role in angiogenesis and vasculogenesis, G894T, intron 4 VNTR (27-bp repeat) and T786C functional polymorphisms and retinopathy of prematurity (ROP), which is an important cause of morbidity in premature or low birth weight babies. METHODS A total of 139 babies who were followed up in our neonatal intensive care unit because of premature birth in our hospital or admitted to our unit. 69 of them had retinopathy of prematurity and comprised the patients group. The remaining 70 babies who did not have ROP comprised the control group. An additional of 1 ml of blood samples were drawn from babies who were in the study groups during routine laboratory analysis. eNOS gene polymorphisms were determined by using polymerase chain reaction method. RESULTS eNOS G894T, intron 4 VNTR and T786C gene polymorphisms did not differ between the patient and control groups (p > 0.05). Using logistic regression analysis; while gender did not differ between two groups; gestational age, birth weight, time on mechanical ventilation differ between two groups. After adjustment for variables other than eNOS gene polymorphisms, we found no significant difference in the genotype distribution of eNOS G894T, intron 4 VNTR and T786C polymorphisms (p > 0.05). CONCLUSION We observed no association between ROP and eNOS gene polymorphisms but needs more investigation.
Collapse
Affiliation(s)
- F Tekkeşin
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Ankara, Turkey
| | - M Yurdakok
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Neonatology, Ankara, Turkey
| | - E Gumus
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Pediatrics, Ankara, Turkey
| | - M O Babaoglu
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Pharmacology, Ankara, Turkey
| | - A Bozkurt
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Pharmacology, Ankara, Turkey
| | - S Caliskan Kadayifcilar
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Ophthalmology, Ankara, Turkey
| | - M B Eldem
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Ophthalmology, Ankara, Turkey
| | - A Korkmaz
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Neonatology, Ankara, Turkey
| | - S Yigit
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Neonatology, Ankara, Turkey
| | - G Tekinalp
- Hacettepe University, Faculty of Medicine, Ihsan Dogramaci Children's Hospital, Department of Neonatology, Ankara, Turkey
| |
Collapse
|
21
|
Genetics of Diabetic Retinopathy, a Leading Cause of Irreversible Blindness in the Industrialized World. Genes (Basel) 2021; 12:genes12081200. [PMID: 34440374 PMCID: PMC8394456 DOI: 10.3390/genes12081200] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic retinopathy (DR) is a chronic complication of diabetes and a leading cause of blindness in the industrialized world. Traditional risk factors, such as glycemic control and duration of diabetes, are unable to explain why some individuals remain protected while others progress to a more severe form of the disease. Differences are also observed in DR heritability as well as the response to anti-vascular endothelial growth factor (VEGF) treatment. This review discusses various aspects of genetics in DR to shed light on DR pathogenesis and treatment. First, we discuss the global burden of DR followed by a discussion on disease pathogenesis as well as the role genetics plays in the prevalence and progression of DR. Subsequently, we provide a review of studies related to DR’s genetic contribution, such as candidate gene studies, linkage studies, and genome-wide association studies (GWAS) as well as other clinical and meta-analysis studies that have identified putative candidate genes. With the advent of newer cutting-edge technologies, identifying the genetic components in DR has played an important role in understanding DR incidence, progression, and response to treatment, thereby developing newer therapeutic targets and therapies.
Collapse
|
22
|
Fan CH, Wei KC, Chiu NH, Liao EC, Wang HC, Wu RY, Ho YJ, Chan HL, Wang TSA, Huang YZ, Hsieh TH, Lin CH, Lin YC, Yeh CK. Sonogenetic-Based Neuromodulation for the Amelioration of Parkinson's Disease. NANO LETTERS 2021; 21:5967-5976. [PMID: 34264082 DOI: 10.1021/acs.nanolett.1c00886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sonogenetics is a promising strategy allowing the noninvasive and selective activation of targeted neurons in deep brain regions; nevertheless, its therapeutic outcome for neurodegeneration diseases that need long-term treatment remains to be verified. We previously enhanced the ultrasound (US) sensitivity of targeted cells by genetic modification with an engineered auditory-sensing protein, mPrestin (N7T, N308S). In this study, we expressed mPrestin in the dopaminergic neurons of the substantia nigra in Parkinson's disease (PD) mice and used 0.5 MHz US for repeated and localized brain stimulation. The mPrestin expression in dopaminergic neurons persisted for at least 56 days after a single shot of adeno-associated virus, suggesting that the period of expression was long enough for US treatment in mice. Compared to untreated mice, US stimulation ameliorated the dopaminergic neurodegeneration 10-fold and mitigated the PD symptoms of the mice 4-fold, suggesting that this sonogenetic strategy has the clinical potential to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Kuo-Chen Wei
- New Taipei Municipal TuCheng Hospital, New Taipei City 236017, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, and Chang Gung University, Taoyuan 33305, Taiwan
| | | | | | | | - Ruo-Yu Wu
- Department of Chemistry, National Taiwan University, Taipei 106319, Taiwan
| | | | | | | | | | | | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 106319, Taiwan
| | | | | |
Collapse
|
23
|
Silva-Silva JV, Moragas-Tellis CJ, Chagas MSS, Souza PVR, Moreira DL, de Souza CSF, Teixeira KF, Cenci AR, de Oliveira AS, Almeida-Souza F, Behrens MD, Calabrese KS. Carajurin: a anthocyanidin from Arrabidaea chica as a potential biological marker of antileishmanial activity. Biomed Pharmacother 2021; 141:111910. [PMID: 34323692 DOI: 10.1016/j.biopha.2021.111910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Leishmaniasis is a group of neglected tropical diseases whose treatment with antimonials bears limitations and has changed little in over 80 years. Medicinal plants have been evaluated as a therapeutic alternative for leishmaniasis. Arrabidaea chica is popularly used as a wound healing and antiparasitic agent, especially as leishmanicidal agent. This study examined the leishmanicidal activity of a crude extract (ACCE), an anthocyanidin-rich fraction (ACAF), and three isolated anthocyanidins from A. chica: carajurin, 3'-hydroxy-carajurone, and carajurone. We evaluated the antileishmanial activity against promastigote and intracellular amastigote forms of Leishmania amazonensis and determined cytotoxicity in BALB/c peritoneal macrophages, as well as nitrite quantification, using the Griess method. Molecular docking was carried out to evaluate interactions of carajurin at the nitric oxide synthase enzyme. All compounds were active against promastigotes after 72 h, with IC50 values of 101.5 ± 0.06 μg/mL for ACCE and 4.976 ± 1.09 μg/mL for ACAF. Anthocyanidins carajurin, 3'-hydroxy-carajurone, and carajurone had IC50 values of 3.66 ± 1.16, 22.70 ± 1.20, and 28.28 ± 0.07 μg/mL, respectively. The cytotoxicity assay after 72 h showed results ranging from 9.640 to 66.74 µg/mL for anthocyanidins. ACAF and carajurin showed selectivity against intracellular amastigote forms (SI> 10), with low cytotoxicity within 24 h, a statistically significant reduction in all infection parameters, and induced nitrite production. Molecular docking studies were developed to understand a possible mechanism of activation of the nitric oxide synthase enzyme, which leads to an increase in the production of nitric oxide observed in the other experiments reported. These results encourage us to suggest carajurin as a biological marker of A. chica.
Collapse
Affiliation(s)
- João Victor Silva-Silva
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Carla J Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Maria S S Chagas
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Paulo Victor R Souza
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Student on Postgraduate Program in Translational Research in Drugs and Medicines, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Davyson L Moreira
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Research Directorate of the Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro, RJ, 22460-030, Brazil.
| | - Celeste S F de Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Arthur R Cenci
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education. Federal University of Santa Catarina, Blumenau, SC, Brazil.
| | - Fernando Almeida-Souza
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Postgraduate Program in Animal Science, State University of Maranhão, São Luis, MA, Brazil.
| | - Maria D Behrens
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Kátia S Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
24
|
Suga Y, Takahashi Y, Shimada T, Yamada S, Morishita E, Asakura H. Effect of NOS Inhibitors and Anticoagulants on Nitric Oxide Production in a Tissue-factor Induced Rat DIC Model. In Vivo 2021; 35:1999-2004. [PMID: 34182474 DOI: 10.21873/invivo.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM We examined the mechanism of nitric oxide (NO) production in a tissue-factor (TF)-induced disseminated intravascular coagulation (DIC) model in rats, using inducible nitric oxide synthase (iNOS) inhibitor (L-NIL), endothelial nitric oxide synthase (eNOS) inhibitor (L-NAME), Factor Xa inhibitor (DX-9065a), and thrombin inhibitor argatroban. MATERIALS AND METHODS Experimental DIC was induced by sustained infusion of 3.75 U/kg TF for 4 h via the tail vein. We then investigated the effect of these four agents on TF-induced DIC. RESULTS Administration of L-NIL or L-NAME during induction of TF-induced DIC did not affect hemostatic markers, whereas elevated plasma levels of NO metabolites (NOX) were significantly suppressed by co-administration of L-NAME. A significant increase in eNOS-mRNA expression was observed in the TF-induced DIC model. Argatroban almost completely suppressed eNOS-mRNA expression. CONCLUSION eNOS plays an important role in the NO production in the TF-induced DIC, and thrombin is a key stimulant of eNOS-mRNA expression in this model.
Collapse
Affiliation(s)
- Yukio Suga
- Department of Clinical Pharmacy and Healthcare Science, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan;
| | - Yoko Takahashi
- Department of Clinical Pharmacy and Healthcare Science, Faculty of Pharmacy, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University, Kanazawa, Japan
| | - Tsutomu Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Kanazawa, Japan
| | - Shinya Yamada
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Eriko Morishita
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hidesaku Asakura
- Department of Hematology, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
25
|
Sljivancanin Jakovljevic T, Kontic-Vucinic O, Nikolic N, Carkic J, Stamenkovic J, Soldatovic I, Milasin J. Association Between Endothelial Nitric Oxide Synthase (eNOS) -786 T/C and 27-bp VNTR 4b/a Polymorphisms and Preeclampsia Development. Reprod Sci 2021; 28:3529-3539. [PMID: 34046868 DOI: 10.1007/s43032-021-00632-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to analyze the distribution of genotypes and haplotypes of functional eNOS gene polymorphisms in the promoter (-786 T/C), intron 4 (VNTR4b/a) and exon 7 (894 G/T), in Serbian population of pregnant women, and establish a possible association between these polymorphisms and preeclampsia development. DNA was isolated from venous blood samples of 50 heathy pregnant women and 50 preeclampsia patients. Polymerase Chain Reaction/Restriction Fragment Length Polymorphism (PCR/RFLP) technique, with appropriate sets of primers and specific restriction enzymes, was used to determine polymorphisms in eNOS gene. Statistical analysis was done using the SPSS and HAPLOVIEW software packages. eNOS -786 T/C polymorphism was significantly associated with preeclampsia (P = 0.006). Homozygotes for the VNTR polymorphism had also an elevated risk of developing preeclampsia (OR=7.68, 95%CI (0.89-65.98)), especially the mild (OR=9.33, 95%CI (0.98-88.57)) and late form (OR=8.52, 95%CI (0.90-80.58)). The 894 G/T polymorphism was not associated with preeclampsia. "G-C-b" and "T-4a-T" haplotypes were more frequent in preeclampsia, though without reaching statistical significance. -786 T/C and VNTR 4b/a eNOS gene polymorphisms were associated with preeclampsia risk in Serbian patients.
Collapse
Affiliation(s)
| | - Olivera Kontic-Vucinic
- Department of Human Reproduction, The Clinic for Obstetrics and Gynecology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nadja Nikolic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Carkic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Stamenkovic
- Department of Human Reproduction, The Clinic for Obstetrics and Gynecology, Clinical Center of Serbia, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Soldatovic
- Institute of Medical Statistics and Informatics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
26
|
Desposito D, Schiessl IM, Gyarmati G, Riquier-Brison A, Izuhara AK, Kadoya H, Der B, Shroff UN, Hong YK, Peti-Peterdi J. Serial intravital imaging captures dynamic and functional endothelial remodeling with single-cell resolution. JCI Insight 2021; 6:123392. [PMID: 33848265 PMCID: PMC8262275 DOI: 10.1172/jci.insight.123392] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells are important in the maintenance of healthy blood vessels and in the development of vascular diseases. However, the origin and dynamics of endothelial precursors and remodeling at the single-cell level have been difficult to study in vivo owing to technical limitations. Therefore, we aimed to develop a direct visual approach to track the fate and function of single endothelial cells over several days and weeks in the same vascular bed in vivo using multiphoton microscopy (MPM) of transgenic Cdh5-Confetti mice and the kidney glomerulus as a model. Individual cells of the vascular endothelial lineage were identified and tracked owing to their unique color combination, based on the random expression of cyan/green/yellow/red fluorescent proteins. Experimental hypertension, hyperglycemia, and laser-induced endothelial cell ablation rapidly increased the number of new glomerular endothelial cells that appeared in clusters of the same color, suggesting clonal cell remodeling by local precursors at the vascular pole. Furthermore, intravital MPM allowed the detection of distinct structural and functional alterations of proliferating endothelial cells. No circulating Cdh5-Confetti+ cells were found in the renal cortex. Moreover, the heart, lung, and kidneys showed more significant clonal endothelial cell expansion compared with the brain, pancreas, liver, and spleen. In summary, we have demonstrated that serial MPM of Cdh5-Confetti mice in vivo is a powerful technical advance to study endothelial remodeling and repair in the kidney and other organs under physiological and disease conditions.
Collapse
Affiliation(s)
- Dorinne Desposito
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Ina Maria Schiessl
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Georgina Gyarmati
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Anne Riquier-Brison
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Audrey K Izuhara
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Hiroyuki Kadoya
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Balint Der
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Urvi Nikhil Shroff
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Janos Peti-Peterdi
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, and
| |
Collapse
|
27
|
Zhao J, Liu Z, Chang Z. Lipopolysaccharide induces vascular endothelial cell pyroptosis via the SP1/RCN2/ROS signaling pathway. Eur J Cell Biol 2021; 100:151164. [PMID: 34004559 DOI: 10.1016/j.ejcb.2021.151164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/02/2023] Open
Abstract
Endothelial cell pyroptosis is a novel cause of endothelial dysfunction in sepsis. Reticulocalbin-2 (RCN2) is involved in regulating vascular inflammation and plays an important role in the cardiovascular system. However, the role of RCN2 in inflammation-induced endothelial cell pyroptosis remains to be explored. Here, we found that RCN2 was upregulated after lipopolysaccharide (LPS) treatment in a concentration- and time-dependent manner. RCN2 knockdown resulted in a significant decrease in pyroptosis, reduced LDH and IL-1β release and ROS production and inhibited the expression of pyroptosis-related proteins (NLRP3, cleaved caspase-1, and cleaved GSDMD) (all p < 0.05). N-acetyl-L-cysteine (NAC) counteracted the effects of RCN2 on pyroptosis (all p < 0.01). The silencing of RCN2 antagonized the inhibitory effect of LPS on the phosphorylation of eNOS (p < 0.05). We predicted and confirmed that specificity protein-1(SP1) could directly bind to the RCN2 promoter and regulate RCN2. RCN2 overexpression rescued the inhibitory effect of SP1 inhibitor on HUVEC pyroptosis induced by LPS (all p < 0.05). These findings suggested that the activation of the SP1/RCN2/ROS signaling pathway could promote LPS-induced endothelial cell pyroptosis.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
28
|
Adams JA, Uryash A, Lopez JR, Sackner MA. The Endothelium as a Therapeutic Target in Diabetes: A Narrative Review and Perspective. Front Physiol 2021; 12:638491. [PMID: 33708143 PMCID: PMC7940370 DOI: 10.3389/fphys.2021.638491] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes has reached worldwide epidemic proportions, and threatens to be a significant economic burden to both patients and healthcare systems, and an important driver of cardiovascular mortality and morbidity. Improvement in lifestyle interventions (which includes increase in physical activity via exercise) can reduce diabetes and cardiovascular disease mortality and morbidity. Encouraging a population to increase physical activity and exercise is not a simple feat particularly in individuals with co-morbidities (obesity, heart disease, stroke, peripheral vascular disease, and those with cognitive and physical limitations). Translation of the physiological benefits of exercise within that vulnerable population would be an important step for improving physical activity goals and a stopgap measure to exercise. In large part many of the beneficial effects of exercise are due to the introduction of pulsatile shear stress (PSS) to the vascular endothelium. PSS is a well-known stimulus for endothelial homeostasis, and induction of a myriad of pathways which include vasoreactivity, paracrine/endocrine function, fibrinolysis, inflammation, barrier function, and vessel growth and formation. The endothelial cell mediates the balance between vasoconstriction and relaxation via the major vasodilator endothelial derived nitric oxide (eNO). eNO is critical for vasorelaxation, increasing blood flow, and an important signaling molecule that downregulates the inflammatory cascade. A salient feature of diabetes, is endothelial dysfunction which is characterized by a reduction of the bioavailability of vasodilators, particularly nitric oxide (NO). Cellular derangements in diabetes are also related to dysregulation in Ca2+ handling with increased intracellular Ca2+overload, and oxidative stress. PSS increases eNO bioavailability, reduces inflammatory phenotype, decreases intracellular Ca2+ overload, and increases antioxidant capacity. This narrative review and perspective will outline four methods to non-invasively increase PSS; Exercise (the prototype for increasing PSS), Enhanced External Counterpulsation (EECP), Whole Body Vibration (WBV), Passive Simulated Jogging and its predicate device Whole Body Periodic Acceleration, and will discuss current knowledge on their use in diabetes.
Collapse
Affiliation(s)
- Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Marvin A Sackner
- Department of Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
29
|
Ruan Y, Jiang S, Gericke A. Age-Related Macular Degeneration: Role of Oxidative Stress and Blood Vessels. Int J Mol Sci 2021; 22:ijms22031296. [PMID: 33525498 PMCID: PMC7866075 DOI: 10.3390/ijms22031296] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.
Collapse
Affiliation(s)
- Yue Ruan
- Correspondence: (Y.R.); (A.G.); Tel.: +49-6131-178-276 (Y.R. & A.G.)
| | | | - Adrian Gericke
- Correspondence: (Y.R.); (A.G.); Tel.: +49-6131-178-276 (Y.R. & A.G.)
| |
Collapse
|
30
|
Jalel A, Midani F, Fredj SH, Messaoud T, Hentati F, Soualmia H. Association of BglII Polymorphism in ITGA2 and (894G/T and -786T/C) Polymorphisms in eNOS Gene With Stroke Susceptibility in Tunisian Patients α2 Gene Polymorphism in α2β1 Integrin and eNOS Gene Variants and Stroke. Biol Res Nurs 2020; 23:408-417. [PMID: 33297767 DOI: 10.1177/1099800420977685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study investigated the association of BglII polymorphism in α2β1 integrin gene (ITGA2) and eNOS (894G/T and -786T/C) polymorphisms with ischemic stroke (IS) in Tunisian patients. METHODS The study comprised 210 patients with IS and 208 controls. The genotypes of the BglII polymorphism in ITGA2 and eNOS (894G/T and -786T/C) polymorphisms were determined using the PCR-RFLP. The χ2 test was used and the genotype data comparison included heterozygous groups. Haplotype estimation and multiple logistic regression analysis were performed to analyze the significance of polymorphisms. RESULTS The genotype distribution of the BglII polymorphism was significantly different between cases and controls (p < 0.004). This polymorphism was associated with the risk of IS (OR = 3.38, p < 0.001) for the BglII(+/+) genotype. Likewise, the genotype distributions of eNOS (894G/T and -786T/C) polymorphisms were significantly different between the two groups (p < 0.005 and p < 0.01, respectively). The 894G/T polymorphism increased the risk of IS for the TT genotype (OR = 2.23, p < 0.008) and the GT genotype (OR = 1.74, p < 0.009). In addition, the -786T/C variant in the eNOS gene was a risk factor for IS for CC homozygous (OR = 2.52, p < 0.005). T-C Haplotype (OR = 3.06) from combination of the eNOS (894G/T and -786T/C) and T-C-BglII(+) haplotype (OR = 2.76) from combination of eNOS and ITGA2 polymorphisms represented high risks for IS. CONCLUSIONS This study suggests that the BglII variant in ITGA2 is associated with IS susceptibility. Furthermore, the 894G/T and -786T/C polymorphisms in the eNOS gene may be considered as genetic risk factors for IS in the Tunisian population.
Collapse
Affiliation(s)
- Akrem Jalel
- University of Tunis El Manar, High Institute of Medical Technologies of Tunis, Tunisia
| | - Fatma Midani
- University of Tunis El Manar, High Institute of Medical Technologies of Tunis, Tunisia.,University of Carthage, Faculty of Sciences of Bizerte, Tunis, Tunisia
| | - Sondess Hadj Fredj
- University of Tunis El Manar, Research Laboratory "LR99ES11," Biochemistry Laboratory, Children' Hospital, Tunis, Tunisia
| | - Taieb Messaoud
- University of Tunis El Manar, Research Laboratory "LR99ES11," Biochemistry Laboratory, Children' Hospital, Tunis, Tunisia
| | - Fayçal Hentati
- University of Tunis El Manar, Faculty of Medicine, Neuroscience Department, Tunis, Tunisia.,37964University of Tunis El Manar, Neurology Department, Mongi Ben Hmida National Institute of Neurology, Tunis, Tunisia
| | - Hayet Soualmia
- University of Tunis El Manar, High Institute of Medical Technologies of Tunis, Tunisia
| |
Collapse
|
31
|
Activating CD137 Signaling Promotes Sprouting Angiogenesis via Increased VEGFA Secretion and the VEGFR2/Akt/eNOS Pathway. Mediators Inflamm 2020; 2020:1649453. [PMID: 33162828 PMCID: PMC7604604 DOI: 10.1155/2020/1649453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022] Open
Abstract
Combination of antiangiogenesis and immunotherapy may be an effective strategy for treatment of solid tumors. Our previous work reported that activation of CD137 signaling promotes intraplaque angiogenesis. A number of studies have demonstrated that vascular endothelial growth factor receptor 2 (VEGFR2) is a key target for angiogenesis. However, it is unknown whether CD137-mediated angiogenesis is related to VEGFR2. In this study, we investigated the effect of CD137 on the VEGFR2 expression and explored the underlying mechanisms of CD137-mediated angiogenesis. Knock-out of CD137 in ApoE−/− mice significantly decreased neovessel density in atherosclerotic plaques. CD137 silencing or inhibition attenuated endothelial cell (ECs) proliferation, migration, and tube formation. We found activation of CD137 signaling for increased VEGFR2 transcription and translation steadily. Moreover, CD137 signaling activated phosphorylated VEGFR2 (Tyr1175) and the downstream Akt/eNOS pathway, whereas neutralizing CD137 signaling weakened the activation of VEGFR2 and the downstream Akt/eNOS pathway. The aortic ring assay further demonstrated that CD137 signaling promoted ECc sprouting. Inhibition of VEGFR2 by siRNA or XL184 (cabozantinib) and inhibition of downstream signaling by LY294002 (inhibits AKT activation) and L-NAME (eNOS inhibitor) remarkably abolished proangiogenic effects of CD137 signaling both in vitro and ex vivo. In addition, the condition medium from CD137-activated ECs and vascular endothelial growth factor A (VEGFA) had similar effects on ECs that expressed high VEGFR2. Additionally, activating CD137 signaling promoted endothelial secretion of VEGFA, while blocking CD137 signaling attenuated VEGFA secretion. In conclusion, activation of CD137 signaling promoted sprouting angiogenesis by increased VEGFA secretion and the VEGFR2/Akt/eNOS pathway. These findings provide a basis for stabilizing intraplaque angiogenesis through VEGFR2 intervatioin, as well as cancer treatment via combination of CD137 agonists and specific VEGFR2 inhibitors.
Collapse
|
32
|
Tropea T, Greenwood SL, Sibley CP, Cottrell EC. Grape Seed Extract Polyphenols Improve Resistance Artery Function in Pregnant eNOS -/- Mice. Front Physiol 2020; 11:588000. [PMID: 33240108 PMCID: PMC7677241 DOI: 10.3389/fphys.2020.588000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022] Open
Abstract
Hypertension during pregnancy is a leading cause of maternal and fetal morbidity and mortality worldwide, increasing the risk of complications including preeclampsia, intracerebral hemorrhage and fetal growth restriction. Increased oxidative stress is known to contribute to poor vascular function; however, trials of antioxidant supplementation have raised concerns about fetal outcomes, including risk of low birthweight. Grape seed extract polyphenols (GSEP) have been suggested to promote cardiovascular protection, at least in part through antioxidant actions. We tested the hypothesis that administration of GSEP during pregnancy would reduce oxidative stress and improve resistance artery function with no detrimental effects on fetal growth, in an established model of maternal hypertension associated with vascular dysfunction, the endothelial NO synthase knockout (eNOS-/-) mouse. Pregnant C57BL/6J (WT) and eNOS-/- mice received either GSEP (200 mg/kg/day) or drinking water, between gestational (GD) day 10.5 and GD18.5. At GD17.5, maternal systolic blood pressure (SBP) was measured; at GD18.5, maternal malondialdehyde (MDA) concentrations, vascular function of aortic, mesenteric, uterine and posterior cerebral arteries was assessed, and fetal outcome evaluated. GSEP reduced maternal SBP (P < 0.01) and plasma MDA concentrations (P < 0.01) in eNOS-/- mice. Whilst there was no effect of GSEP on vascular reactivity of aortas, GSEP improved endothelial-dependent relaxation in mesenteric and uterine arteries of eNOS-/- mice (P < 0.05 and P < 0.001, respectively) and normalized lumen diameters of pressurized posterior cerebral arteries in eNOS-/- mice (P < 0.001). Supplementation with GSEP had no effect in WT mice and did not affect fetal outcomes in either genotype. Our data suggest that GSEP improve resistance artery function, potentially through antioxidant actions, and provide a basis to further investigate these beneficial effects including in the prevention of intracerebral hemorrhage. Maternal supplementation with GSEP may be a safe intervention to improve outcomes in pregnancies associated with hypertension and vascular dysfunction.
Collapse
Affiliation(s)
- Teresa Tropea
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Susan L Greenwood
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Colin P Sibley
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| | - Elizabeth C Cottrell
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, St. Mary's Hospital, Manchester, United Kingdom
| |
Collapse
|
33
|
Choi EK, Jung H, Jeon S, Lim JA, Lee J, Kim H, Hong SW, Jang MH, Lim DG, Kwak KH. Role of Remote Ischemic Preconditioning in Hepatic Ischemic Reperfusion Injury. Dose Response 2020; 18:1559325820946923. [PMID: 32848526 PMCID: PMC7427033 DOI: 10.1177/1559325820946923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
The effect of remote ischemic preconditioning (RIPC) has been proposed that mediates the protective response in ischemia reperfusion injury (IRI) of various organs. In this study, we investigated the effect of RIPC in hepatic IRI, by assessing biomarker of oxidative stress and inflammatory cytokines. Moreover, we intended to demonstrate any such protective effect through nitric oxide (NO). Twenty-five rats were divided into the 5 groups: (1) Sham; (2) RIPC; (3) hepatic IRI; (4) RIPC + hepatic IRI; (5) C-PTIO, 2-(4-carboxyphenyl)-4,5dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3oxide, + RIPC + hepatic IRI. RIPC downregulated the level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), histologic damage, and activity of Malondialdehyde (MDA). However, there was no significant reduction in the level of tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB). AST and ALT levels, and hepatic tissue morphology in the C-PTIO group showed a significant improvement compared to those of the RIPC + hepatic IRI group. The application of RIPC before hepatic ischemia downregulated the oxidative stress, not the inflammatory cytokines. Moreover, these protective effect of RIPC would be mediated through the activation of NO as well as anti-oxidant effect.
Collapse
Affiliation(s)
- Eun Kyung Choi
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmin Jeon
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jung A Lim
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jungwon Lee
- Department of Anesthesiology and Pain Medicine, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hyunjee Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seong Wook Hong
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Min Hye Jang
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Dong Gun Lim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Hwa Kwak
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
34
|
Roy A, Saqib U, Wary K, Baig MS. Macrophage neuronal nitric oxide synthase (NOS1) controls the inflammatory response and foam cell formation in atherosclerosis. Int Immunopharmacol 2020; 83:106382. [DOI: 10.1016/j.intimp.2020.106382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/07/2023]
|
35
|
Wu H, Lu L, Chen J, Zhang C, Liu W, Zhuang S. Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2922-2930. [PMID: 32022550 DOI: 10.1021/acs.est.9b07163] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) from the direct atmospheric emission or the degradation of parent PAHs are increasingly recognized because of their potential health risks. Herein, we investigated the effects of four NPAHs/OPAHs (1-NNAP, 9-NANT, 9,10-AQ, and 9-FLU) and their parent PAHs (NAP, ANT, and FLU) on endothelium function with regard to endothelial nitric oxide synthase (eNOS) and endothelium-derived nitric oxide (NO) production in human umbilical vein endothelial cells. The eNOS enzymatic activity and NO production were promoted by NAP, ANT, and FLU; however, eNOS activity was dropped by 52.8, 52.1, 52.5, and 44.5%, and NO production was decreased by 31.1, 50.3, 65.0, and 35.0% after 24 h exposure to 0.01 μM 1-NNAP, 9-NANT, 9,10-AQ, and 9-FLU, respectively. The mRNA expression of eNOS and protein expression of phosphorylated eNOS (Ser1177) were increased by three PAHs but decreased by four NPAHs/OPAHs. The 100 ns molecular dynamics simulations reveal the conformational alteration in the key propionate of heme upon the binding of NPAHs/OPAHs. Our findings provide the first in silico and in vitro evidence for the potential endothelial dysfunction of nitrated and oxygenated PAHs. The health risk implications of NPAHs/OPAHs and corresponding parent PAHs warrant further research.
Collapse
Affiliation(s)
- Hao Wu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayan Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston 77058, Texas, United States
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Lin H, Wang X. The effects of gasotransmitters on bronchopulmonary dysplasia. Eur J Pharmacol 2020; 873:172983. [PMID: 32017936 DOI: 10.1016/j.ejphar.2020.172983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Bronchopulmonary dysplasia (BPD), which remains a major clinical problem for preterm infants, is caused mainly by hyperoxia, mechanical ventilation and inflammation. Many approaches have been developed with the aim of decreasing the incidence of or alleviating BPD, but effective methods are still lacking. Gasotransmitters, a type of small gas molecule that can be generated endogenously, exert a protective effect against BPD-associated lung injury; nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are three such gasotransmitters. The protective effects of NO have been extensively studied in animal models of BPD, but the results of these studies are inconsistent with those of clinical trials. NO inhalation seems to have no effect on BPD, although side effects have been reported. NO inhalation is not recommended for BPD treatment in preterm infants, except those with severe pulmonary hypertension. Both CO and H2S decreased lung injury in BPD rodent models in preclinical studies. Another small gas molecule, hydrogen, exerts a protective effect against BPD. The nuclear factor erythroid-derived 2 (Nrf2)/heme oxygenase-1 (HO-1) axis seems to play a central role in the protective effect of these gasotransmitters on BPD. Gasotransmitters play important roles in mammals, but further clinical trials are needed to explore their effects on BPD.
Collapse
Affiliation(s)
- Hai Lin
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xinbao Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
37
|
Development of a novel aortic dissection mouse model and evaluation of drug efficacy using in-vivo assays and database analyses. J Hypertens 2020; 37:73-83. [PMID: 30303488 DOI: 10.1097/hjh.0000000000001898] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Aortic dissection is a life-threatening disease. At present, the only therapeutic strategies available are surgery and antihypertensive drugs. Moreover, the molecular mechanisms underlying the onset of aortic dissection are still unclear. We established a novel aortic dissection model in mice using pharmacologically induced endothelial dysfunction. We then used the Japanese Adverse Drug Event Report database to investigate the role of pitavastatin in preventing the onset of aortic dissection. METHODS AND RESULTS To induce endothelial dysfunction, Nω-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, was administered to C57BL/6 mice. Three weeks later, angiotensin II (Ang II) and β-aminopropionitrile (BAPN), a lysyl oxidase inhibitor, were administered with osmotic mini-pumps. False lumen formation was used as the pathological determinant of aortic dissection. The incidences of aortic dissection and death from aneurysmal rupture were significantly higher in the Nω-nitro-L-arginine methyl ester, Ang II, and BAPN (LAB) group than they were in the Ang II and BAPN (AB) group.Pitavastatin was administered orally to LAB mice. It significantly lowered the incidences of dissection and rupture. It also decreased inflammation and medial degradation, both of which were exacerbated in the LAB group. The Japanese Adverse Drug Event Report database analysis indicated that there were 113 cases of aortic dissection out of 95 090 patients (0.12%) not receiving statins but only six cases out of 16 668 patients receiving statins (0.04%) (odds ratio: 0.30; P = 0.0043). CONCLUSION Our results suggest that endothelial dysfunction is associated with the onset of aortic dissection and pitavastatin can help prevent this condition.
Collapse
|
38
|
Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, Yang Q, Jia L, Liang Z, Kang L. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res 2020; 153:104678. [PMID: 32014572 DOI: 10.1016/j.phrs.2020.104678] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy (DN), a kind of microvascular complication, is a primary cause of end-stage renal disease worldwide. However, therapeutic drugs for DN treatment are still in lack. The glomerular endothelium is essential to maintain selective permeability of glomerular filtration barrier and glomerular vasculature function. Growing evidences show that endothelial dysfunction or injury is the initial stage of vascular damage in DN, which can be induced by hyperglycemia, lipotoxicity, and inflammation. Therefore, to improve the function of vascular endothelium in kidney is a key point for treatment of DN. As a plant isoflavone, tectorigenin (TEC) has attracted considerable attention due to its anti-proliferative and anti-inflammatory functions. However, whether TEC could inhibit the DN development remains unknown. In this study, we examined the effects of TEC on DN development in db/db mice, a type of genetic defect diabetic mice that can spontaneously develop into severe renal dysfunction. Intriguingly, TEC treatment restored diabetes-induced glucose and lipid metabolic disorder; and improved the deterioration of renal function, particularly the renal endothelium function in db/db mice. Additionally, TEC inhibited the renal inflammation via reducing macrophages infiltration and M1 polarization. Moreover, TEC inhibited lipopolysaccharide (LPS)-induced endothelial injury and M1 polarization in vitro. Mechanistically, TEC partially restored the reduction in expression of adiponectin receptor 1/2 (AdipoR1/2), pi-LKB1, pi-AMPKα, and PPARα in vitro and in vivo. Noteworthy, these beneficial pharmacological activities mediated by TEC were significantly attenuated after AdipoR1/2 knockdown by siRNA, indicating that AdipoR1/2 plays a critical role in protection against DN. Collectively, these results suggested that TEC have a potently effect for retarding type 2 diabetes-associated DN.
Collapse
Affiliation(s)
- Shu Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Han Wu
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China; Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Fengyi Yuan
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Guangyan Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Qi Yang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Lijing Jia
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Zhen Liang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| | - Lin Kang
- Department of Endocrinology, The 2nd Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.
| |
Collapse
|
39
|
Fan Y, Fan H, Zhu B, Zhou Y, Liu Q, Li P. Astragaloside IV protects against diabetic nephropathy via activating eNOS in streptozotocin diabetes-induced rats. Altern Ther Health Med 2019; 19:355. [PMID: 31805910 PMCID: PMC6896771 DOI: 10.1186/s12906-019-2728-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Astragaloside IV (AS-IV) was reported to play a role in improving diabetic nephropathy (DN), however, the underlying mechanisms still remain unclear. The aim of the present study is to investigate whether AS-IV ameliorates DN via the regulation of endothelial nitric oxide synthase (eNOS). METHODS DN model was induced in Sprague-Dawley (SD) male rats by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Rats in the AS-IV treatment group were orally gavaged with 5 mg/kg/day or 10 mg/kg/day AS-IV for eight consecutive weeks. Body weight, blood glucose, blood urea nitrogen (BUN), Serum creatinine (Scr), proteinuria and Glycosylated hemoglobin (HbA1c) levels were measured. Hematoxylin-Eosin (HE) and Periodic Acid-Schiff (PAS) staining were used to detect the renal pathology. The apoptosis status of glomerular cells was measured by TUNEL assay. The phosphorylation and acetylation of eNOS were detected by western blot. The effects of AS-IV on high-glucose (HG)-induced apoptosis and eNOS activity were also investigated in human renal glomerular endothelial cells (HRGECs) in vitro. RESULTS Treatment with AS-IV apparently reduced DN symptoms in diabetic rats, as evidenced by reduced BUN, Scr, proteinuria, HbA1c levels and expanding mesangial matrix. AS-IV treatment also promoted the synthesis of nitric oxide (NO) in serum and renal tissues and ameliorated the phosphorylation of eNOS at Ser 1177 with decreased eNOS acetylation. Moreover, HG-induced dysfunction of HRGECs including increased cell permeability and apoptosis, impaired eNOS phosphorylation at Ser 1177, and decreased NO production, were all reversed by AS-IV treatment. CONCLUSIONS These novel findings suggest that AS-IV ameliorates functional abnormalities of DN through inhibiting acetylation of eNOS and activating its phosphorylation at Ser 1177. AS-IV could be served as a potential therapeutic drug for DN.
Collapse
|
40
|
Crucitta S, Restante G, Del Re M, Bertolini I, Bona E, Rofi E, Fontanelli L, Gianfilippo G, Fogli S, Stasi I, Ghilli M, Fontana A, Danesi R. Endothelial nitric oxide synthase c.-813C>T predicts for proteinuria in metastatic breast cancer patients treated with bevacizumab-based chemotherapy. Cancer Chemother Pharmacol 2019; 84:1219-1227. [PMID: 31529205 DOI: 10.1007/s00280-019-03933-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/21/2019] [Indexed: 02/03/2023]
Abstract
PURPOSE To investigate the association between single nucleotide polymorphisms (SNPs) in endothelial nitric oxide synthase (eNOS) and interleukin-8 (IL-8) genes and risk of developing bevacizumab-related adverse events in metastatic breast cancer (mBC) patients. PATIENTS AND METHODS mBC patients candidate to receive bevacizumab-based chemotherapy were enrolled in this pharmacogenetic study. eNOS c.-813C>T and c.894G>T, and IL-8 c.-251A>T were analyzed by real time PCR on genomic DNA extracted from peripheral blood. Univariate analysis was performed to test the association between each SNP and treatment-related toxicities. RESULTS Seventy-six mBC patients were enrolled in the present study. Patients carrying the homozygous variant eNOS c.-813TT genotype showed a statistically significant occurrence of any grade proteinuria when compared to CT or CC genotypes (p = 0.004). No significant association of proteinuria with IL-8 SNP or hypertension with selected eNOS and IL-8 SNPs was found. CONCLUSIONS These findings suggest an association between the eNOS c.-813C>T polymorphism and the development of proteinuria in mBC patients receiving a bevacizumab-based chemotherapy.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy.
| | - Ilaria Bertolini
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Eleonora Bona
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Lorenzo Fontanelli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Giulia Gianfilippo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Stefano Fogli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - Irene Stasi
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Matteo Ghilli
- Unit of Breast Surgery, Breast Cancer Centre, University Hospital of Pisa, Pisa, Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| |
Collapse
|
41
|
Rasmussen PM, Aamand R, Weitzberg E, Christiansen M, Østergaard L, Lund TE. APOE gene-dependent BOLD responses to a breath-hold across the adult lifespan. NEUROIMAGE-CLINICAL 2019; 24:101955. [PMID: 31408838 PMCID: PMC6699560 DOI: 10.1016/j.nicl.2019.101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 11/03/2022]
Abstract
Age and apolipoprotein E (APOE) e4 genotype are two of the strongest known risk factors for sporadic Alzheimer's disease (AD). Neuroimaging has shown hemodynamic response changes with age, in asymptomatic carriers of the APOE e4 allele, and in AD. In this study, we aimed to characterize and differentiate age- and APOE gene-specific hemodynamic changes to breath-hold and visual stimulation. A further aim was to study whether these responses were modulated by 3-day intake of nitrate, a nitric oxide (NO) source. The study was designed as a randomized, double-blinded, placebo-controlled crossover study, and the study cohort comprised 41 APOE e4 carriers (e3/e4 or e4/e4 genotype) and 40 non-carriers (e3/e3 genotype) aged 30-70 years at enrollment. The participants underwent two scanning sessions, each preceded by ingestion of sodium nitrate or sodium chloride (control). During functional magnetic resonance imaging (fMRI) sessions, participants performed two concurrent tasks; a breath-hold task to probe cerebrovascular reactivity and a visual stimulation task to evoke functional hyperemia, respectively. We found that the blood oxygenation level dependent (BOLD) hemodynamic response to breath-hold was altered in APOE e4 carriers relative to non-carriers. Mid-aged (50-60 years of age) e4 carriers exhibited a significantly increased peak time relative to mid-aged e3 carriers, and peak time for younger (30-40 years of age) e4 carriers was significantly shorter than that of mid-aged e4 carriers. The response width was significantly increased for e4 carriers. The response peak magnitude significantly decreased with age. For the visual stimulation task, we found age-related changes, with reduced response magnitude with age but no significant effect of APOE allele type. We found no effect of nitrate ingestion on BOLD responses evoked by the breath-hold and visual stimulation tasks. The APOE gene-dependent response to breath-hold may reflect NO-independent differences in vascular function.
Collapse
Affiliation(s)
- Peter M Rasmussen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Rasmus Aamand
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Torben E Lund
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Kaçmaz Y, Gürlertop HY, Turgay Yıldırım Ö, Akşit E, Aydın F. Koroner Arter Hastalığında Endotelyal Nitrik Oksit Sentaz Geninin Glu 298-Asp Ve T786-C Polimorfizmlerinin Araştırılması. ACTA MEDICA ALANYA 2019. [DOI: 10.30565/medalanya.469411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Zhao X, Yang F, Sun L, Zhang A. Association between NOS3 polymorphisms and osteonecrosis of the femoral head. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1423-1427. [PMID: 31007072 DOI: 10.1080/21691401.2019.1593995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaodong Zhao
- Department of Orthopaedics, Weifang Traditional Chinese Hospital, Weifang, China
| | - Fuqiang Yang
- Department of Orthopaedics, Eighty-ninth Hospital of the Chinese People’s Liberation Army, Weifang, China
| | - Luwei Sun
- Department of Orthopaedics, Weifang Traditional Chinese Hospital, Weifang, China
| | - Ali Zhang
- Department of Orthopaedics, Eighty-ninth Hospital of the Chinese People’s Liberation Army, Weifang, China
| |
Collapse
|
44
|
Nishikawa Y, Miki T, Awa M, Kuwata K, Tamura T, Hamachi I. Development of a Nitric Oxide-Responsive Labeling Reagent for Proteome Analysis of Live Cells. ACS Chem Biol 2019; 14:397-404. [PMID: 30715847 DOI: 10.1021/acschembio.8b01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO) is a pleiotropic signaling molecule involved in the regulation of diverse physiological and pathophysiological mechanisms in cardiovascular, nervous, and immunological systems. To understand the biological functions of NO in detail, comprehensive characterization of proteins found in high-NO concentration environments is crucial. Herein, we describe the design of NO-responsive protein labeling reagents based on N-alkoxyacyl- o-phenylenediamine as an optimal reactive scaffold. The designed molecules can label proteins in murine macrophage cells in response to endogenously produced NO. The combination of NO-responsive protein labeling and liquid chromatography-tandem mass spectrometry technology allowed the characterization of the proteome under NO-generated conditions. Moreover, we demonstrated that our reagent was able to selectively mark and be used to fluorescently visualize NO-producing cells in a mixed cell culture system.
Collapse
Affiliation(s)
- Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takayuki Miki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masashi Awa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
45
|
A combination of oral L-citrulline and L-arginine improved 10-min full-power cycling test performance in male collegiate soccer players: a randomized crossover trial. Eur J Appl Physiol 2019; 119:1075-1084. [PMID: 30847640 PMCID: PMC6469824 DOI: 10.1007/s00421-019-04097-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Oral L-citrulline (Cit) increases plasma L-arginine (Arg) concentration and the production of nitric oxide (NO). NO dilates blood vessels and potentially improves sports performance. The combination of oral Arg and Cit (Arg + Cit) immediately and synergistically increases plasma Arg and nitrite/nitrate (NOx) concentrations more than either Cit or Arg alone. This prompted us to assess the effects of oral Arg + Cit on 10-min cycling performance in a double-blind, randomized, placebo-controlled crossover trial. METHODS Twenty-four male soccer players ingested either Cit + Arg or placebo (both 1.2 g/day each) for 6 days. On day 7, they ingested Cit + Arg 1 h before performing a 10-min full-power pedaling test on a bicycle ergometer. Plasma NOx and amino acid levels were measured before and after the test, as well as the participants' subjective perception of physical exertion. RESULTS Power output was significantly greater with Cit + Arg than in the placebo group (242 ± 24 vs. 231 ± 21 W; p < 0.05). Plasma concentrations of post-exercise NOx (p < 0.05), Cit (p < 0.01) and Arg (p < 0.01) were significantly higher in the Cit + Arg than in the placebo group, whereas exercise upregulated plasma NOx concentrations in both groups (p < 0.05). Cit + Arg also gave improved post-exercise subjective perception of "leg muscle soreness" and "ease of pedaling" (both p < 0.05). CONCLUSION Seven days of oral Citrulline (1.2 g/d) and Arginine (1.2 g/d) ingestion improved 10-min cycling performance and the perception of physical exertion in male collegiate soccer players.
Collapse
|
46
|
Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide 2019; 85:35-43. [PMID: 30716418 DOI: 10.1016/j.niox.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/13/2018] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
Hypertension is a multifactorial disease associated with impaired nitric oxide (NO) production and bioavailability. In this respect, restoring NO activity by using nitrite and nitrate has been considered a potential therapeutic strategy to treat hypertension. This possibility is justified by the understanding that both nitrite and nitrate may be recycled back to NO and also promote the generation of other bioactive species. This process involves a complex biological circuit known as the enterosalivary cycle of nitrate, where this anion is actively taken up by the salivary glands and converted to nitrite by nitrate-reducing bacteria in the oral cavity. Nitrite is then ingested and reduced to NO and other nitroso species under the acid conditions of the stomach, whereas reminiscent nitrite that escapes gastric reduction is absorbed systemically and can be converted into NO by nitrite-reductases in tissues. While there is no doubt that nitrite and nitrate exert antihypertensive effects, several agents can impair the blood pressure responses to these anions by disrupting the enterosalivary cycle of nitrate. These agents include dietary and smoking-derived thiocyanate, antiseptic mouthwash, proton pump inhibitors, ascorbate at high concentrations, and xanthine oxidoreductase inhibitors. In this article, we provide an overview of the physiological aspects of nitrite and nitrate bioactivation and the therapeutic potential of these anions in hypertension. We also discuss mechanisms by which agents counteracting the antihypertensive responses to nitrite and nitrate mediate their effects. These critical aspects should be taken into consideration when suggesting nitrate or nitrite-based therapies to patients.
Collapse
Affiliation(s)
- Gustavo H Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Lucas C Pinheiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
47
|
Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:303-325. [PMID: 30316887 DOI: 10.1016/j.jep.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia is one of the largest and notable genera in Annonaceae family. Polyalthia species have been widely used in folklore medicine for the treatment of rheumatic fever, gastrointestinal ulcer and generalized body pain. Numerous in vitro and in vivo studies on Polyalthia Species have also corroborated the significant anti-inflammatory potential of its extracts and secondary metabolites. AIM OF THE STUDY This review is an attempt to assess the anti-inflammatory activity of Polyalthia species by giving critical appraisal and establishing evidences of their traditional uses. Moreover this review will highlight the lead compounds for future drug development that can serve as a potential anti-inflammatory drug with comparative efficacy and minimum side effects. MATERIALS AND METHODS An extensive literature review, focusing the anti-inflammatory potential of Polyalthia species was conducted using the following databases:PubMed, ScienceDirect, SpringerLink, Ovid, Scopus and ProQuest, as well as the locally available books, journals and relevant documents. The reference lists of retrieved papers were also searched for additional studies. RESULTS The Polyalthia species have shown significant anti-inflammatory activity through various mechanism of action. The most significant anti-inflammatory mechanism includes the inhibition of nuclear factor kappa B (NF-κB), prostaglandins (PGs), pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS). The data suggests that hydroxycleroda-3,13-dien-15,16-olide and 16-oxocleroda-3,13-dien-15-oic acid, quercetin, rutin, spinasterol, α-spinasterol, goniothalamin and (-)-5-hydroxygoniothalamin are the most potent anti-inflammatory compounds from Polyalthia species with comparable IC50 with positive controls. CONCLUSIONS Numerous pharmacological studies have supported the use of Polyalthia species against pain, rheumatic fever, haemorrhages and inflammation in traditional medicine. Flavonoids, diterpenoids, sterols and styrylpyrones from genus Polyalthia are the most significant class of compounds with potent anti-inflammatory activity. Secondary metabolites from these classes should be brought into further research to fill the gaps of knowledge in pharmacokinetics, pharmacodynamics, bioavailability, and toxicity in order to convert the pre-clinical results into clinical data for further investigation.
Collapse
Affiliation(s)
- Lui Jin Yao
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chiew Chia Hui
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Aimi Zakaria
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Oliveira-Paula GH, Tanus-Santos JE. Nitrite-stimulated Gastric Formation of S-nitrosothiols As An Antihypertensive Therapeutic Strategy. Curr Drug Targets 2019; 20:431-443. [DOI: 10.2174/1389450119666180816120816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
Hypertension is usually associated with deficient nitric oxide (NO) bioavailability, and therefore stimulating NO activity is an important antihypertensive strategy. Recently, many studies have shown that both nitrite and nitrate anions are not simple products of NO metabolism and indeed may be reduced back to NO. While enzymes with nitrite-reductase activity capable of generating NO from nitrite may contribute to antihypertensive effects of nitrite, another mechanism involving the generation of NO-related species in the stomach from nitrite has been validated. Under the acidic conditions of the stomach, nitrite generates NO-related species that form S-nitrosothiols. Conversely, drugs that increase gastric pH may impair the gastric formation of S-nitrosothiols, which may mediate antihypertensive effects of oral nitrite or nitrate. Therefore, it is now becoming clear that promoting gastric formation of S-nitrosothiols may result in effective antihypertensive responses, and this mechanism opens a window of opportunity in the therapy of hypertension. In this review, we discuss the recent studies supporting the gastric generation of S-nitrosothiols as a potential antihypertensive mechanism of oral nitrite. We also highlight some drugs that increase S-nitrosothiols bioavailability, which may also improve the responses to nitrite/nitrate therapy. This new approach may result in increased nitrosation of critical pharmacological receptors and enzymes involved in the pathogenesis of hypertension, which tend to respond less to their activators resulting in lower blood pressure.
Collapse
Affiliation(s)
- Gustavo H. Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
49
|
Lee KE, Kang YS. l-Citrulline restores nitric oxide level and cellular uptake at the brain capillary endothelial cell line (TR-BBB cells) with glutamate cytotoxicity. Microvasc Res 2018; 120:29-35. [DOI: 10.1016/j.mvr.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/03/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
|
50
|
Comparative Study of Choke Vessel Reconstruction With Single and Multiple Perforator-Based Flaps on the Murine Back Using Delayed Surgery. Ann Plast Surg 2018; 82:93-98. [PMID: 30300224 DOI: 10.1097/sap.0000000000001637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Choke vessels, vascular anastomosis between adjacent angiosome, play an important role in flap expansion and survival. Here we established a flap model with single and multiple perforators to detect and compare the changes in choke vessels, discuss the effect of hemodynamics on the vascular morphology, and explore the underlying mechanism. METHODS One hundred mice (7-8 weeks) were subjected to a "choke zone" surrounded by 4 perforators on their backs. Delayed surgery was performed by the ligation of 1, 2, or 3 perforators to establish flap models. The blood flow of the choke zone was measured by laser Doppler flowmetry preoperatively and 6 hours and 1, 3, 5, and 7 days. The morphological changes of choke vessels in the choke zone were observed by gross and histological analyses. Levels of angiogenesis-related markers such as endothelial nitric oxide synthase (eNOS), metalloproteinase 2, hypoxia-inducible factor 1α (HIF-1α), and intercellular adhesion molecule 2 (ICAM-2) were detected by Western blotting and enzyme-linked immunosorbent assay. RESULTS Blood flow and microvascular count were obviously increased postoperatively and peaked and were maintained for 1 week (P < 0.01). Meanwhile, the diameters of the choke vessels expanded. The eNOS level was increased at 7 days (P < 0.05); however, the enzyme-linked immunosorbent assay results showed that the HIF-1α and ICAM-2 levels were decreased at 7 days. CONCLUSIONS (1) The delayed surgery that kept a single perforator had the greatest impact on the choke zone. (2) Changes in choke vessels were closely related to the shear stress caused by enhanced blood perfusion after surgery. (3) Choke vessel growth was regulated by eNOS, metalloproteinase 2, HIF-1α, and ICAM-2.
Collapse
|