1
|
Cai TT, Desterke C, Peng J, Agnetti J, Song P, Ouazib D, Dos Santos A, Guettier C, Samuel D, Gassama‐Diagne A. Septin 9 expression regulates 'don't eat me' signals and identifies an immune-epithelial class of intrahepatic cholangiocarcinoma. Mol Oncol 2024; 18:2369-2392. [PMID: 39082897 PMCID: PMC11459040 DOI: 10.1002/1878-0261.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 05/22/2024] [Indexed: 10/09/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and aggressive liver cancer with limited therapeutic options. Precise classification and immunotherapy are perspectives to improve the treatments. We reported the role of septin 9 in apico-basal polarity and epithelial-to-mesenchymal transition (EMT). Here, we aim to elucidate its role in iCCA. We analyzed single-cell transcriptomes from human iCCA tumor cells based on phenotype and cell state. Knockdown of the septin 9 gene (SEPT9) was done using small interfering RNA (siRNA); interferon-γ (IFN-γ) stimulation was performed using different CCA cells; gene expressions were analyzed by reverse transcription and real-time PCR analysis (RT-qPCR); and immunofluorescence, immunoblotting, and flow cytometry were performed to assess the expression of proteins. The differential distributions of SEPT9 and vimentin (VIM) gene expressions allowed us to define specific cellular trajectories of malignant cells and thus identified distinct clusters of iCCA cells. One cluster was enriched in VIM and extracellular-matrix (ECM) remodeling molecules, and another had high expression of SEPT9 and genes from the 'don't eat me' signal involved in immune escape. This antagonism between SEPT9 and VIM was confirmed by in vitro experiments. Notably, SEPT9 and 'don't eat me' gene expressions were inversely correlated to those of vimentin and the EMT markers. SEPT9 expression was upregulated by IFN-γ and SEPT9 knockdown decreased expression of 'don't eat me' signal genes and increased expression of mesenchymal markers. Cancer Cell Line Encyclopedia (CCLE) transcriptome database analyses confirmed that iCCA cells enriched in septin 9 exhibit epithelial-like features. This study revealed septin 9 as a cytoskeleton element of iCCA epithelial-like cells and a regulator of the immune system response. It also brings new insights into the enigmatic relationship between EMT and immune response. Notably, we decoded a potential mechanism that could sensitize patients to immunotherapies.
Collapse
Affiliation(s)
- Ting ting Cai
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | | | - Juan Peng
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Jean Agnetti
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Peixuan Song
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Dalila Ouazib
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Alexandre Dos Santos
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Catherine Guettier
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| | - Didier Samuel
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
- AP‐HP Hôpital Paul Brousse, Centre Hépato‐BiliaireAP‐HP Hôpital Paul‐Brousse, Centre Hépato‐BiliaireVillejuifFrance
| | - Ama Gassama‐Diagne
- INSERM, Unité 1193VillejuifFrance
- Université Paris‐Sud, Université Paris‐Saclay, UMR‐S 1193Université Paris‐Sud, Université Paris Saclay, UMR‐S 1193VillejuifFrance
| |
Collapse
|
2
|
Markitantova Y, Fokin A, Boguslavsky D, Simirskii V, Kulikov A. Molecular Signatures Integral to Natural Reprogramming in the Pigment Epithelium Cells after Retinal Detachment in Pleurodeles waltl. Int J Mol Sci 2023; 24:16940. [PMID: 38069262 PMCID: PMC10707686 DOI: 10.3390/ijms242316940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The reprogramming of retinal pigment epithelium (RPE) cells into retinal cells (transdifferentiation) lies in the bases of retinal regeneration in several Urodela. The identification of the key genes involved in this process helps with looking for approaches to the prevention and treatment of RPE-related degenerative diseases of the human retina. The purpose of our study was to examine the transcriptome changes at initial stages of RPE cell reprogramming in adult newt Pleurodeles waltl. RPE was isolated from the eye samples of day 0, 4, and 7 after experimental surgical detachment of the neural retina and was used for a de novo transcriptome assembly through the RNA-Seq method. A total of 1019 transcripts corresponding to the differently expressed genes have been revealed in silico: the 83 increased the expression at an early stage, and 168 increased the expression at a late stage of RPE reprogramming. We have identified up-regulation of classical early response genes, chaperones and co-chaperones, genes involved in the regulation of protein biosynthesis, suppressors of oncogenes, and EMT-related genes. We revealed the growth in the proportion of down-regulated ribosomal and translation-associated genes. Our findings contribute to revealing the molecular mechanism of RPE reprogramming in Urodela.
Collapse
Affiliation(s)
| | | | | | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Y.M.); (A.K.)
| | | |
Collapse
|
3
|
Marques da Silva R, Christe Dos Reis Saladino G, Antonio Leonardo D, D'Muniz Pereira H, Andréa Sculaccio S, Paula Ulian Araujo A, Charles Garratt R. A key piece of the puzzle: The central tetramer of the Saccharomyces cerevisiae septin protofilament and its implications for self-assembly. J Struct Biol 2023; 215:107983. [PMID: 37315820 DOI: 10.1016/j.jsb.2023.107983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Septins, often described as the fourth component of the cytoskeleton, are structural proteins found in a vast variety of living beings. They are related to small GTPases and thus, generally, present GTPase activity which may play an important (although incompletely understood) role in their organization and function. Septins polymerize into long non-polar filaments, in which each subunit interacts with two others by alternating interfaces, NC and G. In Saccharomyces cerevisiae four septins are organized in the following manner, [Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11]n in order to form filaments. Although septins were originally discovered in yeast and much is known regarding their biochemistry and function, only limited structural information about them is currently available. Here we present crystal structures of Cdc3/Cdc10 which provide the first view of the physiological interfaces formed by yeast septins. The G-interface has properties which place it in between that formed by SEPT2/SEPT6 and SEPT7/SEPT3 in human filaments. Switch I from Cdc10 contributes significantly to the interface, whereas in Cdc3 it is largely disorded. However, the significant negative charge density of the latter suggests it may have a unique role. At the NC-interface, we describe an elegant means by which the sidechain of a glutamine from helix α0 imitates a peptide group in order to retain hydrogen-bond continuity at the kink between helices α5 and α6 in the neighbouring subunit, thereby justifying the conservation of the helical distortion. Its absence from Cdc11, along with this structure's other unusual features are critically discussed by comparison with Cdc3 and Cdc10.
Collapse
Affiliation(s)
- Rafael Marques da Silva
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | | | - Diego Antonio Leonardo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Humberto D'Muniz Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Susana Andréa Sculaccio
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Ana Paula Ulian Araujo
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil
| | - Richard Charles Garratt
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida João Dagnone 1100, São Carlos, SP 13563-723, Brazil.
| |
Collapse
|
4
|
Ráduly Z, Szabó L, Dienes B, Szentesi P, Bana ÁV, Hajdú T, Kókai E, Hegedűs C, Csernoch L, Gönczi M. Migration of Myogenic Cells Is Highly Influenced by Cytoskeletal Septin7. Cells 2023; 12:1825. [PMID: 37508490 PMCID: PMC10378681 DOI: 10.3390/cells12141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.
Collapse
Affiliation(s)
- Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ágnes Viktória Bana
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
5
|
Werner B, Yadav S. Phosphoregulation of the septin cytoskeleton in neuronal development and disease. Cytoskeleton (Hoboken) 2023; 80:275-289. [PMID: 36127729 PMCID: PMC10025170 DOI: 10.1002/cm.21728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/13/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Septins are highly conserved GTP-binding proteins that oligomerize and form higher order structures. The septin cytoskeleton plays an important role in cellular organization, intracellular transport, and cytokinesis. Kinase-mediated phosphorylation of septins regulates various aspects of their function, localization, and dynamics. Septins are enriched in the mammalian nervous system where they contribute to neurodevelopment and neuronal function. Emerging research has implicated aberrant changes in septin cytoskeleton in several human diseases. The mechanisms through which aberrant phosphorylation by kinases contributes to septin dysfunction in neurological disorders are poorly understood and represent an important question for future research with therapeutic implications. This review summarizes the current state of knowledge of the diversity of kinases that interact with and phosphorylate mammalian septins, delineates how phosphoregulation impacts septin dynamics, and describes how aberrant septin phosphorylation contributes to neurological disorders.
Collapse
Affiliation(s)
- Bailey Werner
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Zhao L, Li M, Zhang S, Liu Y. Plasma-Methylated SEPT9 for the Noninvasive Diagnosis of Gastric Cancer. J Clin Med 2022; 11:jcm11216399. [PMID: 36362627 PMCID: PMC9656015 DOI: 10.3390/jcm11216399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background. Gastric cancer (GC) is one of the most prevalent cancers globally. This study was designed to evaluate the potential performance of plasma SEPT9 methylation (mSEPT9) as a noninvasive biomarker for the diagnosis of GC. Methods. A total of 182 participants, i.e., 60 patients with GC, 39 with chronic superficial gastritis (CSG), 27 with chronic atrophic gastritis (CAG), 30 with gastric ulcer (GU), and 26 with gastric polys (GP), were recruited. The mSEPT9 level was measured using real-time polymerase chain reaction. Results. As a diagnostic target, mSEPT9 (1/3 algorithm) had a sensitivity of 48.33 (95% confidence interval (CI): 35.40–61.48%) and a specificity of 86.89% (95% CI: 79.28–92.09%), and mSEPT9 (2/3 algorithm) had a sensitivity of 33.33 (95% CI: 22.02–46.79%) and a specificity of 98.36% (95% CI: 93.61–99.72%). The area under the receiver operating characteristic curve (ROC) curve of mSEPT9 was 0.698 (95% CI: 0.609–0.787) for the differentiation of GC from benign gastric diseases. The effectiveness of mSEPT9 (1/3 algorithm) was superior to that of CEA, CA19-9, and CA72-4. mSEPT9 was positively correlated with T, N, M, and the clinical stage of GC. Conclusions. Plasma mSEPT9 might serve as a useful and noninvasive biomarker for the diagnosis of GC.
Collapse
Affiliation(s)
- Luyao Zhao
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Muran Li
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yandi Liu
- Department of Gastroenterology, Tianjin Union Medical Center, Tianjin 300121, China
- Correspondence:
| |
Collapse
|
7
|
Gönczi M, Ráduly Z, Szabó L, Fodor J, Telek A, Dobrosi N, Balogh N, Szentesi P, Kis G, Antal M, Trencsenyi G, Dienes B, Csernoch L. Septin7 is indispensable for proper skeletal muscle architecture and function. eLife 2022; 11:e75863. [PMID: 35929607 PMCID: PMC9355566 DOI: 10.7554/elife.75863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/03/2022] [Indexed: 11/13/2022] Open
Abstract
Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Zsolt Ráduly
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - László Szabó
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
- Doctoral School of Molecular Medicine, University of DebrecenDebrecenHungary
| | - Péter Szentesi
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - György Trencsenyi
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of DebrecenDebrecenHungary
| |
Collapse
|
8
|
Takagi J, Cho C, Duvalyan A, Yan Y, Halloran M, Hanson-Smith V, Thorner J, Finnigan GC. Reconstructed evolutionary history of the yeast septins Cdc11 and Shs1. G3-GENES GENOMES GENETICS 2021; 11:6025175. [PMID: 33561226 PMCID: PMC7849910 DOI: 10.1093/g3journal/jkaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Septins are GTP-binding proteins conserved across metazoans. They can polymerize into extended filaments and, hence, are considered a component of the cytoskeleton. The number of individual septins varies across the tree of life—yeast (Saccharomyces cerevisiae) has seven distinct subunits, a nematode (Caenorhabditis elegans) has two, and humans have 13. However, the overall geometric unit (an apolar hetero-octameric protomer and filaments assembled there from) has been conserved. To understand septin evolutionary variation, we focused on a related pair of yeast subunits (Cdc11 and Shs1) that appear to have arisen from gene duplication within the fungal clade. Either Cdc11 or Shs1 occupies the terminal position within a hetero-octamer, yet Cdc11 is essential for septin function and cell viability, whereas Shs1 is not. To discern the molecular basis of this divergence, we utilized ancestral gene reconstruction to predict, synthesize, and experimentally examine the most recent common ancestor (“Anc.11-S”) of Cdc11 and Shs1. Anc.11-S was able to occupy the terminal position within an octamer, just like the modern subunits. Although Anc.11-S supplied many of the known functions of Cdc11, it was unable to replace the distinct function(s) of Shs1. To further evaluate the history of Shs1, additional intermediates along a proposed trajectory from Anc.11-S to yeast Shs1 were generated and tested. We demonstrate that multiple events contributed to the current properties of Shs1: (1) loss of Shs1–Shs1 self-association early after duplication, (2) co-evolution of heterotypic Cdc11–Shs1 interaction between neighboring hetero-octamers, and (3) eventual repurposing and acquisition of novel function(s) for its C-terminal extension domain. Thus, a pair of duplicated proteins, despite constraints imposed by assembly into a highly conserved multi-subunit structure, could evolve new functionality via a complex evolutionary pathway.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Christina Cho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Angela Duvalyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
9
|
Gönczi M, Dienes B, Dobrosi N, Fodor J, Balogh N, Oláh T, Csernoch L. Septins, a cytoskeletal protein family, with emerging role in striated muscle. J Muscle Res Cell Motil 2020; 42:251-265. [PMID: 31955380 PMCID: PMC8332580 DOI: 10.1007/s10974-020-09573-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022]
Abstract
Appropriate organization of cytoskeletal components are required for normal distribution and intracellular localization of different ion channels and proteins involved in calcium homeostasis, signal transduction, and contractile function of striated muscle. Proteins of the contractile system are in direct or indirect connection with the extrasarcomeric cytoskeleton. A number of other molecules which have essential role in regulating stretch-, voltage-, and chemical signal transduction from the surface into the cytoplasm or other intracellular compartments are already well characterized. Sarcomere, the basic contractile unit, is comprised of a precisely organized system of thin (actin), and thick (myosin) filaments. Intermediate filaments connect the sarcomeres and other organelles (mitochondria and nucleus), and are responsible for the cellular integrity. Interacting proteins have a very diverse function in coupling of the intracellular assembly components and regulating the normal physiological function. Despite the more and more intense investigations of a new cytoskeletal protein family, the septins, only limited information is available regarding their expression and role in striated, especially in skeletal muscles. In this review we collected basic and specified knowledge regarding this protein group and emphasize the importance of this emerging field in skeletal muscle biology.
Collapse
Affiliation(s)
- Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Norbert Balogh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.,Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, 4012, Hungary
| | - Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, 66421, Homburg, Saar, Germany
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, 4012, Hungary.
| |
Collapse
|
10
|
Zeng Y, Cao Y, Liu L, Zhao J, Zhang T, Xiao L, Jia M, Tian Q, Yu H, Chen S, Cai Y. SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis 2019; 10:720. [PMID: 31558699 PMCID: PMC6763430 DOI: 10.1038/s41419-019-1947-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing cell mobility is the basis of tumor invasion and metastasis, and is therefore a therapeutic target for preventing the spread of many types of cancer. Septins are a family of cytoskeletal proteins with GTPase activity, and play a role in many important cellular functions, including cell migration. SEPT9 isoform 1 protein (SEPT9_i1) has been associated with breast tumor development and the enhancement of cell migration; however, the exact mechanism of how SEPT9_i1 might affect breast cancer progression remains to be elucidated. Here, we report that the expression of SEPT9_i1 positively correlated with paxillin, and both were significantly upregulated in invasive breast cancer tissues of patients with lymph node metastases. Lentivirus-mediated shRNA knockdown of SEPT9 in MCF-7 cells diminished tumor cell migration, focal adhesion (FA) maturation and the expression of β-actin, β-tubulin, Cdc42, RhoA, and Rac, whereas overexpression of SEPT9_i1 in SEPT9-knockdown MCF-7 cells promoted cell migration, FA maturation and relevant protein expression. Furthermore, overexpression of SEPT9_i1 in MCF-7 cells markedly increased FAK/Src/paxillin signaling, at least in part through RhoA/ROCK1 upstream activation. Transcriptome profiling suggested that SEPT9_i1 may directly affect “Focal adhesion” and “Regulation of actin cytoskeleton” signaling mechanisms. Finally, overexpression of SEPT9_i1 markedly enhanced lung metastases in vivo 6 weeks after tumor inoculation. These findings suggest that a mechanism of Septin-9-induced aberrant cancer cell migration is through cytoskeletal regulation and FA modulation, and encourages the use of SEPT9 as novel therapeutic target in the prevention of tumor metastasis.
Collapse
Affiliation(s)
- Yongqiu Zeng
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan, China. .,Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Yang Cao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Zhao
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lifan Xiao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Man Jia
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Tian
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Yu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaokun Chen
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yansen Cai
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
11
|
Gaiardo RB, Abreu TF, Tashima AK, Telles MM, Cerutti SM. Target Proteins in the Dorsal Hippocampal Formation Sustain the Memory-Enhancing and Neuroprotective Effects of Ginkgo biloba. Front Pharmacol 2019; 9:1533. [PMID: 30666208 PMCID: PMC6330356 DOI: 10.3389/fphar.2018.01533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that standardized extracts of Ginkgo biloba (EGb) modulate fear memory formation, which is associated with CREB-1 (mRNA and protein) upregulation in the dorsal hippocampal formation (dHF), in a dose-dependent manner. Here, we employed proteomic analysis to investigate EGb effects on different protein expression patterns in the dHF, which might be involved in the regulation of CREB activity and the synaptic plasticity required for long-term memory (LTM) formation. Adult male Wistar rats were randomly assigned to four groups (n = 6/group) and were submitted to conditioned lick suppression 30 min after vehicle (12% Tween 80) or EGb (0.25, 0.50, and 1.00 g⋅kg-1) administration (p.o). All rats underwent a retention test session 48 h after conditioning. Twenty-four hours after the test session, the rats were euthanized via decapitation, and dHF samples were removed for proteome analysis using two-dimensional polyacrylamide gel electrophoresis, followed by peptide mass fingerprinting. In agreement with our previous data, no differences in the suppression ratios (SRs) were identified among the groups during first trial of CS (conditioned stimulus) presentation (P > 0.05). Acute treatment with 0.25 g⋅kg-1 EGb significantly resulted in retention of original memory, without prevent acquisition of extinction within-session. In addition, our results showed, for the first time, that 32 proteins were affected in the dHF following treatment with 0.25, 0.50, and 1.00 g⋅kg-1 doses of EGb, which upregulated seven, 19, and five proteins, respectively. Additionally, EGb downregulated two proteins at each dose. These proteins are correlated with remodeling of the cytoskeleton; the stability, size, and shape of dendritic spines; myelin sheath formation; and composition proteins of structures found in the membrane of the somatodendritic and axonal compartments. Our findings suggested that EGb modulates conditioned suppression LTM through differential protein expression profiles, which may be a target for cognitive enhancers and for the prevention or treatment of neurocognitive impairments.
Collapse
Affiliation(s)
- Renan Barretta Gaiardo
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| | - Thiago Ferreira Abreu
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Monica Marques Telles
- Departamento de Ciências Biológicas, Laboratório de Fisiologia Metabólica, Universidade Federal de São Paulo, Diadema, Brazil
| | - Suzete Maria Cerutti
- Departamento de Ciências Biológicas, Laboratório de Farmacologia Celular e Comportamental, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
12
|
Phosphorylation of Pnut in the Early Stages of Drosophila Embryo Development Affects Association of the Septin Complex with the Membrane and Is Important for Viability. G3-GENES GENOMES GENETICS 2018; 8:27-38. [PMID: 29079679 PMCID: PMC5765355 DOI: 10.1534/g3.117.300186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Septin proteins are polymerizing GTPases that are found in most eukaryotic species. Septins are important for cytokinesis and participate in many processes involving spatial modifications of the cell cortex. In Drosophila, septin proteins Pnut, Sep1, and Sep2 form a hexameric septin complex. Here, we found that septin protein Pnut is phosphorylated during the first 2 hr of Drosophila embryo development. To study the effect of Pnut phosphorylation in a live organism, we created a new Drosophila pnut null mutant that allows for the analysis of Pnut mutations during embryogenesis. To understand the functional significance of Pnut phosphorylation, Drosophila strains carrying nonphosphorylatable and phospho-mimetic mutant pnut transgenes were established. The expression of the nonphosphorylatable Pnut protein resulted in semilethality and abnormal protein localization, whereas the expression of the phospho-mimetic mutant form of Pnut disrupted the assembly of a functional septin complex and septin filament formation in vitro. Overall, our findings indicate that the controlled phosphorylation of Pnut plays an important role in regulating septin complex functions during organism development.
Collapse
|
13
|
Annotated Draft Genome Assemblies for the Northern Bobwhite ( Colinus virginianus) and the Scaled Quail ( Callipepla squamata) Reveal Disparate Estimates of Modern Genome Diversity and Historic Effective Population Size. G3-GENES GENOMES GENETICS 2017; 7:3047-3058. [PMID: 28717047 PMCID: PMC5592930 DOI: 10.1534/g3.117.043083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Northern bobwhite (Colinus virginianus; hereafter bobwhite) and scaled quail (Callipepla squamata) populations have suffered precipitous declines across most of their US ranges. Illumina-based first- (v1.0) and second- (v2.0) generation draft genome assemblies for the scaled quail and the bobwhite produced N50 scaffold sizes of 1.035 and 2.042 Mb, thereby producing a 45-fold improvement in contiguity over the existing bobwhite assembly, and ≥90% of the assembled genomes were captured within 1313 and 8990 scaffolds, respectively. The scaled quail assembly (v1.0 = 1.045 Gb) was ∼20% smaller than the bobwhite (v2.0 = 1.254 Gb), which was supported by kmer-based estimates of genome size. Nevertheless, estimates of GC content (41.72%; 42.66%), genome-wide repetitive content (10.40%; 10.43%), and MAKER-predicted protein coding genes (17,131; 17,165) were similar for the scaled quail (v1.0) and bobwhite (v2.0) assemblies, respectively. BUSCO analyses utilizing 3023 single-copy orthologs revealed a high level of assembly completeness for the scaled quail (v1.0; 84.8%) and the bobwhite (v2.0; 82.5%), as verified by comparison with well-established avian genomes. We also detected 273 putative segmental duplications in the scaled quail genome (v1.0), and 711 in the bobwhite genome (v2.0), including some that were shared among both species. Autosomal variant prediction revealed ∼2.48 and 4.17 heterozygous variants per kilobase within the scaled quail (v1.0) and bobwhite (v2.0) genomes, respectively, and estimates of historic effective population size were uniformly higher for the bobwhite across all time points in a coalescent model. However, large-scale declines were predicted for both species beginning ∼15-20 KYA.
Collapse
|
14
|
Boubakar L, Falk J, Ducuing H, Thoinet K, Reynaud F, Derrington E, Castellani V. Molecular Memory of Morphologies by Septins during Neuron Generation Allows Early Polarity Inheritance. Neuron 2017; 95:834-851.e5. [DOI: 10.1016/j.neuron.2017.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 05/23/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023]
|
15
|
Vagin O, Beenhouwer DO. Septins: Regulators of Protein Stability. Front Cell Dev Biol 2016; 4:143. [PMID: 28066764 PMCID: PMC5168428 DOI: 10.3389/fcell.2016.00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022] Open
Abstract
Septins are small GTPases that play a role in several important cellular processes. In this review, we focus on the roles of septins in protein stabilization. Septins may regulate protein stability by: (1) interacting with proteins involved in degradation pathways, (2) regulating the interaction between transmembrane proteins and cytoskeletal proteins, (3) affecting the mobility of transmembrane proteins in lipid bilayers, and (4) modulating the interaction of proteins with their adaptor or signaling proteins. In this context, we discuss the role of septins in protecting four different proteins from degradation. First we consider botulinum neurotoxin serotype A (BoNT/A) and the contribution of septins to its extraordinarily long intracellular persistence. Next, we discuss the role of septins in stabilizing the receptor tyrosine kinases EGFR and ErbB2. Finally, we consider the contribution of septins in protecting hypoxia-inducible factor 1α (HIF-1α) from degradation.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, Geffen School of Medicine at UCLALos Angeles, CA, USA; VA Greater Los Angeles Healthcare SystemLos Angeles, CA, USA
| | - David O Beenhouwer
- Department of Medicine, Geffen School of Medicine at UCLALos Angeles, CA, USA; Division of Infectious Diseases, VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
16
|
Perez AM, Finnigan GC, Roelants FM, Thorner J. Septin-Associated Protein Kinases in the Yeast Saccharomyces cerevisiae. Front Cell Dev Biol 2016; 4:119. [PMID: 27847804 PMCID: PMC5088441 DOI: 10.3389/fcell.2016.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023] Open
Abstract
Septins are a family of eukaryotic GTP-binding proteins that associate into linear rods, which, in turn, polymerize end-on-end into filaments, and further assemble into other, more elaborate super-structures at discrete subcellular locations. Hence, septin-based ensembles are considered elements of the cytoskeleton. One function of these structures that has been well-documented in studies conducted in budding yeast Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins, which dictate the spatial and temporal control of certain aspects of the cell division cycle. In particular, septin-associated protein kinases couple cell cycle progression with cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms that integrate a multitude of signals and coordinate key downstream networks required for cell cycle passage. This review summarizes what we currently understand about how the action of septin-associated protein kinases and their substrates control information flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin structures represent a regulatory node at the intersection of many signaling pathways. In addition, and importantly, the activities of certain septin-associated protein kinases also regulate the state of organization of the septins themselves, creating a complex feedback loop.
Collapse
Affiliation(s)
- Adam M Perez
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Françoise M Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
17
|
Poüs C, Klipfel L, Baillet A. Cancer-Related Functions and Subcellular Localizations of Septins. Front Cell Dev Biol 2016; 4:126. [PMID: 27878118 PMCID: PMC5099157 DOI: 10.3389/fcell.2016.00126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 12/16/2022] Open
Abstract
Since the initial discovery of septin family GTPases, the understanding of their molecular organization and cellular roles keeps being refined. Septins have been involved in many physiological processes and the misregulation of specific septin gene expression has been implicated in diverse human pathologies, including neurological disorders and cancer. In this minireview, we focus on the importance of the subunit composition and subcellular localization of septins relevant to tumor initiation, progression, and metastasis. We especially underline the importance of septin polymer composition and of their association with the plasma membrane, actin, or microtubules in cell functions involved in cancer and in resistance to cancer therapies. Through their scaffolding role, their function in membrane compartmentalization or through their protective function against protein degradation, septins also emerge as critical organizers of membrane-associated proteins and of signaling pathways implicated in cancer-associated angiogenesis, apoptosis, polarity, migration, proliferation, and in metastasis. Also, the question as to which of the free monomers, hetero-oligomers, or filaments is the functional form of mammalian septins is raised and the control over their spatial and temporal localization is discussed. The increasing amount of crosstalks identified between septins and cellular signaling mediators reinforces the exciting possibility that septins could be new targets in anti-cancer therapies or in therapeutic strategies to limit drug resistance.
Collapse
Affiliation(s)
- Christian Poüs
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-SaclayChâtenay-Malabry, France; Laboratoire de Biochimie-Hormonologie, Hôpital Antoine Béclère, AP-HPClamart, France
| | - Laurence Klipfel
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-SaclayChâtenay-Malabry, France; Département de Génétique, Institut de la Vision, Université Pierre et Marie Curie Paris 06, Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale UMR-S 968, Centre National de la Recherche Scientifique UMR 7210Paris, France
| | - Anita Baillet
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1193, Université Paris-Sud, Université Paris-Saclay Châtenay-Malabry, France
| |
Collapse
|
18
|
Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget 2016; 6:36063-80. [PMID: 26460824 PMCID: PMC4742162 DOI: 10.18632/oncotarget.5373] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/25/2015] [Indexed: 12/05/2022] Open
Abstract
The mechanisms of cancer cell adaptation to the anti-microtubule agents of the taxane family are multifaceted and still poorly understood. Here, in a model of breast cancer cells which display amplified microtubule dynamics to resist Taxol®, we provide evidence that septin filaments containing high levels of SEPT9_i1 bind to microtubules in a way that requires tubulin long chain polyglutamylation. Reciprocally, septin filaments provide a scaffold for elongating and trimming polyglutamylation enzymes to finely tune the glutamate side-chain length on microtubules to an optimal level. We also demonstrate that tubulin retyrosination and/or a high level of tyrosinated tubulin is crucial to allow the interplay between septins and polyglutamylation on microtubules and that together, these modifications result in an enhanced CLIP-170 and MCAK recruitment to microtubules. Finally, the inhibition of tubulin retyrosination, septins, tubulin long chain polyglutamylation or of both CLIP-170 and MCAK allows the restoration of cell sensitivity to taxanes, providing evidence for a new integrated mechanism of resistance.
Collapse
|
19
|
Chuk R, Sheppard M, Wallace G, Coman D. Pediatric Hereditary Neuralgic Amyotrophy: Successful Treatment With Intravenous Immunoglobulin and Insights Into SEPT9 Pathogenesis. Child Neurol Open 2016; 3:2329048X16668970. [PMID: 28503616 PMCID: PMC5417342 DOI: 10.1177/2329048x16668970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 01/15/2023] Open
Abstract
Hereditary neuralgic amyotrophy is a rare disorder characterized by the sudden onset of recurrent episodes of painful brachial plexus neuropathies, followed by atrophy within a few weeks. The authors present the case of a 5-year-old boy who developed hereditary neuralgic amyotrophy in the right upper limb after a gastroenteritis illness. He made a full and rapid recovery with the use of intravenous immunoglobulin. A subsequent episode in the left upper limb during the course of intravenous immunoglobulin was significantly attenuated. A de novo c.262C>T mutation in exon 2 of the SEPT9 gene was identified. To our knowledge, he is the first pediatric patient with SEPT9 hereditary neuralgic amyotrophy to be treated with intravenous immunoglobulin. The authors hypothesize that the c.262C>T mutation in exon 2 of the SEPT9 gene generates pathology via the numerous isoforms under specific conditions and that intravenous immunoglobulin can play a role at the epigenetic level of improving dysfunctional SEPT9 expression.
Collapse
Affiliation(s)
- Raymond Chuk
- Discipline of Paediatrics, UnitingCare Health Clinical School, Wesley Hospital, Brisbane, Queensland, Australia.,Department of Paediatrics, Wesley Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Queensland, Australia
| | - Megan Sheppard
- Department of Neurosciences, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - Geoff Wallace
- School of Medicine, University of Queensland, Queensland, Australia.,Department of Neurosciences, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia
| | - David Coman
- Discipline of Paediatrics, UnitingCare Health Clinical School, Wesley Hospital, Brisbane, Queensland, Australia.,Department of Paediatrics, Wesley Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Queensland, Australia.,Department of Neurosciences, Lady Cilento Children's Hospital, Brisbane, Queensland, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
20
|
Partial Functional Diversification of Drosophila melanogaster Septin Genes Sep2 and Sep5. G3-GENES GENOMES GENETICS 2016; 6:1947-57. [PMID: 27172205 PMCID: PMC4938648 DOI: 10.1534/g3.116.028886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The septin family of hetero-oligomeric complex-forming proteins can be divided into subgroups, and subgroup members are interchangeable at specific positions in the septin complex. Drosophila melanogaster has five septin genes, including the two SEPT6 subgroup members Sep2 and Sep5. We previously found that Sep2 has a unique function in oogenesis, which is not performed by Sep5. Here, we find that Sep2 is uniquely required for follicle cell encapsulation of female germline cysts, and that Sep2 and Sep5 are redundant for follicle cell proliferation. The five D. melanogaster septins localize similarly in oogenesis, including as rings flanking the germline ring canals. Pnut fails to localize in Sep5; Sep2 double mutant follicle cells, indicating that septin complexes fail to form in the absence of both Sep2 and Sep5. We also find that mutations in septins enhance the mutant phenotype of bazooka, a key component in the establishment of cell polarity, suggesting a link between septin function and cell polarity. Overall, this work suggests that Sep5 has undergone partial loss of ancestral protein function, and demonstrates redundant and unique functions of septins.
Collapse
|
21
|
Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J. Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell 2016; 27:2708-25. [PMID: 27385335 PMCID: PMC5007091 DOI: 10.1091/mbc.e16-05-0337] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
A tripartite split-GFP system faithfully reports the order of the subunits in septin hetero-octamers (and thus can serve as a “molecular ruler”), conversely yields little or no false signal even with very highly expressed cytosolic proteins, and detects authentic interactions of other cellular proteins that are bona fide septin-binding proteins. Various methods can provide a readout of the physical interaction between two biomolecules. A recently described tripartite split-GFP system has the potential to report by direct visualization via a fluorescence signal the intimate association of minimally tagged proteins expressed at their endogenous level in their native cellular milieu and can capture transient or weak interactions. Here we document the utility of this tripartite split-GFP system to assess in living cells protein–protein interactions in a dynamic cytoskeletal structure—the septin collar at the yeast bud neck. We show, first, that for septin–septin interactions, this method yields a robust signal whose strength reflects the known spacing between the subunits in septin filaments and thus serves as a “molecular ruler.” Second, the method yields little or no spurious signal even with highly abundant cytosolic proteins readily accessible to the bud neck (including molecular chaperone Hsp82 and glycolytic enzyme Pgk1). Third, using two proteins (Bni5 and Hsl1) that have been shown by other means to bind directly to septins at the bud neck in vivo, we validate that the tripartite split-GFP method yields the same conclusions and further insights about specificity. Finally, we demonstrate the capacity of this approach to uncover additional new information by examining whether three other proteins reported to localize to the bud neck (Nis1, Bud4, and Hof1) are able to interact physically with any of the subunits in the septin collar and, if so, with which ones.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Angela Duvalyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Elizabeth N Liao
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Aspram Sargsyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
22
|
Booth EA, Thorner J. A FRET-based method for monitoring septin polymerization and binding of septin-associated proteins. Methods Cell Biol 2016; 136:35-56. [PMID: 27473902 DOI: 10.1016/bs.mcb.2016.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Much about septin function has been inferred from in vivo studies using mainly genetic methods, and much of what we know about septin organization has been obtained through examination of static structures in vitro primarily by electron microscopy. Deeper mechanistic insight requires real-time analysis of the dynamics of the assembly of septin-based structures and how other proteins associate with them. We describe here a Förster resonance energy transfer (FRET)-based approach for measuring in vitro the rate and extent of filament formation from septin complexes, binding of other proteins to septin structures, and the apparent affinities of these interactions. FRET is particularly well suited for interrogating protein-protein interactions, especially on a rapid timescale; the spectral change provides an unambiguous indication of whether two elements within the system under study are associating and serves as a molecular-level "ruler" because it is very sensitive to the separation between the donor and acceptor fluorophores over biologically relevant distances (≤10nm). The necessary procedures involve generation of appropriate cysteine-less and single cysteine-containing septin variants, expression and purification of the heterooctameric complexes containing them, efficient labeling of the purified complexes with desired fluorophores, fluorimetric measurement of FRET, and appropriate safeguards and controls in data acquisition and analysis. Our methods can be used to interrogate the effects of buffer conditions, small molecules, and septin-binding proteins on septin filament assembly or stability; determine the effect of alternative septin subunits, mutational alterations, or posttranslational modifications on assembly; and, delineate the location of septin-binding proteins.
Collapse
Affiliation(s)
- E A Booth
- University of California, Berkeley, CA, United States
| | - J Thorner
- University of California, Berkeley, CA, United States
| |
Collapse
|
23
|
Kurkinen KMA, Marttinen M, Turner L, Natunen T, Mäkinen P, Haapalinna F, Sarajärvi T, Gabbouj S, Kurki M, Paananen J, Koivisto AM, Rauramaa T, Leinonen V, Tanila H, Soininen H, Lucas FR, Haapasalo A, Hiltunen M. SEPT8 modulates β-amyloidogenic processing of APP by affecting the sorting and accumulation of BACE1. J Cell Sci 2016; 129:2224-38. [PMID: 27084579 DOI: 10.1242/jcs.185215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 12/21/2022] Open
Abstract
Dysfunction and loss of synapses are early pathogenic events in Alzheimer's disease. A central step in the generation of toxic amyloid-β (Aβ) peptides is the cleavage of amyloid precursor protein (APP) by β-site APP-cleaving enzyme (BACE1). Here, we have elucidated whether downregulation of septin (SEPT) protein family members, which are implicated in synaptic plasticity and vesicular trafficking, affects APP processing and Aβ generation. SEPT8 was found to reduce soluble APPβ and Aβ levels in neuronal cells through a post-translational mechanism leading to decreased levels of BACE1 protein. In the human temporal cortex, we identified alterations in the expression of specific SEPT8 transcript variants in a manner that correlated with Alzheimer's-disease-related neurofibrillary pathology. These changes were associated with altered β-secretase activity. We also discovered that the overexpression of a specific Alzheimer's-disease-associated SEPT8 transcript variant increased the levels of BACE1 and Aβ peptides in neuronal cells. These changes were related to an increased half-life of BACE1 and the localization of BACE1 in recycling endosomes. These data suggest that SEPT8 modulates β-amyloidogenic processing of APP through a mechanism affecting the intracellular sorting and accumulation of BACE1.
Collapse
Affiliation(s)
- Kaisa M A Kurkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Laura Turner
- Eisai Ltd., Bernard Katz Building, University College London, London WC1E 6BT, UK
| | - Teemu Natunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Fanni Haapalinna
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Timo Sarajärvi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sami Gabbouj
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mitja Kurki
- Institute of Clinical Medicine - Neurosurgery, School of Medicine, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Jussi Paananen
- Institute of Clinical Medicine - Neurosurgery, School of Medicine, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Anne M Koivisto
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Tuomas Rauramaa
- Institute of Clinical Medicine - Pathology, School of Medicine, University of Eastern Finland and Department of Pathology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, School of Medicine, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Heikki Tanila
- Department of Neurobiology, A.I. Virtanen, Institute for Molecular Sciences, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Fiona R Lucas
- Eisai Ltd., Bernard Katz Building, University College London, London WC1E 6BT, UK
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland Department of Neurobiology, A.I. Virtanen, Institute for Molecular Sciences, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland Institute of Clinical Medicine - Neurology, School of Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, 70211 Kuopio, Finland
| |
Collapse
|
24
|
Septin oligomerization regulates persistent expression of ErbB2/HER2 in gastric cancer cells. Biochem J 2016; 473:1703-18. [PMID: 27048593 DOI: 10.1042/bcj20160203] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Septins are a family of cytoskeletal GTP-binding proteins that assemble into membrane-associated hetero-oligomers and organize scaffolds for recruitment of cytosolic proteins or stabilization of membrane proteins. Septins have been implicated in a diverse range of cancers, including gastric cancer, but the underlying mechanisms remain unclear. The hypothesis tested here is that septins contribute to cancer by stabilizing the receptor tyrosine kinase ErbB2, an important target for cancer treatment. Septins and ErbB2 were highly over-expressed in gastric cancer cells. Immunoprecipitation followed by MS analysis identified ErbB2 as a septin-interacting protein. Knockdown of septin-2 or cell exposure to forchlorfenuron (FCF), a well-established inhibitor of septin oligomerization, decreased surface and total levels of ErbB2. These treatments had no effect on epidermal growth factor receptor (EGFR), emphasizing the specificity and functionality of the septin-ErbB2 interaction. The level of ubiquitylated ErbB2 at the plasma membrane was elevated in cells treated with FCF, which was accompanied by a decrease in co-localization of ErbB2 with septins at the membrane. Cathepsin B inhibitor, but not bafilomycin or lactacystin, prevented FCF-induced decrease in total ErbB2 by increasing accumulation of ubiquitylated ErbB2 in lysosomes. Therefore, septins protect ErbB2 from ubiquitylation, endocytosis and lysosomal degradation. The FCF-induced degradation pathway is distinct from and additive with the degradation induced by inhibiting ErbB2 chaperone Hsp90. These results identify septins as novel regulators of ErbB2 expression that contribute to the remarkable stabilization of the receptor at the plasma membrane of cancer cells and may provide a basis for the development of new ErbB2-targeting anti-cancer therapies.
Collapse
|
25
|
Booth EA, Vane EW, Dovala D, Thorner J. A Förster Resonance Energy Transfer (FRET)-based System Provides Insight into the Ordered Assembly of Yeast Septin Hetero-octamers. J Biol Chem 2015; 290:28388-28401. [PMID: 26416886 PMCID: PMC4653696 DOI: 10.1074/jbc.m115.683128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies in both budding yeast (Saccharomyces cerevisiae) and in human cells have established that septin protomers assemble into linear hetero-octameric rods with 2-fold rotational symmetry. In mitotically growing yeast cells, five septin subunits are expressed (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) and assemble into two types of rods that differ only in their terminal subunit: Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1. EM analysis has shown that, under low salt conditions, the Cdc11-capped rods polymerize end to end to form long paired filaments, whereas Shs1-capped rods form arcs, spirals, and rings. To develop a facile method to study septin polymerization in vitro, we exploited our previous work in which we generated septin complexes in which all endogenous cysteine (Cys) residues were eliminated by site-directed mutagenesis, except an introduced E294C mutation in Cdc11 in these experiments. Mixing samples of a preparation of such single-Cys containing Cdc11-capped rods that have been separately derivatized with organic dyes that serve as donor and acceptor, respectively, for FRET provided a spectroscopic method to monitor filament assembly mediated by Cdc11-Cdc11 interaction and to measure its affinity under specified conditions. Modifications of this same FRET scheme also allow us to assess whether Shs1-capped rods are capable of end to end association either with themselves or with Cdc11-capped rods. This FRET approach also was used to follow the binding to septin filaments of a septin-interacting protein, the type II myosin-binding protein Bni5.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Eleanor W Vane
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202.
| |
Collapse
|
26
|
Merlini L, Bolognesi A, Juanes MA, Vandermoere F, Courtellemont T, Pascolutti R, Séveno M, Barral Y, Piatti S. Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly. Mol Biol Cell 2015; 26:3245-62. [PMID: 26179915 PMCID: PMC4569315 DOI: 10.1091/mbc.e15-06-0366] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/10/2015] [Indexed: 12/20/2022] Open
Abstract
Septins often form filaments and rings at the neck of cellular appendages. Assembly of these structures must be coordinated with membrane remodeling. In budding yeast, the Rho1 GTPase and its effector, Pkc1, play a role in septin ring stabilization during budding at least partly through phosphorylation of the bud neck–associated F-BAR protein Syp1. In many cell types, septins assemble into filaments and rings at the neck of cellular appendages and/or at the cleavage furrow to help compartmentalize the plasma membrane and support cytokinesis. How septin ring assembly is coordinated with membrane remodeling and controlled by mechanical stress at these sites is unclear. Through a genetic screen, we uncovered an unanticipated link between the conserved Rho1 GTPase and its effector protein kinase C (Pkc1) with septin ring stability in yeast. Both Rho1 and Pkc1 stabilize the septin ring, at least partly through phosphorylation of the membrane-associated F-BAR protein Syp1, which colocalizes asymmetrically with the septin ring at the bud neck. Syp1 is displaced from the bud neck upon Pkc1-dependent phosphorylation at two serines, thereby affecting the rigidity of the new-forming septin ring. We propose that Rho1 and Pkc1 coordinate septin ring assembly with membrane and cell wall remodeling partly by controlling Syp1 residence at the bud neck.
Collapse
Affiliation(s)
- Laura Merlini
- Centre de Recherche en Biochimie Macromoléculaire, 34293 Montpellier, France
| | | | | | - Franck Vandermoere
- Functional Proteomic Platform, Institut de Génomique Fonctionnelle, 34094 Montpellier, France
| | | | - Roberta Pascolutti
- Centre de Recherche en Biochimie Macromoléculaire, 34293 Montpellier, France
| | - Martial Séveno
- Functional Proteomic Platform, Institut de Génomique Fonctionnelle, 34094 Montpellier, France
| | - Yves Barral
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, 34293 Montpellier, France
| |
Collapse
|
27
|
Finnigan GC, Takagi J, Cho C, Thorner J. Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 2015; 200:821-41. [PMID: 25971665 PMCID: PMC4512546 DOI: 10.1534/genetics.115.176495] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023] Open
Abstract
Septins are a family of GTP-binding proteins considered to be cytoskeletal elements because they self-assemble into filaments and other higher-order structures in vivo. In budding yeast, septins establish a diffusion barrier at the bud neck between a mother and daughter cell, promote membrane curvature there, and serve as a scaffold to recruit other proteins to the site of cytokinesis. However, the mechanism by which any septin engages a partner protein has been unclear. The two most related and recently evolved subunits appear to be Cdc11 and Shs1, and the basic building blocks for assembling septin structures are hetero-octameric rods (Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1). Loss of Cdc11 is not normally tolerated, whereas cells lacking Shs1 do not appear grossly abnormal. We established several different sensitized genetic backgrounds wherein Shs1 is indispensable, which allowed us to carry out the first comprehensive and detailed genetic analysis of Shs1 in vivo. Our analysis revealed several novel insights, including: (i) the sole portion of Shs1 essential for its function is a predicted coiled-coil-forming segment in its C-terminal extension (CTE); (ii) the CTE of Cdc11 shares this function; (iii) this role for the CTEs of Cdc11 and Shs1 is quite distinct from that of the CTEs of Cdc3 and Cdc12; and (iv) heterotypic Cdc11 and Shs1 junctions likely occur in vivo.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Julie Takagi
- Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200
| | - Christina Cho
- Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202 Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200 Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
28
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|
29
|
Abstract
Septins are GTP-binding proteins that form filaments and higher-order structures on the cell cortex of eukaryotic cells and associate with actin and microtubule cytoskeletal networks. When assembled, septins coordinate cell division and contribute to cell polarity maintenance and membrane remodeling. These functions manifest themselves via scaffolding of cytosolic proteins and cytoskeletal networks to specific locations on membranes and by forming diffusional barriers that restrict lateral diffusion of proteins embedded in membranes. Notably, many neurodegenerative diseases and cancers have been characterized as having misregulated septins, suggesting that their functions are relevant to diverse diseases. Despite the importance of septins, little is known about what features of the plasma membrane influence septin recruitment and alternatively, how septins influence plasma membrane properties. Septins have been localized to the cell cortex at the base of cilia, the mother-bud neck of yeast, and branch points of filamentous fungi and dendritic spines, in cleavage furrows, and in retracting membrane protrusions in mammalian cells. These sites all possess some degree of curvature and are likely composed of distinct lipid pools. Depending on the context, septins may act alone or in concert with other cytoskeletal elements to influence and sense membrane properties. The degree to which septins react to and/or induce changes in shape and lipid composition are discussed here. As septins are an essential player in basic biology and disease, understanding the interplay between septins and the plasma membrane is critical and may yield new and unexpected functions.
Collapse
Affiliation(s)
- Andrew A Bridges
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Amy S Gladfelter
- From the Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
30
|
Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M. Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener 2015; 10:16. [PMID: 25888325 PMCID: PMC4391194 DOI: 10.1186/s13024-015-0013-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Cognitive decline and disease progression in different neurodegenerative diseases typically involves synaptic dysfunction preceding the neuronal loss. The synaptic dysfunction is suggested to be caused by imbalanced synaptic plasticity i.e. enhanced induction of long-term depression and concomitantly decreased long-term potentiation accompanied with excess stimulation of extrasynaptic N-Methyl-D-aspartate (NMDA) receptors due to various disturbances in pre- and postsynaptic sites. Recent research has identified neurodegenerative disease-related changes in protein accumulation and aggregation, gene expression, and protein functions, which may contribute to imbalanced synaptic function. Nevertheless, a comprehensive understanding of the mechanisms regulating synaptic plasticity in health and disease is still lacking and therefore characterization of new candidates involved in these mechanisms is needed. Septins, a highly conserved group of guanosine-5'-triphosphate (GTP)-binding proteins, show high neuronal expression and are implicated in the regulation of synaptic vesicle trafficking and neurotransmitter release. In this review, we first summarize the evidence how synaptic dysfunction is related to the pathogenesis of Alzheimer's, Parkinson's and Huntington's disease and frontotemporal lobar degeneration. Then, we discuss different aspects of the potential involvement of the septin family members in the regulation of synaptic function in relation to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Kaisa Ma Kurkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
31
|
Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci 2014; 128:397-407. [PMID: 25472714 DOI: 10.1242/jcs.162206] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Septins constitute a family of GTP-binding proteins that are involved in a variety of biological processes. Several isoforms have been implicated in disease, but the molecular mechanisms underlying pathogenesis are poorly understood. Here, we show that depletion of SEPT9 decreases surface levels of epidermal growth factor receptors (EGFRs) by enhancing receptor degradation. We identify a consensus motif within the SEPT9 N-terminal domain that supports its association with the adaptor protein CIN85 (also known as SH3KBP1). We further show CIN85-SEPT9 to be localized exclusively to the plasma membrane, where SEPT9 is recruited to EGF-engaged receptors in a CIN85-dependent manner. Finally, we demonstrate that SEPT9 negatively regulates EGFR degradation by preventing the association of the ubiquitin ligase Cbl with CIN85, resulting in reduced EGFR ubiquitylation. Taken together, these data provide a mechanistic explanation of how SEPT9, though acting exclusively at the plasma membrane, impairs the sorting of EGFRs into the degradative pathway.
Collapse
Affiliation(s)
- Katrin Diesenberg
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Monika Beerbaum
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Uwe Fink
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Peter Schmieder
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Michael Krauss
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
32
|
Akhmetova K, Balasov M, Huijbregts RPH, Chesnokov I. Functional insight into the role of Orc6 in septin complex filament formation in Drosophila. Mol Biol Cell 2014; 26:15-28. [PMID: 25355953 PMCID: PMC4279225 DOI: 10.1091/mbc.e14-02-0734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septins belong to a family of polymerizing GTP-binding proteins that are important for cytokinesis and other processes that involve spatial organization of the cell cortex. We reconstituted a recombinant Drosophila septin complex and compared activities of the wild-type and several mutant septin complex variants both in vitro and in vivo. We show that Drosophila septin complex functions depend on the intact GTP-binding and/or hydrolysis domains of Pnut, Sep1, and Sep2. The presence of the functional C-terminal domain of septins is required for the integrity of the complex. Drosophila Orc6 protein, the smallest subunit of the origin recognition complex (ORC), directly binds to septin complex and facilitates septin filament formation. Orc6 forms dimers through the interactions of its N-terminal, TFIIB-like domains. This ability of the protein suggests a direct bridging role for Orc6 in stimulating septin polymerization in Drosophila. Studies reported here provide a functional dissection of a Drosophila septin complex and highlight the basic conserved and divergent features among metazoan septin complexes.
Collapse
Affiliation(s)
- Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294 Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Richard P H Huijbregts
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294
| |
Collapse
|
33
|
Connolly D, Hoang HG, Adler E, Tazearslan C, Simmons N, Bernard VV, Castaldi M, Oktay MH, Montagna C. Septin 9 amplification and isoform-specific expression in peritumoral and tumor breast tissue. Biol Chem 2014; 395:157-67. [PMID: 24127542 DOI: 10.1515/hsz-2013-0247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/09/2013] [Indexed: 12/31/2022]
Abstract
Septins are a large family of GTP-binding proteins abnormally expressed in many solid tumors. Septin 9 (SEPT9) in particular has been found overexpressed in diverse human tumors including breast, head and neck, ovarian, endometrial, kidney, and pancreatic cancer. Although we previously reported SEPT9 amplification in breast cancer, we now show specifically that high-grade breast carcinomas, the subtype with worst clinical outcome, exhibit a significant increase in SEPT9 copy number when compared with other tumor grades. We also present, for the first time, a sensitive and quantitative measure of seven (SEPT9_v1 through SEPT9_v7) isoform variant mRNA levels in mammary epithelial cells. SEPT9_v1, SEPT9_v3, SEPT9_v6, and SEPT9_v7 isoforms were expressed at the highest levels followed by SEPT9_v2 and SEPT9_v5, whereas SEPT9_v4 was almost undetectable. Although most of the isoforms were upregulated in primary tumor tissues relative to the patient-matched peritumoral tissues, SEPT9_v4 remained the lowest expressing isoform. This comprehensive analysis of SEPT9 provides substantial evidence for increased SEPT9 expression as a consequence of genomic amplification and is the first study to profile SEPT9_v1 through SEPT9_v7 isoform-specific mRNA expression in tumor and nontumor tissues from patients with breast cancer.
Collapse
|
34
|
Vagin O, Tokhtaeva E, Garay PE, Souda P, Bassilian S, Whitelegge JP, Lewis R, Sachs G, Wheeler L, Aoki R, Fernandez-Salas E. Recruitment of septin cytoskeletal proteins by botulinum toxin A protease determines its remarkable stability. J Cell Sci 2014; 127:3294-308. [PMID: 24928902 DOI: 10.1242/jcs.146324] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteolytic cleavage of synaptosomal-associated protein 25 by the light chain of botulinum neurotoxin type A (LCA) results in a blockade of neurotransmitter release that persists for several months in motor neurons. The L428A/L429A mutation in LCA is known to significantly shorten both the proteolytic and neuroparalytic effects of the neurotoxin in mice. To elucidate the cellular mechanism for LCA longevity, we studied the effects of L428A/L429A mutation on the interactome, localization and stability of LCA expressed in cultured neuronal cells. Mass spectrometry analysis of the LCA interactome showed that the mutation prevented the interaction of LCA with septins. The wild-type LCA was concentrated in plasma-membrane-associated clusters, colocalizing with septins-2 and septin-7, which accumulated in these clusters only in the presence of LCA. The L428A/L429A mutation decreased co-clustering of LCA and septins and accelerated proteasomal and non-proteasomal degradation of LCA. Similarly, the impairment of septin oligomerization by forchlorfenuron or silencing of septin-2 prevented LCA interaction and clustering with septins and increased LCA degradation. Therefore, the dileucine-mediated LCA-septin co-clustering is crucial for the long-lasting stabilization of LCA-related proteolytic and presumably neuroparalytic activity.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Physiology, School of Medicine, UCLA and Veterans Administration Greater Los Angeles Health Care System, Los Angeles, CA 91343, USA
| | - Elmira Tokhtaeva
- Department of Physiology, School of Medicine, UCLA and Veterans Administration Greater Los Angeles Health Care System, Los Angeles, CA 91343, USA
| | - Patton E Garay
- Department of Biological Sciences, Allergan Inc., Irvine, CA 92612, USA
| | - Puneet Souda
- The NPI-Semel Institute, Pasarow Mass Spectrometry Laboratory, UCLA, Los Angeles, CA 90095, USA
| | - Sara Bassilian
- Department of Physiology, School of Medicine, UCLA and Veterans Administration Greater Los Angeles Health Care System, Los Angeles, CA 91343, USA
| | - Julian P Whitelegge
- The NPI-Semel Institute, Pasarow Mass Spectrometry Laboratory, UCLA, Los Angeles, CA 90095, USA
| | - Ramilla Lewis
- Department of Biological Sciences, Allergan Inc., Irvine, CA 92612, USA
| | - George Sachs
- Department of Physiology, School of Medicine, UCLA and Veterans Administration Greater Los Angeles Health Care System, Los Angeles, CA 91343, USA
| | - Larry Wheeler
- Department of Biological Sciences, Allergan Inc., Irvine, CA 92612, USA
| | - Roger Aoki
- Department of Biological Sciences, Allergan Inc., Irvine, CA 92612, USA
| | | |
Collapse
|
35
|
Hernández-Rodríguez Y, Masuo S, Johnson D, Orlando R, Smith A, Couto-Rodriguez M, Momany M. Distinct septin heteropolymers co-exist during multicellular development in the filamentous fungus Aspergillus nidulans. PLoS One 2014; 9:e92819. [PMID: 24664283 PMCID: PMC3963935 DOI: 10.1371/journal.pone.0092819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/25/2014] [Indexed: 01/22/2023] Open
Abstract
Septins are important components of the cytoskeleton that are highly conserved in eukaryotes and play major roles in cytokinesis, patterning, and many developmental processes. Septins form heteropolymers which assemble into higher-order structures including rings, filaments, and gauzes. In contrast to actin filaments and microtubules, the molecular mechanism by which septins assemble is not well-understood. Here, we report that in the filamentous fungus Aspergillus nidulans, four core septins form heteropolymeric complexes. AspE, a fifth septin lacking in unicellular yeasts, interacts with only one of the core septins, and only during multicellular growth. AspE is required for proper localization of three of the core septins, and requires this same subset of core septins for its own unique cortical localization. The ΔaspE mutant lacks developmentally-specific septin higher-order structures and shows reduced spore production and slow growth with low temperatures and osmotic stress. Our results show that at least two distinct septin heteropolymer populations co-exist in A. nidulans, and that while AspE is not a subunit of either heteropolymer, it is required for assembly of septin higher-order structures found in multicellular development.
Collapse
Affiliation(s)
| | - Shunsuke Masuo
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Darryl Johnson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Amy Smith
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Mara Couto-Rodriguez
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Patzig J, Dworschak MS, Martens AK, Werner HB. Septins in the glial cells of the nervous system. Biol Chem 2014; 395:143-9. [DOI: 10.1515/hsz-2013-0240] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023]
Abstract
Abstract
The capacity of cytoskeletal septins to mediate diverse cellular processes is related to their ability to assemble as distinct heterooligomers and higher order structures. However, in many cell types the functional relevance of septins is not well understood. This minireview provides a brief overview of our current knowledge about septins in the non-neuronal cells of the vertebrate nervous system, collectively termed ‘glial cells’, i.e., astrocytes, microglia, oligodendrocytes, and Schwann cells. The dysregulation of septins observed in various models of myelin pathology is discussed with respect to implications for hereditary neuralgic amyotrophy (HNA) caused by mutations of the human SEPT9-gene.
Collapse
|
37
|
Green RA, Mayers JR, Wang S, Lewellyn L, Desai A, Audhya A, Oegema K. The midbody ring scaffolds the abscission machinery in the absence of midbody microtubules. ACTA ACUST UNITED AC 2014; 203:505-20. [PMID: 24217623 PMCID: PMC3824018 DOI: 10.1083/jcb.201306036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The septins, but not midbody microtubules, are important for daughter cell cytoplasmic isolation and ESCRT-dependent midbody ring release during abscission. Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.
Collapse
Affiliation(s)
- Rebecca A Green
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Candida albicans invades endothelial cells by binding to N-cadherin and other cell surface receptors. This binding induces rearrangement of endothelial cell actin microfilaments, which results in the formation of pseudopods that surround the organism and pull it into the endothelial cell. Here, we investigated the role of endothelial cell septin 7 (SEPT7) in the endocytosis of C. albicans hyphae. Using confocal microscopy, we determined that SEPT7 accumulated with N-cadherin and actin microfilaments around C. albicans as it was endocytosed by endothelial cells. Affinity purification studies indicated that a complex containing N-cadherin and SEPT7 was recruited by C. albicans and that formation of this complex around C. albicans was mediated by the fungal Als3 and Ssa1 invasins. Knockdown of N-cadherin by small interfering RNA (siRNA) reduced recruitment of SEPT7 to C. albicans, suggesting that N-cadherin functions as a link between SEPT7 and the fungus. Also, depolymerization of actin microfilaments with cytochalasin D decreased the association between SEPT7 and N-cadherin and inhibited recruitment of both SEPT7 and N-cadherin to C. albicans, indicating the necessity of an intact cytoskeleton in the functional interaction between SEPT7 and N-cadherin. Importantly, knockdown of SEPT7 decreased accumulation of N-cadherin around C. albicans in intact endothelial cells and reduced binding of N-cadherin to this organism, as revealed by the affinity purification assay. Furthermore, SEPT7 knockdown significantly inhibited the endocytosis of C. albicans. Therefore, in response to C. albicans infection, SEPT7 forms a complex with endothelial cell N-cadherin, is required for normal accumulation of N-cadherin around C. albicans hyphae, and is necessary for maximal endocytosis of the organism. During hematogenously disseminated infection, Candida albicans invades the endothelial cell lining of the blood vessels to invade the deep tissues. C. albicans can invade endothelial cells by inducing its own endocytosis, which is triggered when the C. albicans Als3 and Ssa1 invasins bind to N-cadherin on the endothelial cell surface. How this binding induces endocytosis is incompletely understood. Septins are intracellular GTP-binding proteins that influence the function and localization of cell surface proteins. We found that C. albicans Als3 and Ssa1 bind to a complex containing N-cadherin and septin 7, which in turn interacts with endothelial cell microfilaments, thereby inducing endocytosis of the organism. The key role of septin 7 in governing receptor-mediated endocytosis is likely relevant to host cell invasion by other microbial pathogens, in addition to C. albicans.
Collapse
|
39
|
The human septin7 and the yeast CDC10 septin prevent Bax and copper mediated cell death in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3186-3194. [DOI: 10.1016/j.bbamcr.2013.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/08/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
|
40
|
SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci 2013; 14:22102-16. [PMID: 24213608 PMCID: PMC3856054 DOI: 10.3390/ijms141122102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
The septin gene belongs to a highly conserved family of polymerizing GTP-binding cytoskeletal proteins. SEPTs perform cytoskeletal remodeling, cell polarity, mitosis, and vesicle trafficking by interacting with various cytoskeletons. Our previous studies have indicated that SEPTIN12+/+/+/- chimeras with a SEPTIN12 mutant allele were infertile. Spermatozoa from the vas deferens of chimeric mice indicated an abnormal sperm morphology, decreased sperm count, and immotile sperm. Mutations and genetic variants of SEPTIN12 in infertility cases also caused oligozoospermia and teratozoospermia. We suggest that a loss of SEPT12 affects the biological function of microtublin functions and causes spermiogenesis defects. In the cell model, SEPT12 interacts with α- and β-tubulins by co-immunoprecipitation (co-IP). To determine the precise localization and interactions between SEPT12 and α- and β-tubulins in vivo, we created SEPTIN12-transgene mice. We demonstrate how SEPT12 interacts and co-localizes with α- and β-tubulins during spermiogenesis in these mice. By using shRNA, the loss of SEPT12 transcripts disrupts α- and β-tubulin organization. In addition, losing or decreasing SEPT12 disturbs the morphogenesis of sperm heads and the elongation of sperm tails, the steps of which are coordinated and constructed by α- and β-tubulins, in SEPTIN12+/+/+/- chimeras. In this study, we discovered that the SEPTIN12-microtubule complexes are critical for sperm formation during spermiogenesis.
Collapse
|
41
|
Liu L, Li Q, Lin L, Wang M, Lu Y, Wang W, Yuan J, Li L, Liu X. Proteomic analysis of epithelioma papulosum cyprini cells infected with spring viremia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:26-35. [PMID: 23583725 DOI: 10.1016/j.fsi.2013.03.367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Spring viremia of carp (SVC), caused by spring viremia of carp virus (SVCV) is an important disease due to its drastic effects on carp fisheries in many countries. To better understand molecular responses to SVCV infection, two dimensional electrophoresis (2-DE) and MALDI-TOF/TOF were performed to investigate altered proteins in epithelioma papulosum cyprini cells (EPCs). Differentially expressed proteins in mock-infected EPCs and SVCV-infected EPCs were compared. A total of 54 differentially expressed spots were successfully identified (33 up-regulated spots and 21 down-regulated spots) which include cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism, and ubiquitin proteasome pathway-associated proteins. Moreover, 7 corresponding genes of the differentially expressed proteins were quantified using real time RT-PCR to examine their transcriptional profiles. The presence of four selected cellular proteins (beta-actin, gamma1-actin, heat shock cognate 71 kDa protein and annexin A2) associated with the spring viremia of carp virus (SVCV) particles was validated by Western blot assay. This study provides dynamic and useful protein-related information to further understand the underlying pathogenesis of SVCV infection.
Collapse
Affiliation(s)
- Liyue Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lassen LB, Füchtbauer A, Schmitz A, Sørensen AB, Pedersen FS, Füchtbauer EM. Septin9 is involved in T-cell development and CD8+ T-cell homeostasis. Cell Tissue Res 2013; 352:695-705. [DOI: 10.1007/s00441-013-1618-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/11/2013] [Indexed: 12/18/2022]
|
43
|
Fernandez-Castaneda A, Arandjelovic S, Stiles TL, Schlobach RK, Mowen KA, Gonias SL, Gaultier A. Identification of the low density lipoprotein (LDL) receptor-related protein-1 interactome in central nervous system myelin suggests a role in the clearance of necrotic cell debris. J Biol Chem 2013; 288:4538-48. [PMID: 23264627 PMCID: PMC3576060 DOI: 10.1074/jbc.m112.384693] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 12/14/2022] Open
Abstract
In the central nervous system (CNS), fast neuronal signals are facilitated by the oligodendrocyte-produced myelin sheath. Oligodendrocyte turnover or injury generates myelin debris that is usually promptly cleared by phagocytic cells. Failure to remove dying oligodendrocytes leads to accumulation of degraded myelin, which, if recognized by the immune system, may contribute to the development of autoimmunity in diseases such as multiple sclerosis. We recently identified low density lipoprotein receptor-related protein-1 (LRP1) as a novel phagocytic receptor for myelin debris. Here, we report characterization of the LRP1 interactome in CNS myelin. Fusion proteins were designed corresponding to the extracellular ligand-binding domains of LRP1. LRP1 partners were isolated by affinity purification and characterized by mass spectrometry. We report that LRP1 binds intracellular proteins via its extracellular domain and functions as a receptor for necrotic cells. Peptidyl arginine deiminase-2 and cyclic nucleotide phosphodiesterase are novel LRP1 ligands identified in our screen, which interact with full-length LRP1. Furthermore, the extracellular domain of LRP1 is a target of peptidyl arginine deiminase-2-mediated deimination in vitro. We propose that LRP1 functions as a receptor for endocytosis of intracellular components released during cellular damage and necrosis.
Collapse
Affiliation(s)
- Anthony Fernandez-Castaneda
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| | - Sanja Arandjelovic
- the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Travis L. Stiles
- the Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | - Ryan K. Schlobach
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| | - Kerri A. Mowen
- the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, and
| | - Steven L. Gonias
- the Department of Pathology, University of California at San Diego, La Jolla, California 92093
| | - Alban Gaultier
- From the Department of Neuroscience and Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
44
|
Hernández-Rodríguez Y, Momany M. Posttranslational modifications and assembly of septin heteropolymers and higher-order structures. Curr Opin Microbiol 2012; 15:660-8. [PMID: 23116980 DOI: 10.1016/j.mib.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/28/2022]
Abstract
Septins are cytoskeletal elements that contain a highly conserved canonical G domain flanked by more divergent N- and C-termini. Septin monomers form heteropolymers that in turn associate into a variety of higher-order structures. SUMOylation, acetylation and phosphorylation of septins have all been reported; however, there are no examples of residues that are universally modified suggesting that posttranslational modifications of septins evolved relatively recently. Within the conserved G domain, posttranslational modifications cluster in regions near the G interface, consistent with roles in modulating heteropolymer assembly. Within the highly diverged N- and C-termini, posttranslational modifications are scattered randomly, consistent with roles in modulating assembly of higher-order structures that are unique to individual organisms.
Collapse
|
45
|
Shiryaev A, Kostenko S, Dumitriu G, Moens U. Septin 8 is an interaction partner and in vitro substrate of MK5. World J Biol Chem 2012; 3:98-109. [PMID: 22649572 PMCID: PMC3362842 DOI: 10.4331/wjbc.v3.i5.98] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 03/16/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To identify novel substrates for the mitogen-activated protein kinase-activated protein kinase 5 (MK5).
METHODS: Yeast two-hybrid screening with MK5 as bait was used to identify novel possible interaction partners. The binding of putative partner was further examined by glutathione S-transferase (GST) pull-down, co-immunoprecipitation and fluorescence resonance energy transfer (FRET) analysis. In vitro kinase and peptide array assays were used to map MK5 phosphoacceptor sites on the new partner. Confocal microscopy was performed to study the subcellular localization of MK5 and its partners.
RESULTS: Septin 8 was identified as a novel interaction partner for MK5 by yeast two-hybrid screening. This interaction was confirmed by GST pull-down, co-immunoprecipitation and FRET analysis. Septin 5, which can form a complex with septin 8, did not interact with MK5. Serine residues 242 and 271 on septin 8 were identified as in vitro MK5 phosphorylation sites. MK5 and septin 8 co-localized in the perinuclear area and in cell protrusions. Moreover, both proteins co-localized with vesicle marker synaptophysin.
CONCLUSION: Septin 8 is a bona fide interaction partner and in vitro substrate for MK5. This interaction may be implicated in vesicle trafficking.
Collapse
Affiliation(s)
- Alexey Shiryaev
- Alexey Shiryaev, Sergiy Kostenko, Gianina Dumitriu, Ugo Moens, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | |
Collapse
|
46
|
Expression of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs. Cell Oncol (Dordr) 2012; 35:85-93. [PMID: 22278362 DOI: 10.1007/s13402-011-0066-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2011] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND The evolutionarily conserved septin family of genes encode GTP binding proteins involved in a variety of cellular functions including cytokinesis, apoptosis, membrane dynamics and vesicle trafficking. Septin proteins can form hetero-oligomeric complexes and interact with other proteins including actin and tubulin. The human SEPT9 gene on chromosome 17q25.3 has a complex genomic architecture with 18 different transcripts that can encode 15 distinct polypeptides. Two distinct transcripts with unique 5' ends (SEPT9_v4 and SEPT9_v4*) encode the same protein. In tumours the ratio of these transcripts changes with elevated levels of SEPT9_v4* mRNA, a transcript that is translated with enhanced efficiency leading to increased SEPT9_i4 protein. METHODS We have examined the effect of over-expression of SEPT9_i4 on the dynamics of microtubule polymer mass in cultured cells. RESULTS We show that the microtubule network in SEPT9_i4 over-expressing cells resists disruption by paclitaxel or cold incubation but also repolymerises tubulin more slowly after microtubule depolymerisation. Finally we show that SEPT9_i4 over-expressing cells have enhanced survival in the presence of clinically relevant microtubule acting drugs but not after treatment with DNAinteracting agents. CONCLUSIONS Given that SEPT9 over-expression is seen in diverse tumours and in particular ovarian and breast cancer, such data indicate that SEPT9_v4 expression may be clinically relevant and contribute to some forms of drug resistance.
Collapse
|
47
|
Wright NA, Poulsom R. Omnis cellula e cellula revisited: cell biology as the foundation of pathology. J Pathol 2012; 226:145-7. [PMID: 22006657 DOI: 10.1002/path.3030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This 2012 Annual Review Issue of The Journal of Pathology argues strongly that cell biology, in its many disciplines, underpins the foundation of our understanding of the mechanisms of disease-the holy grail of pathology. Our increasing knowledge of the human genome will not be enough to attain this goal without parallel developments in our comprehension of the results, at the cellular level, of these genetic changes. In the end, it is cell biology and cell biologists who will deliver this mission.
Collapse
Affiliation(s)
- Nicholas A Wright
- Centre for Digestive Diseases, Barts and the London School of Medicine and Dentistry, Turner Street, Whitechapel, London E1 2AD, UK.
| | | |
Collapse
|