1
|
Wei YS, Tsai SY, Lin SL, Chen YT, Tsai PS. Methylglyoxal-Stimulated Mesothelial Cells Prompted Fibroblast-to-Proto-Myofibroblast Transition. Int J Mol Sci 2025; 26:813. [PMID: 39859527 PMCID: PMC11766140 DOI: 10.3390/ijms26020813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.e., methylglyoxal (MGO)) that appeared during the heating and storage of the dialysate are considered to be key components to initiating PF, but how GDPs lead to the activation of myofibroblast in fibrotic peritoneum has not yet been fully elucidated. In this study, mesothelial cell line (MeT-5A) and fibroblast cell line (MRC-5) were used to investigate the transcriptomic and proteomic changes to unveil the underlying mechanism of MGO-induced PF. Our transcriptomic data from the MGO-stimulated mesothelial cells showed upregulation of genes involved in pro-inflammatory, apoptotic, and fibrotic pathways. While no phenotypic changes were noted on fibroblasts after direct MGO, supernatant from MGO-stimulated mesothelial cells promoted fibroblasts to change into proto-myofibroblasts, activated fibroblasts in the first stage toward myofibroblasts. In conclusion, this study showed that MGO-stimulated mesothelial cells promoted fibroblast-to-proto-myofibroblast transition; however, additional involvement of other factors or cells (e.g., macrophages) may be needed to complete the transformation into myofibroblasts.
Collapse
Affiliation(s)
- Yu-Syuan Wei
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Shuei-Liong Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Yi-Ting Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
2
|
Diao X, Zhan C, Ye H, Wu H, Yi C, Lin J, Mao H, Chen W, Yang X. Single-cell transcriptomic reveals the peritoneal microenvironmental change in long-term peritoneal dialysis patients with ultrafiltration failure. iScience 2024; 27:111383. [PMID: 39687014 PMCID: PMC11647153 DOI: 10.1016/j.isci.2024.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/02/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
The microenvironmental changes in peritoneal dialysis effluent (PDE) after long-term vintage (LV) of PD in patients with ultrafiltration failure (LV_UF) are unclear. Single-cell sequencing revealed that peritoneal neutrophils were elevated in LV_UF patients, while MRC1-macrophage subcluster decreased compared with PD patients with short vintage (SV) and LV without ultrafiltration failure (LV_NOT_UF). Compared with the LV_NOT_UF group, the upregulated differentially expressed genes (DEGs) of monocytes/macrophages in the LV_UF group were involved in inflammatory response and EMT progress. LV_UF patients had a higher proportion of epithelial-like mesothelial cells (E-MCs), which were characterized by autophagy activation, inflammation, and upregulation of neutrophil- and autophagy-related DEGs compared to the LV_NOT_UF group. Additionally, mesenchymal-like MCs and AQP1 expression were reduced in the LV_UF group compared with the other groups. Both neutrophils and monocytes/macrophages interacted with MCs. Our study provides insights into the roles of peritoneal mesothelial cells and inflammatory cells in PD patients with UF.
Collapse
Affiliation(s)
- Xiangwen Diao
- Department of Emergency, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Cuixia Zhan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Hongjian Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haishan Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Chunyan Yi
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Jianxiong Lin
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| | - Xiao Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, Guangdong, China
| |
Collapse
|
3
|
Jin M, Komine M, Tsuda H, Sashikawa-Kimura M, Nakae S, Motegi SI, Ohtsuki M. Interleukin-33 Deficiency Protects the Skin From Ulcer Formation in an Ischemia-Reperfusion-Induced Decubitus Mouse Model. Exp Dermatol 2024; 33:e70014. [PMID: 39555678 DOI: 10.1111/exd.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Interleukin-33 (IL-33) is an alarmin released upon epithelial tissue damage. It functions as a nuclear factor for regulating gene expression. We hypothesised that IL-33 is involved in the formation of decubitus ulcers through damaged epidermis. Therefore, this study aimed to clarify the mechanism of IL-33 action in decubitus ulcer formation. IL-33 knockout (KO), soluble stimulation-2 (ST2) transgenic, and wild-type (WT) mice were used to construct an ischemia-reperfusion (I/R) injury as a decubitus model. The ulcer area was significantly reduced in IL-33 KO mice compared to WT mice but was not reduced in ST2 transgenic mice. Anti-IL-33 receptor (transmembrane ST2) antibodies effectively prevented ulcer formation; however, an anti-IL-33 neutralising antibody was ineffective. The number of infiltrating macrophages was higher, while that of neutrophils and mast cells was lower in IL-33 KO mice than in WT mice. The number of M2 macrophages increased in IL-33 KO mice. Characterisation of gene expression levels revealed significantly reduced interleukin-1 beta (IL-1β) and increased C-C motif chemokine ligand 17 expression in IL-33 KO mice. Macrophages isolated from ulcers in WT or IL-33 KO mice stimulated with exogenous IL-33 produced comparable amounts of IL-1β. In conclusion, our study indicates that IL-33 is released in response to I/R injury in the skin, contributing to inflammatory macrophage and mast cell infiltration and stimulation, resulting in IL-1β production and the massive infiltration of effector cells, including neutrophils, which finally induces decubitus ulcer formation. These results suggest that suppressing IL-33 expression could be beneficial for treating early-phase decubitus ulcers.
Collapse
Affiliation(s)
- Meijuan Jin
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Mayumi Komine
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Hidetoshi Tsuda
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Susumu Nakae
- Graduate School of Integrated Science of Life, Hiroshima University Graduate School, Hiroshima, Japan
| | | | - Mamitaro Ohtsuki
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
4
|
de Oliveira WV, Giarola LTP, Ferreira LGR, Schettini IVG, Turani SD, de Oliveira AR, Marinho MAS, Pinto SWL, Barros-Pinheiro M, de Figueiredo RC, Rios DRA. Inflammation and all-cause mortality in patients undergoing peritoneal dialysis. EINSTEIN-SAO PAULO 2024; 22:eAO0627. [PMID: 39140572 PMCID: PMC11323835 DOI: 10.31744/einstein_journal/2024ao0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/08/2023] [Indexed: 08/15/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate inflammatory biomarkers in patients undergoing peritoneal dialysis and investigate their association with all-cause mortality or transfer to hemodialysis. METHODS This prospective cohort study included 43 patients undergoing peritoneal dialysis. Plasma levels of cytokines were measured using flow cytometry and capture enzyme-linked immunosorbent assay. Biomarkers were categorized based on their respective median values. Survival analysis was conducted using the Kaplan-Meier estimator, considering two outcomes: all-cause mortality and transfer to hemodialysis. RESULTS After adjusting for confounding factors, plasma levels above the median of the levels of CCL2 and plasma, as well as below the median of TNF-α, and the median of dialysate IL-17 levels, were associated with an increased risk of experiencing the specified outcomes after approximately 16 months of follow-up. CONCLUSION These findings suggest that inflammatory biomarkers may be a valuable tool for predicting all-cause mortality and transfer to hemodialysis in patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
| | - Luciane Teixeira Passos Giarola
- Department of Mathematics and StatisticsUniversidade de São João del-ReiSão João del-ReiMGBrazil Department of Mathematics and Statistics, Universidade de São João del-Rei, São João del-Rei, MG, Brazil.
| | | | | | - Sylvia Dias Turani
- Universidade de São João del-ReiDivinópolisMGBrazil Universidade de São João del-Rei, Divinópolis, MG, Brazil.
| | - Arlindo Ribeiro de Oliveira
- Nephrology CenterComplexo de Saúde São João de DeusDivinópolisMGBrazil Nephrology Center, Complexo de Saúde São João de Deus, Divinópolis, MG, Brazil.
| | - Maria Aparecida Silva Marinho
- Nephrology CenterComplexo de Saúde São João de DeusDivinópolisMGBrazil Nephrology Center, Complexo de Saúde São João de Deus, Divinópolis, MG, Brazil.
| | - Sérgio Wyton Lima Pinto
- Nephrology CenterComplexo de Saúde São João de DeusDivinópolisMGBrazil Nephrology Center, Complexo de Saúde São João de Deus, Divinópolis, MG, Brazil.
| | - Melina Barros-Pinheiro
- Universidade de São João del-ReiDivinópolisMGBrazil Universidade de São João del-Rei, Divinópolis, MG, Brazil.
| | | | - Danyelle Romana Alves Rios
- Universidade de São João del-ReiDivinópolisMGBrazil Universidade de São João del-Rei, Divinópolis, MG, Brazil.
| |
Collapse
|
5
|
Ito Y, Sun T, Tawada M, Kinashi H, Yamaguchi M, Katsuno T, Kim H, Mizuno M, Ishimoto T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci 2024; 25:8607. [PMID: 39201294 PMCID: PMC11354376 DOI: 10.3390/ijms25168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-β expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-β-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Mitsuhiro Tawada
- Department of Nephrology, Imaike Jin Clinic, Nagoya 464-0850, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University Medical Center, Okazaki 444-2148, Japan;
| | - Hangsoo Kim
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| |
Collapse
|
6
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
7
|
Sheng L, Shan Y, Dai H, Yu M, Sun J, Huang L, Wang F, Sheng M. Intercellular communication in peritoneal dialysis. Front Physiol 2024; 15:1331976. [PMID: 38390449 PMCID: PMC10882094 DOI: 10.3389/fphys.2024.1331976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Tao M, Shi Y, Chen H, Li J, Wang Y, Ma X, Du L, Wang Y, Yang X, Hu Y, Zhou X, Zhong Q, Yan D, Qiu A, Zhuang S, Liu N. The disruptor of telomeric silencing 1-like (DOT1L) promotes peritoneal fibrosis through the upregulation and activation of protein tyrosine kinases. MOLECULAR BIOMEDICINE 2024; 5:3. [PMID: 38172378 PMCID: PMC10764708 DOI: 10.1186/s43556-023-00161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.
Collapse
Affiliation(s)
- Min Tao
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yingfeng Shi
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hui Chen
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jinqing Li
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yi Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaoyan Ma
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lin Du
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yishu Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xinyu Yang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yan Hu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xun Zhou
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qin Zhong
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Danying Yan
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Andong Qiu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
9
|
Si Z, Su W, Zhou Z, Li J, Su C, Zhang Y, Hu Z, Huang Z, Zhou H, Cong A, Zhou Z, Cao W. Hyperglycolysis in endothelial cells drives endothelial injury and microvascular alterations in peritoneal dialysis. Clin Transl Med 2023; 13:e1498. [PMID: 38037461 PMCID: PMC10689974 DOI: 10.1002/ctm2.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Endothelial cell (EC) dysfunction leading to microvascular alterations is a hallmark of technique failure in peritoneal dialysis (PD). However, the mechanisms underlying EC dysfunction in PD are poorly defined. METHODS We combined RNA sequencing with metabolite set analysis to characterize the metabolic profile of peritoneal ECs from a mouse model of PD. This was combined with EC-selective blockade of glycolysis by genetic or pharmacological inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in vivo and in vitro. We also investigated the association between peritoneal EC glycolysis and microvascular alterations in human peritoneal samples from patients with end-stage kidney disease (ESKD). RESULTS In a mouse model of PD, peritoneal ECs had a hyperglycolytic metabolism that shunts intermediates into nucleotide synthesis. Hyperglycolytic mouse peritoneal ECs displayed a unique active phenotype with increased proliferation, permeability and inflammation. The active phenotype of mouse peritoneal ECs can be recapitulated in human umbilical venous ECs and primary human peritoneal ECs by vascular endothelial growth factor that was released from high glucose-treated mesothelial cells. Importantly, reduction of peritoneal EC glycolysis, via endothelial deficiency of the glycolytic activator PFKFB3, inhibited PD fluid-induced increases in peritoneal capillary density, vascular permeability and monocyte extravasation, thereby protecting the peritoneum from the development of structural and functional damages. Mechanistically, endothelial PFKFB3 deficiency induced the protective effects in part by inhibiting cell proliferation, VE-cadherin endocytosis and monocyte-adhesion molecule expression. Pharmacological PFKFB3 blockade induced a similar therapeutic benefit in this PD model. Human peritoneal tissue from patients with ESKD also demonstrated evidence of increased EC PFKFB3 expression associated with microvascular alterations and peritoneal dysfunction. CONCLUSIONS These findings reveal a critical role of glycolysis in ECs in mediating the deterioration of peritoneal function and suggest that strategies targeting glycolysis in peritoneal ECs may be of therapeutic benefit for patients undergoing PD.
Collapse
Affiliation(s)
- Zekun Si
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Wenyan Su
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhuoyu Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Jinjin Li
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Cailing Su
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Ying Zhang
- Division of NephrologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouP. R. China
| | - Zuoyu Hu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhijie Huang
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Hong Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Ansheng Cong
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhanmei Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Wei Cao
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| |
Collapse
|
10
|
Marchant V, Trionfetti F, Tejedor-Santamaria L, Rayego-Mateos S, Rotili D, Bontempi G, Domenici A, Menè P, Mai A, Martín-Cleary C, Ortiz A, Ramos AM, Strippoli R, Ruiz-Ortega M. BET Protein Inhibitor JQ1 Ameliorates Experimental Peritoneal Damage by Inhibition of Inflammation and Oxidative Stress. Antioxidants (Basel) 2023; 12:2055. [PMID: 38136175 PMCID: PMC10740563 DOI: 10.3390/antiox12122055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Peritoneal dialysis (PD) is a current replacement therapy for end-stage kidney diseases (ESKDs). However, long-term exposure to PD fluids may lead to damage of the peritoneal membrane (PM) through mechanisms involving the activation of the inflammatory response and mesothelial-to-mesenchymal transition (MMT), leading to filtration failure. Peritoneal damage depends on a complex interaction among external stimuli, intrinsic properties of the PM, and subsequent activities of the local innate-adaptive immune system. Epigenetic drugs targeting bromodomain and extra-terminal domain (BET) proteins have shown beneficial effects on different experimental preclinical diseases, mainly by inhibiting proliferative and inflammatory responses. However the effect of BET inhibition on peritoneal damage has not been studied. To this aim, we have evaluated the effects of treatment with the BET inhibitor JQ1 in a mouse model of peritoneal damage induced by chlorhexidine gluconate (CHX). We found that JQ1 ameliorated the CHX-induced PM thickness and inflammatory cell infiltration. Moreover, JQ1 decreased gene overexpression of proinflammatory and profibrotic markers, together with an inhibition of the nuclear factor-κB (NF-κB) pathway. Additionally, JQ1 blocked the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and restored changes in the mRNA expression levels of NADPH oxidases (NOX1 and NOX4) and NRF2/target antioxidant response genes. To corroborate the in vivo findings, we evaluated the effects of the BET inhibitor JQ1 on PD patients' effluent-derived primary mesothelial cells and on the MeT-5A cell line. JQ1 inhibited tumor necrosis factor-α (TNF-α)-induced proinflammatory gene upregulation and restored MMT phenotype changes, together with the downmodulation of oxidative stress. Taken together, these results suggest that BET inhibitors may be a potential therapeutic option to ameliorate peritoneal damage.
Collapse
Affiliation(s)
- Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Flavia Trionfetti
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Giulio Bontempi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.D.); (P.M.)
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (D.R.); (A.M.)
| | - Catalina Martín-Cleary
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Alberto Ortiz
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Adrian M. Ramos
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Raffaele Strippoli
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, 00149 Rome, Italy; (F.T.); (G.B.); (R.S.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain; (V.M.); (L.T.-S.); (S.R.-M.)
- RICORS2040, 28029 Madrid, Spain; (A.O.); (A.M.R.)
| |
Collapse
|
11
|
Shao Q, Jiang C, Zhang Q, Liu J, Jin B, Zhao M, Xia Y. Knockdown of AK142426 suppresses M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun. J Gene Med 2023; 25:e3524. [PMID: 37194352 DOI: 10.1002/jgm.3524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Peritoneal fibrosis is a common complication of peritoneal dialysis, which may lead to ultrafiltration failure and ultimately treatment discontinuation. LncRNAs participate in many biological processes during tumorigenesis. We investigated the role of AK142426 in peritoneal fibrosis. METHODS The AK142426 level in peritoneal dialysis (PD) fluid was detected by quantitative real-time-PCR assay. The M2 macrophage distribution was determined by flow cytometry. The inflammatory cytokines of TNF-α and TGF-β1 were measured by ELISA assay. The direct interaction between AK142426 and c-Jun was evaluated by RNA pull-down assay. In addition, the c-Jun and fibrosis related proteins were assessed by western blot analysis. RESULTS The PD-induced peritoneal fibrosis mouse model was successfully established. More importantly, PD treatment induced M2 macrophage polarization and the inflammation in PD fluid, which might be associated with exosome transmission. Fortunately, AK142426 was observed to be upregulated in PD fluid. Mechanically, knockdown of AK142426 suppressed M2 macrophage polarization and inflammation. Furthermore, AK142426 could upregulate c-Jun through binding c-Jun protein. In rescue experiments, overexpression of c-Jun could partially abolish the inhibitory effect of sh-AK142426 on the activation of M2 macrophages and inflammation. Consistently, knockdown of AK142426 alleviated peritoneal fibrosis in vivo. CONCLUSIONS This study demonstrated that knockdown of AK142426 suppressed M2 macrophage polarization and inflammation in peritoneal fibrosis via binding to c-Jun, suggesting that AK142426 might be a promising therapeutic target for patients of peritoneal fibrosis.
Collapse
Affiliation(s)
- Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yangyang Xia
- Department of Nephrology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Zhang YC, Zhang YT, Wang Y, Zhao Y, He LJ. What role does PDL1 play in EMT changes in tumors and fibrosis? Front Immunol 2023; 14:1226038. [PMID: 37649487 PMCID: PMC10463740 DOI: 10.3389/fimmu.2023.1226038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
Epithelial-mesenchymal transformation (EMT) plays a pivotal role in embryonic development, tissue fibrosis, repair, and tumor invasiveness. Emerging studies have highlighted the close association between EMT and immune checkpoint molecules, particularly programmed cell death ligand 1 (PDL1). PDL1 exerts its influence on EMT through bidirectional regulation. EMT-associated factors, such as YB1, enhance PDL1 expression by directly binding to its promoter. Conversely, PDL1 signaling triggers downstream pathways like PI3K/AKT and MAPK, promoting EMT and facilitating cancer cell migration and invasion. Targeting PDL1 holds promise as a therapeutic strategy for EMT-related diseases, including cancer and fibrosis. Indeed, PDL1 inhibitors, such as pembrolizumab and nivolumab, have shown promising results in clinical trials for various cancers. Recent research has also indicated their potential benefit in fibrosis treatment in reducing fibroblast activation and extracellular matrix deposition, thereby addressing fibrosis. In this review, we examine the multifaceted role of PDL1 in immunomodulation, growth, and fibrosis promotion. We discuss the challenges, mechanisms, and clinical observations related to PDL1, including the limitations of the PD1/PDL1 axis in treatment and PD1-independent intrinsic PDL1 signaling. Our study highlights the dynamic changes in PDL1 expression during the EMT process across various tumor types. Through interplay between PDL1 and EMT, we uncover co-directional alterations, regulatory pathways, and diverse changes resulting from PDL1 intervention in oncology. Additionally, our findings emphasize the dual role of PDL1 in promoting fibrosis and modulating immune responses across multiple diseases, with potential implications for therapeutic approaches. We particularly investigate the therapeutic potential of targeting PDL1 in type II EMT fibrosis: strike balance between fibrosis modulation and immune response regulation. This analysis provides valuable insights into the multifaceted functions of PDL1 and contributes to our understanding of its complex mechanisms and therapeutic implications.
Collapse
Affiliation(s)
- Yun-Chao Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Zhang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Wang
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ya Zhao
- Department of Medical Microbiology and Parasitology, Fourth Military Medical University, Xi'an, China
| | - Li-Jie He
- Department of Nephrology, Xi Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Cao M, Cao A, Xing J, Zhang J, Zhu W, Wang Q, Cai L. Pickering emulsion stabilized by parasin I and chitosan nanoparticles enhances protection against intestinal microbiota homeostasis by reducing inflammation in peritonitis mice. Int J Biol Macromol 2023; 242:125016. [PMID: 37263085 DOI: 10.1016/j.ijbiomac.2023.125016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Although various researches evaluated the stability and drug loading efficiency of chitosan Pickering emulsion, few studies assessed the role and mechanism of emulsions in gut flora homeostasis. Thus, in the basics of our previously published natural and antimicrobial Pickering emulsions, the function of emulsion on the intestinal microbiota and inflammation response was explored in Kunming mice with peritonitis. The results showed that lipid/peptide nanoparticles emulsion (LPNE) and the chitosan peptide-embedded nanoparticles emulsion (CPENE) presented less collagen fiber than parasin I in peritoneal tissue, and CPENE could reduce peritoneal inflammation by decreasing the expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3). The CPENE showed better histological morphology with a smaller fibrosis area in the spleen. Moreover, CPENE, LPNE, and parasin I-conjugated chitosan nanoparticle emulsion (PCNE) groups can increase the abundance of ABC transporters, DNA repair, and recombination proteins, and improve gut microbial. Furthermore, the Pickering emulsion showed a better protection effect on the composition and function of intestinal microbiota by decreasing interleukin-1β secretion and assembly of the inflammasome of NLRP3. These results could provide evidence for intestinal microbiota homeostasis of chitosan Pickering emulsion in inflammation-related diseases.
Collapse
Affiliation(s)
- Minjie Cao
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China; College of Biological and Chemical Engineering, Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment, NingboTech University, Ningbo 315100, China
| | - Ailing Cao
- Hangzhou Customs District, Hangzhou 310000, China.
| | - Jiali Xing
- Ningbo Academy of Product and Food Quality Inspection (Ningbo Fibre Inspection Institute), Ningbo 315000, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Wenrong Zhu
- Xiangshan Xuwen Seaweed Development Co., Ltd, Ningbo 315000, China
| | - Qiujuan Wang
- Ningbo Today Food Co., Ltd, Ningbo 315000, China
| | - Luyun Cai
- Ningbo Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Ningbo 315100, China; College of Biological and Chemical Engineering, Zhejiang Engineering Research Center for Intelligent Marine Ranch Equipment, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
14
|
Li Y, Cao H, Jiang Z, Yan K, Shi J, Wang S, Wang F, Wang W, Li X, Sun N, Liu L, Chen L, Chen Y, Guo R, Song Y. CCL17 acts as an antitumor chemokine in micromilieu‐driven immune skewing. Int Immunopharmacol 2023; 118:110078. [PMID: 37001380 DOI: 10.1016/j.intimp.2023.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Chemokines are critical players in the local immune responses to tumors. CCL17 (thymus and activation-regulated chemokine, TARC) and CCL22 (macrophage-derived chemokine, MDC) can attract CCR4-bearing cells involving the immune landscape of cancer. However, their direct roles and functional states in tumors remain largely unclear. METHODS We analyzed the lymphoma-related scRNA-seq and bulk RNA-seq datasets and identified the CCL17/CCL22-CCR4 axis as the unique participant of the tumor microenvironment. Then we edited the A20 lymphoma cell line to express CCL17 and CCL22 and assessed their function using three mouse models (Balb/C mouse, Nude mouse, and NSG mouse). In addition, we retrospectively checked the relationship between the CCL17/CCL22-CCR4 axis and the survival rates of cancer patients. RESULTS The active CCL17/CCL22-CCR4 axis is a distinctive feature of the Hodgkin lymphoma microenvironment. CCR4 is widely expressed in immune cells but highly exists on the surface of NK, NKT, and Treg cells. The tumor model of Balb/C mice showed that CCL17 acts as an anti-tumor chemokine mediated by activated T cell response. In addition, the tumor model of Nude mice showed that CCL17 recruits NK cells for inhibiting lymphoma growth and enhances the NK-cDC1 interaction for resisting IL4i1-mediated immunosuppression. Interestingly, CCL17-mediated antitumor immune responses depend on lymphoid lineages but not mainly myeloid ones. Furthermore, we found CCL17/CCL22-CCR4 axis cannot be regarded as biomarkers of poor prognosis in most cancer types from the TCGA database. CONCLUSION We provided direct evidence of antitumor functions of CCL17 mediated by the recruitment of conventional T cells, NKT cells, and NK cells. Clinical survival outcomes of target gene (CCL17, CCL22, and CCR4) expression also identified that CCL17/CCL22-CCR4 axis is not a marker of poor prognosis.
Collapse
|
15
|
Wang QR, Liu SS, Min JL, Yin M, Zhang Y, Zhang Y, Tang XN, Li X, Liu SS. CCL17 drives fibroblast activation in the progression of pulmonary fibrosis by enhancing the TGF-β/Smad signaling. Biochem Pharmacol 2023; 210:115475. [PMID: 36870575 DOI: 10.1016/j.bcp.2023.115475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Pulmonary fibrosis (PF) is a type of fatal respiratory diseases with limited therapeutic options and poor prognosis. The chemokine CCL17 plays crucial roles in the pathogenesis of immune diseases. Bronchoalveolar lavage fluid (BALF) CCL17 levels are significantly higher in patients with idiopathic PF (IPF) than in healthy volunteers. However, the source and function of CCL17 in PF remain unclear. Here, we demonstrated that the levels of CCL17 were increased in the lungs of IPF patients and mice with bleomycin (BLM)-induced PF. In particular, CCL17 were upregulated in alveolar macrophages (AMs) and antibody blockade of CCL17 protected mice against BLM-induced fibrosis and significantly reduced fibroblast activation. Mechanistic studies revealed that CCL17 interacted with its receptor CCR4 on fibroblasts, thereby activating the TGF-β/Smad signaling pathway to promote fibroblast activation and tissue fibrosis. Moreover, the knockdown of CCR4 by CCR4-siRNA or blockade by CCR4 antagonist C-021 was able to ameliorate PF pathology in mice. In summary, the CCL17-CCR4 axis is involved in the progression of PF, and targeting of CCL17 or CCR4 inhibits fibroblast activation and tissue fibrosis and may benefit patients with fibroproliferative lung diseases.
Collapse
Affiliation(s)
- Qian-Rong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Suo-Si Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jia-Li Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Min Yin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yu Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xiang-Ning Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shan-Shan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
16
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
17
|
Lei W, Jia L, Wang Z, Liang Z, Aizhen Z, Liu Y, Tian Y, Zhao L, Chen Y, Shi G, Yang Z, Yang Y, Xu X. CC chemokines family in fibrosis and aging: From mechanisms to therapy. Ageing Res Rev 2023; 87:101900. [PMID: 36871782 DOI: 10.1016/j.arr.2023.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Fibrosis is a universal aging-related pathological process in the different organ, but is actually a self-repair excessive response. To date, it still remains a large unmet therapeutic need to restore injured tissue architecture without detrimental side effects, due to the limited clinical success in the treatment of fibrotic disease. Although specific organ fibrosis and the associated triggers have distinct pathophysiological and clinical manifestations, they often share involved cascades and common traits, including inflammatory stimuli, endothelial cell injury, and macrophage recruitment. These pathological processes can be widely controlled by a kind of cytokines, namely chemokines. Chemokines act as a potent chemoattractant to regulate cell trafficking, angiogenesis, and extracellular matrix (ECM). Based on the position and number of N-terminal cysteine residues, chemokines are divided into four groups: the CXC group, the CX3C group, the (X)C group, and the CC group. The CC chemokine classes (28 members) is the most numerous and diverse subfamily of the four chemokine groups. In this Review, we summarized the latest advances in the understanding of the importance of CC chemokine in the pathogenesis of fibrosis and aging and discussed potential clinical therapeutic strategies and perspectives aimed at resolving excessive scarring formation.
Collapse
Affiliation(s)
- Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Liyuan Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, 430064, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Zhao Aizhen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Ye Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yawu Chen
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guangyong Shi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
18
|
Zhang Y, Ye Y, Tang X, Wang H, Tanaka T, Tian R, Yang X, Wang L, Xiao Y, Hu X, Jin Y, Pang H, Du T, Liu H, Sun L, Xiao S, Dong R, Ferrucci L, Tian Z, Zhang S. CCL17 acts as a novel therapeutic target in pathological cardiac hypertrophy and heart failure. J Exp Med 2022; 219:213274. [PMID: 35687056 PMCID: PMC9194836 DOI: 10.1084/jem.20200418] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Circulating proteomic signatures of age are closely associated with aging and age-related diseases; however, the utility of changes in secreted proteins in identifying therapeutic targets for diseases remains unclear. Serum proteomic profiling of an age-stratified healthy population and further community-based cohort together with heart failure patients study demonstrated that circulating C-C motif chemokine ligand 17 (CCL17) level increased with age and correlated with cardiac dysfunction. Subsequent animal experiments further revealed that Ccll7-KO significantly repressed aging and angiotensin II (Ang II)–induced cardiac hypertrophy and fibrosis, accompanied by the plasticity and differentiation of T cell subsets. Furthermore, the therapeutic administration of an anti-CCL17 neutralizing antibody inhibited Ang II–induced pathological cardiac remodeling. Our findings reveal that chemokine CCL17 is identifiable as a novel therapeutic target in age-related and Ang II–induced pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicong Ye
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Ran Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xufei Yang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lun Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xiao
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaomin Hu
- Department of Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Jin
- Department of Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyu Pang
- Department of Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Du
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Honghong Liu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lihong Sun
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Xiao
- Thermo Fisher Scientific (China) Co., Ltd, Changning, Shanghai, China
| | - Ruijia Dong
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Shi Y, Li J, Chen H, Hu Y, Tang L, Zhou X, Tao M, Lv Z, Chen S, Qiu A, Liu N. Pharmacologic Inhibition of Histone Deacetylase 6 Prevents the Progression of Chlorhexidine Gluconate-Induced Peritoneal Fibrosis by Blockade of M2 Macrophage Polarization. Front Immunol 2022; 13:899140. [PMID: 35784347 PMCID: PMC9240186 DOI: 10.3389/fimmu.2022.899140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Peritoneal fibrosis contributes to ultrafiltration failure in peritoneal dialysis (PD) patients and thus restricts the wide application of PD in clinic. Recently we have demonstrated that histone deacetylase 6 (HDAC6) is critically implicated in high glucose peritoneal dialysis fluid (HG-PDF) induced peritoneal fibrosis, however, the precise mechanisms of HDAC6 in peritoneal fibrosis have not been elucidated. Here, we focused on the role and mechanisms of HDAC6 in chlorhexidine gluconate (CG) induced peritoneal fibrosis and discussed the mechanisms involved. We found Tubastatin A (TA), a selective inhibitor of HDAC6, significantly prevented the progression of peritoneal fibrosis, as characterized by reduction of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition. Inhibition of HDAC6 remarkably suppressed the expression of matrix metalloproteinases-2 (MMP2) and MMP-9. Administration of TA also increased the expression of acetylation Histone H3 and acetylation α-tubulin. Moreover, our results revealed that blockade of HDAC6 inhibited alternatively M2 macrophages polarization by suppressing the activation of TGF-β/Smad3, PI3K/AKT, and STAT3, STAT6 pathways. To give a better understanding of the mechanisms, we further established two cell injured models in Raw264.7 cells by using IL-4 and HG-PDF. Our in vitro experiments illustrated that both IL-4 and HG-PDF could induce M2 macrophage polarization, as demonstrated by upregulation of CD163 and Arginase-1. Inhibition of HDAC6 by TA significantly abrogated M2 macrophage polarization dose-dependently by suppressing TGF-β/Smad, IL4/STAT6, and PI3K/AKT signaling pathways. Collectively, our study revealed that blockade of HDAC6 by TA could suppress the progression of CG-induced peritoneal fibrosis by blockade of M2 macrophage polarization. Thus, HDAC6 may be a promising target in peritoneal fibrosis treatment.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lunxian Tang
- Emergency Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zexin Lv
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Na Liu,
| |
Collapse
|
20
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
21
|
Feng G, Bajpai G, Ma P, Koenig A, Bredemeyer A, Lokshina I, Lai L, Förster I, Leuschner F, Kreisel D, Lavine KJ. CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells. Circulation 2022; 145:765-782. [PMID: 35113652 PMCID: PMC8957788 DOI: 10.1161/circulationaha.121.055888] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (β-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.
Collapse
Affiliation(s)
- Guoshuai Feng
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Geetika Bajpai
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Pan Ma
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Andrew Koenig
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Andrea Bredemeyer
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Inessa Lokshina
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Lulu Lai
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | | | - Florian Leuschner
- LIMES Institute, University of Bonn, Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany (F.L.)
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, Missouri, USA (D.K.)
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA (D.K., K.L.)
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA (D.K., K.L.)
- Department of Developmental Biology, Washington University, Saint Louis, Missouri, USA (K.L.)
| |
Collapse
|
22
|
Kain V, Halade GV. Dysfunction of resolution receptor triggers cardiomyopathy of obesity and signs of non-resolving inflammation in heart failure. Mol Cell Endocrinol 2022; 542:111521. [PMID: 34843898 PMCID: PMC10515100 DOI: 10.1016/j.mce.2021.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) has been an emerging type of cardiac disease since the pseudo-left ventricle function is preserved; therefore, challenges in finding the target and treatment. Damage and pathogen-associated molecular patterns (DAMPs and PAMPs) are widely investigated in acute and chronic inflammation in heart failure; however, lifestyle-associated molecular patterns (LAMPs: diet, sleep, exercise), particularly in obesity, remains of interest due to the enormous increase of HFpEF patients. In this review, we covered obesity-related cardiomyopathy, LAMPs, and resolution receptor dysfunction in the context of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, 33602, USA
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, FL, 33602, USA.
| |
Collapse
|
23
|
Ribeiro A, Dobosz E, Krill M, Köhler P, Wadowska M, Steiger S, Schmaderer C, Koziel J, Lech M. Macrophage-Specific MCPIP1/Regnase-1 Attenuates Kidney Ischemia-Reperfusion Injury by Shaping the Local Inflammatory Response and Tissue Regeneration. Cells 2022; 11:cells11030397. [PMID: 35159206 PMCID: PMC8834155 DOI: 10.3390/cells11030397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Sterile inflammation either resolves the initial insult or leads to tissue damage. Kidney ischemia/reperfusion injury (IRI) is associated with neutrophilic infiltration, enhanced production of inflammatory mediators, accumulation of necrotic cells and tissue remodeling. Macrophage-dependent microenvironmental changes orchestrate many features of the immune response and tissue regeneration. The activation status of macrophages is influenced by extracellular signals, the duration and intensity of the stimulation, as well as various regulatory molecules. The role of macrophage-derived monocyte chemoattractant protein-induced protein 1 (MCPIP1), also known as Regnase-1, in kidney ischemia-reperfusion injury (IRI) and recovery from sterile inflammation remains unresolved. In this study, we showed that macrophage-specific Mcpip1 deletion significantly affects the kidney phenotype. Macrophage-specific Mcpip1 transgenic mice displayed enhanced inflammation and loss of the tubular compartment upon IRI. We showed that MCPIP1 modulates sterile inflammation by negative regulation of Irf4 expression and accumulation of IRF4+ cells in the tissue and, consequently, suppresses the post-ischemic kidney immune response. Thus, we identified MCPIP1 as an important molecular sentinel of immune homeostasis in experimental acute kidney injury (AKI) and renal fibrosis.
Collapse
Affiliation(s)
- Andrea Ribeiro
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Moritz Krill
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Paulina Köhler
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Stefanie Steiger
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, Technical University Munich, 80336 Munich, Germany;
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (E.D.); (M.W.); (J.K.)
| | - Maciej Lech
- LMU Klinikum, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; (A.R.); (M.K.); (P.K.); (S.S.)
- Correspondence:
| |
Collapse
|
24
|
Hsieh YH, Wang WC, Hung TW, Lee CC, Tsai JP. C-C Motif Chemokine Ligand-17 as a Novel Biomarker and Regulator of Epithelial Mesenchymal Transition in Renal Fibrogenesis. Cells 2021; 10:cells10123345. [PMID: 34943853 PMCID: PMC8699042 DOI: 10.3390/cells10123345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
CCL17, a chemotactic cytokine produced by macrophages, is known to promote inflammatory and fibrotic effects in multiple organs, but its role in mediating renal fibrosis is unclear. In our study cohort of 234 chronic kidney disease (CKD) patients and 65 healthy controls, human cytokine array analysis revealed elevated CCL17 expression in CKD that correlated negatively with renal function. The area under the receiver operating characteristic curve of CCL17 to predict the development of CKD stages 3b–5 was 0.644 (p < 0.001), with the optimal cut-off value of 415.3 ng/mL. In vitro over-expression of CCL17 in HK2 cells had no effect on cell viability, but increased cell motility and the expression of α-SMA, vimentin and collagen I, as shown by western blot analysis. In a unilateral ureteral obstruction (UUO) mouse model, we observed significantly increased interstitial fibrosis and renal tubule dilatation by Masson’s Trichrome and H&E staining, and markedly increased expression of CCL17, vimentin, collagen I, and α-SMA by IHC stain, qRTPCR, and western blotting. CCL17 induced renal fibrosis by promoting the epithelial-mesenchymal transition, resulting in ECM accumulation. CCL17 may be a useful biomarker for predicting the development of advanced CKD.
Collapse
Affiliation(s)
- Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (W.-C.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Chien Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (W.-C.W.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Education, Taichung Vererans General Hospital, Taichung 40705, Taiwan
| | - Tung-Wei Hung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Division of Nephrology, Department of Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chu-Che Lee
- Department of Medicine Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan;
| | - Jen-Pi Tsai
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Correspondence:
| |
Collapse
|
25
|
Wu D, Guo J, Qi B, Xiao H. TGF-β1 induced proliferation, migration, and ECM accumulation through the SNHG11/miR-34b/LIF pathway in human pancreatic stellate cells. Endocr J 2021; 68:1347-1357. [PMID: 34261825 DOI: 10.1507/endocrj.ej21-0176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic inflammatory and fibrotic disease of the pancreas, and activated pancreatic stellate cells (PSCs) play a vital role in the progression of pancreatic fibrosis in CP. It has been reported that long non-coding RNA small nucleolar RNA host gene 11 (SNHG11) is highly expressed in chronic pancreatitis (CP) patients. However, the role of SNHG11 in CP progression is unclear. The purport of the study was to survey the role of SNHG11 in CP. We employed transforming growth factor (TGF)-beta1 (TGF-β1) to activate human pancreatic stellate cells (PSCs). Expression of SNHG11 was assessed with qRT-PCR. Loss-of-function experiments were executed to evaluate the effects of SNHG11 on the proliferation and migration of TGF-β1-treated PSCs. Some protein levels were detected by western blotting. The regulatory mechanism of SNHG11 was verified by the dual-luciferase reporter and RIP assays. As a result, SNHG11 was upregulated in plasma of CP patients and TGF-β1-treated PSCs. Also, SNHG11 inhibition reduced TGF-β1-induced proliferation, migration, and ECM accumulation in PSCs. Mechanistically, SNHG11 regulated leukemia inhibitory factor (LIF) expression by sponging miR-34b. Furthermore, miR-34b inhibitor abolished SNHG11 silencing-mediated effects on TGF-β1-treated PSC proliferation, migration, and ECM accumulation. LIF overexpression counteracted the repressive influence of miR-34b mimic on proliferation, migration, and ECM accumulation of TGF-β1-treated PSCs. In conclusion, SNHG11 knockdown reduced TGF-β1-induced PSC proliferation, migration, and ECM accumulation by the miR-34b/LIF axis.
Collapse
Affiliation(s)
- Desheng Wu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Jin Guo
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Benquan Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Heng Xiao
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
26
|
Is the Macrophage Phenotype Determinant for Fibrosis Development? Biomedicines 2021; 9:biomedicines9121747. [PMID: 34944564 PMCID: PMC8698841 DOI: 10.3390/biomedicines9121747] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a pathophysiological process of wound repair that leads to the deposit of connective tissue in the extracellular matrix. This complication is mainly associated with different pathologies affecting several organs such as lung, liver, heart, kidney, and intestine. In this fibrotic process, macrophages play an important role since they can modulate fibrosis due to their high plasticity, being able to adopt different phenotypes depending on the microenvironment in which they are found. In this review, we will try to discuss whether the macrophage phenotype exerts a pivotal role in the fibrosis development in the most important fibrotic scenarios.
Collapse
|
27
|
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) was originally identified as a growth factor for its ability to promote the proliferation and differentiation in vitro of bone marrow progenitor cells into granulocytes and macrophages. Many preclinical studies, using GM-CSF deletion or depletion approaches, have demonstrated that GM-CSF has a wide range of biological functions, including the mediation of inflammation and pain, indicating that it can be a potential target in many inflammatory and autoimmune conditions. This review provides a brief overview of GM-CSF biology and signaling, and summarizes the findings from preclinical models of a range of inflammatory and autoimmune disorders and the latest clinical trials targeting GM-CSF or its receptor in these disorders.
Collapse
Affiliation(s)
- Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia; Australian Institute for Musculoskeletal Science, St Albans, Victoria 3021, Australia
| |
Collapse
|
28
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
29
|
Chuah JJM, Hertzog PJ, Campbell NK. Immunoregulation by type I interferons in the peritoneal cavity. J Leukoc Biol 2021; 111:337-353. [PMID: 34612523 DOI: 10.1002/jlb.3mr0821-147r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The peritoneal cavity, a fluid-containing potential space surrounding the abdominal and pelvic organs, is home to a rich network of immune cells that maintain tissue homeostasis and provide protection against infection. However, under pathological conditions such as peritonitis, endometriosis, and peritoneal carcinomatosis, the peritoneal immune system can become dysregulated, resulting in nonresolving inflammation and disease progression. An enhanced understanding of the factors that regulate peritoneal immune cells under both homeostatic conditions and in disease contexts is therefore required to identify new treatment strategies for these often life-limiting peritoneal pathologies. Type I interferons (T1IFNs) are a family of cytokines with broad immunoregulatory functions, which provide defense against viruses, bacteria, and cancer. There have been numerous reports of immunoregulation by T1IFNs within the peritoneal cavity, which can contribute to both the resolution or propagation of peritoneal disease states, depending on the specifics of the disease setting and local environment. In this review, we provide an overview of the major immune cell populations that reside in the peritoneal cavity (or infiltrate it under inflammatory conditions) and highlight their contribution to the initiation, progression, or resolution of peritoneal diseases. Additionally, we will discuss the role of T1IFNs in the regulation of peritoneal immune cells, and summarize the results of laboratory studies and clinical trials which have investigated T1IFNs in peritonitis/sepsis, endometriosis, and peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Jasmine J M Chuah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole K Campbell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Liu L, Wu Y, Wang P, Shi M, Wang J, Ma H, Sun D. PSC-MSC-Derived Exosomes Protect against Kidney Fibrosis In Vivo and In Vitro through the SIRT6/ β-Catenin Signaling Pathway. Int J Stem Cells 2021; 14:310-319. [PMID: 34158415 PMCID: PMC8429948 DOI: 10.15283/ijsc20184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background and Objectives Chronic kidney disease (CKD) has a major impact on the quality of life of patients, and renal fibrosis is a critical pathological change in the disease. It is very important to control the process of renal fibrosis to improve the quality of life of patients with CKD. The pathological mechanism of renal fibrosis is very complicated, and the current treatment strategy also has many flaws. Methods and Results To explore a better treatment, we collected exosomes from pluripotent stem cell (PSC)-derived mesenchymal stem cells (MSC) and verified their therapeutic effect on renal fibrosis through in vivo and in vitro experiments. In this study, we found that PSC-MSC-derived comes could prevent the epithelial differentiation of NRK-52E cells, and with increasing exosome concentrations, the effect was improved. Furthermore, PSC-MSC-derived exosomes could reduce the pathological process of renal fibrosis, reduce inflammatory reactions and improve renal function in UUO mice. Moreover, the protective effect of exosomes against renal fibrosis may be achieved by increasing the expression of SIRT6 and decreasing the expression of β-catenin and its downstream products. Conclusions These findings suggest the possibility of PSC-MSC-derived exosomes as a new, effective therapeutic tool for kidney fibrosis.
Collapse
Affiliation(s)
- Limin Liu
- Department of Basic Medicine, School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Yao Wu
- Department of Basic Medicine, School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Pingan Wang
- Department of Basic Medicine, School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Min Shi
- Department of Basic Medicine, School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Juning Wang
- Department of Basic Medicine, School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Huaifen Ma
- Department of Basic Medicine, School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Dangze Sun
- Department of Thoracic Surgery, Xi'an Chest Hospital, Xi'an, China
| |
Collapse
|
31
|
Sutherland TE, Shaw TN, Lennon R, Herrick SE, Rückerl D. Ongoing Exposure to Peritoneal Dialysis Fluid Alters Resident Peritoneal Macrophage Phenotype and Activation Propensity. Front Immunol 2021; 12:715209. [PMID: 34386014 PMCID: PMC8353194 DOI: 10.3389/fimmu.2021.715209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/09/2021] [Indexed: 01/22/2023] Open
Abstract
Peritoneal dialysis (PD) is a more continuous alternative to haemodialysis, for patients with chronic kidney disease, with considerable initial benefits for survival, patient independence and healthcare costs. However, long-term PD is associated with significant pathology, negating the positive effects over haemodialysis. Importantly, peritonitis and activation of macrophages is closely associated with disease progression and treatment failure. However, recent advances in macrophage biology suggest opposite functions for macrophages of different cellular origins. While monocyte-derived macrophages promote disease progression in some models of fibrosis, tissue resident macrophages have rather been associated with protective roles. Thus, we aimed to identify the relative contribution of tissue resident macrophages to PD induced inflammation in mice. Unexpectedly, we found an incremental loss of homeostatic characteristics, anti-inflammatory and efferocytic functionality in peritoneal resident macrophages, accompanied by enhanced inflammatory responses to external stimuli. Moreover, presence of glucose degradation products within the dialysis fluid led to markedly enhanced inflammation and almost complete disappearance of tissue resident cells. Thus, alterations in tissue resident macrophages may render long-term PD patients sensitive to developing peritonitis and consequently fibrosis/sclerosis.
Collapse
Affiliation(s)
- Tara E. Sutherland
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
| | - Tovah N. Shaw
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah E. Herrick
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
32
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Vasse GF, Nizamoglu M, Heijink IH, Schlepütz M, van Rijn P, Thomas MJ, Burgess JK, Melgert BN. Macrophage-stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives. J Pathol 2021; 254:344-357. [PMID: 33506963 PMCID: PMC8252758 DOI: 10.1002/path.5632] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Fibrosis results from aberrant wound healing and is characterized by an accumulation of extracellular matrix, impairing the function of an affected organ. Increased deposition of extracellular matrix proteins, disruption of matrix degradation, but also abnormal post-translational modifications alter the biochemical composition and biophysical properties of the tissue microenvironment - the stroma. Macrophages are known to play an important role in wound healing and tissue repair, but the direct influence of fibrotic stroma on macrophage behaviour is still an under-investigated element in the pathogenesis of fibrosis. In this review, the current knowledge on interactions between macrophages and (fibrotic) stroma will be discussed from biochemical, biophysical, and cellular perspectives. Furthermore, we provide future perspectives with regard to how macrophage-stroma interactions can be examined further to ultimately facilitate more specific targeting of these interactions in the treatment of fibrosis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gwenda F Vasse
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of PulmonologyGroningenThe Netherlands
| | - Marco Schlepütz
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Patrick van Rijn
- University of Groningen, University Medical Center GroningenBiomedical Engineering Department‐FB40GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
| | - Matthew J Thomas
- Immunology & Respiratory Diseases ResearchBoehringer Ingelheim Pharma GmbH & Co KGBiberach an der RissGermany
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials ScienceGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center GroningenDepartment of Pathology and Medical BiologyGroningenThe Netherlands
| | - Barbro N Melgert
- University of Groningen, Department of Molecular PharmacologyGroningen Research Institute for PharmacyGroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
34
|
Oliveira Júnior WVD, Turani SD, Marinho MAS, Pinto SWL, Otoni A, Figueiredo RC, Rios DRA. CA-125 and CCL2 may indicate inflammation in peritoneal dialysis patients. ACTA ACUST UNITED AC 2021; 43:502-509. [PMID: 34032817 PMCID: PMC8940104 DOI: 10.1590/2175-8239-jbn-2020-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Introduction: Progressive structural changes in the peritoneal membrane occur over the
course of treatment in peritoneal dialysis (PD), resulting in an increase in
cytokines such as CCL2 and structural changes in peritoneal membrane
triggering an increase in CA-125 in dialysate, which reflects a probable
local inflammatory process, with possible loss of mesothelial cells. Thus,
the current study aimed to evaluate the association between plasma and CCL2
and CA-125 dialysate levels in patients undergoing PD. Methods: Cross-sectional study was conducted with 41 patients undergoing PD. The
assessments of CA-125 and CCL2 levels were performed using a capture ELISA.
Correlations were estimated using Spearman's correlation and the
investigation of the association between the explanatory variables (CCL2)
and response variable (CA-125) was done for crude ratio of arithmetic means
and adjusted utilizing generalized linear models. Results: A moderate positive correlation was observed between the levels of CA-125 and
CCL2 in the dialysate (rho = 0.696). A statistically significant association
was found between the levels in the CCL2 and CA-125 dialysate (RoM=1.31; CI
= 1.20-1.43), which remained after adjustment for age (RoM = 1.31;
CI=1.19-1.44) and for time in months of PD (RoM=1.34, CI=1.22-1.48). Conclusion: The association of CA-125 levels with CCL2 in the dialysate may indicate that
the local inflammatory process leads to temporary or definitive changes in
peritoneal membrane. A better understanding of this pathogenesis could
contribute to the discovery of new inflammatory biomarkers.
Collapse
Affiliation(s)
| | - Sylvia Dias Turani
- Universidade Federal de São João Del Rei, Campus Centro Oeste, São João Del Rei, MG, Brasil
| | | | | | - Alba Otoni
- Universidade Federal de São João Del Rei, Campus Centro Oeste, São João Del Rei, MG, Brasil
| | | | | |
Collapse
|
35
|
Guo Y, Wang L, Gou R, Wang Y, Shi X, Zhang Y, Pang X, Tang L. Ameliorative role of SIRT1 in peritoneal fibrosis: an in vivo and in vitro study. Cell Biosci 2021; 11:79. [PMID: 33906673 PMCID: PMC8077771 DOI: 10.1186/s13578-021-00591-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background Peritoneal fibrosis is one of the major complications induced by peritoneal dialysis (PD). Damaged integrity and function of peritoneum caused by peritoneal fibrosis not only limits the curative efficacy of PD and but affects the prognosis of patients. However, the detailed mechanisms underlying the process remain unclear and therapeutic strategy targeting TGF‐β is deficient. Transforming growth factor‐β (TGF‐β) signaling participates in the progression of peritoneal fibrosis through enhancing mesothelial-mesenchymal transition of mesothelial cells. Methods The study aims to demonstrate the regulatory role of Sirtuin1 (SIRT1) to the TGF‐β signaling mediated peritoneal fibrosis. SIRT1−/− mice were used to establish animal model. Masson’s staining and peritoneal equilibration assay were performed to evaluate the degree of peritoneal fibrosis. QRT-PCR assays were used to estimate the RNA levels of Sirt1 and matrix genes related to peritoneal fibrosis, and their protein levels were examined by Western blot assays. Results SIRT1 significantly decreased in vivo post PD treatment. SIRT1 knockout exacerbated peritoneal fibrosis both in vivo and vitro. Overexpression of SIRT1 efficiently inhibited peritoneal fibrosis by inhibiting the peritoneal inflammation and the activation of TGF‐β signaling. Conclusion SIRT1 ameliorated peritoneal fibrosis both in vivo and in vitro through inhibiting the expression of protein matrix induced by TGF‐β signaling.
Collapse
Affiliation(s)
- Yanhong Guo
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Liuwei Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Rong Gou
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yulin Wang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Xiujie Shi
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Yage Zhang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China
| | - Xinxin Pang
- Department of Nephropathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Hospital Affiliated to Henan University of Chinese Medicine), NO. 6, Dongfeng Road, Jinshui District, Zhengzhou, 450002, Henan, China.
| | - Lin Tang
- Department of Nephropathy, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
36
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
37
|
Lee KMC, Achuthan AA, Hamilton JA. GM-CSF: A Promising Target in Inflammation and Autoimmunity. Immunotargets Ther 2020; 9:225-240. [PMID: 33150139 PMCID: PMC7605919 DOI: 10.2147/itt.s262566] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
The cytokine, granulocyte macrophage-colony stimulating factor (GM-CSF), was firstly identified as being able to induce in vitro the proliferation and differentiation of bone marrow progenitors into granulocytes and macrophages. Much preclinical data have indicated that GM-CSF has a wide range of functions across different tissues in its action on myeloid cells, and GM-CSF deletion/depletion approaches indicate its potential as an important therapeutic target in several inflammatory and autoimmune disorders, for example, rheumatoid arthritis. In this review, we discuss briefly the biology of GM-CSF, raise some current issues and questions pertaining to this biology, summarize the results from preclinical models of a range of inflammatory and autoimmune disorders and list the latest clinical trials evaluating GM-CSF blockade in such disorders.
Collapse
Affiliation(s)
- Kevin M C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3050, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Targeting fibroblast CD248 attenuates CCL17-expressing macrophages and tissue fibrosis. Sci Rep 2020; 10:16772. [PMID: 33033277 PMCID: PMC7544830 DOI: 10.1038/s41598-020-73194-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
The role of fibroblasts in tissue fibrosis has been extensively studied. Activated fibroblasts, namely myofibroblasts, produce pathological extracellular matrix. CD248, a type I transmembrane glycoprotein, is expressed in fibroblasts after birth. In human chronic kidney disease, upregulated CD248 in myofibroblasts is linked to poor renal survival. In this study, we demonstrated a novel interaction between CD248 and macrophages to be a key step in mediating tissue fibrosis. CD248 was upregulated in myofibroblasts in murine models of renal and peritoneal fibrosis. Cd248 knockout (Cd248–/–) could attenuate both renal and peritoneal fibrosis. By parabiosis of GFP reporter mice and Cd248–/– mice, we showed that attenuation of renal fibrosis was associated with a decrease of macrophage infiltration in Cd248–/– mice. Moreover, decrease of chemokine (C–C motif) ligand 17 and Ccl22 was found in macrophages isolated from the fibrotic kidneys of Cd248–/– mice. Because galectin-3-deficient macrophages showed decreased Ccl17 and Ccl22 in fibrotic kidneys, we further demonstrated that CD248 interacted specifically with galectin-3 of macrophages who then expressed CCL17 to activate collagen production in myofibroblasts. Mice with DNA vaccination targeting CD248 showed decreased fibrosis. We thus propose that CD248 targeting should be studied in the clinical tissue fibrosis setting.
Collapse
|
39
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
40
|
Lee KMC, Jarnicki A, Achuthan A, Fleetwood AJ, Anderson GP, Ellson C, Feeney M, Modis LK, Smith JE, Hamilton JA, Cook A. CCL17 in Inflammation and Pain. THE JOURNAL OF IMMUNOLOGY 2020; 205:213-222. [PMID: 32461237 DOI: 10.4049/jimmunol.2000315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has been reported that a GM-CSF→CCL17 pathway, originally identified in vitro in macrophage lineage populations, is implicated in the control of inflammatory pain, as well as arthritic pain and disease. We explore, in this study and in various inflammation models, the cellular CCL17 expression and its GM-CSF dependence as well as the function of CCL17 in inflammation and pain. This study used models allowing the convenient cell isolation from Ccl17E/+ reporter mice; it also exploited both CCL17-dependent and unique CCL17-driven inflammatory pain and arthritis models, the latter permitting a radiation chimera approach to help identify the CCL17 responding cell type(s) and the mediators downstream of CCL17 in the control of inflammation and pain. We present evidence that 1) in the particular inflammation models studied, CCL17 expression is predominantly in macrophage lineage populations and is GM-CSF dependent, 2) for its action in arthritic pain and disease development, CCL17 acts on CCR4+ non-bone marrow-derived cells, and 3) for inflammatory pain development in which a GM-CSF→CCL17 pathway appears critical, nerve growth factor, CGRP, and substance P all appear to be required.
Collapse
Affiliation(s)
- Kevin M-C Lee
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia;
| | - Andrew Jarnicki
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Andrew J Fleetwood
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Gary P Anderson
- Department of Pharmacology, The University of Melbourne, Parkville, Victoria 3050, Australia
| | - Christian Ellson
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Maria Feeney
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Louise K Modis
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - Julia E Smith
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire SG1 2NY, United Kingdom; and
| | - John A Hamilton
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St. Albans, Victoria 3021, Australia
| | - Andrew Cook
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
41
|
Sava RI, Pepine CJ, March KL. Immune Dysregulation in HFpEF: A Target for Mesenchymal Stem/Stromal Cell Therapy. J Clin Med 2020; 9:jcm9010241. [PMID: 31963368 PMCID: PMC7019215 DOI: 10.3390/jcm9010241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Over 26 million people worldwide suffer from heart failure, a disease associated with a 1 year mortality rate of 22%. Half of these patients present heart failure with preserved ejection fraction (HFpEF), for which there is no available therapy to improve prognosis. HFpEF is strongly associated with aging, inflammation, and comorbid burden, which are thought to play causal roles in disease development. Mesenchymal stromal/stem cells (MSCs) have potent immunomodulatory actions and promote tissue healing, thus representing an attractive therapeutic option in HFpEF. In this review, we summarize recent data suggesting that a two-hit model of immune dysregulation lies at the heart of the HFpEF. A first hit is represented by genetic mutations associated with clonal hematopoiesis of indeterminate potential (CHIP), which skew immune cells toward a pro-inflammatory phenotype, are associated with HFpEF development in animal models, and with immune dysregulation and risk of HF hospitalization in patients. A second hit is induced by cardiovascular risk factors, which cause subclinical cardiac dysfunction and production of danger signals. In mice, these attract proinflammatory macrophages, Th1 and Th17 cells into the myocardium, where they are required for the development of HFpEF. MSCs have been shown to reduce the pro-inflammatory activity of immune cell types involved in murine HFpEF in vitro, and to reduce myocardial fibrosis and improve diastolic function in vivo, thus they may efficiently target immune dysregulation in HFpEF and stop disease progression.
Collapse
Affiliation(s)
- Ruxandra I. Sava
- Center for Regenerative Medicine, University of Florida, Gainesville, FL 32610, USA;
- Cardiology Department, Elias Emergency University Hospital, 011461 Bucharest, Romania
- Correspondence:
| | - Carl J. Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Keith L. March
- Center for Regenerative Medicine, University of Florida, Gainesville, FL 32610, USA;
- Cardiology Department, Elias Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|