1
|
Wu Z, Wang P. PcNAC25, a NAC transcription factor of Pugionium cornutum(L.) Gaertn conferring enhanced drought and salt stress tolerances in Arabidopsis. Sci Rep 2025; 15:1501. [PMID: 39789053 PMCID: PMC11718195 DOI: 10.1038/s41598-025-85615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P. cornutum are largely unknown. In this study, we identified the PcNAC25 transcription factor gene in P. cornutum. Its open reading frame was revealed to comprise 891 bp, encoding a protein consisting of 297 amino acids, with an isoelectric point of 6.61. Phylogenetic analysis showed that PcNAC25 was most closely related to ANAC019. The expression of PcNAC25 was induced by dehydration, mannitol, heat, cold, salt stresses and abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (JA) treatments. A subcellular localization analysis confirmed that PcNAC25 was localized in the nucleus. The overexpressing PcNAC25 lines in Arabidopsis had longer roots than wild-type (WT) lines under drought and salt stress. The overexpression of PcNAC25 improved drought and salt tolerance in transgenic Arabidopsis. Under drought and salt stress, PcNAC25 transgenic lines exhibited higher the CAT, POD and SOD activities and scavenging ability of hydroxyl radical than WT, more proline accumulation than WT and less MDA and H2O2 content and superoxide anion production rate than WT. PcNAC25 transgenic lines also exhibited greater reduced water loss rate of detached leaves than WT. Meanwhile, DAB and NBT staining showed that the accumulation of hydrogen peroxide and superoxide anion in PcNAC25 transgenic lines were also less than WT. In addition, overexpressing PcNAC25 enhanced the expression of drought response genes (DREB2A, SOD4, RD29A, NCED3, POD3, P5CS1, PYR1 and SAG13) and salt response genes NHX, SLAH1, SOS1 and NPF6.3. The mentioned above results indicated that PcNAC25 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation in Arabidopsis, which provided a basis for further research on the molecular mechanism of PCNAC25-mediated regulation of drought and salt stress, and also provided gene resources of drought and salt tolerance.
Collapse
Affiliation(s)
- Zhaoxin Wu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ping Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China.
| |
Collapse
|
2
|
Sirohi P, Chaudhary C, Sharma M, Anjanappa RB, Baliyan S, Vishnoi R, Mishra SK, Chaudhary R, Waghmode B, Poonia AK, Germain H, Sircar D, Chauhan H. Multi-omics analysis reveals the positive impact of differential chloroplast activity during in vitro regeneration of barley. PLANT MOLECULAR BIOLOGY 2024; 114:124. [PMID: 39538083 DOI: 10.1007/s11103-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
Existence of potent in vitro regeneration system is a prerequisite for efficient genetic transformation and functional genomics of crop plants. In this study, two contrasting cultivars differencing in their in vitro regeneration efficiency were identified. Tissue culture friendly cultivar Golden Promise (GP) and tissue culture resistant DWRB91(D91) were selected as contrasting cultivars to investigate the molecular basis of regeneration efficiency through multiomics analysis. Transcriptomics analysis revealed 1487 differentially expressed genes (DEGs), in which 795 DEGs were upregulated and 692 DEGs were downregulated in the GP-D91 transcriptome. Genes encoding proteins localized in chloroplast and involved in ROS generation were upregulated in the embryogenic calli of GP. Moreover, proteome analysis by LC-MS/MS revealed 3062 protein groups and 16,989 peptide groups, out of these 1586 protein groups were differentially expressed proteins (DEPs). Eventually, GC-MS based metabolomics analysis revealed the higher activity of plastids and alterations in key metabolic processes such as sugar metabolism, fatty acid biosynthesis, and secondary metabolism. TEM analysis also revealed differential plastid development. Higher accumulation of sugars, amino acids and metabolites corresponding to lignin biosynthesis were observed in GP as compared to D91. A comprehensive examination of gene expression, protein profiling and metabolite patterns unveiled a significant increase in the genes encompassing various functions, such as ion homeostasis, chlorophyll metabolic process, ROS regulation, and the secondary metabolic pathway.
Collapse
Affiliation(s)
- Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mayank Sharma
- Institute of Molecular Plant Biology, ETH Zurich, Zurich, Switzerland
| | | | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ritika Vishnoi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Reeku Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Bhairavnath Waghmode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
- University Institute of Biotechnology, Chandigarh University, Punjab, 140413, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, University of Quebec Trois Rivieres, Trois Rivieres, QC, Canada
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
3
|
Wal A, Piekarniak M, Staszek P, Chodór K, Bieniek J, Gniazdowska A, Krasuska U. Nitric oxide action in the digestive fluid of Nepenthes × ventrata is linked to the modulation of ROS level. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109088. [PMID: 39241628 DOI: 10.1016/j.plaphy.2024.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Nepenthes are carnivorous plants with photoactive leaves converted into jug-shaped containers filled with the digestive fluid. The digestion requires various enzymes and reactive oxygen species (ROS) that facilitate proteolysis. Reactive nitrogen species are present in the digestive fluid of Nepenthes × ventrata, and the increased nitric oxide (NO) formation is associated with protein degradation. The aim of the work was to verify the beneficial effect of NO application into the trap on the dynamics of protein digestion and ROS homeostasis. Measurements were done using the digestive fluid or the tissue collected from the mature pitcher plants (fed) grown in a greenhouse. Two independent methods confirmed NO formation in the digestive fluid of fed and non-fed traps. NO supplementation with food into the trap accelerated protein degradation in the digestive fluid by increasing the proteolytic activity. NO modulated free radical formation (as the result of direct impact on NADPH oxidase), stimulated ROS scavenging capacity, increased -SH groups and flavonoids content, particularly at the beginning of the digestion. In non-fed traps, the relatively high level of protein nitration in the digestive fluid may prevent self-protein proteolysis. Whereas, after initiation of the digestion decreasing level of nitrated proteins in the fluid may indicate their accelerated degradation. Therefore, it can be assumed that NO exhibits a protective effect on the fluid and the trap tissue before digestion, while during digestion, NO is an accelerator of protein decomposition and the ROS balance keeper.
Collapse
Affiliation(s)
- Agnieszka Wal
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Maciej Piekarniak
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Pawel Staszek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kamila Chodór
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jakub Bieniek
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Gniazdowska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Urszula Krasuska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
4
|
Yu L, Guan X, Meng F, Mo F, Lv R, Ding Z, Wang P, Chen X, Cheng M, Wang A. Genome-wide identification and expression analysis of SlKFB gene family (Solanum lycopersicum) and the molecular mechanism of SlKFB16 and SlKFB34 under drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109192. [PMID: 39406005 DOI: 10.1016/j.plaphy.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Environmental stress significantly affects plant growth and productivity. The effects of drought stress on plants are reflected primarily in enzyme activity, membrane systems, and cell-water loss. Here, the Kelch repeat F-box (KFB) protein family in tomato was systematically identified and analysed. Using bioinformatics, we identified 37 SlKFB family members in the tomato genome and analysed their protein structure, phylogenetic relationships, chromosome distribution, and expression under drought or biotic-stress conditions. Transcriptome data revealed that SlKFB members exhibit differential responses to drought stress, with significant differences in SlKFB16 and SlKFB34 expression. Functional analysis revealed that SlKFB16 functions in the cytoplasm and SlKFB34 in the nucleus and cytoplasm. Under drought stress, SlKFB16 and SlKFB34-silencing significantly reduced reactive oxygen species scavenging and resistance to drought stress. These findings provide a reference for further studies of the mechanisms of SlKFB16 and SlKFB34 in drought stress in tomato as well as a foundation for enhancing their resistance to drought stress.
Collapse
Affiliation(s)
- Lei Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Xiaoyu Guan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Fanyue Meng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Fulei Mo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Zhen Ding
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| |
Collapse
|
5
|
Park D, Jang J, Seo DH, Kim Y, Jang G. Bacillus velezensis GH1-13 enhances drought tolerance in rice by reducing the accumulation of reactive oxygen species. FRONTIERS IN PLANT SCIENCE 2024; 15:1432494. [PMID: 39391772 PMCID: PMC11465243 DOI: 10.3389/fpls.2024.1432494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Plant growth-promoting rhizobacteria colonize the rhizosphere through dynamic and intricate interactions with plants, thereby providing various benefits and contributing to plant growth. Moreover, increasing evidence suggests that plant growth-promoting rhizobacteria affect plant tolerance to abiotic stress, but the underlying molecular mechanisms remain largely unknown. In this study, we investigated the effect of Bacillus velezensis strain GH1-13 on drought stress tolerance in rice. Phenotypical analysis, including the measurement of chlorophyll content and survival rate, showed that B. velezensis GH1-13 enhances rice tolerance to drought stress. Additionally, visualizing ROS levels and quantifying the expression of ROS-scavenging genes revealed that GH1-13 treatment reduces ROS accumulation under drought stress by activating the expression of antioxidant genes. Furthermore, the GH1-13 treatment stimulated the jasmonic acid response, which is a key phytohormone that mediates plant stress tolerance. Together with the result that jasmonic acid treatment promotes the expression of antioxidant genes, these findings indicate that B. velezensis GH1-13 improves drought tolerance in rice by reducing ROS accumulation and suggest that activation of the jasmonic acid response is deeply involved in this process.
Collapse
Affiliation(s)
- Dongryeol Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jinwoo Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Deok Hyun Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Biswas S, Ganesan M. Evaluation of arsenic phytoremediation potential in Azolla filiculoides Lam. plants under low pH stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108956. [PMID: 39053312 DOI: 10.1016/j.plaphy.2024.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The Azolla filiculoides plants were challenged with different arsenic (As) concentration under low pH stress conditions. The growth rate and doubling time of the plants were severely affected by higher As treatments at pH 5.00 when compared with stress pH 4.75 treatments. Hence, pH 5.00 was considered for further studies. In 10-30 μM As treated cultures, after 6 days, the relative growth rate (RGR) of Azolla plants was significantly reduced and in higher concentration of As, the RGR was negatively regulated. The root trait parameters were also significantly affected by increasing concentrations of As. Further, photosynthetic performance indicators also show significant decline with increasing As stress. Overall, the plants treated with 40 and 50 μM of As displayed stress phenotypes like negative RGR, reduced doubling time and root growth, browning of leaves and root withering. The total proline, H2O2, POD and Catalase activities were significantly affected by As treatments. Meantime, 30 μM of As treated cultures displayed 15 μg/g/Fw As accumulation and moderate growth rate. Thus, the Azolla plants are suitable for the phytoremediation of As (up to 30 μM concentration) in the aquatic environment under low pH conditions (5.00). Furthermore, the transcriptome studies on revealed that the importance of positively regulated transporters like ACR3, AceTr family, ABC transporter super family in As (10 μM) stress tolerance, uptake and accumulation. The transporters like CPA1, sugar transporters, PiT were highly down-regulated. Further, expression analysis showed that the MATE1, CIP31, HAC1 and ACR3 were highly altered during the As stress conditions.
Collapse
Affiliation(s)
- Satyaki Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| | - Markkandan Ganesan
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India.
| |
Collapse
|
7
|
Mumtaz S, Javed R, Rana JN, Iqbal M, Choi EH. Pulsed high power microwave seeds priming modulates germination, growth, redox homeostasis, and hormonal shifts in barley for improved seedling growth: Unleashing the molecular dynamics. Free Radic Biol Med 2024; 222:371-385. [PMID: 38901500 DOI: 10.1016/j.freeradbiomed.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing the seed germination potential and seedling growth rates play a pivotal role in increasing overall crop productivity. Seed germination and early vegetative (seedling) growth are critical developmental stages in plants. High-power microwave (HPM) technology has facilitated both the emergence of novel applications and improvements to existing in agriculture. The implications of pulsed HPM on agriculture remain unexplored. In this study, we have investigated the effects of pulsed HPM exposure on barley germination and seedling growth, elucidating the plausible underlying mechanisms. Barley seeds underwent direct HPM irradiation, with 60 pulses by 2.04 mJ/pulse, across three distinct irradiation settings: dry, submerged in deionized (DI) water, and submerged in DI water one day before exposure. Seed germination significantly increased in all HPM-treated groups, where the HPM-dry group exhibited a notable increase, with a 2.48-fold rise at day 2 and a 1.9-fold increment at day 3. Similarly, all HPM-treated groups displayed significant enhancements in water uptake, and seedling growth (weight and length), as well as elevated levels of chlorophyll, carotenoids, and total soluble protein content. The obtained results indicate that when comparing three irradiation setting, HPM-dry showed the most promising effects. Condition HPM seed treatment increases the level of reactive species within the barley seedlings, thereby modulating plant biochemistry, physiology, and different cellular signaling cascades via induced enzymatic activities. Notably, the markers associated with plant growth are upregulated and growth inhibitory markers are downregulated post-HPM exposure. Under optimal HPM-dry treatment, auxin (IAA) levels increased threefold, while ABA levels decreased by up to 65 %. These molecular findings illuminate the intricate regulatory mechanisms governing phenotypic changes in barley seedlings subjected to HPM treatment. The results of this study might play a key role to understand molecular mechanisms after pulsed-HPM irradiation of seeds, contributing significantly to address the global need of sustainable crop yield.
Collapse
Affiliation(s)
- Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Rida Javed
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea
| | - Juie Nahushkumar Rana
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea
| | - Madeeha Iqbal
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul, Republic of Korea; Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea; Department of Plasma Bio Display, Kwangwoon University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Su Y, Chen YL, Wu YL, Fan XW, Li YZ. Three cassava A20/AN1 family genes, Metip3 (5, and 7), can bestow on tolerance of plants to multiple abiotic stresses but show functional convergence and divergence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112163. [PMID: 38880339 DOI: 10.1016/j.plantsci.2024.112163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
A20/AN1 zinc-finger domain-containing genes are very promising candidates in improving plant tolerance to abiotic stresses, but considerably less is known about functions and mechanisms for many of them. In this study, Metip3 (5, and 7), cassava (Manihot esculenta) A20/AN1 genes carrying one A20 domain and one AN1 domain, were functionally characterized at different layers. Metip3 (5, and 7) proteins were all located in the nucleus. No interactions were found between these three proteins. Metip3 (5, and 7)-expressing Arabidopsis was more tolerant to multiple abiotic stresses by Na, Cd, Mn, Al, drought, high temperature, and low temperature. Metip3- and Metip5-expressing Arabidopsis was sensitive to Cu stress, while Metip7-expressing Arabidopsis was insensitive. The H2O2 production significantly decreased in all transgenic Arabidopsis, however, O2·- production significantly decreased in Metip3- and Metip5-expressing Arabidopsis but did not significantly changed in Metip7-expressing Arabidopsis under drought. Metip3 (5, and 7) expression-silenced cassava showed the decreased tolerance to drought and NaCl, presented significant decreases in superoxide dismutase and catalase activities and proline content, and displayed a significant increase in malondialdehyde content under drought. Taken together with transcriptome sequencing analysis, it is suggested that Metip5 gene can not only affect signal transduction related to plant hormone, mitogen activated protein kinases, and starch and sucrose metabolism, DRE-binding transcription factors, and antioxidants, conferring the drought tolerance, but also might deliver the signals from DREB2A INTERACTING PROTEIN1, E3 ubiquitin-protein ligases to proteasome, leading to the drought intolerance. The results are informative not only for further study on evolution of A20/AN1 genes but also for development of climate resilient crops.
Collapse
Affiliation(s)
- Ying Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yu-Lan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yan-Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangxi Research Center for Microbial and Enzyme Engineering Technology/College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
9
|
Magner ET, Freund Saxhaug K, Zambre A, Bruns K, Carroll P, Snell-Rood EC, Hegeman AD, Carter CJ. A multifunctional role for riboflavin in the yellow nectar of Capsicum baccatum and Capsicum pubescens. THE NEW PHYTOLOGIST 2024; 243:1991-2007. [PMID: 38874372 DOI: 10.1111/nph.19886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
A few Capsicum (pepper) species produce yellow-colored floral nectar, but the chemical identity and biological function of the yellow pigment are unknown. A combination of analytical biochemistry techniques was used to identify the pigment that gives Capsicum baccatum and Capsicum pubescens nectars their yellow color. Microbial growth assays, visual modeling, and honey bee preference tests for artificial nectars containing riboflavin were used to assess potential biological roles for the nectar pigment. High concentrations of riboflavin (vitamin B2) give the nectars their intense yellow color. Nectars containing riboflavin generate reactive oxygen species when exposed to light and reduce microbial growth. Visual modeling also indicates that the yellow color is highly conspicuous to bees within the context of the flower. Lastly, field experiments demonstrate that honey bees prefer artificial nectars containing riboflavin. Some Capsicum nectars contain a yellow-colored vitamin that appears to play roles in (1) limiting microbial growth, (2) the visual attraction of bees, and (3) as a reward to nectar-feeding flower visitors (potential pollinators), which is especially interesting since riboflavin is an essential nutrient for brood rearing in insects. These results cumulatively suggest that the riboflavin found in some Capsicum nectars has several functions.
Collapse
Affiliation(s)
- Evin T Magner
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | | | - Amod Zambre
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Kaitlyn Bruns
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Patrick Carroll
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Adrian D Hegeman
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Clay J Carter
- Department of Plant & Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
10
|
Gao Z, Tu Y, Liao C, Guo P, Tian Y, Zhou Y, Xie Q, Chen G, Hu Z. Overexpression of SlALC Increases Drought and Salt Tolerance and Affects Fruit Dehiscence in Tomatoes. Int J Mol Sci 2024; 25:9433. [PMID: 39273380 PMCID: PMC11395450 DOI: 10.3390/ijms25179433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The bHLH transcription factors are important plant regulators against abiotic stress and involved in plant growth and development. In this study, SlALC, a gene coding for a prototypical DNA-binding protein in the bHLH family, was isolated, and SlALC-overexpression tomato (SlALC-OE) plants were generated by Agrobacterium-mediated genetic transformation. SlALC transgenic lines manifested higher osmotic stress tolerance than the wild-type plants, estimated by higher relative water content and lower water loss rate, higher chlorophyll, reducing sugar, starch, proline, soluble protein contents, antioxidant enzyme activities, and lower MDA and reactive oxygen species contents in the leaves. In SlALC-OE lines, there were more significant alterations in the expression of genes associated with stress. Furthermore, SlALC-OE fruits were more vulnerable to dehiscence, with higher water content, reduced lignin content, SOD/POD/PAL enzyme activity, and lower phenolic compound concentrations, all of which corresponded to decreased expression of lignin biosynthetic genes. Moreover, the dual luciferase reporter test revealed that SlTAGL1 inhibits SlALC expression. This study revealed that SlALC may play a role in controlling plant tolerance to drought and salt stress, as well as fruit lignification, which influences fruit dehiscence. The findings of this study have established a foundation for tomato tolerance breeding and fruit quality improvement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.G.); (Y.T.); (C.L.); (P.G.); (Y.T.); (Y.Z.); (Q.X.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.G.); (Y.T.); (C.L.); (P.G.); (Y.T.); (Y.Z.); (Q.X.)
| |
Collapse
|
11
|
Wang Q, Zhu J, Wang Y, Yun J, Zhang Y, Zhao F. Serine Rejuvenated Degenerated Volvariella volvacea by Enhancing ROS Scavenging Ability and Mitochondrial Function. J Fungi (Basel) 2024; 10:540. [PMID: 39194866 DOI: 10.3390/jof10080540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Serine is a functional amino acid that effectively regulates the physiological functions of an organism. This study investigates the effects of adding exogenous serine to a culture medium to explore a feasible method for the rejuvenation of V. volvacea degenerated strains. The tissue isolation subcultured strains T6, T12, and T19 of V. volvacea were used as test strains, and the commercially cultivated strain V844 (T0) was used as a control. The results revealed that the addition of serine had no significant effect on non-degenerated strains T0 and T6, but could effectively restore the production characteristics of degenerated strains T12 and T19. Serine increased the biological efficiency of T12 and even helped the severely degenerated T19 to regrow its fruiting body. Moreover, exogenous serine up-regulated the expression of some antioxidant enzyme genes, improved antioxidase activity, reduced the accumulation of reactive oxygen species (ROS), lowered malondialdehyde (MDA) content, and restored mitochondrial membrane potential (MMP) and mitochondrial morphology. Meanwhile, serine treatment increased lignocellulase and mycelial energy levels. These findings form a theoretical basis and technical support for the rejuvenation of V. volvacea degenerated strains and other edible fungi.
Collapse
Affiliation(s)
- Qiaoli Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Kangle County Special Agricultural Development Center, Linxia 731599, China
| | - Jianing Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yonghui Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianmin Yun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yubin Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Fengyun Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
12
|
Ghosh A, Hasanuzzaman M, Fujita M, Adak MK. Carbon dioxide sensitization delays the postharvest ripening and fatty acids composition of Capsicum fruit by regulating ethylene biosynthesis, malic acid and reactive oxygen species metabolism. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:985-1002. [PMID: 38974358 PMCID: PMC11222363 DOI: 10.1007/s12298-024-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
Present study would be significant in the sustenance of quality characters for postharvest storage of Capsicum fruit with CO2-sensitization in biocompatible manner. The present experiment describes effects of CO2 sensitization on delaying postharvest ripening through physiological attributes in Capsicum fruit. The experiment was conducted with acidified bicarbonate-derived CO2 exposure for 2 h on Capsicum fruit, kept under white light at 25 °C through 7 days postharvest storage. Initially, fruits responded well to CO2 as recorded sustenance of greenness and integrity of fruit coat resolved through scanning electron micrograph. Loss of water and accumulation of total soluble solids were marginally increased on CO2-sensitized fruit as compared to non-sensitized (control) fruit. The ethylene metabolism biosynthetic genes like CaACC synthase, CaACC oxidase were downregulated on CO2-sensitization. Accompanying ethylene metabolism cellular respiration was downregulated on CO2 induction as compared to control through 7 days of storage. Fruit coat photosynthesis decarboxylating reaction by NADP malic enzyme was upregulated to maintain the reduced carbon accumulation as recorded on 7 days of storage under the same condition. CO2-sensitization effectively reduced the lipid peroxides as oxidative stress products on ripening throughout the storage. Anti-oxidation reaction essentially downregulates the ROS-induced damages of biomolecules that otherwise are highly required for food preservation during postharvest storage. Thus, the major finding is that CO2-sensitization maintains a higher ratio of unsaturated to saturated fatty acids in fruit coat during storage. Tissue-specific downregulation of ROS also maintained the nuclear stability under CO2 exposure. These findings provide basic as well as applied insights for sustaining Capsicum fruit quality with CO2 exposure under postharvest storage. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01471-4.
Collapse
Affiliation(s)
- Arijit Ghosh
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa, 761-0795 Japan
| | - M. K. Adak
- Plant Physiology and Plant Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal 741235 India
| |
Collapse
|
13
|
Muthan B, Wang J, Welti R, Kosma DK, Yu L, Deo B, Khatiwada S, Vulavala VKR, Childs KL, Xu C, Durrett TP, Sanjaya SA. Mechanisms of Spirodela polyrhiza tolerance to FGD wastewater-induced heavy-metal stress: Lipidomics, transcriptomics, and functional validation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133951. [PMID: 38492385 DOI: 10.1016/j.jhazmat.2024.133951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Unlike terrestrial angiosperm plants, the freshwater aquatic angiosperm duckweed (Spirodela polyrhiza) grows directly in water and has distinct responses to heavy-metal stress. Plantlets accumulate metabolites, including lipids and carbohydrates, under heavy-metal stress, but how they balance metabolite levels is unclear, and the gene networks that mediate heavy-metal stress responses remain unknown. Here, we show that heavy-metal stress induced by flue gas desulfurization (FGD) wastewater reduces chlorophyll contents, inhibits growth, reduces membrane lipid biosynthesis, and stimulates membrane lipid degradation in S. polyrhiza, leading to triacylglycerol and carbohydrate accumulation. In FGD wastewater-treated plantlets, the degraded products of monogalactosyldiacylglycerol, primarily polyunsaturated fatty acids (18:3), were incorporated into triacylglycerols. Genes involved in early fatty acid biosynthesis, β-oxidation, and lipid degradation were upregulated while genes involved in cuticular wax biosynthesis were downregulated by treatment. The transcription factor gene WRINKLED3 (SpWRI3) was upregulated in FGD wastewater-treated plantlets, and its ectopic expression increased tolerance to FGD wastewater in transgenic Arabidopsis (Arabidopsis thaliana). Transgenic Arabidopsis plants showed enhanced glutathione and lower malondialdehyde contents under stress, suggesting that SpWRI3 functions in S. polyrhiza tolerance of FGD wastewater-induced heavy-metal stress. These results provide a basis for improving heavy metal-stress tolerance in plants for industrial applications.
Collapse
Affiliation(s)
- Bagyalakshmi Muthan
- Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth Welti
- Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA; State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bikash Deo
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Subhiksha Khatiwada
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Sanju A Sanjaya
- Department of Biology, Agricultural and Environmental Research Station and Energy and Environmental Science Institute, West Virginia State University, Institute, WV 25112-1000, USA.
| |
Collapse
|
14
|
Sha S, Wang G, Liu J, Wang M, Wang L, Liu Y, Geng G, Liu J, Wang Y. Regulation of photosynthetic function and reactive oxygen species metabolism in sugar beet (Beta vulgaris L.) cultivars under waterlogging stress and associated tolerance mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108651. [PMID: 38653098 DOI: 10.1016/j.plaphy.2024.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Sugar beet (Beta vulgaris L.) is an economically important sugar crop worldwide that is susceptible to sudden waterlogging stress during seedling cultivation, which poses a major threat to sugar beet development and production. Our understanding of the physiological basis of waterlogging tolerance in sugar beet is limited. To investigate the photosynthetic adaptation strategies of sugar beet to waterlogging stress conditions, the tolerant cultivar KUHN1260 (KU) and sensitive cultivar SV1433 (SV) were grown under waterlogging stress, and their photosynthetic function and reactive oxygen species (ROS) metabolism were assessed. Our results showed that waterlogging stress significantly reduced the photosynthetic pigment content, rubisco activity, and expression level of the photosynthetic enzyme genes SvRuBP, SvGAPDH, and SvPRK, gas exchange parameters, and chlorophyll fluorescence parameters, induced damage to the ultrastructure of the chloroplast of the two sugar beet cultivars, inhibited the photosynthetic carbon assimilation capacity of sugar beet leaves, damaged the structural stability of photosystem II (PSII), and disturbed the equilibrium between electrons at the acceptor and donor sides of PSII, which was the result of stomatal and non-stomatal limiting factors. Moreover, the level of ROS, H2O2, and O2▪-, antioxidant enzyme activity, and gene expression levels in the leaves of the two sugar beet cultivars increased over time under waterlogging stress; ROS accumulation was lower and antioxidant enzyme activities and gene expression levels were higher in the waterlogging-tolerant cultivar (KU) than the waterlogging-sensitive cultivar (SV). In sum, these responses in the more tolerant cultivars are associated with their resistance to waterlogging stress. Our findings will aid the breeding of waterlogging-tolerant sugar beet cultivars.
Collapse
Affiliation(s)
- Shanshan Sha
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; School of Food Engineering, Harbin University, Harbin, 150000, China
| | - Gang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Jinling Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Meihui Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Lihua Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yonglong Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Gui Geng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Jiahui Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Sugar Beet Engineering Technology Research Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
15
|
Khuman A, Yadav V, Chaudhary B. Evolutionary dynamics of the cytoskeletal profilin gene family in Brassica juncea L. reveal its roles in silique development and stress resilience. Int J Biol Macromol 2024; 266:131247. [PMID: 38565371 DOI: 10.1016/j.ijbiomac.2024.131247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Essential to plant adaptation, cell wall (CW) integrity is maintained by CW-biosynthesis genes. Cytoskeletal actin-(de)polymerizing, phospholipid-binding profilin (PRF) proteins play important roles in maintaining cellular homeostasis across kingdoms. However, evolutionary selection of PRF genes and their systematic characterization in family Brassicaceae, especially in Brassica juncea remain unexplored. Here, a comprehensive analysis of genome-wide identification of BjPRFs, their phylogenetic association, genomic localization, gene structure, and transcriptional profiling were performed in an evolutionary framework. Identification of 23 BjPRFs in B. juncea indicated an evolutionary conservation within Brassicaceae. The BjPRFs evolved through paralogous and orthologous gene formation in Brassica genomes. Evolutionary divergence of BjPRFs indicated purifying selection, with nonsynonymous (dN)/synonymous (dS) value of 0.090 for orthologous gene-pairs. Hybrid homology-modeling identified evolutionary distinct and conserved domains in BjPRFs which suggested that these proteins evolved following the divergence of monocot and eudicot plants. RNA-seq profiles of BjPRFs revealed their functional evolution in spatiotemporal manner during plant-development and stress-conditions in diploid/amphidiploid Brassica species. Real-Time PCR experiments in seedling, vegetative, floral and silique tissues of B. juncea suggested their essential roles in systematic plant development. These observations underscore the expansion of BjPRFs in B. juncea, and offer valuable evolutionary insights for exploring cellular mechanisms, and stress resilience.
Collapse
Affiliation(s)
| | - Vandana Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, U.P., India
| | | |
Collapse
|
16
|
Cao J, Tan X, Cheng X. Over-expression of the BnVIT-L2 gene improves the lateral root development and biofortification under iron stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108501. [PMID: 38452450 DOI: 10.1016/j.plaphy.2024.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/17/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
The vacuolar iron transporter (VIT) family is responsible for absorbing and storing iron ions in vacuoles. Here, the BnVIT-L2 gene from Brassica napus has been cloned for the first time and was found to be expressed in multiple tissues and organs, induced by iron stress. The BnVIT-L2 protein is located in vacuolar membranes and has the ability to bind both iron and other bivalent metal ions. Over-expression of the BnVIT-L2 gene increased lateral root number and main root length, as well as chlorophyll and iron content in transgenic Arabidopsis plants (BnVIT-L2/At) exposed to iron stress, compared to wild type Col-0. Furthermore, over-expression of this gene improved the adaptability of transgenic B. napus plants (BnVIT-L2-OE) under iron stress. The regulation of plant tolerance under iron stress by BnVIT-L2 gene may involve in the signal of reactive oxygen species (ROS), as suggested by Ribosome profiling sequencing (Ribo-seq). This study provides a reference for investigating plant growth and biofortification under iron stress through the BnVIT-L2 gene.
Collapse
Affiliation(s)
- Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Xiaona Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiuzhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
17
|
He X, He Y, Dong Y, Gao Y, Sun X, Chen W, Xu X, Su C, Lv Y, Ren B, Yin H, Zeng J, Ma W, Mu P. Genome-wide analysis of FRF gene family and functional identification of HvFRF9 under drought stress in barley. FRONTIERS IN PLANT SCIENCE 2024; 15:1347842. [PMID: 38328701 PMCID: PMC10847358 DOI: 10.3389/fpls.2024.1347842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
FHY3 and its homologous protein FAR1 are the founding members of FRS family. They exhibited diverse and powerful physiological functions during evolution, and participated in the response to multiple abiotic stresses. FRF genes are considered to be truncated FRS family proteins. They competed with FRS for DNA binding sites to regulate gene expression. However, only few studies are available on FRF genes in plants participating in the regulation of abiotic stress. With wide adaptability and high stress-resistance, barley is an excellent candidate for the identification of stress-resistance-related genes. In this study, 22 HvFRFs were detected in barley using bioinformatic analysis from whole genome. According to evolution and conserved motif analysis, the 22 HvFRFs could be divided into subfamilies I and II. Most promoters of subfamily I members contained abscisic acid and methyl jasmonate response elements; however, a large number promoters of subfamily II contained gibberellin and salicylic acid response elements. HvFRF9, one of the members of subfamily II, exhibited a expression advantage in different tissues, and it was most significantly upregulated under drought stress. In-situ PCR revealed that HvFRF9 is mainly expressed in the root epidermal cells, as well as xylem and phloem of roots and leaves, indicating that HvFRF9 may be related to absorption and transportation of water and nutrients. The results of subcellular localization indicated that HvFRF9 was mainly expressed in the nuclei of tobacco epidermal cells and protoplast of arabidopsis. Further, transgenic arabidopsis plants with HvFRF9 overexpression were generated to verify the role of HvFRF9 in drought resistance. Under drought stress, leaf chlorosis and wilting, MDA and O2 - contents were significantly lower, meanwhile, fresh weight, root length, PRO content, and SOD, CAT and POD activities were significantly higher in HvFRF9-overexpressing arabidopsis plants than in wild-type plants. Therefore, overexpression of HvFRF9 could significantly enhance the drought resistance in arabidopsis. These results suggested that HvFRF9 may play a key role in drought resistance in barley by increasing the absorption and transportation of water and the activity of antioxidant enzymes. This study provided a theoretical basis for drought resistance in barley and provided new genes for drought resistance breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ping Mu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Mihara T, Nozaki K, Kowaka Y, Jiang M, Yamashita K, Miura H, Ohara S. Enhanced Photocatalysis of Electrically Polarized Titania Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:171. [PMID: 38251135 PMCID: PMC10818834 DOI: 10.3390/nano14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Titania (TiO2) nanosheets are crystals with controlled, highly ordered structures that improve the functionality of conventional TiO2 nanoparticles. Various surface modification methods have been studied to enhance the effectiveness of these materials as photocatalysts. Surface modifications using electrical polarization have attracted considerable attention in recent years because they can improve the function of titania without changing its composition. However, the combination of facet engineering and electrical polarization has not been shown to improve the functionality of TiO2 nanosheets. In the present study, the dye-degradation performance of polarized TiO2 nanosheets was evaluated. TiO2 nanosheets with a F/Ti ratio of 0.3 were synthesized via a hydrothermal method. The crystal morphology and structure were evaluated using transmission electron microscopy and X-ray diffraction. Then, electrical polarization was performed under a DC electric field of 300 V at 300 °C. The polarized material was evaluated using thermally stimulated current measurements. A dye-degradation assay was performed using a methylene blue solution under ultraviolet irradiation. The polarized TiO2 nanosheets exhibited a dense surface charge and accelerated decolorization. These results indicate that electrical polarization can be used to enhance the photocatalytic activity of TiO2.
Collapse
Grants
- 20K10049 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K09990 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 23K09269 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 0311049-A Iketani Science and Technology Foundation
Collapse
Affiliation(s)
- Tomoyuki Mihara
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan; (T.M.); (Y.K.); (M.J.); (K.Y.); (H.M.)
| | - Kosuke Nozaki
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan; (T.M.); (Y.K.); (M.J.); (K.Y.); (H.M.)
| | - Yasuyuki Kowaka
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan; (T.M.); (Y.K.); (M.J.); (K.Y.); (H.M.)
| | - Mengtian Jiang
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan; (T.M.); (Y.K.); (M.J.); (K.Y.); (H.M.)
| | - Kimihiro Yamashita
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan; (T.M.); (Y.K.); (M.J.); (K.Y.); (H.M.)
| | - Hiroyuki Miura
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan; (T.M.); (Y.K.); (M.J.); (K.Y.); (H.M.)
| | - Satoshi Ohara
- New Industry Creation Hatchery Center, Tohoku University, Aoba, Sendai 980-8579, Japan;
| |
Collapse
|
19
|
López-García CM, Ávila-Hernández CA, Quintana-Rodríguez E, Aguilar-Hernández V, Lozoya-Pérez NE, Rojas-Raya MA, Molina-Torres J, Araujo-León JA, Brito-Argáez L, González-Sánchez AA, Ramírez-Chávez E, Orona-Tamayo D. Extracellular Self- and Non-Self DNA Involved in Damage Recognition in the Mistletoe Parasitism of Mesquite Trees. Int J Mol Sci 2023; 25:457. [PMID: 38203628 PMCID: PMC10778891 DOI: 10.3390/ijms25010457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Psittacanthus calyculatus parasitizes mesquite trees through a specialized structure called a haustorium, which, in the intrusive process, can cause cellular damage in the host tree and release DAMPs, such as ATP, sugars, RNA, and DNA. These are highly conserved molecules that primarily function as signals that trigger and activate the defense responses. In the present study, we generate extracellular DNA (exDNA) from mesquite (P. laevigata) tree leaves (self-exDNA) and P. calyculatus (non-self exDNA) mistletoe as DAMP sources to examine mesquite trees' capacity to identify specific self or non-self exDNA. We determined that mesquite trees perceive self- and non-self exDNA with the synthesis of O2•-, H2O2, flavonoids, ROS-enzymes system, MAPKs activation, spatial concentrations of JA, SA, ABA, and CKs, and auxins. Our data indicate that self and non-self exDNA application differs in oxidative burst, JA signaling, MAPK gene expression, and scavenger systems. This is the first study to examine the molecular biochemistry effects in a host tree using exDNA sources derived from a mistletoe.
Collapse
Affiliation(s)
- Claudia Marina López-García
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - César Alejandro Ávila-Hernández
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Elizabeth Quintana-Rodríguez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Víctor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Nancy Edith Lozoya-Pérez
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| | - Mariana Atzhiry Rojas-Raya
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jorge Molina-Torres
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Jesús Alfredo Araujo-León
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán (CICY), Mérida 97205, Yucatán, Mexico (J.A.A.-L.)
| | | | - Enrique Ramírez-Chávez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Irapuato 36821, Guanajuato, Mexico; (C.A.Á.-H.); (M.A.R.-R.); (E.R.-C.)
| | - Domancar Orona-Tamayo
- Medio Ambiente y Biotecnología, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC), León 37545, Guanajuato, Mexico; (C.M.L.-G.)
| |
Collapse
|
20
|
Wang P, Wan Z, Luo S, Wei H, Zhao J, Wang G, Yu J, Zhang G. Silencing the CsSnRK2.11 Gene Decreases Drought Tolerance of Cucumis sativus L. Int J Mol Sci 2023; 24:15761. [PMID: 37958744 PMCID: PMC10649623 DOI: 10.3390/ijms242115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Drought stress restricts vegetable growth, and abscisic acid plays an important role in its regulation. Sucrose non-fermenting1-related protein kinase 2 (SnRK2) is a key enzyme in regulating ABA signal transduction in plants, and it plays a significant role in response to multiple abiotic stresses. Our previous experiments demonstrated that the SnRK2.11 gene exhibits a significant response to drought stress in cucumbers. To further investigate the function of SnRK2.11 under drought stress, we used VIGS (virus-induced gene silencing) technology to silence this gene and conducted RNA-seq analysis. The SnRK2.11-silencing plants displayed increased sensitivity to drought stress, which led to stunted growth and increased wilting speed. Moreover, various physiological parameters related to photosynthesis, chlorophyll fluorescence, leaf water content, chlorophyll content, and antioxidant enzyme activity were significantly reduced. The intercellular CO2 concentration, non-photochemical burst coefficient, and malondialdehyde and proline content were significantly increased. RNA-seq analysis identified 534 differentially expressed genes (DEGs): 311 were upregulated and 223 were downregulated. GO functional annotation analysis indicated that these DEGs were significantly enriched for molecular functions related to host cells, enzyme activity, and stress responses. KEGG pathway enrichment analysis further revealed that these DEGs were significantly enriched in phytohormone signalling, MAPK signalling, and carotenoid biosynthesis pathways, all of which were associated with abscisic acid. This study used VIGS technology and transcriptome data to investigate the role of CsSnRK2.11 under drought stress, offering valuable insights into the mechanism of the SnRK2 gene in enhancing drought resistance in cucumbers.
Collapse
Affiliation(s)
- Peng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zilong Wan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shilei Luo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Haotai Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianuo Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoshuai Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.W.); (Z.W.); (S.L.); (H.W.); (J.Z.); (G.W.); (J.Y.)
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
21
|
Wu W, Yang H, Shen J, Xing P, Han X, Dong Y, Wu G, Zheng S, Gao K, Yang N, Zhang L, Wu Y. Identification of Brassica rapa BrEBF1 homologs and their characterization in cold signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154076. [PMID: 37657305 DOI: 10.1016/j.jplph.2023.154076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
EIN3-binding F-box 1 (EBF1) is involved in cold tolerance in Arabidopsis; however, its exact roles in cold signaling in Brassica rapa remain uncertain. Herein, we demonstrated that EBF1 homologs are highly conserved in Brassica species, but their copy numbers are diverse, with some motifs being species specific. Cold treatment activated the expression of EBF1 homologs BrEBF1 and BrEBF2 in B. rapa; however, their expression schemas were diverse in different cold-resistant varieties of the plant. Subcellular localization analysis revealed that BrEBF1 is a nuclear-localized F-box protein, and cold treatment did not alter its localization but induced its degradation. BrEBF1 overexpression enhanced cold tolerance, reduced cold-induced ROS accumulation, and enhanced MPK3 and MPK6 kinase activity in Arabidopsis. Our study revealed that BrEBF1 positively regulates cold tolerance in B. rapa and that BrEBF1-regulated cold tolerance is associated with ROS scavenging and MPK3 and MPK6 kinase activity through the C-repeat binding factor pathway.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Haobo Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China; School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xueyan Han
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yun Dong
- Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou, 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Kun Gao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lina Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yujun Wu
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Li C, Mao B, Wang K, Xu L, Fan L, Wang Y, Li Y, Ma Y, Wang L, Liu L. RsERF40 contributes to cold stress tolerance and cell expansion of taproot in radish ( Raphanus sativus L.). HORTICULTURE RESEARCH 2023; 10:uhad013. [PMID: 36968181 PMCID: PMC10031735 DOI: 10.1093/hr/uhad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The growth and development of taproots are inhibited by cold stress in radish (Raphanus sativus L.). Ethylene-responsive element binding factors (ERF) are key participators in the cold stress response and growth regulation of plants. However, the function of ERF genes in cold tolerance and root development in radish remains elusive. Here, we showed that the secondary growth of radish taproots was inhibited by cold stress. Comparative transcriptome analysis demonstrated that the RsERF40 gene is an important regulator of the cold stress response and root growth regulation. The cold tolerance of transgenic Arabidopsis plants overexpressing the RsERF40 gene was significantly improved. Overexpressing RsERF40 in the cold-sensitive radish genotype and silencing RsERF40 in the cold-tolerant radish genotype indicated that RsERF40 was beneficial for alleviating oxidative damage under cold stress in radish. Transgenic Arabidopsis seedlings showed an increase in the elongation and radial growth of dark-grown roots. RT-qPCR analysis showed that the expression of the cold-related genes (CORs) RsCOR78 and RsCOR413PM1 and the cell wall strengthening-related genes RsCESA6 and RsEXPB3 was upregulated in transgenic Arabidopsis seedlings. Yeast one-hybrid (Y1H) and dual-luciferase reporter assays (DLA) revealed that RsERF40 directly regulates RsCOR78, RsCOR413PM1, RsCESA6 and RsEXPB3 expression, illustrating that RsERF40 enhances cold tolerance and taproot growth by modulating osmotic adjustment and cell wall mechanical strength in radish. In this study, the RsERF40-regulon was firstly found to be a new cold response pathway independent of the CBF-COR pathway conferring cold stress tolerance with increasing radish taproot growth. These results provided novel insight into the molecular mechanism underlying cold stress response and would facilitate the genetic improvement of cold tolerance in radish and other root vegetable crops.
Collapse
Affiliation(s)
- Cui Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Baozhen Mao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinbo Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Lun Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | | |
Collapse
|
23
|
Kumar V, Chaudhary P, Prasad A, Dogra V, Kumar A. Jasmonic acid limits Rhizoctonia solani AG1-IA infection in rice by modulating reactive oxygen species homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:520-530. [PMID: 36764267 DOI: 10.1016/j.plaphy.2023.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Sheath blight disease of rice caused by a soil-borne fungal pathogen Rhizoctonia solani AG1-IA is one of the major threats to rice production globally. During host-pathogen interactions, reactive oxygen species (ROS) play an important role in pathogen virulence and plant defense. For example, necrotrophic pathogens induce ROS production to damage host cells, whereas the host can incite ROS to kill the pathogen. From the host perspective, it is essential to understand how the antioxidant machinery maintains a delicate balance of ROS to protect itself from its lethal effects. Here, we investigated the pathogen-induced accumulation of ROS and implicated damage in two rice genotypes (PR114, susceptible; ShB, moderately tolerant) varying in the level of susceptibility to R. solani AG1-IA. Compared to PR114, ShB exhibited a better antioxidant response and reasonably lesser oxidative damage. Further, we observed elevated levels of jasmonic acid (JA) in ShB, which was otherwise decreased in PR114 in response to pathogen infection. As depicted, an elevated level of JA was in agreement with the expression profiles of genes involved in its biosynthesis and signaling. To further ascertain if the heightened antioxidant response is JA-dependent or independent, methyl jasmonate (MeJA) was exogenously applied to PR114, and antioxidant response in terms of gene expression, enzyme activities, and oxidative damage was studied in R. solani infected samples. Surprisingly, the exogenous application of MeJA complemented the antioxidant response and reduced oxidative damage in PR114, thus suggesting that the antioxidant defense system is under transcriptional control of JA.
Collapse
Affiliation(s)
- Vinod Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Pratibha Chaudhary
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Apoorva Prasad
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Vivek Dogra
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Arun Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
24
|
Wang J, Moeen-ud-din M, Yin R, Yang S. ROS Homeostasis Involved in Dose-Dependent Responses of Arabidopsis Seedlings to Copper Toxicity. Genes (Basel) 2022; 14:11. [PMID: 36672752 PMCID: PMC9858908 DOI: 10.3390/genes14010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
As an essential element in plant nutrition, copper (Cu) can promote or inhibit plant growth depending on its concentration. However, the dose-dependent effects of copper, particularly on DNA damage associated with reactive oxygen species (ROS) homeostasis, are much less understood. In this work, we analyzed the dual effect of Cu (5, 20, and 60 μM) on the reproductive performance of Arabidopsis plants. Whereas Cu5 promoted inflorescence initiation and increased kilo seed weight, two higher concentrations, Cu20 and Cu60, delayed inflorescence initiation and negatively affected silique size. Excess Cu also induced changes in cellular redox homeostasis, which was examined by in situ visualization and measurements of ROS, including superoxide (O2•-), hydrogen peroxide (H2O2), malonyldialdehyde (MDA), and plasma membrane damage. The most dramatic increases in the production of O2•- and H2O2 along with increased activity of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and decreased activity of catalase (CAT) and ascorbate peroxidase (APX) were observed in roots with Cu60. Oxidative stress also modulated the expression levels of a number of genes involved in the DNA damage response (DDR), particularly those related to DNA repair. The Cu-induced chlorosis of Arabidopsis seedlings could be alleviated by exogenous addition of glutathione (GSH) and ascorbate (Asc), as the chlorophyll content was significantly increased. Overall, internal homeostasis ROS and the associated DDR pathway and the corresponding scavenging mechanisms play a central role in the response of Arabidopsis to oxidative stress induced by inhibitory Cu concentrations. Our results have shown, for the first time, that the biphasic responses of Arabidopsis seedlings to increasing Cu concentrations involve different DNA damage responses and oxidative reactions. They provide the basis for elucidating the network of Cu-induced DDR-related genes and the regulatory mechanism of the complex ROS production and scavenging system.
Collapse
Affiliation(s)
| | | | | | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
25
|
Chen Y, Feng P, Zhang X, Xie Q, Chen G, Zhou S, Hu Z. Silencing of SlMYB50 affects tolerance to drought and salt stress in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:139-152. [PMID: 36356545 DOI: 10.1016/j.plaphy.2022.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/08/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
High salinity and drought stresses often cause plants to produce ROS, including hydrogen peroxide (H2O2) and superoxide (O2-), which interfere with plant growth and affect crop yield. The transcription factors of the MYB family are involved in responses to biotic and abiotic stresses. Here, we isolated the R2R3-MYB transcription factor gene SlMYB50 and found that silencing of SlMYB50 increased resistance to PEG 6000, mannitol and salt. In addition, the resistance of transgenic tomatoes increased under high salt and drought stress. After stress treatment, the relative water content, chlorophyll content (critical for carbon fixation) and root vitality of the SlMYB50-RNAi lines were higher than those of the wild-type (WT). The opposite was true the water loss rate, relative conductivity, and MDA (as a sign of cell wall disruption). Under drought stress conditions, SlMYB50-silenced lines exhibited less H2O2 and less O2- accumulation, as well as higher CAT enzyme activity, than were exhibited by the WT. Notably, after stress treatment, the expression levels of chlorophyll-synthesis-related, flavonoid-synthesis-related, carotenoid-related, antioxidant-enzyme-related and ABA-biosynthesis-related genes were all upregulated in SlMYB50-silenced lines compared to those of WT. A dual-luciferase reporter system was used to verify that SlMYB50 could bind to the CHS1 promoter. In summary, this study identified essential roles for SlMYB50 in regulating drought and salt tolerance.
Collapse
Affiliation(s)
- Yanan Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Panpan Feng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xianwei Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shuang Zhou
- College of Agriculture/Mudan, Henan University of Science and Technology, Henan Province, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
26
|
Li C, Wang K, Chen S, Zhang X, Zhang X, Fan L, Dong J, Xu L, Wang Y, Li Y, Liu L. Genome-wide identification of RsGRAS gene family reveals positive role of RsSHRc gene in chilling stress response in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:285-297. [PMID: 36283201 DOI: 10.1016/j.plaphy.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Radish (Raphanus sativus L.) is an important worldwide root vegetable crop. Little information of the GRAS gene family was available in radish. Herein, a total of 51 GRAS family members were firstly identified from radish genome, and unevenly located onto nine radish chromosomes. Expression analysis of RsGRAS genes in taproot displayed that RsSCL15a and RsSHRc were highly expressed in the radish cambium, and its expression level was increased with the taproot thickening. Comparative transcriptome analysis revealed that the expression patterns of RsGRAS genes varied upon exposure to different abiotic stresses including heavy metals, salt and heat. The expression level of six RsGRAS genes including RsSHRc was increased under chilling stress in two radish genotypes with different cold tolerance. Further analysis indicated that RsGRAS genes could respond to cold stress rapidly and the expression of RsSHRc was up-regulated at different development stages (cortex splitting and thickening stages) under long-term cold treatment. Transient expression of RsSHRc gene in radish showed that RsSHRc possessed the reliable function of eliminating reactive oxygen species (ROS), inhibiting the formation of malondialdehyde (MDA) and promoting to accumulate proline under cold stress. Together, these findings provided insights into the function of RsGRAS genes in taproot development and chilling stress response in radish.
Collapse
Affiliation(s)
- Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Sen Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Lianxue Fan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China; College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
27
|
Usha A, Kattupalli D, Viswam P, Bharathan S, Vasudevan Soniya E. Phytophthora capsici infection causes dynamic alterations in tRNA modifications and their associated gene candidates in black pepper. Comput Struct Biotechnol J 2022; 20:6055-6066. [DOI: 10.1016/j.csbj.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
28
|
Martin RE, Postiglione AE, Muday GK. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102293. [PMID: 36099672 PMCID: PMC10475289 DOI: 10.1016/j.pbi.2022.102293] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) serve as second messengers in plant signaling pathways to remodel plant growth and development. New insights into how enzymatic ROS-producing machinery is regulated by hormones or localized during development have provided a framework for understanding the mechanisms that control ROS accumulation patterns. Signaling-mediated increases in ROS can then modulate the activity of proteins through reversible oxidative modification of specific cysteine residues. Plants also control the synthesis of antioxidants, including plant-specialized metabolites, to further define when, where, and how much ROS accumulate. The availability of sophisticated imaging capabilities, combined with a growing tool kit of ROS detection technologies, particularly genetically encoded biosensors, sets the stage for improved understanding of ROS as signaling molecules.
Collapse
Affiliation(s)
- R Emily Martin
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA; Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Anthony E Postiglione
- Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Gloria K Muday
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA; Department of Biology and the Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
29
|
Dai X, Zhang S, Liu S, Qi H, Duan X, Han Z, Wang J. Functional Characterization and Phenotyping of Protoplasts on a Microfluidics-Based Flow Cytometry. BIOSENSORS 2022; 12:bios12090688. [PMID: 36140072 PMCID: PMC9496511 DOI: 10.3390/bios12090688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased assessment of the influence of environmental factors at the single cell level. First, based on the measurement of intracellular homeostasis of reactive oxygen species (ROS) with a DCFH-DA dye, the effects of various external stress factors such as H2O2, temperature, ultraviolet (UV) light, and cadmium ions on intracellular ROS accumulation in Arabidopsis mesophyll protoplasts were quantitatively investigated. Second, a faster and stronger oxidative burst was observed in Petunia protoplasts isolated from white petals than in those isolated from purple petals, demonstrating the photoprotective role of anthocyanins. Third, using mutants with different endogenous auxin, we demonstrated the beneficial effect of auxin during the process of primary cell wall regeneration. Moreover, UV-B irradiation has a similar accelerating effect by increasing the intracellular auxin level, as shown by double fluorescence channels. In summary, our work has revealed previously underappreciated phenotypic variability within a protoplast population and demonstrated the advantages of a microfluidic flow cytometry for assessing the in vivo dynamics of plant metabolic and physiological indices at the single-cell level.
Collapse
Affiliation(s)
- Xingda Dai
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Siyuan Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Hang Qi
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- Correspondence: (Z.H.); (J.W.)
| |
Collapse
|
30
|
Wang L, Wang S, Tong R, Wang S, Yao J, Jiao J, Wan R, Wang M, Shi J, Zheng X. Overexpression of PgCBF3 and PgCBF7 Transcription Factors from Pomegranate Enhances Freezing Tolerance in Arabidopsis under the Promoter Activity Positively Regulated by PgICE1. Int J Mol Sci 2022; 23:ijms23169439. [PMID: 36012703 PMCID: PMC9408969 DOI: 10.3390/ijms23169439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cold stress limits plant growth, development and yields, and the C-repeat binding factors (CBFs) function in the cold resistance in plants. However, how pomegranate CBF transcription factors respond to cold signal remains unclear. Considering the significantly up-regulated expression of PgCBF3 and PgCBF7 in cold-tolerant Punica granatum ‘Yudazi’ in comparison with cold-sensitive ‘Tunisia’ under 4 °C, the present study focused on the two CBF genes. PgCBF3 was localized in the nucleus, while PgCBF7 was localized in the cell membrane, cytoplasm, and nucleus, both owning transcriptional activation activity in yeast. Yeast one-hybrid and dual-luciferase reporter assay further confirmed that PgICE1 could specifically bind to and significantly enhance the activation activity of the promoters of PgCBF3 and PgCBF7. Compared with the wild-type plants, the PgCBF3 and PgCBF7 transgenic Arabidopsis thaliana lines had the higher survival rate after cold treatment; exhibited increased the contents of soluble sugar and proline, while lower electrolyte leakage, malondialdehyde content, and reactive oxygen species production, accompanying with elevated enzyme activity of catalase, peroxidase, and superoxide dismutase; and upregulated the expression of AtCOR15A, AtCOR47, AtRD29A, and AtKIN1. Collectively, PgCBFs were positively regulated by the upstream PgICE1 and mediated the downstream COR genes expression, thereby enhancing freezing tolerance.
Collapse
|
31
|
Zhang J, Jin X, Wang Y, Zhang B, Liu T. A Cytochrome P450 Monooxygenase in Nondefoliating Strain of Verticillium dahliae Manipulates Virulence via Scavenging Reactive Oxygen Species. PHYTOPATHOLOGY 2022; 112:1723-1729. [PMID: 35224980 DOI: 10.1094/phyto-08-21-0318-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Verticillium dahliae is a broad host-range phytopathogenic fungus that causes destructive vascular wilt on plants worldwide. Cytochrome P450 monooxygenases, also known as CYPs/P450s, are broadly distributed in organisms and are involved in a diverse array of molecular/metabolic processes. In this study, using reverse transcription quantitative PCR analysis, we observed that the expression of a P450 gene (Chr2g00380) in the E-class P450, group IV from V. dahliae isolate JR2 was highly induced during tomato infection. Targeted deletion of Chr2g00380 in JR2 did not affect hyphal growth and morphology; however, the mutants exhibited increased sensitivity to H2O2 and defects in melanized microsclerotia formation compared with the wild type. Loss of Chr2g00380 resulted in reduced virulence on tomato and tobacco plants but did not cause phenotypic changes in infection structure formation or in the penetration of cellophane membranes. These data provide evidence for an involvement of a cytochrome P450 monooxygenase in virulence in V. dahliae.
Collapse
Affiliation(s)
- Jiayi Zhang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Xianjiang Jin
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083 China
| | - Baolong Zhang
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014 China
| | - Tingli Liu
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014 China
| |
Collapse
|
32
|
Mondal NK, Kundu S, Debnath P, Mondal A, Sen K. Effects of polyethylene terephthalate microplastic on germination, biochemistry and phytotoxicity of Cicer arietinum L. and cytotoxicity study on Allium cepa L. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103908. [PMID: 35709962 DOI: 10.1016/j.etap.2022.103908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of plastic materials in terrestrial systems threatens to contaminate food chains. The aim of the current study is to determine the impact of microplastics synthesized from PET plastics (control, 50, 250, 500, 750, 1000 mg/L) with respect to morphological, biochemical impact on Cicer arietinum using standardized 72 h assay and cytotoxicity study on Allium cepa root tips. The synthesized microplastics were characterized by Scanning Electron Microscope (SEM) and Fourier Transform Infrared spectroscopy (FTIR) studies. Germination studies clearly revealed that there is a sharp decrease in germination with increasing the concentration of microplastics. Both pigment and carbohydrate levels increased up to 500 mg/L concentration, although protein levels increased with increase of microplastic dose. Catalase activity also increased with increasing microplastic concentration. Finally, cytotoxicity studies revealed significant chromosomal aberration at higher dose of microplastics. Therefore, it may be concluded that the microplastics have significant biological and structural adverse effects on plant metabolism.
Collapse
Affiliation(s)
- Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India.
| | - Susmita Kundu
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Priyanka Debnath
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Arghadip Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Kamalesh Sen
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| |
Collapse
|
33
|
Cui D, Yin Y, Sun H, Wang X, Zhuang J, Wang L, Ma R, Jiao Z. Regulation of cellular redox homeostasis in Arabidopsis thaliana seedling by atmospheric pressure cold plasma-generated reactive oxygen/nitrogen species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113703. [PMID: 35659700 DOI: 10.1016/j.ecoenv.2022.113703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric pressure cold plasma (APCP) holds great potential as an efficient, economical and eco-friendly approach for improving crop production. Although APCP-induced plant growth promotion is undisputedly attributed to the reactive oxygen and nitrogen species (RONS), how these RONS regulate the intracellular redox state and plant growth is still largely unknown. This study systematically investigates the regulation mechanism of APCP-generated RONS on intracellular redox homeostasis in Arabidopsis thaliana seedling by measuring the RONS compositions in APCP-treated solutions and intracellular RONS and antioxidants in Arabidopsis seedlings. The results show that APCP exhibited a dual effect (stimulation or inhibition) on Arabidopsis seedling growth dependent on the treatment time. APCP-generated RONS in liquids increased in a time-dependent manner, leading to an increase of conductivity and oxidation reduction potential (ORP) and decrease of pH. APCP caused an enrichment of intracellular RONS and most of them increased with APCP treatment time. Meanwhile, APCP treatment accelerated malondialdehyde (MDA) generation, and the level of intracellular antioxidants were enhanced by low-dose APCP treatment while decreased at high doses. The results of correlation analysis showed that the extracellular RONS produced by APCP were positively correlated with the intracellular RONS and negatively correlated with the antioxidants. These results demonstrate that the improved antioxidant capacity induced by moderate APCP-generated RONS plays an important role in the growth promotion of Arabidopsis seedlings, which may be a promising alternative for fertilizers in agricultural production.
Collapse
Affiliation(s)
- Dongjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China; Henan Key Laboratory of Ion-Beam Bioengineering, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yue Yin
- Henan Key Laboratory of Ion-Beam Bioengineering, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hao Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiaojie Wang
- School of Life Sciences and Basic Medicine, Xinxiang University, Xinxiang 453003, People's Republic of China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China; Henan Key Laboratory of Ion-Beam Bioengineering, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China; Henan Key Laboratory of Ion-Beam Bioengineering, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
34
|
Nai G, Liang G, Ma W, Lu S, Li Y, Gou H, Guo L, Chen B, Mao J. Overexpression VaPYL9 improves cold tolerance in tomato by regulating key genes in hormone signaling and antioxidant enzyme. BMC PLANT BIOLOGY 2022; 22:344. [PMID: 35840891 PMCID: PMC9284830 DOI: 10.1186/s12870-022-03704-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/17/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Abscisic acid (ABA) has been reported in controlling plant growth and development, and particularly dominates a role in resistance to abiotic stress. The Pyrabactin Resistance1/PYR1-Like /Regulatory Components of ABA receptors (PYR1/PYL/RCAR) gene family, of which the PYL9 is a positive regulator related to stress response in ABA signaling transduction. Although the family has been identified in grape, detailed VaPYL9 function in cold stress remains unknown. RESULTS In order to explore the cold tolerance mechanism in grape, VaPYL9 was cloned from Vitis amurensis. The subcellular localization showed that VaPYL9 was mainly expressed in the plasma membrane. Yeast two-hybrid (Y2H) showed VaPCMT might be a potential interaction protein of VaPYL9. Through the overexpression of VaPYL9 in tomatoes, results indicated transgenic plants had higher antioxidant enzyme activities and proline content, lower malondialdehyde (MDA) and H2O2 content, and improving the ability to scavenge reactive oxygen species than wild-type (WT). Additionally, ABA content and the ratio of ABA/IAA kept a higher level than WT. Quantitative real-time PCR (qRT-PCR) showed that VaPYL9, SlNCED3, SlABI5, and antioxidant enzyme genes (POD, SOD, CAT) were up-regulated in transgenic tomatoes. Transcriptome sequencing (RNA-seq) found that VaPYL9 overexpression caused the upregulation of key genes PYR/PYL, PYL4, MAPK17/18, and WRKY in transgenic tomatoes under cold stress. CONCLUSION Overexpression VaPYL9 enhances cold resistance of transgenic tomatoes mediated by improving antioxidant enzymes activity, reducing membrane damages, and regulating key genes in plant hormones signaling and antioxidant enzymes.
Collapse
Affiliation(s)
- Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
35
|
Li X, Riaz M, Song B, Liang X, Liu H. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113587. [PMID: 35512468 DOI: 10.1016/j.ecoenv.2022.113587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Fomesafen herbicide application has become major pollution in the growth and production of crops. Spraying fomesafen on the target crops may drift out to non-target crops. In northeast China, sugar beets are always planted adjacent to soybeans. Salicylic acid (SA) plays an important role in crop growth and alleviating abiotic stress, however, the role of SA in relieving fomesafen stress in sugar beet growth has rarely been investigated. Therefore, a pot study was conducted to elucidate the effects of different concentrations (0.025, 0.25, 0.5, 1, 5, and 10 mM) of SA on morphological parameters, photosynthetic performance, and antioxidant defense system in sugar beet seedlings under fomesafen (22.5 g a.i. ha-1) stress. The results showed that fomesafen stress inhibited the growth of sugar beet seedlings, and photosynthetic performance, while increased membrane lipid peroxidation and oxidative stress. However, exogenous SA alleviated the fomesafen stress and increased plant height, biomass, photosynthetic pigment contents, net photosynthetic rate (Pn), and photochemical efficiency of PSⅡ (Fv/Fm) in sugar beet leaves. Meanwhile, exogenous SA maintained the cell membrane integrity by reducing the content of malondialdehyde (MDA) and electrolyte permeability and regulating the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and polyphenol (PPO). Therefore, it is concluded that exogenous SA ameliorated the adverse effects of fomesafen on the growth of sugar beet seedlings, with a pronounced effect at 1 mM SA. The present study results may have useful implications in managing other plants that are poisoned by herbicides.
Collapse
Affiliation(s)
- Xingfan Li
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Baiquan Song
- National Sugar Crops Improvement Center, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| | - Xilong Liang
- Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Huajun Liu
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China.
| |
Collapse
|
36
|
Andriūnaitė E, Rugienius R, Tamošiūnė I, Haimi P, Vinskienė J, Baniulis D. Enhanced Carbonylation of Photosynthetic and Glycolytic Proteins in Antibiotic Timentin-Treated Tobacco In Vitro Shoot Culture. PLANTS 2022; 11:plants11121572. [PMID: 35736723 PMCID: PMC9228549 DOI: 10.3390/plants11121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022]
Abstract
Antibiotics are used in plant in vitro tissue culture to eliminate microbial contamination or for selection in genetic transformation. Antibiotic timentin has a relatively low cytotoxic effect on plant tissue culture; however, it could induce an enduring growth-inhibiting effect in tobacco in vitro shoot culture that persists after tissue transfer to a medium without antibiotic. The effect is associated with an increase in oxidative stress injury in plant tissues. In this study, we assessed changes of reactive oxygen species accumulation, protein expression, and oxidative protein modification response associated with enduring timentin treatment-induced growth suppression in tobacco (Nicotiana tabacum L.) in vitro shoot culture. The study revealed a gradual 1.7 and 1.9-fold increase in superoxide (O2•−) content at the later phase of the propagation cycle for treatment control (TC) and post-antibiotic treatment (PA) shoots; however, the O2•− accumulation pattern was different. For PA shoots, the increase in O2•− concentration occurred several days earlier, resulting in 1.2 to 1.4-fold higher O2•− concentration compared to TC during the period following the first week of cultivation. Although no protein expression differences were detectable between the TC and PA shoots by two-dimensional electrophoresis, the increase in O2•− concentration in PA shoots was associated with a 1.5-fold increase in protein carbonyl modification content after one week of cultivation, and protein carbonylation analysis revealed differential modification of 26 proteoforms involved in the biological processes of photosynthesis and glycolysis. The results imply that the timentin treatment-induced oxidative stress might be implicated in nontranslational cellular redox balance regulation, accelerates the development of senescence of the shoot culture, and contributes to the shoot growth-suppressing effect of antibiotic treatment.
Collapse
|
37
|
Seasonal Eco-Physiology Characteristics of Four Evergreen Rhododendron Species to the Subalpine Habitats. FORESTS 2022. [DOI: 10.3390/f13050653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Four evergreen broadleaf Rhododendron spp. (Rhododendrons), namely, Rhododendron aganniphum, R. nyingchiense, R. wardii, and R. triflorum, occur in harsh subalpine habitats in the southwest Qinghai-Tibet Plateau (QTP), China. Considering that the four Rhododendrons cannot escape their unique environment, they must evolve a set of adaptations to survive, but the information is lacking. To uncover their physiological adaptation characteristics, in the present study, we monitored their physiological characteristics by determination of their seasonal variation in antioxidant enzyme activity, osmotic adjustment substrates, and carbohydrate contents, and their pigment content and photosynthetic efficiency. The results showed that superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities and proline content of four Rhododendrons had a significant difference in autumn and were insignificant in summer. Specifically, R. aganniphum had the maximum protective enzyme activity and proline content in winter as well as chl a, b, and car contents. The values of maximal quantum yield (Fv/Fm), photochemical efficiency (ΦPSII), and non-photochemical quenching (NPQ) of four Rhododendrons were significantly higher in summer than in other seasons. The lower qP indicated the four Rhododendrons were susceptible to photoinhibition. Overall, the four Rhododendrons had similar physical characteristics in subalpine habitats. The parameters of the maximum quantum yield of photosystem II (PSII), the actual quantum yield of PSII, the non-photochemical chlorophyll fluorescence quenching, and chlorophyll a content increased in summer. Meanwhile, the protective enzyme activity and total soluble sugar content, proline content, and carotenoid content increased in spring, autumn, and winter. These results suggested that the four Rhododendrons can adapt to subalpine habitats by heat dissipation to avoid the damage of excessive radiation during the warm season while scavenging reactive oxygen and increasing the intracellular fluid concentration to avoid damage caused by chilling temperatures during the cold seasons. These findings would provide a reference for the conservation and application of these valuable ornamental evergreen broadleaf Rhododendrons, and enrich theory of plant eco-physiology in the high altitudes of the QTP.
Collapse
|
38
|
The bZip Transcription Factor VdMRTF1 is a Negative Regulator of Melanin Biosynthesis and Virulence in Verticillium dahliae. Microbiol Spectr 2022; 10:e0258121. [PMID: 35404080 PMCID: PMC9045294 DOI: 10.1128/spectrum.02581-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ascomycete fungus Verticillium dahliae infects over 400 plant species and causes serious losses of economically important crops, such as cotton and tomato, and also of woody plants, such as smoke tree, maple, and olive. Melanized long-term survival structures known as microsclerotia play crucial roles in the disease cycle of V. dahliae, enabling this soilborne fungus to survive for years in the soil in the absence of a host. Previously, we identified VdMRTF1 (microsclerotia-related transcription factor) encoding a bZip transcription factor which is downregulated during microsclerotial development in V. dahliae. In the present study, we showed that VdMRTF1 negatively controls melanin production and virulence by genetic, biological, and transcriptomic analyses. The mutant strain lacking VdMRTF1 (ΔVdMRTF1) exhibited increased melanin biosynthesis and the defect also promoted microsclerotial development and sensitivity to Ca2+. In comparison with the wild-type strain, the ΔVdMRTF1 strain showed a significant enhancement in virulence and displayed an increased capacity to eliminate reactive oxygen species in planta. Furthermore, analyses of transcriptomic profiles between the ΔVdMRTF1 and wild-type strains indicated that VdMRTF1 regulates the differential expression of genes associated with melanin biosynthesis, tyrosine metabolism, hydrogen peroxide catabolic processes, and oxidoreductase activity in V. dahliae. Taken together, these data show that VdMRTF1 is a negative transcriptional regulator of melanin biosynthesis, microsclerotia formation, and virulence in V. dahliae. IMPORTANCE Verticillium wilt is difficult to manage because the pathogen colonizes the plant xylem tissue and produces melanized microsclerotia which survive for more than 10 years in soil without a host. The molecular mechanisms underlying microsclerotia formation are of great importance to control the disease. Here, we provide evidence that a bZip transcription factor, VdMRTF1, plays important roles in melanin biosynthesis, microsclerotial development, resistance to elevated Ca2+ levels, and fungal virulence of V. dahliae. The findings extend and deepen our understanding of the complexities of melanin biosynthesis, microsclerotia formation, and virulence that are regulated by bZip transcription factors in V. dahliae.
Collapse
|
39
|
Shi L, Liu J, Gao B, Sillanpää M. Photoelectrocatalytic mechanism of PEDOT modified filtration membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152397. [PMID: 34923007 DOI: 10.1016/j.scitotenv.2021.152397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The generation of free radicals is the key to the photocatalytic efficiency. In this study, the degradation mechanism of photoelectrocatalysis (PEC) membrane could be adequately explained by exploring the generation pathway of different free radicals. The PEC membrane was prepared by gas phase polymerization of poly (3, 4-ethylene dioxythiophene) (PEDOT) on non-woven fabric, industrial filter cloth, ceramic membrane and polyvinylidene fluoride (PVDF) membrane, respectively. Three-dimensional fluorescence test showed that the optimal degradation of mixed or monomer contamination (bovine serum protein, sodium humate, and sodium alginate) was achieved by modified ceramic membrane under PEC condition. As for self-cleaning experiment, the membrane resistance decreased 65.7% when the reaction conditions changed from dark to PEC for 30 min. Combined with the characterization results, PEDOT as photocapacitance extended electron lifetime and promoted free radical generation. This system was mainly dependent on superoxide free radicals (0.01 mmol/L) and singlet oxygen (0.10 mmol/L), which came from energy and electron transfer. Oxygen vacancy could adsorb oxygen to produce superoxide radicals, which was further oxidized to singlet oxygen. In addition, the π-electron conjugated system of PEDOT accelerated the hole transfer and the separation of electrons and holes. Also, this study provided a new view of reactive oxygen species generation mechanism from PEDOT modified membrane.
Collapse
Affiliation(s)
- Liu Shi
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiadong Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Bo Gao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Aculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| |
Collapse
|
40
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|
41
|
Cheah BH, Chen YL, Lo JC, Tang IC, Yeh KC, Lin YF. Divalent nutrient cations: Friend and foe during zinc stress in rice. PLANT, CELL & ENVIRONMENT 2021; 44:3358-3375. [PMID: 34278584 DOI: 10.1111/pce.14154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/27/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Zn deficiency is the most common micronutrient deficit in rice but Zn is also a widespread industrial pollutant. Zn deficiency responses in rice are well documented, but comparative responses to Zn deficiency and excess have not been reported. Therefore, we compared the physiological, transcriptional and biochemical properties of rice subjected to Zn starvation or excess at early and later treatment stages. Both forms of Zn stress inhibited root and shoot growth. Gene ontology analysis of differentially expressed genes highlighted the overrepresentation of Zn transport and antioxidative defense for both Zn stresses, whereas diterpene biosynthesis was solely induced by excess Zn. Divalent cations (Fe, Cu, Ca, Mn and Mg) accumulated in Zn-deficient shoots but Mg and Mn were depleted in the Zn excess shoots, mirroring the gene expression of non-specific Zn transporters and chelators. Ascorbate peroxidase activity was induced after 14 days of Zn starvation, scavenging H2 O2 more effectively to prevent leaf chlorosis via the Fe-dependent Fenton reaction. Conversely, excess Zn triggered the expression of genes encoding Mg/Mn-binding proteins (OsCPS2/4 and OsKSL4/7) required for antimicrobial diterpenoid biosynthesis. Our study reveals the potential role of divalent cations in the shoot, driving the unique responses of rice to each form of Zn stress.
Collapse
Affiliation(s)
- Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-Ling Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - I-Chien Tang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Fen Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Simpson T, Ku KM. Metabolomics and Physiological Approach to Understand Allelopathic Effect of Horseradish Extract on Onion Root and Lettuce Seed as Model Organism. PLANTS 2021; 10:plants10101992. [PMID: 34685801 PMCID: PMC8539871 DOI: 10.3390/plants10101992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
In the present study, we assessed the allelopathic effects of various concentrations (0%, 0.1%, 0.2%, and 0.3%) of horseradish root extract (HRE) on onion root. The average growth of onion root tips during the 0% HRE treatment (deionized water treatment) was 0.9 cm/day, which was the highest among the growth rates obtained with all HRE treatments. Moreover, the average growth during 0.3% HRE treatment was 0.1 cm/day. During cell cycle analysis, the mitotic phase fraction of the control (deionized water treatment) cells was 6.5% of all dividing cells, with this percentage being the highest among the values obtained for all treatment groups. In the control group, all cell cycle phases were identified; however, in the 0.1%, 0.2%, and 0.3% treatment groups, telophase was not identified. The ROS accumulation area of the onion root decreased, as the HRE treatment concentration increased. In the control root, the area of dead tissue was 0%; however, in the 0.1% and 0.2% HRE treatment roots, the ratio was 5% and 50%, respectively. These findings indicate that the allelopathic effect of HRE depends on the concentration of HRE applied to the onion root.
Collapse
Affiliation(s)
- Tyler Simpson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA;
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26505, USA;
- Department of Horticulture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61886, Korea
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea
- Correspondence:
| |
Collapse
|
43
|
Tian L, Li J, Huang C, Zhang D, Xu Y, Yang X, Song J, Wang D, Qiu N, Short DPG, Inderbitzin P, Subbarao KV, Chen J, Dai X. Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2021; 22:1092-1108. [PMID: 34245085 PMCID: PMC8359004 DOI: 10.1111/mpp.13099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 05/14/2023]
Abstract
The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following V. dahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more O2- and less H2 O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of V. dahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in V. dahliae.
Collapse
Affiliation(s)
- Li Tian
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Junjiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Caimin Huang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Xu
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life ScienceChongqing Normal UniversityChongqingChina
| | - Xingyong Yang
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life ScienceChongqing Normal UniversityChongqingChina
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Nianwei Qiu
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Dylan P. G. Short
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Patrik Inderbitzin
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
44
|
Liu D, Caliskan S, Rashidfarokhi B, Oldenhof H, Jung K, Sieme H, Hilfiker A, Wolkers WF. Fourier transform infrared spectroscopy coupled with machine learning classification for identification of oxidative damage in freeze-dried heart valves. Sci Rep 2021; 11:12299. [PMID: 34112893 PMCID: PMC8192956 DOI: 10.1038/s41598-021-91802-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/09/2022] Open
Abstract
Freeze-drying can be used to ensure off-the-shelf availability of decellularized heart valves for cardiovascular surgery. In this study, decellularized porcine aortic heart valves were analyzed by nitroblue tetrazolium (NBT) staining and Fourier transform infrared spectroscopy (FTIR) to identify oxidative damage during freeze-drying and subsequent storage as well as after treatment with H2O2 and FeCl3. NBT staining revealed that sucrose at a concentration of at least 40% (w/v) is needed to prevent oxidative damage during freeze-drying. Dried specimens that were stored at 4 °C depict little to no oxidative damage during storage for up to 2 months. FTIR analysis shows that fresh control, freeze-dried and stored heart valve specimens cannot be distinguished from one another, whereas H2O2- and FeCl3-treated samples could be distinguished in some tissue section. A feed forward artificial neural network model could accurately classify H2O2 and FeCl3 treated samples. However, fresh control, freeze-dried and stored samples could not be distinguished from one another, which implies that these groups are very similar in terms of their biomolecular fingerprints. Taken together, we conclude that sucrose can minimize oxidative damage caused by freeze-drying, and that subsequent dried storage has little effects on the overall biochemical composition of heart valve scaffolds.
Collapse
Affiliation(s)
- Dejia Liu
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Sükrü Caliskan
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany.,Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bita Rashidfarokhi
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs, Hannover Medical School, Hannover, Germany
| | - Willem F Wolkers
- Biostabilization Laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Stadtfelddamm 34, 30625, Hannover, Germany. .,Unit for Reproductive Medicine, Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
45
|
Singh N, Gaddam SR, Singh D, Trivedi PK. Regulation of arsenic stress response by ethylene biosynthesis and signaling in Arabidopsis thaliana. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 185:104408. [PMID: 0 DOI: 10.1016/j.envexpbot.2021.104408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
46
|
Chun HJ, Lim LH, Cheong MS, Baek D, Park MS, Cho HM, Lee SH, Jin BJ, No DH, Cha YJ, Lee YB, Hong JC, Yun DJ, Kim MC. Arabidopsis CCoAOMT1 Plays a Role in Drought Stress Response via ROS- and ABA-Dependent Manners. PLANTS 2021; 10:plants10050831. [PMID: 33919418 PMCID: PMC8143326 DOI: 10.3390/plants10050831] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022]
Abstract
Plants possess adaptive reprogramed modules to prolonged environmental stresses, including adjustment of metabolism and gene expression for physiological and morphological adaptation. CCoAOMT1 encodes a caffeoyl CoA O-methyltransferase and is known to play an important role in adaptation of Arabidopsis plants to prolonged saline stress. In this study, we showed that the CCoAOMT1 gene plays a role in drought stress response. Transcript of CCoAOMT1 was induced by salt, dehydration (drought), and methyl viologen (MV), and loss of function mutants of CCoAOMT1, ccoaomt1-1, and ccoaomt1-2 exhibit hypersensitive phenotypes to drought and MV stresses. The ccoaomt1 mutants accumulated higher level of H2O2 in the leaves and expressed lower levels of drought-responsive genes including RD29B, RD20, RD29A, and ERD1, as well as ABA3 3 and NCED3 encoding ABA biosynthesis enzymes during drought stress compared to wild-type plants. A seed germination assay of ccoaomt1 mutants in the presence of ABA also revealed that CCoAOMT1 functions in ABA response. Our data suggests that CCoAOMT1 plays a positive role in response to drought stress response by regulating H2O2 accumulation and ABA signaling.
Collapse
Affiliation(s)
- Hyun Jin Chun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
| | - Lack Hyeon Lim
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Mi Sun Cheong
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
| | - Dongwon Baek
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
| | - Mi Suk Park
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
| | - Hyun Min Cho
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Su Hyeon Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Byung Jun Jin
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Dong Hyeon No
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Ye Jin Cha
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Yong Bok Lee
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
| | - Jong Chan Hong
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea;
| | - Min Chul Kim
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (H.J.C.); (M.S.C.); (Y.B.L.)
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (L.H.L.); (H.M.C.); (S.H.L.); (B.J.J.); (D.H.N.); (Y.J.C.)
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (M.S.P.); (J.C.H.)
- Correspondence: ; Tel.: +82-55-772-1874
| |
Collapse
|
47
|
Caliskan S, Oldenhof H, Brogna R, Rashidfarokhi B, Sieme H, Wolkers WF. Spectroscopic assessment of oxidative damage in biomolecules and tissues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119003. [PMID: 33035890 DOI: 10.1016/j.saa.2020.119003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Oxidative damage is one of the main causes of cryopreservation injury compromising the use of cryopreserved biospecimens. The aim of this study was to evaluate the use of Fourier transform infrared spectroscopy (FTIR) as a non-invasive method to assess changes in biomolecular composition and structure, associated with oxidative stress in isolated biomolecules, acellular heart valve tissues, and ovarian cortex tissues. FTIR spectra of these specimens subjected to various treatments (H2O2- and Fenton-treatment or elevated temperatures) were vector normalized and selected spectral regions were analyzed by principal component analysis (PCA). Control and damaged biomolecules can easily be separated using PCA score plots. Acellular heart valve tissues that were subjected to different levels of oxidative damage formed separate cluster in PCA score plots. In hydrated ovarian tissue, large variation of the principal components was observed. Drying the ovarian tissues samples resulted in improved cluster separation of treatment groups. However, early signs of oxidative damage under mild stress conditions could not be detected by PCA of FTIR spectra. For the ovarian tissue samples, the standardly used nitro blue tetrazolium chloride (NBT) assay was used to monitor the amount of formazan production, reflecting reactive oxygen species (ROS) production at various temperatures. At 37 °C, formazan staining rapidly increased during the first 30 min, and then slowly reached a saturation level, but also at lower temperatures (i.e. 4 °C) formazan production was observed. In summary, we conclude that ATR-FTIR combined with PCA can be used to study oxidative damage in biomolecules as well as in tissues. In tissues, however, sample heterogeneity makes it difficult to detect early signs of oxidative damage.
Collapse
Affiliation(s)
- Sükrü Caliskan
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Raffaele Brogna
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bita Rashidfarokhi
- Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Unit for Reproductive Medicine, Clinic for Horses, Development, University of Veterinary Medicine Hannover, Hannover, Germany; Biostabilization laboratory, Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
48
|
Pandey M, Paladi RK, Srivastava AK, Suprasanna P. Thiourea and hydrogen peroxide priming improved K + retention and source-sink relationship for mitigating salt stress in rice. Sci Rep 2021; 11:3000. [PMID: 33542250 PMCID: PMC7862675 DOI: 10.1038/s41598-020-80419-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
Plant bioregulators (PBRs) represent low-cost chemicals for boosting plant defense, especially under stress conditions. In the present study, redox based PBRs such as thiourea (TU; a non-physiological thiol-based ROS scavenger) and hydrogen peroxide (H2O2; a prevalent biological ROS) were assessed for their ability to mitigate NaCl stress in rice variety IR 64. Despite their contrasting redox chemistry, TU or H2O2 supplementation under NaCl [NaCl + TU (NT) or NaCl + H2O2 (NH)] generated a reducing redox environment in planta, which improved the plant growth compared with those of NaCl alone treatment. This was concomitant with better K+ retention and upregulated expression of NaCl defense related genes including HAK21, LEA1, TSPO and EN20 in both NT and NH treated seedlings. Under field conditions, foliar applications of TU and H2O2, at vegetative growth, pre-flowering and grain filling stages, increased growth and yield attributes under both control and NaCl stress conditions. Principal component analysis revealed glutathione reductase dependent reduced ROS accumulation in source (flag leaves) and sucrose synthase mediated sucrose catabolism in sink (developing inflorescence), as the key variables associated with NT and NH mediated effects, respectively. In addition, photosystem-II efficiency, K+ retention and source-sink relationship were also improved in TU and H2O2 treated plants. Taken together, our study highlights that reducing redox environment acts as a central regulator of plant's tolerance responses to salt stress. In addition, TU and H2O2 are proposed as potential redox-based PBRs for boosting rice productivity under the realistic field conditions.
Collapse
Affiliation(s)
- Manish Pandey
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Radha Krishna Paladi
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
49
|
Naing AH, Jeong HY, Jung SK, Kim CK. Overexpression of 1-Aminocyclopropane-1-Carboxylic Acid Deaminase ( acdS) Gene in Petunia hybrida Improves Tolerance to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:737490. [PMID: 34795684 PMCID: PMC8594826 DOI: 10.3389/fpls.2021.737490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/12/2021] [Indexed: 05/07/2023]
Abstract
Abiotic stress induces the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in plants, which consequently enhances ethylene production and inhibits plant growth. The bacterial ACC deaminase enzyme encoded by the acdS gene reduces stress-induced ethylene production and improves plant growth in response to stress. In this study, overexpression of acdS in Petunia hybrida ('Mirage Rose') significantly reduced expression of the ethylene biosynthesis gene ACC oxidase 1 (ACO1) and ethylene production relative to those in wild type (WT) under various abiotic stresses (cold, drought, and salt). The higher reduction of stress-induced ethylene in the transgenic plants, which was due to the overexpression of acdS, led to a greater tolerance to the stresses compared to that in the WT plants. The greater stress tolerances were proven based on better plant growth and physiological performance, which were linked to stress tolerance. Moreover, expression analysis of the genes involved in stress tolerance also supported the increased tolerance of transgenics relative to that with the WT. These results suggest the possibility that acdS is overexpressed in ornamental plants, particularly in bedding plants normally growing outside the environment, to overcome the deleterious effect of ethylene on plant growth under different abiotic stresses. The development of stress-tolerant plants will be helpful to advance the floricultural industry.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Hui Yeong Jeong
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- Forest Medicinal Resources Research Center, NIFoS, Yeongju, South Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- *Correspondence: Chang Kil Kim,
| |
Collapse
|
50
|
Mase K, Tsukagoshi H. Reactive Oxygen Species Link Gene Regulatory Networks During Arabidopsis Root Development. FRONTIERS IN PLANT SCIENCE 2021; 12:660274. [PMID: 33986765 PMCID: PMC8110921 DOI: 10.3389/fpls.2021.660274] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 05/22/2023]
Abstract
Plant development under altered nutritional status and environmental conditions and during attack from invaders is highly regulated by plant hormones at the molecular level by various signaling pathways. Previously, reactive oxygen species (ROS) were believed to be harmful as they cause oxidative damage to cells; however, in the last decade, the essential role of ROS as signaling molecules regulating plant growth has been revealed. Plant roots accumulate relatively high levels of ROS, and thus, maintaining ROS homeostasis, which has been shown to regulate the balance between cell proliferation and differentiation at the root tip, is important for proper root growth. However, when the balance is disturbed, plants are unable to respond to the changes in the surrounding conditions and cannot grow and survive. Moreover, ROS control cell expansion and cell differentiation processes such as root hair formation and lateral root development. In these processes, the transcription factor-mediated gene expression network is important downstream of ROS. Although ROS can independently regulate root growth to some extent, a complex crosstalk occurs between ROS and other signaling molecules. Hormone signals are known to regulate root growth, and ROS are thought to merge with these signals. In fact, the crosstalk between ROS and these hormones has been elucidated, and the central transcription factors that act as a hub between these signals have been identified. In addition, ROS are known to act as important signaling factors in plant immune responses; however, how they also regulate plant growth is not clear. Recent studies have strongly indicated that ROS link these two events. In this review, we describe and discuss the role of ROS signaling in root development, with a particular focus on transcriptional regulation. We also summarize the crosstalk with other signals and discuss the importance of ROS as signaling molecules for plant root development.
Collapse
|