1
|
Liberty JT, Lin H, Kucha C, Sun S, Alsalman FB. Innovative approaches to food traceability with DNA barcoding: Beyond traditional labels and certifications. ECOLOGICAL GENETICS AND GENOMICS 2025; 34:100317. [DOI: 10.1016/j.egg.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Intharuksa A, Kuljarusnont S, Sasaki Y, Tungmunnithum D. Flavonoids and Other Polyphenols: Bioactive Molecules from Traditional Medicine Recipes/Medicinal Plants and Their Potential for Phytopharmaceutical and Medical Application. Molecules 2024; 29:5760. [PMID: 39683916 DOI: 10.3390/molecules29235760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Currently, natural bioactive ingredients and/or raw materials are of significant interest to scientists around the world. Flavonoids and other polyphenols are a major group of phytochemicals that have been researched and noted as bioactive molecules. They offer several pharmacological and medical benefits. This current review aims to (1) illustrate their benefits for human health, such as antioxidant, anti-aging, anti-cancer, anti-inflammatory, anti-microbial, cardioprotective, neuroprotective, and UV-protective effects, and also (2) to perform a quality evaluation of traditional medicines for future application. Consequently, keywords were searched on Scopus, Google Scholar, and PubMed so as to search for related publications. Then, those publications were carefully checked in order to find current and non-redundant studies that matched the objective of this review. According to this review, researchers worldwide are very interested in discovering the potential of flavonoids and other polyphenols, used in traditional medicines and taken from medicinal plants, in relation to medical and pharmaceutical applications. Many studies focus on the health benefits of flavonoids and other polyphenols have been tested using in silico, in vitro, and in vivo models. However, few studies have been carried out using clinical trials that have trustworthy subject sizes and are in accordance with clinical practice guidelines. Additionally, interesting research directions and perspectives for future studies are highlighted in this work.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sompop Kuljarusnont
- Department of Obstetrics and Gynecology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Yohei Sasaki
- Division of Pharmaceutical Sciences, Graduate School of Medical Plant Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Duangjai Tungmunnithum
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Le Studium Institute for Advanced Studies, 1 Rue Dupanloup, 45000 Orléans, France
| |
Collapse
|
3
|
Nazar N, Saxena A, Sebastian A, Slater A, Sundaresan V, Sgamma T. Integrating DNA Barcoding Within an Orthogonal Approach for Herbal Product Authentication: A Narrative Review. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39532481 DOI: 10.1002/pca.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Existing methods for morphological, organoleptic, and chemical authentication may not adequately ensure the accurate identification of plant species or guarantee safety. Herbal raw material authentication remains a major challenge in herbal medicine. Over the past decade, DNA barcoding, combined with an orthogonal approach integrating various testing methods for quality assurance, has emerged as a new trend in plant authentication. OBJECTIVE The review evaluates DNA barcoding and common alternative testing in plant-related sectors to enhance quality assurance and accurate authentication. METHOD Studies were selected based on their relevance to the identification, quality assurance, and safety of herbal products. Inclusion criteria were peer-reviewed articles, systematic reviews, and relevant case studies from the last two decades focused on DNA barcoding, identification methods, and their applications. Exclusion criteria involved studies lacking empirical data, those not peer-reviewed, or those unrelated to the main focus. This ensured the inclusion of high-quality, pertinent sources while excluding less relevant studies. RESULTS An orthogonal approach refers to the use of multiple, independent methods that provide complementary information for more accurate plant identification and quality assurance. This reduces false positives or negatives by confirming results through different techniques, combining DNA barcoding with morphological analysis or chemical profiling. It enhances confidence in results, particularly in cases of potential adulteration or misidentification of plant materials. CONCLUSION This study highlights the persistent challenges in assuring the quality, purity, and safety of plant materials. Additionally, it stresses the importance of incorporating DNA-based authentication alongside traditional methods, to enhance plant material identification.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Akanksha Saxena
- Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anu Sebastian
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Velusamy Sundaresan
- Plant Biology and Systematics, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
4
|
Orhan N, Gafner S, Blumenthal M. Estimating the extent of adulteration of the popular herbs black cohosh, echinacea, elder berry, ginkgo, and turmeric - its challenges and limitations. Nat Prod Rep 2024; 41:1604-1621. [PMID: 39108221 DOI: 10.1039/d4np00014e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Covering: up to July 2023Botanical natural medicinal products and dietary supplements are utilized globally for their positive impacts on health and wellness. However, the effectiveness and safety of botanical products can be compromised by unintentional or intentional adulteration. The presence of adulterated botanical ingredients in the global market has been documented in the published literature but a key question, namely what the extent of adulteration is, remains to be answered. This review aims to estimate the prevalence of adulteration in preparations made from black cohosh rhizome, echinacea root or herb, elder berry, ginkgo leaf, and turmeric root/rhizome. According to the information provided in the 78 publications retrieved for this paper, 818 of 2995 samples were reported to be adulterated and/or mislabeled. Ginkgo leaf samples (n = 533) had the highest adulteration rate with 56.7%, followed by black cohosh rhizome (n = 322) samples with 42.2%, echinacea root/herb (n = 200) with 28.5%, elder berry (n = 695) with 17.1%, and turmeric root/rhizome (n = 1247) with 16.5%. Products sold as licensed or registered herbal medicines were found to have a lower risk of adulteration compared to products sold as dietary/food supplements. The data show that the adulteration rate substantially differs from one ingredient to the other. Due to the significant limitations of the available data upon which the estimated extent of adulteration is based, and the rapidly changing botanical dietary supplement market, conclusions from the five herbs examined in this publication cannot be applied to other botanicals traded in the global market. However, the data clearly show that a substantial portion of the botanical dietary supplements do not contain what is claimed on their labels.
Collapse
Affiliation(s)
- Nilüfer Orhan
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| | - Stefan Gafner
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| | - Mark Blumenthal
- American Botanical Council, 6200 Manor Road, 78723, Austin, TX, USA.
| |
Collapse
|
5
|
Srivastava S, Pandey VK, Singh K, Dar AH, Dash KK, Shams R, Mukarram Shaikh A, Kovács B. Advances in detection technology for authentication of vegetable oils: A comprehensive review. Heliyon 2024; 10:e34759. [PMID: 39170539 PMCID: PMC11336277 DOI: 10.1016/j.heliyon.2024.e34759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
Biomarkers are specific indicators that can be used to authenticate vegetable oils by reflecting unique characteristics such as variety or geographical origin. Biomarkers can originate from the primary components of the vegetable oil itself or from contaminants and trace substances linked to processing methods or adulterants. The review highlights the key findings in the identification of novel biomarkers for vegetable oil authentication. Various analytical techniques have proven effective in distinguishing unique biomarkers associated with specific vegetable oil varieties or geographical origins. The use of biomarkers of vegetable oils and associated contaminants or trace substances offers a comprehensive approach to authentication. However, the identification of novel biomarkers holds immense potential for enhancing food safety, preventing fraud, and safeguarding consumer health in the vegetable oil industry. The ongoing research and advancements in biomarker identification represent a promising avenue for addressing authenticity concerns in vegetable oils.
Collapse
Affiliation(s)
- Shivangi Srivastava
- Department of Food Technology, Harcourt Butler Technical University, Nawabganj, Kanpur, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Research & Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, 121004, Haryana, India
| | - Kunal Singh
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road Barabanki, Uttar Pradesh, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal, India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Ayaz Mukarram Shaikh
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Béla Kovács
- Faculty of Agriculture, Food Science and Environmental Management Institute of Food Science, University of Debrecen, Debrecen, 4032, Hungary
| |
Collapse
|
6
|
Ragupathy S, Thirugnanasambandam A, Henry T, Vinayagam V, Sneha R, Newmaster SG. Flower Species Ingredient Verification Using Orthogonal Molecular Methods. Foods 2024; 13:1862. [PMID: 38928803 PMCID: PMC11203286 DOI: 10.3390/foods13121862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Flowers are gaining considerable interest among consumers as ingredients in food, beverages, cosmetics, and natural health products. The supply chain trades in multiple forms of botanicals, including fresh whole flowers, which are easier to identify than dried flowers or flowers processed as powdered or liquid extracts. There is a gap in the scientific methods available for the verification of flower species ingredients traded in the supply chains of multiple markets. The objective of this paper is to develop methods for flower species ingredient verification using two orthogonal methods. More specifically, the objectives of this study employed both (1) DNA-based molecular diagnostic methods and (2) NMR metabolite fingerprint methods in the identification of 23 common flower species ingredients. NMR data analysis reveals considerable information on the variation in metabolites present in different flower species, including color variants within species. This study provides a comprehensive comparison of two orthogonal methods for verifying flower species ingredient supply chains to ensure the highest quality products. By thoroughly analyzing the benefits and limitations of each approach, this research offers valuable insights to support quality assurance and improve consumer confidence.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Thomas Henry
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Varathan Vinayagam
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| | - Ragupathy Sneha
- College of Medicine, American University of Antigua, Jobberwock Beach Road, Coolidge P.O. Box W1451, Antigua;
| | - Steven G. Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.T.); (T.H.); (V.V.); (S.G.N.)
| |
Collapse
|
7
|
Jiang Y, Li X, Zhao WJ, Liu FJ, Yang LL, Li P, Li HJ. Integration of untargeted and pseudotargeted metabolomics reveals specific markers for authentication and adulteration detection of Fritillariae Bulbus using tandem mass spectrometry and chemometrics. J Pharm Biomed Anal 2024; 242:116013. [PMID: 38341927 DOI: 10.1016/j.jpba.2024.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 02/03/2024] [Indexed: 02/13/2024]
Abstract
Authentication and adulteration detection of closely related herbal medicines is a thorny issue in the quality control and market standardization of traditional Chinese medicine. Taking Fritillariae Bulbus (FB) as a case study, we herein proposed a three-step strategy that integrates mass spectrometry-based metabolomics and multivariate statistical analysis to identify specific markers, thereby accurately identifying FBs and determining the adulteration level. First, an ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based untargeted metabolomics method was employed to profile steroid alkaloids in five sorts of FB and screen potential differential markers. Then, the reliability of the screened markers was further verified by the distribution in different FB groups acquired from ultra-high performance liquid chromatography triple quadrupole mass spectrometry-based pseudotargeted metabolomics analysis. As a result, a total of 16 compounds were screened out to be the specific markers, which were successfully applied to distinguish five FBs by using discriminant analysis model. Besides, partial least squares regression models based on specific markers allowed accurate prediction of three sets of adulterated FBs. All the models afforded good linearity and good predictive ability with regression coefficient of prediction (R2p) > 0.9 and root mean square error of prediction (RMSEP) < 0.1. The reliable results of discriminant and quantitative analysis revealed that this proposed strategy could be potentially used to identify specific markers, which contributes to rapid chemical discrimination and adulteration detection of herbal medicines with close genetic relationship.
Collapse
Affiliation(s)
- Yan Jiang
- College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Wen-Jing Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China.
| | - Feng-Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China
| | - Lu-Lu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 211198 Jiangsu, China.
| |
Collapse
|
8
|
Lupia C, Castagna F, Bava R, Naturale MD, Zicarelli L, Marrelli M, Statti G, Tilocca B, Roncada P, Britti D, Palma E. Use of Essential Oils to Counteract the Phenomena of Antimicrobial Resistance in Livestock Species. Antibiotics (Basel) 2024; 13:163. [PMID: 38391549 PMCID: PMC10885947 DOI: 10.3390/antibiotics13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Antimicrobial resistance is an increasingly widespread phenomenon that is of particular concern because of the possible consequences in the years to come. The dynamics leading to the resistance of microbial strains are diverse, but certainly include the incorrect use of veterinary drugs both in terms of dosage and timing of administration. Moreover, the drug is often administered in the absence of a diagnosis. Many active ingredients in pharmaceutical formulations are, therefore, losing their efficacy. In this situation, it is imperative to seek alternative treatment solutions. Essential oils are mixtures of compounds with different pharmacological properties. They have been shown to possess the antibacterial, anti-parasitic, antiviral, and regulatory properties of numerous metabolic processes. The abundance of molecules they contain makes it difficult for treated microbial species to develop pharmacological resistance. Given their natural origin, they are environmentally friendly and show little or no toxicity to higher animals. There are several published studies on the use of essential oils as antimicrobials, but the present literature has not been adequately summarized in a manuscript. This review aims to shed light on the results achieved by the scientific community regarding the use of essential oils to treat the main agents of bacterial infection of veterinary interest in livestock. The Google Scholar, PubMed, SciELO, and SCOPUS databases were used for the search and selection of studies. The manuscript aims to lay the foundations for a new strategy of veterinary drug use that is more environmentally friendly and less prone to the emergence of drug resistance phenomena.
Collapse
Affiliation(s)
- Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- National Ethnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Fabio Castagna
- Mediterranean Ethnobotanical Conservatory, Sersale (CZ), 88054 Catanzaro, Italy
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Diana Naturale
- Ministry of Health, Directorate General for Health Programming, 00144 Rome, Italy
| | - Ludovica Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036 Cosenza, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Paola Roncada
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
9
|
Mück F, Scotti F, Mauvisseau Q, Thorbek BLG, Wangensteen H, de Boer HJ. Three-tiered authentication of herbal traditional Chinese medicine ingredients used in women's health provides progressive qualitative and quantitative insight. Front Pharmacol 2024; 15:1353434. [PMID: 38375033 PMCID: PMC10875096 DOI: 10.3389/fphar.2024.1353434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Traditional Chinese Medicine (TCM) herbal products are increasingly used in Europe, but prevalent authentication methods have significant gaps in detection. In this study, three authentication methods were tested in a tiered approach to improve accuracy on a collection of 51 TCM plant ingredients obtained on the European market. We show the relative performance of conventional barcoding, metabarcoding and standardized chromatographic profiling for TCM ingredients used in one of the most diagnosed disease patterns in women, endometriosis. DNA barcoding using marker ITS2 and chromatographic profiling are methods of choice reported by regulatory authorities and relevant national pharmacopeias. HPTLC was shown to be a valuable authentication tool, combined with metabarcoding, which gives an increased resolution on species diversity, despite dealing with highly processed herbal ingredients. Conventional DNA barcoding as a recommended method was shown to be an insufficient tool for authentication of these samples, while DNA metabarcoding yields an insight into biological contaminants. We conclude that a tiered identification strategy can provide progressive qualitative and quantitative insight in an integrative approach for quality control of processed herbal ingredients.
Collapse
Affiliation(s)
- Felicitas Mück
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Francesca Scotti
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | | | | | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
10
|
Di Nunzio M, Barrot-Feixat C, Gangitano D. Characterization and evaluation of nine Cannabis sativa chloroplast SNP markers for crop type determination and biogeographical origin on European samples. Forensic Sci Int Genet 2024; 68:102971. [PMID: 39090851 DOI: 10.1016/j.fsigen.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 08/04/2024]
Abstract
Cannabis sativa can be classified in two main types, according to psychotropic cannabinoid ∆9-tetrahydrocannabinol (∆9-THC) content: the drug-type and the fiber-type. According to the European Monitoring Center for Drugs and Drug Addiction, most of the European Union countries consider the possession of cannabis, for personal use, a minor offense with possibility of incarceration. Despite of the model of legal supply (i.e., Spanish cannabis clubs, Netherlands coffee shops) or medical use (i.e., Italy), cannabis remains the most used and trafficked illicit plant in the European Union. Differentiating cannabis crops or tracing the biogeographical origin is crucial for law enforcement purposes. Chloroplast DNA (cpDNA) markers may assist to determine biogeographic origin and to differentiate hemp from marijuana. This research aims: to identify and to evaluate nine C. sativa cpDNA polymorphic SNP sites to differentiate crop type and to provide information about its biogeographical origin. Five SNaPshot™ assays for nine chloroplast markers were developed and conducted in marijuana samples seized in Chile, the USA-Mexico border and Spain, and hemp samples grown in Spain and in Italy. The SNapShot™ assays were tested on 122 cannabis samples, which included 16 blind samples, and were able to differentiate marijuana crop type from hemp crop type in all samples. Using phylogenetic analysis, genetic differences were observed between marijuana and hemp samples. Moreover, principal component analysis (PCA) supported the relationship among hemp samples, as well as for USA-Mexico border, Spanish, and Chilean marijuana samples. Genetic differences between groups based on the biogeographical origin and their crop type were observed. Increasing the number of genetic markers, including the most recently studied ones, and expanding the sample database will provide more accurate information about crop differentiation and biogeographical origin.
Collapse
Affiliation(s)
- Michele Di Nunzio
- Forensic Genetics Laboratory - Legal Medicine Unit, Department of Medicine, University of Barcelona, Spain.
| | - Carme Barrot-Feixat
- Forensic Genetics Laboratory - Legal Medicine Unit, Department of Medicine, University of Barcelona, Spain
| | - David Gangitano
- Forensic & Legal Medicine Area, Department of Sociosanitary Sciences, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
11
|
Dao Y, Yu J, Yang M, Han J, Fan C, Pang X. DNA metabarcoding analysis of fungal community on surface of four root herbs. CHINESE HERBAL MEDICINES 2024; 16:143-150. [PMID: 38375056 PMCID: PMC10874771 DOI: 10.1016/j.chmed.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/06/2022] [Accepted: 01/25/2023] [Indexed: 02/21/2024] Open
Abstract
Objective Angelicae Sinensis Radix (ASR, Danggui in Chinese), Cistanches Herba (CH, Roucongrong in Chinese), Ginseng Radix et Rhizoma (PG, Renshen in Chinese), and Panacis Quinquefolii Radix (PQ, Xiyangshen in Chinese), widely used as medicine and dietary supplement around the world, are susceptible to fungal and mycotoxin contamination. In this study, we aim to analyze their fungal community by DNA metabarcoding. Methods A total of 12 root samples were collected from three main production areas in China. The samples were divided into four groups based on herb species, including ASR, CH, PG, and PQ groups. The fungal community on the surface of four root groups was investigated through DNA metabarcoding via targeting the internal transcribed spacer 2 region (ITS2). Results All the 12 samples were detected with fungal contamination. Rhizopus (13.04%-74.03%), Aspergillus (1.76%-23.92%), and Fusarium (0.26%-15.27%) were the predominant genera. Ten important fungi were identified at the species level, including two potential toxigenic fungi (Penicillium citrinum and P. oxalicum) and eight human pathogenic fungi (Alternaria infectoria, Candida sake, Hyphopichia burtonii, Malassezia globosa, M. restricta, Rhizopus arrhizus, Rhodotorula mucilaginosa, and Ochroconis tshawytschae). Fungal community in ASR and CH groups was significantly different from other groups, while fungal community in PG and PQ groups was relatively similar. Conclusion DNA metabarcoding revealed the fungal community in four important root herbs. This study provided an important reference for preventing root herbs against fungal and mycotoxin contamination.
Collapse
Affiliation(s)
- Yujie Dao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingsheng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chune Fan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
12
|
Raclariu-Manolică AC, Socaciu C. In Search of Authenticity Biomarkers in Food Supplements Containing Sea Buckthorn: A Metabolomics Approach. Foods 2023; 12:4493. [PMID: 38137297 PMCID: PMC10742966 DOI: 10.3390/foods12244493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Sea buckthorn (Hippophae rhamnoides L.) (SB) is increasingly consumed worldwide as a food and food supplement. The remarkable richness in biologically active phytochemicals (polyphenols, carotenoids, sterols, vitamins) is responsible for its purported nutritional and health-promoting effects. Despite the considerable interest and high market demand for SB-based supplements, a limited number of studies report on the authentication of such commercially available products. Herein, untargeted metabolomics based on ultra-high-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UHPLC-QTOF-ESI+MS) were able to compare the phytochemical fingerprint of leaves, berries, and various categories of SB-berry herbal supplements (teas, capsules, tablets, liquids). By untargeted metabolomics, a multivariate discrimination analysis and a univariate approach (t-test and ANOVA) showed some putative authentication biomarkers for berries, e.g., xylitol, violaxanthin, tryptophan, quinic acid, quercetin-3-rutinoside. Significant dominant molecules were found for leaves: luteolin-5-glucoside, arginine, isorhamnetin 3-rutinoside, serotonin, and tocopherol. The univariate analysis showed discriminations between the different classes of food supplements using similar algorithms. Finally, eight molecules were selected and considered significant putative authentication biomarkers. Further studies will be focused on quantitative evaluation.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, 610004 Piatra Neamț, Romania;
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj Napoca, 400372 Cluj-Napoca, Romania
- BIODIATECH—Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Mück F, Scotti F, Mauvisseau Q, Raclariu-Manolică AC, Schrøder-Nielsen A, Wangensteen H, de Boer HJ. Complementary authentication of Chinese herbal products to treat endometriosis using DNA metabarcoding and HPTLC shows a high level of variability. Front Pharmacol 2023; 14:1305410. [PMID: 38116075 PMCID: PMC10728824 DOI: 10.3389/fphar.2023.1305410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Traditional Chinese Medicine (TCM) is popular for the treatment of endometriosis, a complex gynecological disease that affects 10% of women globally. The growing market for TCMs has yielded a significant incentive for product adulteration, and although emerging technologies show promise to improve their quality control, many challenges remain. We tested the authenticity of two traditional Chinese herbal formulae used in women's healthcare for the treatment of endometriosis, known as Gui Zhi Fu Ling Wan (FL) and Ge Xia Zhu Yu Tang (GX). Dual-locus DNA metabarcoding analysis coupled with high-performance thin-layer chromatography (HPTLC) were used to authenticate 19 FL and six GX commercial herbal products, as well as three ad hoc prepared artificial mixtures. HPTLC was able to detect most of the expected ingredients via comparative component analysis. DNA metabarcoding was able to detect an unexpected species diversity in the products, including 38 unexpected taxa. Chromatography has a resolution for all species indirectly through the identification of marker compounds for the different species ingredients. Metabarcoding on the other hand yields an overview of species diversity in each sample, but interpretation of the results can be challenging. Detected species might not be present in quantities that matter, and without validated quantification, some detected species can be hard to interpret. Comparative analysis of the two analytical approaches also reveals that DNA for species might be absent or too fragmented to amplify as the relevant chemical marker compounds can be detected but no amplicons are assigned to the same species. Our study emphasizes that integrating DNA metabarcoding with phytochemical analysis brings valuable data for the comprehensive authentication of Traditional Chinese Medicines ensuring their quality and safe use.
Collapse
Affiliation(s)
- Felicitas Mück
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Francesca Scotti
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, University College London, London, United Kingdom
| | | | - Ancuţa Cristina Raclariu-Manolică
- Natural History Museum, University of Oslo, Oslo, Norway
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamț, Romania
| | | | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
14
|
Khamnuan S, Phrutivorapongkul A, Pitchakarn P, Buacheen P, Karinchai J, Chittasupho C, Na Takuathung M, Theansungnoen T, Thongkhao K, Intharuksa A. The Identification and Cytotoxic Evaluation of Nutmeg ( Myristica fragrans Houtt.) and Its Substituents. Foods 2023; 12:4211. [PMID: 38231602 DOI: 10.3390/foods12234211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The aril and seed of nutmeg, Myristica fragrans Houtt. (Myristicaceae), hold significant value in various industries globally. Our preliminary research found two morphological variations: a globose shape and an oval shape. Due to these different characteristics, the safety of consumers is of primary concern. Thus, authentication and comparative pharmacological and toxicity analyses are necessary. In this study, pharmacognostic and advanced phytochemical analyses, DNA barcoding, cytotoxicity, and the anti-nitric oxide production of commercial Thai nutmeg were examined. Via morphologic examinations and TLC fingerprinting, all the sampled aril and seed were categorized into globose and oval-shaped groups. The results of HPLC, GC-MS, and LC-MS/MS experiments revealed distinct differences between these groups. The DNA barcoding of the trnH-psbA region using the BLAST method and neighbor-joining tree analyses confirmed the globose nutmeg as M. fragrans and the oval-shaped variant as M. argentea. A comparison was then carried out between the potential toxicity and anti-inflammatory capabilities of M. fragrans and M. argentea. Cytotoxicity tests on HaCaT, 3T3-L1, Caco-2, HEK293, and RAW264.7 were performed using both methanolic extracts and volatile oil from the arils and seeds of both species. This study concludes that blending or substituting these two species maintains their therapeutic integrity without posing safety concerns.
Collapse
Affiliation(s)
- Suthiwat Khamnuan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Ampai Phrutivorapongkul
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tinnakorn Theansungnoen
- Green Cosmetic Technology Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kannika Thongkhao
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Suthep, Mueang, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Dao Y, Yu J, Yang M, Han J, Fan C, Pang X. DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb. Int J Mol Sci 2023; 24:15081. [PMID: 37894762 PMCID: PMC10606453 DOI: 10.3390/ijms242015081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lonicerae Japonicae Flos (LJF) has been globally applied as an herbal medicine and tea. A number of reports recently revealed fungal and mycotoxin contamination in medicinal herbs. It is essential to analyze the fungal community in LJF to provide an early warning for supervision. In this study, the fungal community in LJF samples was identified through DNA metabarcoding. A total of 18 LJF samples were collected and divided based on the collection areas and processing methods. The results indicated that Ascomycota was the dominant phylum. At the genus level, Rhizopus was the most abundant, followed by Erysiphe and Fusarium. Ten pathogenic fungi were detected among the 41 identified species. Moreover, Rhizopus, Fusarium, and Aspergillus had lower relative abundances in LJF samples under oven drying than under other processing methods. This work is expected to provide comprehensive knowledge of the fungal community in LJF and a theoretical reference for enhanced processing methods in practical manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (Y.D.); (J.Y.); (M.Y.); (J.H.); (C.F.)
| |
Collapse
|
16
|
Shah AP, Travadi T, Sharma S, Pandit R, Joshi C, Joshi M. Comprehensive analysis using DNA metabarcoding, SCAR marker based PCR assay, and HPLC unveils the adulteration in Brahmi herbal products. Mol Biol Rep 2023; 50:7605-7618. [PMID: 37532919 DOI: 10.1007/s11033-023-08653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Brahmi is one of the important nootropic botanicals, widely sold in the market, with the name "Brahmi'' being used to describe both Bacopa monnieri and Centella asiatica species. The Brahmi herbal products market is expanding; hence, economically motivated adulteration is highly prevalent. METHODS AND RESULTS This study aimed to develop DNA-based methods, including SCAR marker-based PCR and metabarcoding, to authenticate Brahmi herbal products and compare these methods with HPLC. These methods have been validated using mock controls (in-house blended formulations). All targeted plant species in mock controls were detected successfully with all three methods, whereas, in market samples, only 22.2%, 55.6%, and 50.0% were found positive for Brahmi by PCR assay, DNA metabarcoding, and HPLC, respectively. Metabarcoding can detect the presence of non-labeled plants together with targeted species, which is an advantage over PCR assay or HPLC. CONCLUSION SCAR marker-based PCR is a rapid and cost-effective method for detecting the presence of B. monnieri and C. asiatica. However, in this study, the success rate of PCR amplification was relatively low because the primers targeted either RAPD or ITS-based SCAR markers. HPLC assay, although an alternative, was unable to detect the presence of other botanicals, just like the SCAR marker-based PCR assay. On the other hand, metabarcoding can be utilized to identify the target plants, even in very small quantities, while also providing simulated identification of other botanicals. This study successfully addressed the need for quality control of Brahmi herbal products and provided the first-time report of DNA metabarcoding for such products.
Collapse
Affiliation(s)
- Abhi P Shah
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Tasnim Travadi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India.
| |
Collapse
|
17
|
Streicher MB, Johnson SD, Willows‐Munro S. Effect of fuchsin fixation of pollen on DNA barcode recovery. Ecol Evol 2023; 13:e10475. [PMID: 37664513 PMCID: PMC10468989 DOI: 10.1002/ece3.10475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 09/05/2023] Open
Abstract
Pollen grains attached to insects are a valuable source of ecological information which can be used to reconstruct visitation networks. Morphological pollen identification relies on light microscopy with pollen usually stained and mounted in fuchsin jelly, which is also used to remove pollen from the bodies of insects. Pollen embedded in fuchsin jelly could potentially be used for DNA barcoding and metabarcoding (large-scale taxonomic identification of complex mixed samples) and thus provide additional information for pollination networks. In this study, we determine whether fuchsin-embedded pollen can be used for downstream molecular applications. We evaluate the quality of plant barcode (ITS) sequences amplified from DNA extracted from both fresh (untreated) pollen, and pollen which had been embedded in fuchsin jelly. We show that the addition of fuchsin to DNA extraction does not impact DNA barcode sequence quality during short-term storage. DNA extractions from both untreated and fuchsin-treated pollen produced reliable barcode sequences of high quality. Our findings suggest that pollen which has been collected, stained, and embedded in fuchsin jelly for preliminary microscopy work can be used within several days for downstream genetic analysis, though the quality of DNA from pollen stored in fuchsin jelly for extended periods is yet to be established.
Collapse
Affiliation(s)
- Melanie B. Streicher
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| | - Steven D. Johnson
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| | | |
Collapse
|
18
|
Raclariu-Manolică AC, Mauvisseau Q, Paranaiba R, De Boer HJ, Socaciu C. Authentication of milk thistle commercial products using UHPLC-QTOF-ESI + MS metabolomics and DNA metabarcoding. BMC Complement Med Ther 2023; 23:257. [PMID: 37480124 PMCID: PMC10360273 DOI: 10.1186/s12906-023-04091-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Milk thistle is one of the most popular hepatoprotectants, and is often sold in combination with other ingredients. Botanical supplements are known to be vulnerable to contamination and adulteration, and emerging technologies show promise to improve their quality control. METHODS Untargeted and semi-targeted metabolomics based on UHPLC-QTOF-ESI+MS techniques, UV spectrometry, and DNA metabarcoding using Illumina MiSeq were used to authenticate eighteen milk thistle botanical formulations (teas, capsules, tablets, emulsion). RESULTS Untargeted metabolomics separated 217 molecules and by multivariate analysis the discrimination between the different preparations was established. The semi-targeted metabolomics focused on 63 phytochemicals, mainly silymarin flavonolignans and flavonoids, that may be considered as putative biomarkers of authenticity. All formulations contained molecules from silymarin complexes at different levels. The quantitative evaluation of silybins was done using in parallel UV spectrometry and UHPLC-QTOF-ESI+MS and their correlations were compared. DNA metabarcoding detected milk thistle in eleven out of sixteen retained preparations, whereas two others had incomplete evidence of milk thistle despite metabolomics validating specific metabolites, e.g., silymarin complex, identified and quantified in all samples. Meanwhile, the DNA metabarcoding provided insights into the total species composition allowing the interpretation of the results in a broad context. CONCLUSION Our study emphasizes that combining spectroscopic, chromatographic, and genetic techniques bring complementary information to guarantee the quality of the botanical formulations.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Alexandru cel Bun Street, 6, Piatra Neamț, 610004, Romania.
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, 0318, Norway.
| | - Quentin Mauvisseau
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, 0318, Norway
| | - Renato Paranaiba
- Natural Products Laboratory, School of Health Sciences, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 70910-900, 70910-900, Brazil
- DNA Laboratory, National Institute of Criminalistics, Brazilian Federal Police, SAIS Quadra 7, Lote 23, Brasília, DF, 70610-200, Brazil
| | - Hugo J De Boer
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, 0318, Norway
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Mănăştur Street, nr. 3-5, Cluj Napoca, 400372, Romania
- BIODIATECH- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, Trifoiului Street 12G, Cluj-Napoca, 400478, Romania
| |
Collapse
|
19
|
Gorini T, Mezzasalma V, Deligia M, De Mattia F, Campone L, Labra M, Frigerio J. Check Your Shopping Cart: DNA Barcoding and Mini-Barcoding for Food Authentication. Foods 2023; 12:2392. [PMID: 37372604 DOI: 10.3390/foods12122392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The molecular approach of DNA barcoding for the characterization and traceability of food products has come into common use in many European countries. However, it is important to address and solve technical and scientific issues such as the efficiency of the barcode sequences and DNA extraction methods to be able to analyze all the products that the food sector offers. The goal of this study is to collect the most defrauded and common food products and identify better workflows for species identification. A total of 212 specimens were collected in collaboration with 38 companies belonging to 5 different fields: seafood, botanicals, agrifood, spices, and probiotics. For all the typologies of specimens, the most suitable workflow was defined, and three species-specific primer pairs for fish were also designed. Results showed that 21.2% of the analyzed products were defrauded. A total of 88.2% of specimens were correctly identified by DNA barcoding analysis. Botanicals (28.8%) have the highest number of non-conformances, followed by spices (28.5%), agrifood (23.5%), seafood (11.4%), and probiotics (7.7%). DNA barcoding and mini-barcoding are confirmed as fast and reliable methods for ensuring quality and safety in the food field.
Collapse
Affiliation(s)
- Tommaso Gorini
- FEM2-Ambiente, Piazza della Scienza 2, 20126 Milano, Italy
| | | | - Marta Deligia
- Department of Scienze Agrarie, Forestali e Alimentari, University of Turin, Via Verdi 8, 10124 Torino, Italy
| | | | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Jessica Frigerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
20
|
Travadi T, Shah AP, Pandit R, Sharma S, Joshi C, Joshi M. A combined approach of DNA metabarcoding collectively enhances the detection efficiency of medicinal plants in single and polyherbal formulations. FRONTIERS IN PLANT SCIENCE 2023; 14:1169984. [PMID: 37255553 PMCID: PMC10225634 DOI: 10.3389/fpls.2023.1169984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Introduction Empirical research has refined traditional herbal medicinal systems. The traditional market is expanding globally, but inadequate regulatory guidelines, taxonomic knowledge, and resources are causing herbal product adulteration. With the widespread adoption of barcoding and next-generation sequencing, metabarcoding is emerging as a potential tool for detecting labeled and unlabeled plant species in herbal products. Methods This study validated newly designed rbcL and ITS2 metabarcode primers for metabarcoding using in-house mock controls of medicinal plant gDNA pools and biomass pools. The applicability of the multi-barcode sequencing approach was evaluated on 17 single drugs and 15 polyherbal formulations procured from the Indian market. Results The rbcL metabarcode demonstrated 86.7% and 71.7% detection efficiencies in gDNA plant pools and biomass mock controls, respectively, while the ITS2 metabarcode demonstrated 82.2% and 69.4%. In the gDNA plant pool and biomass pool mock controls, the cumulative detection efficiency increased by 100% and 90%, respectively. A 79% cumulative detection efficiency of both metabarcodes was observed in single drugs, while 76.3% was observed in polyherbal formulations. An average fidelity of 83.6% was observed for targeted plant species present within mock controls and in herbal formulations. Discussion In the present study, we achieved increasing cumulative detection efficiency by combining the high universality of the rbcL locus with the high-resolution power of the ITS2 locus in medicinal plants, which shows applicability of multilocus strategies in metabarcoding as a potential tool for the Pharmacovigilance of labeled and unlabeled plant species in herbal formulations.
Collapse
|
21
|
Raclariu-Manolică AC, Mauvisseau Q, de Boer HJ. Horizon scan of DNA-based methods for quality control and monitoring of herbal preparations. Front Pharmacol 2023; 14:1179099. [PMID: 37214460 PMCID: PMC10193163 DOI: 10.3389/fphar.2023.1179099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Herbal medicines and preparations are widely used in healthcare systems globally, but concerns remain about their quality and safety. New herbal products are constantly being introduced to the market under varying regulatory frameworks, with no global consensus on their definition or characterization. These biologically active mixtures are sold through complex globalized value chains, which create concerns around contamination and profit-driven adulteration. Industry, academia, and regulatory bodies must collaborate to develop innovative strategies for the identification and authentication of botanicals and their preparations to ensure quality control. High-throughput sequencing (HTS) has significantly improved our understanding of the total species diversity within DNA mixtures. The standard concept of DNA barcoding has evolved over the last two decades to encompass genomic data more broadly. Recent research in DNA metabarcoding has focused on developing methods for quantifying herbal product ingredients, yielding meaningful results in a regulatory framework. Techniques, such as loop-mediated isothermal amplification (LAMP), DNA barcode-based Recombinase Polymerase Amplification (BAR-RPA), DNA barcoding coupled with High-Resolution Melting (Bar-HRM), and microfluidics-based methods, offer more affordable tests for the detection of target species. While target capture sequencing and genome skimming are considerably increasing the species identification resolution in challenging plant clades, ddPCR enables the quantification of DNA in samples and could be used to detect intended and unwanted ingredients in herbal medicines. Here, we explore the latest advances in emerging DNA-based technologies and the opportunities they provide as taxa detection tools for evaluating the safety and quality of dietary supplements and herbal medicines.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamț, Romania
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
22
|
Chen S, Yin X, Han J, Sun W, Yao H, Song J, Li X. DNA barcoding in herbal medicine: Retrospective and prospective. J Pharm Anal 2023; 13:431-441. [PMID: 37305789 PMCID: PMC10257146 DOI: 10.1016/j.jpha.2023.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 03/25/2023] [Indexed: 06/13/2023] Open
Abstract
DNA barcoding has been widely used for herb identification in recent decades, enabling safety and innovation in the field of herbal medicine. In this article, we summarize recent progress in DNA barcoding for herbal medicine to provide ideas for the further development and application of this technology. Most importantly, the standard DNA barcode has been extended in two ways. First, while conventional DNA barcodes have been widely promoted for their versatility in the identification of fresh or well-preserved samples, super-barcodes based on plastid genomes have rapidly developed and have shown advantages in species identification at low taxonomic levels. Second, mini-barcodes are attractive because they perform better in cases of degraded DNA from herbal materials. In addition, some molecular techniques, such as high-throughput sequencing and isothermal amplification, are combined with DNA barcodes for species identification, which has expanded the applications of herb identification based on DNA barcoding and brought about the post-DNA-barcoding era. Furthermore, standard and high-species coverage DNA barcode reference libraries have been constructed to provide reference sequences for species identification, which increases the accuracy and credibility of species discrimination based on DNA barcodes. In summary, DNA barcoding should play a key role in the quality control of traditional herbal medicine and in the international herb trade.
Collapse
Affiliation(s)
- Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xianmei Yin
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianping Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Xiwen Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
23
|
Yao C, Wang Y, Qu H, Li J, Hou J, Chen X, Zhang J, Wei W, Bi Q, Guo DA. Comparative identification of phytoecdysteroids in Achyranthes bidentata Blume and its three analogous species and application in differentiation between processing products from different species. J Pharm Biomed Anal 2023; 227:115187. [PMID: 36796274 DOI: 10.1016/j.jpba.2022.115187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The differentiation of raw herbal products from similar species have been achieved by plant metabolomics. However, the distinguishment on various processed products with improved activities and wide clinical utilization from similar species is still tricky due to obscure composition variations during processing. In this study, a comprehensive analysis of phytoecdysteroids in Achyranthes bidentata Blume (AB) and its three analogous species, which were all called Niuxi in Chinese, was conducted on UPLC-HRMS by integrating dynamic exclusion acquisition with data post-processing of targeted multilateral mass defect filter. Two most frequently used species, AB and Cyathula officinalis Kuan (CO) were systematically compared with plant metabolomics methods. And the differential components from the raw materials were evaluated on the ability of distinguishing processed products. The substitution of hydroxyl groups on C-21, C-20, C-22 and C-25 were determined by characteristic mass differences, leading to systematical characterization of 281 phytoecdysteroids. In plant metabolomics studies of raw AB and CO, 16 potential markers were filtered by VIP value > 1, and displayed satisfactory differentiation on the processed AB and CO. The results facilitated the quality control of the four species, especially the processed products of AB and CO, also provided a reference method for the quality control of other processed products.
Collapse
Affiliation(s)
- Changliang Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yingying Wang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Qu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiayuan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianru Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Xuebing Chen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenlong Wei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qirui Bi
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
24
|
Raclariu-Manolică AC, Socaciu C. Detecting and Profiling of Milk Thistle Metabolites in Food Supplements: A Safety-Oriented Approach by Advanced Analytics. Metabolites 2023; 13:440. [PMID: 36984880 PMCID: PMC10052194 DOI: 10.3390/metabo13030440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Milk thistle (Silybum marianum (L.) Gaertn.) is among the top-selling botanicals used as a supportive treatment for liver diseases. Silymarin, a mixture of unique flavonolignan metabolites, is the main bioactive component of milk thistle. The biological activities of silymarin have been well described in the literature, and its use is considered safe and well-tolerated in appropriate doses. However, commercial preparations do not always contain the recommended concentrations of silymarin, failing to provide the expected therapeutic effect. While the poor quality of raw material may explain the low concentrations of silymarin, its deliberate removal is suspected to be an adulteration. Toxic contaminants and foreign matters were also detected in milk thistle preparations, raising serious health concerns. Standard methods for determination of silymarin components include thin-layer chromatography (TLC), high-performance thin-layer chromatography (HPTLC), and high-performance liquid chromatography (HPLC) with various detectors, but nuclear magnetic resonance (NMR) and ultra-high-performance liquid chromatography (UHPLC) have also been applied. This review surveys the extraction techniques of main milk thistle metabolites and the quality, efficacy, and safety of the derived food supplements. Advanced analytical authentication approaches are discussed with a focus on DNA barcoding and metabarcoding to complement orthogonal chemical characterization and fingerprinting of herbal products.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, 610004 Piatra Neamț, Romania
| | - Carmen Socaciu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- BIODIATECH—Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| |
Collapse
|
25
|
Kantak M, Batra P, Shende P. Integration of DNA barcoding and nanotechnology in drug delivery. Int J Biol Macromol 2023; 230:123262. [PMID: 36646350 DOI: 10.1016/j.ijbiomac.2023.123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
In recent years' development in nanotechnology utilization of DNA barcodes with potential benefit of nanoparticulate system is a hallmark for novel advancement in healthcare, biomedical and research sector. Interplay of biological barcoding with nanodimensional system encompasses innovative technologies to offer unique advantages of ultra-sensitivity, error-free, accuracy with minimal label reagents, and less time consumption in comparison to conventional techniques like ELISA, PCR, culture media, electrophoresis. DNA barcoding systems used as universal novel tool for identification and multiplex structural detection of proteins, DNAs, toxins, allergens, and nucleic acids of humans, viruses, animals, bacteria, plants as well as personalized treatment in ovarian cancer, AIDS-related Kaposi sarcoma, breast cancer and cardiovascular diseases. Barcoding tools offer substantial attention in drug delivery, in-vivo screening, gene transport for theranostics, bioimaging, and nano-biosensors applications. This review article outlines the recent advances in nano-mediated DNA barcodes to explore various applications in detection of cancer markers, tumor cells, pathogens, allergens, as theranostics, biological sensors, and plant authentication. Furthermore, it summarizes the diverse newer technologies such as bio-barcode amplification (BBA), Profiling Relative Inhibition Simultaneously in Mixtures (PRISM) and CRISPR-Cas9 gene knockout and their applications as sensors for detections of antigens, allergens, and other specimens.
Collapse
Affiliation(s)
- Maithili Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Priyanka Batra
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
26
|
Osman A, Chittiboyina AG, Avula B, Ali Z, Adams SJ, Khan IA. Quality Consistency of Herbal Products: Chemical Evaluation. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:163-219. [PMID: 37392312 DOI: 10.1007/978-3-031-26768-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The widespread utility of herbal products has been rising considerably worldwide, including both developed and developing countries, leading to the rapid growth of their availability in the United States and globally. This substantial increase in consumption of herbal products has witnessed the emergence of adverse effects upon oral administration of certain of these products, and thus has raised safety concerns. The adverse effects caused by the consumption of certain botanical medicines occur primarily as a result of the poor quality of plant raw materials or the finished products, which inherently may affect safety and/or efficacy. The poor quality of some herbal products can be attributed to a lack of proper quality assurance and quality control. A high demand for herbal products that surpasses production, combined with a desire for maximizing profits, along with a lack of rigorous quality control within some manufacturing facilities have led to the emergence of quality inconsistencies. The underlying causes for this involve the misidentification of plant species, or their substitution, adulteration, or contamination with harmful ingredients. Analytical assessments have revealed there to be frequent and significant compositional variations between marketed herbal products. The inconsistency of the quality of herbal products can be ascribed essentially to the inconsistency of the botanical raw material quality used to manufacture the products. Thus, the quality assurance and the quality control of the botanical raw materials is may contribute significantly to improving the quality and consistency of the quality of the end products. The current chapter focuses on the chemical evaluation of quality and consistency of herbal products, including botanical dietary supplements. Different techniques, instruments, applications, and methods used in identifying, quantifying, and generating chemical fingerprints and chemical profiles of the ingredients of the herbal products will be described. The strengths and weaknesses of the various techniques available will be addressed. Limitations of the other approaches including morphological or microscopic analysis and DNA-based analysis will be presented.
Collapse
Affiliation(s)
- Ahmed Osman
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA.
| | - Amar G Chittiboyina
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Zulfiqar Ali
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Sebastian J Adams
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
27
|
Shah AP, Travadi T, Sharma S, Pandit R, Joshi C, Joshi M. Digital PCR: A Tool to Authenticate Herbal Products and Spices. Methods Mol Biol 2023; 2967:17-30. [PMID: 37608099 DOI: 10.1007/978-1-0716-3358-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Authentication of herbal products and spices is experiencing a resurgence using DNA-based molecular tools, mainly species-specific assays and DNA barcoding. However, poor DNA quality and quantity are the major demerits of conventional PCR and real-time quantitative PCR (qPCR), as herbal products and spices are highly enriched in secondary metabolites such as polyphenolic compounds. The third-generation digital PCR (dPCR) technology is a highly sensitive, accurate, and reliable method to detect target DNA molecules as it is less affected by PCR inhibiting secondary metabolites due to nanopartitions. Therefore, it can be certainly used for the detection of adulteration in herbal formulations. In dPCR, extracted DNA is subjected to get amplification in nanopartitions using target gene primers, the EvaGreen master mix, or fluorescently labeled targeted gene-specific probes. Here, we describe the detection of Carica papaya (CP) adulteration in Piper nigrum (PN) products using species-specific primers. We observed an increase in fluorescence signal as the concentration of target DNA increased in PN-CP blended formulations (mock controls). Using species-specific primers, we successfully demonstrated the use of dPCR in the authentication of medicinal botanicals.
Collapse
Affiliation(s)
- Abhi P Shah
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Tasnim Travadi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India.
| |
Collapse
|
28
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
29
|
Zhou D, Mehmood F, Lin P, Cheng T, Wang H, Shi S, Zhang J, Meng J, Zheng K, Poczai P. Characterization of the Evolutionary Pressure on Anisodus tanguticus Maxim. with Complete Chloroplast Genome Sequence. Genes (Basel) 2022; 13:2125. [PMID: 36421800 PMCID: PMC9690199 DOI: 10.3390/genes13112125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 10/15/2023] Open
Abstract
Anisodus tanguticus Maxim. (Solanaceae), a traditional endangered Tibetan herb, is endemic to the Qinghai-Tibet Plateau. Here, we report the de novo assembled chloroplast (cp) genome sequences of A. tanguticus (155,765 bp). The cp contains a pair of inverted repeated (IRa and IRb) regions of 25,881 bp that are separated by a large single copy (LSC) region (86,516 bp) and a small single copy SSC (17,487 bp) region. A total of 132 functional genes were annotated in the cp genome, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Moreover, 199 simple sequence repeats (SSR) and 65 repeat structures were detected. Comparative plastome analyses revealed a conserved gene order and high similarity of protein-coding sequences. The A. tanguticus cp genome exhibits contraction and expansion, which differs from Przewalskia tangutica and other related Solanaceae species. We identified 30 highly polymorphic regions, mostly belonging to intergenic spacer regions (IGS), which may be suitable for the development of robust and cost-effective markers for inferring the phylogeny of the genus Anisodus and family Solanaceae. Analysis of the Ka/Ks ratios of the Hyoscyameae tribe revealed significant positive selection exerted on the cemA, rpoC2, and clpP genes, which suggests that protein metabolism may be an important strategy for A. tanguticus and other species in Hyoscyameae in adapting to the adverse environment on the Qinghai-Tibetan Plateau. Phylogenetic analysis revealed that A. tanguticus clustered closer with Hyoscyamus niger than P. tangutica. Our results provide reliable genetic information for future exploration of the taxonomy and phylogenetic evolution of the Hyoscyameae tribe and related species.
Collapse
Affiliation(s)
- Dangwei Zhou
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Department of Biochemistry, Faculty of Sciences, University of Sialkot, Daska Road, Punjab 51040, Pakistan
| | - Pengcheng Lin
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Tingfeng Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Huan Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Shenbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jinkui Zhang
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Jing Meng
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Kun Zheng
- The College of Pharmacy, Qinghai Nationalities University, Xining 810007, China
| | - Péter Poczai
- Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
30
|
Ichim MC, Scotti F, Booker A. Quality evaluation of commercial herbal products using chemical methods. Crit Rev Food Sci Nutr 2022; 64:4219-4239. [PMID: 36315039 DOI: 10.1080/10408398.2022.2140120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Herbal products comprise a wide spectrum of locally, nationally or internationally commercialized commodities. As these products have an increasingly important position in healthcare systems worldwide, a detailed product quality assessment is of crucial importance. For the quality evaluation of commercial herbal products, a wide range of methods were used, from simpler, quicker, and cost-effective HPTLC, to hyphenated methods with MS or NMR, where more precise quantification or specific structural information is required. Additionally, most of the methods have been coupled with chemometric tools, such as PCA, or PDA, for the multivariate analysis of the high amount of data generated by chromatograms, electropherograms or spectra. The chemical methods have revealed the widespread presence of low or variable quality herbal products in the marketplace. The majority of analytical investigations present major, qualitative and quantitative, inter-product variations of their chemical composition, ranging from missing ingredients, to strikingly and unnaturally high concentrations of some compounds. Moreover, the inter-batch quality variations were frequently reported, as well as the presence of some undesirable substances. The chemical analysis of herbal products is a vital component to raise the overall awareness of quality in the herbal market and generate a quality driven approach.
Collapse
Affiliation(s)
- Mihael Cristin Ichim
- "Stejarul" Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamt, Romania
| | - Francesca Scotti
- Pharmacognosy and Phytotherapy Group, Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Anthony Booker
- Research Centre for Optimal Health, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, UK
| |
Collapse
|
31
|
Mahima K, Sunil Kumar KN, Rakhesh KV, Rajeswaran PS, Sharma A, Sathishkumar R. Advancements and future prospective of DNA barcodes in the herbal drug industry. Front Pharmacol 2022; 13:947512. [PMID: 36339543 PMCID: PMC9635000 DOI: 10.3389/fphar.2022.947512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/10/2022] [Indexed: 08/04/2023] Open
Abstract
Ethnopharmacological relevance: The past couple of decades have witnessed the global resurgence of medicinal plants in the field of herbal-based health care. Increased consumption of medicinal plants and their derivative products is the major cause of the adulteration issues in herbal industries. As a result, the quality of herbal products is affected by spurious and unauthorized raw materials. Recent development in molecular plant identification using DNA barcodes has become a robust methodology to identify and authenticate the adulterants in herbal samples. Hence, rapid and accurate identification of medicinal plants is the key to success for the herbal industry. Aim of the study: This paper provides a comprehensive review of the application of DNA barcoding and advanced technologies that have emerged over the past 10 years related to medicinal plant identification and authentication and the future prospects of this technology. Materials and methods: Information on DNA barcodes was compiled from scientific databases (Google Scholar, Web of Science, SciFinder and PubMed). Additional information was obtained from books, Ph.D. thesis and MSc. Dissertations. Results: Working out an appropriate DNA barcode for plants is challenging; the single locus-based DNA barcodes (rbcL, ITS, ITS2, matK, rpoB, rpoC, trnH-psbA) to multi-locus DNA barcodes have become the successful species-level identification among herbal plants. Additionally, multi-loci have become efficient in the authentication of herbal products. Emerging advances in DNA barcoding and related technologies such as next-generation sequencing, high-resolution melting curve analysis, meta barcodes and mini barcodes have paved the way for successful herbal plant/samples identification. Conclusion: DNA barcoding needs to be employed together with other techniques to check and rationally and effectively quality control the herbal drugs. It is suggested that DNA barcoding techniques combined with metabolomics, transcriptomics, and proteomics could authenticate the herbal products. The invention of simple, cost-effective and improved DNA barcoding techniques to identify herbal drugs and their associated products of medicinal value in a fool-proof manner will be the future thrust of Pharmacopoeial monograph development for herbal drugs.
Collapse
Affiliation(s)
- Karthikeyan Mahima
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
- Department of Pharmacognosy, Siddha Central Research Institute, Chennai, Tamil Nadu, India
| | | | | | | | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, Santiago de Queretaro, Queretaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
32
|
Molecular Characterization of Wild and Cultivated Strawberry (Fragaria × ananassa) through DNA Barcode Markers. Genet Res (Camb) 2022; 2022:9249561. [PMID: 36299683 PMCID: PMC9578897 DOI: 10.1155/2022/9249561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background DNA barcoding is a useful technique for the identification, conservation, and diversity estimation at the species level in plants. The current research work was carried out to characterize selected Fragaria species from northern Pakistan using DNA barcode markers. Methodology. Initially, the efficacy of eight DNA barcode markers was analyzed based on the amplification and sequencing of the genome of selected Fragaria species. The resultant sequences were analyzed using BLAST, MEGA 7.0, and Bio Edit software. The phylogenetic tree was constructed by using Fragaria current species sequences and reference sequences through the neighbor-joining method or maximum likelihood method. Results Among eight DNA barcode markers, only two (ITS2 and rbclC) were amplified, and sequences were obtained. ITS2 sequence was BLAST in NCBI for related reference species which ranged from 89.79% to 90.05% along with Fragaria vesca (AF163517.1) which have 99.05% identity. Similarly, the rbclC sequence of Fragaria species was ranged from 96% to 99.58% along with Fragaria × ananassa (KY358226.1) which had 99.58% identity. Conclusion It is recommended that DNA barcode markers are a useful tool to identify the genetic diversity of a species. Moreover, this study could be helpful for the identification of the Fragaria species cultivated in other regions of the world.
Collapse
|
33
|
Das S, Thakur S, Korenjak M, Sidorenko VS, Chung FFL, Zavadil J. Aristolochic acid-associated cancers: a public health risk in need of global action. Nat Rev Cancer 2022; 22:576-591. [PMID: 35854147 DOI: 10.1038/s41568-022-00494-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
Aristolochic acids (AAs) are a group of naturally occurring compounds present in many plant species of the Aristolochiaceae family. Exposure to AA is a significant risk factor for severe nephropathy, and urological and hepatobiliary cancers (among others) that are often recurrent and characterized by the prominent mutational fingerprint of AA. However, herbal medicinal products that contain AA continue to be manufactured and marketed worldwide with inadequate regulation, and possible environmental exposure routes receive little attention. As the trade of food and dietary supplements becomes increasingly globalized, we propose that further inaction on curtailing AA exposure will have far-reaching negative effects on the disease trends of AA-associated cancers. Our Review aims to systematically present the historical and current evidence for the mutagenicity and carcinogenicity of AA, and the effect of removing sources of AA exposure on cancer incidence trends. We discuss the persisting challenges of assessing the scale of AA-related carcinogenicity, and the obstacles that must be overcome in curbing AA exposure and preventing associated cancers. Overall, this Review aims to strengthen the case for the implementation of prevention measures against AA's multifaceted, detrimental and potentially fully preventable effects on human cancer development.
Collapse
Affiliation(s)
- Samrat Das
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer WHO, Lyon, France.
| |
Collapse
|
34
|
Zhu S, Liu Q, Qiu S, Dai J, Gao X. DNA barcoding: an efficient technology to authenticate plant species of traditional Chinese medicine and recent advances. Chin Med 2022; 17:112. [PMID: 36171596 PMCID: PMC9514984 DOI: 10.1186/s13020-022-00655-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) plays an important role in the global traditional health systems. However, adulterated and counterfeit TCM is on the rise. DNA barcoding is an effective, rapid, and accurate technique for identifying plant species. In this study, we collected manuscripts on DNA barcoding published in the last decade and summarized the use of this technique in identifying 50 common Chinese herbs listed in the Chinese pharmacopoeia. Based on the dataset of the major seven DNA barcodes of plants in the NCBI database, the strengths and limitations of the barcodes and their derivative barcoding technology, including single-locus barcode, multi-locus barcoding, super-barcoding, meta-barcoding, and mini-barcoding, were illustrated. In addition, the advances in DNA barcoding, particularly identifying plant species for TCM using machine learning technology, are also reviewed. Finally, the selection process of an ideal DNA barcoding technique for accurate identification of a given TCM plant species was also outlined.
Collapse
Affiliation(s)
- Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qiaozhen Liu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Simin Qiu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
35
|
Mottola A, Piredda R, Catanese G, Giorelli F, Cagnazzo G, Ciccarese G, Dambrosio A, Quaglia NC, Di Pinto A. DNA metabarcoding for identification of species used in fish burgers. Ital J Food Saf 2022; 11:10412. [PMID: 36120526 PMCID: PMC9472284 DOI: 10.4081/ijfs.2022.10412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 01/04/2023] Open
Abstract
The absence of morphological identification characters, together with the complexity of the fish supply chain make processed seafood vulnerable to cases of species substitution. Therefore, the authentication and the traceability of such products play a strategic role in ensuring quality and safety. The aim of the present study was to detect species used in the production of multi-species fish burgers and to evaluate mislabelling rates, using a DNA metabarcoding approach by sequencing a fragment of the 16S rRNA mitochondrial gene. The study highlighted the presence of 16 marine and 2 mammalian taxa with an overall mislabelling rate of 80%, including cases of species substitution, the undeclared presence of molluscs and of taxa whose use is not permitted by current Italian legislation. The presence of swine DNA as well as the inclusion of undeclared taxa potentially causing allergies raise concerns regarding consumer safety and protection regarding ethical or religious issues. Overall, the study shows that the application of DNA metabarcoding is a promising approach for successfully enforcing traceability systems targeting multi-species processed food and for supporting control activities, as a guarantee of an innovative food safety management system.
Collapse
|
36
|
Willocx M, Van der Beeten I, Asselman P, Delgat L, Baert W, Janssens SB, Leliaert F, Picron JF, Vanhee C. Sorting out the plants responsible for a contamination with pyrrolizidine alkaloids in spice seeds by means of LC-MS/MS and DNA barcoding: Proof of principle with cumin and anise spice seeds. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100070. [PMID: 35415703 PMCID: PMC8991971 DOI: 10.1016/j.fochms.2021.100070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Identification of contaminating plants in seed spice with DNA barcoding. The obtained data concurs the previously obtained results with DNA metabarcoding. Heliotropium sp. is the predominant source of phytotoxic PA/PANOs in those samples. The presence of only 2 Heliotropium seeds/jar can render a sample non-compliant. The benefit combining chemical and molecular approach to check for phytotoxins.
High value commodities such as spices suffer from occasional contaminations of both chemical and biological origin. Consequently, quality control and safety monitoring has become a pressing issue for the spice industry. Two recent independent studies showed that at least one third of the analyzed cumin and green anise spice seeds samples surpassed the by the European Union recently established threshold value for toxic pyrrolizidine alkaloids (PAs) and their corresponding N-oxides (PANOs). These heterocyclic secondary plant metabolites are produced by a large number of different plant families. In those spice seeds, it was found by means of DNA metabarcoding, that predominant contamination was due to the presence of herbal material from the Heliotropium genus (Boraginaceae). Unfortunately, the use of this specific type of DNA-based identification remains controversial for the majority of the official instances and preference is still given to the use of more tangible classical approaches, including microscopy and chemical analysis. However, these methodologies often suffer from inherent drawbacks. Here we demonstrate that at least for spice seeds, a combinatory approach of microscopy, chemical analysis and classical DNA barcoding of the isolated contaminants using the matK and trnH-psbA loci, provides qualitative and quantitative information on the amount of plant material responsible for the contaminations and the extent of the contamination. The generated data also demonstrates that the presence of a very limited number of Heliotropium sp. seeds in a standard commercially available canister is sufficient to surpass the allowed threshold value, illustrating once more the importance of weed control.
Collapse
|
37
|
Travadi T, Sharma S, Pandit R, Nakrani M, Joshi C, Joshi M. A duplex PCR assay for authentication of Ocimum basilicum L. and Ocimum tenuiflorum L in Tulsi churna. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Karppinen K, Avetisyan A, Hykkerud AL, Jaakola L. A dPCR Method for Quantitative Authentication of Wild Lingonberry ( Vaccinium vitis-idaea) versus Cultivated American Cranberry ( V. macrocarpon). Foods 2022; 11:1476. [PMID: 35627046 PMCID: PMC9141823 DOI: 10.3390/foods11101476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023] Open
Abstract
Berries of the genus Vaccinium are highly valued health-beneficial superfoods, which are commonly subjected to adulteration and mixed with each other, or with other common berry species. A quantitative DNA-based method utilizing a chip-based digital polymerase chain reaction (dPCR) technique was developed for identifying and quantifying wild lingonberry (V. vitis-idaea) and cultivated American cranberry (V. macrocarpon). The dPCR method with species-specific primers for mini-barcoding was designed based on the indel regions found in the trnI-CAU-trnL-CAA locus in the chloroplast genome. The designed primers were able to amplify only target species, enabling to distinguish the two closely related species with good sensitivity. Our results illustrated the ability of the method to identify lingonberry and American cranberry DNA using PCR without the need for probes or further sequencing. The dPCR method could also quantify the DNA copy number in mixed samples. Based on this study, the method provides a basis for a simple, fast, and sensitive quantitative authentication analysis of lingonberry and American cranberry by dPCR. Moreover, it can also provide a platform for authentication analyses of other plant species as well by utilizing the indel regions of chloroplast genomes.
Collapse
Affiliation(s)
- Katja Karppinen
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tromsø, Norway; (K.K.); (A.A.)
| | - Anna Avetisyan
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tromsø, Norway; (K.K.); (A.A.)
- NIBIO, Norwegian Institute of Bioeconomy Research, Department of Horticulture, NO-1431 Ås, Norway;
| | - Anne Linn Hykkerud
- NIBIO, Norwegian Institute of Bioeconomy Research, Department of Horticulture, NO-1431 Ås, Norway;
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT the Arctic University of Norway, NO-9037 Tromsø, Norway; (K.K.); (A.A.)
- NIBIO, Norwegian Institute of Bioeconomy Research, Department of Horticulture, NO-1431 Ås, Norway;
| |
Collapse
|
39
|
Wang Y, Lei Z, Ye R, Zhou W, Zhou Y, Zou Z, Li J, Yi L, Dai Z. Effects of Cadmium on Physiochemistry and Bioactive Substances of Muskmelon ( Cucumis melo L.). Molecules 2022; 27:molecules27092913. [PMID: 35566265 PMCID: PMC9101123 DOI: 10.3390/molecules27092913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Muskmelon pedicel is the fruit stalk of muskmelon and one of the traditional Chinese medicines, which can be used to treat jaundice, diabetes and neuropathy. However, in recent years, agricultural soil heavy metal cadmium (Cd) pollution has become serious, coupled with the imperfect sales management of herbal medicine, increasing the potential health risk of contaminated herbal medicine in the human body. In this paper, the comprehensive quality of contaminated muskmelon was tested. The results showed that Cd stress significantly inhibited the growth of muskmelon plants, reduced the anthocyanin and chlorophyll contents, and increased the fruit size and sweetness of muskmelon. In addition, heavy metal Cd can also cause oxidative stress in plants, resulting in a series of changes in antioxidant enzyme activities. In the experimental group, the content of polyphenols and saponins increased by 27.02% and 23.92%, respectively, after high-concentration Cd treatment, which may be a mechanism of plant resistance to stress. This paper reveals that the content of bioactive substances in Chinese herbal medicine is high, but the harm in heavy metals cannot be underestimated, which should be paid attention to by relevant departments.
Collapse
Affiliation(s)
- Yunqiang Wang
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Zhen Lei
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Rongbin Ye
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Wei Zhou
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Ying Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Zhengkang Zou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
| | - Junli Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; (Z.L.); (R.Y.); (Y.Z.); (Z.Z.)
- Correspondence: (J.L.); (Z.D.)
| | - Licong Yi
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Zhaoyi Dai
- Institute of Economic Crops, Hubei Academy of Agricultural Science, Wuhan 430064, China; (Y.W.); (W.Z.); (L.Y.)
- Vegetable Germplasm Innovation and Genetic Improvement Key Laboratory of Hubei Province, Hubei Academy of Agricultural Science, Wuhan 430064, China
- Correspondence: (J.L.); (Z.D.)
| |
Collapse
|
40
|
Food forensics: techniques for authenticity determination of food products. Forensic Sci Int 2022; 333:111243. [DOI: 10.1016/j.forsciint.2022.111243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
41
|
Waidyanatha S, Cristy T, Pierfelice J, Andre JC, Burback B, Mutlu E. Working with the natural complexity: Selection and characterization of black cohosh root extract for use in toxicology testing. Food Chem Toxicol 2022; 160:112769. [PMID: 34929352 PMCID: PMC9063431 DOI: 10.1016/j.fct.2021.112769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/16/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023]
Abstract
Black cohosh (Actaea racemosa L.) is a botanical supplement marketed to women of all ages. Due to paucity of data to assess the safe use, the National Toxicology Program (NTP) is evaluating the toxicity of black cohosh. The use of an authentic, quality material is imperative to generate robust data. Because botanical materials are complex mixtures with variable composition, the selection of a material is challenging. We describe selection and phytochemical characterization of an unformulated black cohosh root extract (i.e., an extract that serves as source material for a formulated product) to be used in the NTP assessments. A material was selected using a combination of non-targeted and targeted chemical analyses, including confirmation of authenticity, absence of contaminants and adulterants, and similarity to a popular black cohosh product used by consumers. Thirty-nine constituents covering three major classes, triterpene glycosides, phenolic acids, and alkaloids were identified. Among constituents quantified, triterpene glycosides made up approximately 4.7% (w/w) with total constituents quantified making up 5.8% (w/w) of the extract. Non-targeted chemical analysis followed by chemometric analysis of various materials sold as black cohosh, and reference materials for black cohosh and other Actaea species further confirmed the suitability of the selected extract for use.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | | | | - Esra Mutlu
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
42
|
Durazzo A, Sorkin BC, Lucarini M, Gusev PA, Kuszak AJ, Crawford C, Boyd C, Deuster PA, Saldanha LG, Gurley BJ, Pehrsson PR, Harnly JM, Turrini A, Andrews KW, Lindsey AT, Heinrich M, Dwyer JT. Analytical Challenges and Metrological Approaches to Ensuring Dietary Supplement Quality: International Perspectives. Front Pharmacol 2022; 12:714434. [PMID: 35087401 PMCID: PMC8787362 DOI: 10.3389/fphar.2021.714434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022] Open
Abstract
The increased utilization of metrology resources and expanded application of its' approaches in the development of internationally agreed upon measurements can lay the basis for regulatory harmonization, support reproducible research, and advance scientific understanding, especially of dietary supplements and herbal medicines. Yet, metrology is often underappreciated and underutilized in dealing with the many challenges presented by these chemically complex preparations. This article discusses the utility of applying rigorous analytical techniques and adopting metrological principles more widely in studying dietary supplement products and ingredients, particularly medicinal plants and other botanicals. An assessment of current and emerging dietary supplement characterization methods is provided, including targeted and non-targeted techniques, as well as data analysis and evaluation approaches, with a focus on chemometrics, toxicity, dosage form performance, and data management. Quality assessment, statistical methods, and optimized methods for data management are also discussed. Case studies provide examples of applying metrological principles in thorough analytical characterization of supplement composition to clarify their health effects. A new frontier for metrology in dietary supplement science is described, including opportunities to improve methods for analysis and data management, development of relevant standards and good practices, and communication of these developments to researchers and analysts, as well as to regulatory and policy decision makers in the public and private sectors. The promotion of closer interactions between analytical, clinical, and pharmaceutical scientists who are involved in research and product development with metrologists who develop standards and methodological guidelines is critical to advance research on dietary supplement characterization and health effects.
Collapse
Affiliation(s)
| | - Barbara C Sorkin
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | | | - Pavel A Gusev
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | - Cindy Crawford
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Courtney Boyd
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Leila G Saldanha
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| | - Bill J Gurley
- National Center for Natural Products Research, University of Mississippi, Bethesda, MD, United States
| | - Pamela R Pehrsson
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - James M Harnly
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Aida Turrini
- CREA - Research Centre for Food and Nutrition, Rome, Italy
| | - Karen W Andrews
- Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Bethesda, MD, United States
| | - Andrea T Lindsey
- Consortium for Health and Military Performance, Department of Military & Emergency Medicine, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Michael Heinrich
- UCL School of Pharmacy, Pharmacognosy and Phytotherapy, London, United Kingdom
| | - Johanna T Dwyer
- Office of Dietary Supplements, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, United States
| |
Collapse
|
43
|
Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020349. [PMID: 35056662 PMCID: PMC8779633 DOI: 10.3390/molecules27020349] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022]
Abstract
Natural products represents an important source of new lead compounds in drug discovery research. Several drugs currently used as therapeutic agents have been developed from natural sources; plant sources are specifically important. In the past few decades, pharmaceutical companies demonstrated insignificant attention towards natural product drug discovery, mainly due to its intrinsic complexity. Recently, technological advancements greatly helped to address the challenges and resulted in the revived scientific interest in drug discovery from natural sources. This review provides a comprehensive overview of various approaches used in the selection, authentication, extraction/isolation, biological screening, and analogue development through the application of modern drug-development principles of plant-based natural products. Main focus is given to the bioactivity-guided fractionation approach along with associated challenges and major advancements. A brief outline of historical development in natural product drug discovery and a snapshot of the prominent natural drugs developed in the last few decades are also presented. The researcher’s opinions indicated that an integrated interdisciplinary approach utilizing technological advances is necessary for the successful development of natural products. These involve the application of efficient selection method, well-designed extraction/isolation procedure, advanced structure elucidation techniques, and bioassays with a high-throughput capacity to establish druggability and patentability of phyto-compounds. A number of modern approaches including molecular modeling, virtual screening, natural product library, and database mining are being used for improving natural product drug discovery research. Renewed scientific interest and recent research trends in natural product drug discovery clearly indicated that natural products will play important role in the future development of new therapeutic drugs and it is also anticipated that efficient application of new approaches will further improve the drug discovery campaign.
Collapse
Affiliation(s)
- Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
| | - Sadique A. Javed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
- Correspondence:
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.N.); (M.A.B.); (H.A.A.)
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
44
|
Nazar N, Howard C, Slater A, Sgamma T. Challenges in Medicinal and Aromatic Plants DNA Barcoding-Lessons from the Lamiaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:137. [PMID: 35009140 PMCID: PMC8747715 DOI: 10.3390/plants11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
45
|
Plant DNA barcoding and metabolomics for comprehensive discrimination of German Chamomile from its poisonous adulterants for food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Abraham EJ, Kellogg JJ. Chemometric-Guided Approaches for Profiling and Authenticating Botanical Materials. Front Nutr 2021; 8:780228. [PMID: 34901127 PMCID: PMC8663772 DOI: 10.3389/fnut.2021.780228] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/31/2021] [Indexed: 01/08/2023] Open
Abstract
Botanical supplements with broad traditional and medicinal uses represent an area of growing importance for American health management; 25% of U.S. adults use dietary supplements daily and collectively spent over $9. 5 billion in 2019 in herbal and botanical supplements alone. To understand how natural products benefit human health and determine potential safety concerns, careful in vitro, in vivo, and clinical studies are required. However, botanicals are innately complex systems, with complicated compositions that defy many standard analytical approaches and fluctuate based upon a plethora of factors, including genetics, growth conditions, and harvesting/processing procedures. Robust studies rely upon accurate identification of the plant material, and botanicals' increasing economic and health importance demand reproducible sourcing, as well as assessment of contamination or adulteration. These quality control needs for botanical products remain a significant problem plaguing researchers in academia as well as the supplement industry, thus posing a risk to consumers and possibly rendering clinical data irreproducible and/or irrelevant. Chemometric approaches that analyze the small molecule composition of materials provide a reliable and high-throughput avenue for botanical authentication. This review emphasizes the need for consistent material and provides insight into the roles of various modern chemometric analyses in evaluating and authenticating botanicals, focusing on advanced methodologies, including targeted and untargeted metabolite analysis, as well as the role of multivariate statistical modeling and machine learning in phytochemical characterization. Furthermore, we will discuss how chemometric approaches can be integrated with orthogonal techniques to provide a more robust approach to authentication, and provide directions for future research.
Collapse
Affiliation(s)
- Evelyn J Abraham
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University (PSU), University Park, PA, United States
| | - Joshua J Kellogg
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University (PSU), University Park, PA, United States.,Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
47
|
A Review on Application of DNA Barcoding Technology for Rapid Molecular Diagnostics of Adulterants in Herbal Medicine. Drug Saf 2021; 45:193-213. [PMID: 34846701 DOI: 10.1007/s40264-021-01133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
The rapid molecular diagnostics of adulterants in herbal medicine using DNA barcoding forms the core of this meticulously detailed review, based on two decades of data. With 80% of the world's population using some form of herbal medicine, authentication, quality control, and detection of adulterants warrant DNA barcoding. A combined group of keywords were used for literature review using the PubMed, the ISI Web of Knowledge, Web of Science (WoS), and Google Scholar databases. All the papers (N = 210) returned by the search engines were downloaded and systematically analyzed. Detailed analysis of conventional DNA barcodes were based on retrieved sequences for internal transcribed spacer (ITS) (412,189), rbcL (251,598), matK (210,835), and trnH-psbA (141,846). The utility of databases such as The Barcode of Life Data System (BOLD), NCBI, GenBank, and Medicinal Materials DNA Barcode Database (MMDBD) has been critically examined for the identification of unknown species from known databases. The current review gives an overview of the ratio of adulterated to authentic drugs for some countries along with the state of the art technology currently being used in the identification of adulterated medicines. In this review, efforts were made to systematically analyze and arrange the research and reviews on the basis of technical progress. The review concludes with the future of DNA-based herbal medicine adulteration detection, forecasting the reliance on the metabarcoding technology. DNA barcoding technology for differentiating adulterated herbal medicine.
Collapse
|
48
|
Jiang L, Zhou B, Wang X, Bi Y, Guo W, Wang J, Yao R, Li M. The Quality Monitoring of Cistanches Herba ( Cistanche deserticola Ma): A Value Chain Perspective. Front Pharmacol 2021; 12:782962. [PMID: 34803722 PMCID: PMC8602053 DOI: 10.3389/fphar.2021.782962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Cistanche deserticola Ma was used as a medicine food homology, which was mainly produced in the Alxa region of northwest China. In recent years, it has been widely used in various food items. The increasing demand for Cistanches Herba has led to problems such as overexploitation and quality deterioration. The quality and safety of herbal medicines are critical and have been shown to be affected by the value chain (VC). Using the VC framework, the study is embedded in a larger study aiming to investigate the effects of different VCs types on the quality and stakeholders of Cistanches Herba. In this study, 90 Cistanches Herba samples were collected during fieldwork. An additional 40 samples were obtained from the herbal markets and medicine purchasing stations. Semi-structured interviews and key informant interviews were performed to collect data on stakeholders in major production areas. These samples were analyzed using high performance liquid chromatography (HPLC) coupled with the k-means clustering method; a targeted quality assessment strategy based on chemical analysis was adopted to understand the quality of Cistanches Herba. Based on market research, the collected samples were divided into different grades through k-means clustering analysis. Moreover, quality differences of Cistanches Herba in Alxa region were explored through DNA barcoding and chemical analysis. Accordingly, 10 different types of VCs were determined in the production of Cistanches Herba. The results show that there is a close relationship between the quality of Cistanches Herba and stakeholder benefits. Vertical integration at different levels was found for independent farmer-based VCs, horizontal collaboration was found in the cooperative-based VCs. The vertical coordination has led to a more consistent traceability system and strict regulation of supply chains. At the same time, the Cistanches Herba were divided into three grades. Through DNA barcoding and chemical analysis, we found that the quality differences between Cistanches Herba in the Alxa area were not significant. It was found that geographical suitability and vertical integration could impact the quality and sustainable production of Cistanches Herba. At the same time, the well-developed VCs can provide products with reliable quality, and ensure adequate financial revenue for relevant stakeholders.
Collapse
Affiliation(s)
- Linlin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Baochang Zhou
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqin Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yaqiong Bi
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Wenfang Guo
- Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China
| | - Jianhua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Ruyu Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minhui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot, China.,Inner Mongolia Hospital of Institute of Traditional Chinese Medicine, Hohhot, China.,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou, China.,Baotou Medical College, Baotou, China.,Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
| |
Collapse
|
49
|
Hu JL, Ci XQ, Liu ZF, Dormontt EE, Conran JG, Lowe AJ, Li J. Assessing candidate DNA barcodes for Chinese and internationally traded timber species. Mol Ecol Resour 2021; 22:1478-1492. [PMID: 34752673 DOI: 10.1111/1755-0998.13546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
Accurate identification of species from timber is an essential step to help control illegal logging and forest loss. However, current approaches to timber identification based on morphological and anatomical characteristics have limited species resolution. DNA barcoding is a proven tool for plant species identification, but there is a need to build reliable reference data across broad taxonomic and spatial scales. Here, we construct a species barcoding library consisting of 1550 taxonomically diverse timber species from 656 genera and 124 families, representing a comprehensive genetic reference data set for Chinese timber species and international commercial traded timber species, using four barcodes (rbcL, matK, trnH-psbA, and ITS2). The ITS2 fragment was found to be the most efficient locus for Chinese timber species identification among the four barcodes tested, both at the species and genus level, despite its low recovery rate. Nevertheless, the barcode combination matK+trnH-psbA+ITS2 was required as a complementary barcode to distinguish closely related species in complex data sets involving internationally traded timber species. Comparative analyses of family-level discrimination and species/genus ratios indicated that the inclusion of closely related species is an important factor affecting the resolution ability of barcodes for timber species verification. Our study indicates that although nuclear ITS2 is the most efficient single barcode for timber species authentication in China, complementary combinations like matK+trnH-psbA+ITS2 are required to provide broader discrimination power. These newly-generated sequences enrich the existing publicly available databases, especially for tropical and subtropical evergreen timber trees and this current timber species barcode reference library can serve as an important genetic resource for forestry monitoring, illegal logging prosecution and biodiversity projects.
Collapse
Affiliation(s)
- Jian-Lin Hu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Qin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| | - Zhi-Fang Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Eleanor E Dormontt
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - John G Conran
- Australian Centre for Evolutionary Biology and Biodiversity (ACEBB) and Sprigg Geobiology Centre (SGC), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J Lowe
- Advanced DNA, Identification and Forensic Facility, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China
| |
Collapse
|
50
|
Paradiso L, Little DP. Authentication of garlic ( Allium sativum L.) supplements using a trnLUAA mini-barcode. Genome 2021; 64:1021-1028. [PMID: 34609923 DOI: 10.1139/gen-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Garlic (Allium sativum), a widely distributed plant with great cultural and medicinal significance, is one of the most popular herbal dietary supplements in Europe and North America. Garlic supplements are consumed for a variety of reasons, including for their purported antihypertensive, antibacterial, and anticarcinogenic effects. The steady increase in the global herbal dietary supplement market paired with a global patchwork of regulatory frameworks makes the development of assays for authentication of these products increasingly important. A DNA mini-barcode assay was developed using the P6 loop of the plastid trnLUAA intron to positively identify A. sativum products. Analysis of 43 commercially available garlic herbal dietary supplements produced mini-barcode sequences for 33 supplements, all of which contained detectable amounts of A. sativum. The trnLUAA P6 mini-barcode can be highly useful for specimen identification, particularly for samples that may contain degraded DNA.
Collapse
Affiliation(s)
- Lydia Paradiso
- The New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| | - Damon P Little
- The New York Botanical Garden, Bronx, NY, USA.,The Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|