1
|
Yurkov AP, Afonin AM, Kryukov AA, Gorbunova AO, Kudryashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Kosulnikov YV, Laktionov YV, Kozhemyakov AP, Romanyuk DA, Zhukov VA, Puzanskiy RK, Mikhailova YV, Yemelyanov VV, Shishova MF. The Effects of Rhizophagus irregularis Inoculation on Transcriptome of Medicago lupulina Leaves at Early Vegetative and Flowering Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3580. [PMID: 37896043 PMCID: PMC10610208 DOI: 10.3390/plants12203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.
Collapse
Affiliation(s)
- Andrey P. Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey M. Afonin
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey A. Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Anastasia O. Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Tatyana R. Kudryashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Ekaterina M. Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Yuri V. Kosulnikov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Yuri V. Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Andrey P. Kozhemyakov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Yulia V. Mikhailova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| |
Collapse
|
2
|
Elango D, Wang W, Thudi M, Sebastiar S, Ramadoss BR, Varshney RK. Genome-wide association mapping of seed oligosaccharides in chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:1024543. [PMID: 36352859 PMCID: PMC9638045 DOI: 10.3389/fpls.2022.1024543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and widely consumed all over the world. Most legumes, including chickpeas, possess noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds. RFOs are seed oligosaccharides abundant in nature, which are non-digestible by humans and animals and cause flatulence and severe abdominal discomforts. So, this study aims to identify genetic factors associated with seed oligosaccharides in chickpea using the mini-core panel. We have quantified the RFOs (raffinose and stachyose), ciceritol, and sucrose contents in chickpea using high-performance liquid chromatography. A wide range of variations for the seed oligosaccharides was observed between the accessions: 0.16 to 15.13 mg g-1 raffinose, 2.77 to 59.43 mg g-1 stachyose, 4.36 to 90.65 mg g-1 ciceritol, and 3.57 to 54.12 mg g-1 for sucrose. Kabuli types showed desirable sugar profiles with high sucrose, whereas desi types had high concentrations RFOs. In total, 48 single nucleotide polymorphisms (SNPs) were identified for all the targeted sugar types, and nine genes (Ca_06204, Ca_04353, and Ca_20828: Phosphatidylinositol N-acetylglucosaminyltransferase; Ca_17399 and Ca_22050: Remorin proteins; Ca_11152: Protein-serine/threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229: UDP-glucose dehydrogenase) were identified as potential candidate genes for sugar metabolism and transport in chickpea. The accessions with low RFOs and high sucrose contents may be utilized in breeding specialty chickpeas. The identified candidate genes could be exploited in marker-assisted breeding, genomic selection, and genetic engineering to improve the sugar profiles in legumes and other crop species.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Department of Plant Science, Penn State University, University Park, PA, United States
| | - Wanyan Wang
- Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Mahender Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
- Centre for Crop Health, University of Southern Queensland (USQ), Toowoomba, QLD, Australia
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sheelamary Sebastiar
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Sugarcane Breeding Institute, Coimbatore, India
| | - Bharathi Raja Ramadoss
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Rajeev K. Varshney
- Genetics Gains Research Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
3
|
The Role of Medicago lupulina Interaction with Rhizophagus irregularis in the Determination of Root Metabolome at Early Stages of AM Symbiosis. PLANTS 2022; 11:plants11182338. [PMID: 36145739 PMCID: PMC9501341 DOI: 10.3390/plants11182338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The nature of plant–fungi interaction at early stages of arbuscular mycorrhiza (AM) development is still a puzzling problem. To investigate the processes behind this interaction, we used the Medicago lupulina MlS-1 line that forms high-efficient AM symbiosis with Rhizophagus irregularis. AM fungus actively colonizes the root system of the host plant and contributes to the formation of effective AM as characterized by a high mycorrhizal growth response (MGR) in the host plant. The present study is aimed at distinguishing the alterations in the M. lupulina root metabolic profile as an indicative marker of effective symbiosis. We examined the root metabolome at the 14th and 24th day after sowing and inoculation (DAS) with low substrate phosphorus levels. A GS-MS analysis detected 316 metabolites. Results indicated that profiles of M. lupulina root metabolites differed from those in leaves previously detected. The roots contained fewer sugars and organic acids. Hence, compounds supporting the growth of mycorrhizal fungus (especially amino acids, specific lipids, and carbohydrates) accumulated, and their presence coincided with intensive development of AM structures. Mycorrhization determined the root metabolite profile to a greater extent than host plant development. The obtained data highlight the importance of active plant–fungi metabolic interaction at early stages of host plant development for the determination of symbiotic efficiency.
Collapse
|
4
|
Mycorrhiza-Induced Alterations in Metabolome of Medicago lupulina Leaves during Symbiosis Development. PLANTS 2021; 10:plants10112506. [PMID: 34834870 PMCID: PMC8617643 DOI: 10.3390/plants10112506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
The present study is aimed at disclosing metabolic profile alterations in the leaves of the Medicago lupulina MlS-1 line that result from high-efficiency arbuscular mycorrhiza (AM) symbiosis formed with Rhizophagus irregularis under condition of a low phosphorus level in the substrate. A highly effective AM symbiosis was established in the period from the stooling to the shoot branching initiation stage (the efficiency in stem height exceeded 200%). Mycorrhization led to a more intensive accumulation of phosphates (glycerophosphoglycerol and inorganic phosphate) in M. lupulina leaves. Metabolic spectra were detected with GS-MS analysis. The application of complex mathematical analyses made it possible to identify the clustering of various groups of 320 metabolites and thus demonstrate the central importance of the carbohydrate and carboxylate-amino acid clusters. The results obtained indicate a delay in the metabolic development of mycorrhized plants. Thus, AM not only accelerates the transition between plant developmental stages but delays biochemical “maturation” mainly in the form of a lag of sugar accumulation in comparison with non-mycorrhized plants. Several methods of statistical modeling proved that, at least with respect to determining the metabolic status of host-plant leaves, stages of phenological development have priority over calendar age.
Collapse
|
5
|
Filipecki M, Żurczak M, Matuszkiewicz M, Święcicka M, Kurek W, Olszewski J, Koter MD, Lamont D, Sobczak M. Profiling the Proteome of Cyst Nematode-Induced Syncytia on Tomato Roots. Int J Mol Sci 2021; 22:ijms222212147. [PMID: 34830029 PMCID: PMC8625192 DOI: 10.3390/ijms222212147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cyst nematodes are important herbivorous pests in agriculture that obtain nutrients through specialized root structures termed syncytia. Syncytium initiation, development, and functioning are a research focus because syncytia are the primary interface for molecular interactions between the host plant and parasite. The small size and complex development (over approximately two weeks) of syncytia hinder precise analyses, therefore most studies have analyzed the transcriptome of infested whole-root systems or syncytia-containing root segments. Here, we describe an effective procedure to microdissect syncytia induced by Globodera rostochiensis from tomato roots and to analyze the syncytial proteome using mass spectrometry. As little as 15 mm2 of 10-µm-thick sections dissected from 30 syncytia enabled the identification of 100–200 proteins in each sample, indicating that mass-spectrometric methods currently in use achieved acceptable sensitivity for proteome profiling of microscopic samples of plant tissues (approximately 100 µg). Among the identified proteins, 48 were specifically detected in syncytia and 7 in uninfected roots. The occurrence of approximately 50% of these proteins in syncytia was not correlated with transcript abundance estimated by quantitative reverse-transcription PCR analysis. The functional categories of these proteins confirmed that protein turnover, stress responses, and intracellular trafficking are important components of the proteome dynamics of developing syncytia.
Collapse
Affiliation(s)
- Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
- Correspondence: ; Tel.: +48-22-5932171
| | - Marek Żurczak
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Magdalena Święcicka
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Wojciech Kurek
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Jarosław Olszewski
- Veterinary Research Centre, Centre for Biomedicine Research, Centre for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute for Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Marek Daniel Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Douglas Lamont
- ‘FingerPrints’ Proteomics Facility, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| |
Collapse
|
6
|
Khatabi B, Gharechahi J, Ghaffari MR, Liu D, Haynes PA, McKay MJ, Mirzaei M, Salekdeh GH. Plant-Microbe Symbiosis: What Has Proteomics Taught Us? Proteomics 2020; 19:e1800105. [PMID: 31218790 DOI: 10.1002/pmic.201800105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/04/2019] [Indexed: 11/08/2022]
Abstract
Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics-based technologies has broadened our understanding of the molecular aspects of beneficial plant-microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis-specific and symbiosis-related proteins and post-translational modifications that play a critical role in mediating symbiotic plant-microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other "omics" data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis-based "omic" approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant-associated microbial communities is also discussed.
Collapse
Affiliation(s)
- Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Javad Gharechahi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - Dilin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P. R. China.,Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, P. R. China
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Matthew J McKay
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
7
|
Wang S, Chen Z, Tian L, Ding Y, Zhang J, Zhou J, Liu P, Chen Y, Wu L. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2153-2168. [PMID: 30972847 PMCID: PMC6790363 DOI: 10.1111/pbi.13129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 05/25/2023]
Abstract
Southern corn rust (SCR), which is a destructive disease caused by Puccinia polysora Underw. (P. polysora), commonly occurs in warm-temperate and tropical regions. To identify candidate proteins related to SCR resistance and characterize the molecular mechanisms underlying the maize-P. polysora interaction, a comparative proteomic analysis of susceptible and resistant maize lines was performed. Statistical analyses revealed 1489 differentially abundant proteins in the resistant line, as well as 1035 differentially abundant proteins in the susceptible line. After the P. polysora infection, the abundance of one remorin protein (ZmREM1.3) increased in the resistant genotype, but decreased in the susceptible genotype. Plant-specific remorins are important for responses to microbial infections as well as plant signalling processes. In this study, transgenic maize plants overexpressing ZmREM1.3 exhibited enhanced resistance to the biotrophic P. polysora. In contrast, homozygous ZmREM1.3 UniformMu mutant plants were significantly more susceptible to P. polysora than wild-type plants. Additionally, the ZmREM1.3-overexpressing plants accumulated more salicylic acid (SA) and jasmonic acid (JA). Moreover, the expression levels of defence-related genes were higher in ZmREM1.3-overexpressing maize plants than in non-transgenic control plants in response to the P. polysora infection. Overall, our results provide evidence that ZmREM1.3 positively regulates maize defences against P. polysora likely via SA/JA-mediated defence signalling pathways. This study represents the first large-scale proteomic analysis of the molecular mechanisms underlying the maize-P. polysora interaction. This is also the first report confirming the remorin protein family affects plant resistance to SCR.
Collapse
Affiliation(s)
- Shunxi Wang
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Zan Chen
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Lei Tian
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Yezhang Ding
- Section of Cell and Developmental BiologyUniversity of California at San DiegoLa JollaCAUSA
| | - Jun Zhang
- Cereal Crop Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jinlong Zhou
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Ping Liu
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| | - Liuji Wu
- Synergetic Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Physiological Ecology and Genetic Improvement of Food Crops in Henan ProvinceZhengzhouChina
| |
Collapse
|
8
|
Fernández-Trijueque J, Serrato AJ, Sahrawy M. Proteomic Analyses of Thioredoxins f and m Arabidopsis thaliana Mutants Indicate Specific Functions for These Proteins in Plants. Antioxidants (Basel) 2019; 8:antiox8030054. [PMID: 30832311 PMCID: PMC6466581 DOI: 10.3390/antiox8030054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/30/2022] Open
Abstract
A large number of plastidial thioredoxins (TRX) are present in chloroplast and the specificity versus the redundancy of their functions is currently under discussion. Several results have highlighted the fact that each TRX has a specific target protein and thus a specific function. In this study we have found that in vitro activation of the fructose-1,6-bisphosphatase (FBPase) enzyme is more efficient when f1 and f2 type thioredoxins (TRXs) are used, whilst the m3 type TRX did not have any effect. In addition, we have carried out a two-dimensional electrophoresis-gel to obtain the protein profiling analyses of the trxf1, f2, m1, m2, m3 and m4 Arabidopsis mutants. The results revealed quantitative alteration of 86 proteins and demonstrated that the lack of both the f and m type thioredoxins have diverse effects on the proteome. Interestingly, 68% of the differentially expressed proteins in trxf1 and trxf2 mutants were downregulated, whilst 75% were upregulated in trxm1, trxm2, trxm3 and trxm4 lines. The lack of TRX f1 provoked a higher number of down regulated proteins. The contrary occurred when TRX m4 was absent. Most of the differentially expressed proteins fell into the categories of metabolic processes, the Calvin–Benson cycle, photosynthesis, response to stress, hormone signalling and protein turnover. Photosynthesis, the Calvin–Benson cycle and carbon metabolism are the most affected processes. Notably, a significant set of proteins related to the answer to stress situations and hormone signalling were affected. Despite some studies being necessary to find specific target proteins, these results show signs that are suggest that the f and m type plastidial TRXs most likely have some additional specific functions.
Collapse
Affiliation(s)
- Juan Fernández-Trijueque
- Master Diagnóstica, Avenida del Conocimiento, 100. P.T. Ciencias de la Salud, 18016 Granada, Spain.
| | - Antonio-Jesús Serrato
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain.
| | - Mariam Sahrawy
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
9
|
Roth R, Chiapello M, Montero H, Gehrig P, Grossmann J, O'Holleran K, Hartken D, Walters F, Yang SY, Hillmer S, Schumacher K, Bowden S, Craze M, Wallington EJ, Miyao A, Sawers R, Martinoia E, Paszkowski U. A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nat Commun 2018; 9:4677. [PMID: 30410018 PMCID: PMC6224560 DOI: 10.1038/s41467-018-06865-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
In terrestrial ecosystems most plant species live in mutualistic symbioses with nutrient-delivering arbuscular mycorrhizal (AM) fungi. Establishment of AM symbioses includes transient, intracellular formation of fungal feeding structures, the arbuscules. A plant-derived peri-arbuscular membrane (PAM) surrounds the arbuscules, mediating reciprocal nutrient exchange. Signaling at the PAM must be well coordinated to achieve this dynamic cellular intimacy. Here, we identify the PAM-specific Arbuscular Receptor-like Kinase 1 (ARK1) from maize and rice to condition sustained AM symbiosis. Mutation of rice ARK1 causes a significant reduction in vesicles, the fungal storage structures, and a concomitant reduction in overall root colonization by the AM fungus Rhizophagus irregularis. Arbuscules, although less frequent in the ark1 mutant, are morphologically normal. Co-cultivation with wild-type plants restores vesicle and spore formation, suggesting ARK1 function is required for the completion of the fungal life-cycle, thereby defining a functional stage, post arbuscule development. The peri-arbuscular membrane (PAM) mediates mutually-beneficial nutrient exchange between plants and arbuscular mycorrhizal (AM) fungi. Here the authors identify ARK1, a PAM-specific receptor-like kinase from rice that sustains AM symbiosis post-arbuscule development.
Collapse
Affiliation(s)
- Ronelle Roth
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| | - Marco Chiapello
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland.,Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Héctor Montero
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Peter Gehrig
- Functional Genomics Center, University and ETH Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center, University and ETH Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Denise Hartken
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Fergus Walters
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Shu-Yi Yang
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Stefan Hillmer
- Electron Microscopy Core Facility, University of Heidelberg, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Sarah Bowden
- The John Bingham Laboratory, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Melanie Craze
- The John Bingham Laboratory, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Emma J Wallington
- The John Bingham Laboratory, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Akio Miyao
- National Agriculture and Food Research Organization, Advanced Genomics Breeding Section, Institute of Crop Science, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Ruairidh Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados, 36821, Irapuato, GTO, Mexico
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, 8008, Zürich, Switzerland
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK. .,Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Aloui A, Recorbet G, Lemaître-Guillier C, Mounier A, Balliau T, Zivy M, Wipf D, Dumas-Gaudot E. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. MYCORRHIZA 2018; 28:1-16. [PMID: 28725961 DOI: 10.1007/s00572-017-0789-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.
Collapse
Affiliation(s)
- Achref Aloui
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cédria, BP 901, 2050, Hammam-lif, Tunisia
| | - Ghislaine Recorbet
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France.
| | - Christelle Lemaître-Guillier
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Arnaud Mounier
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Thierry Balliau
- UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Michel Zivy
- UMR de Génétique végétale, PAPPSO, Ferme du Moulon, 91190, Gif sur Yvette, France
| | - Daniel Wipf
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie, INRA/AgroSup/University Bourgogne Franche-Comté, Pôle Interactions Plantes Microrganismes, ERL 6003 CNRS, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
11
|
Peinado-Guevara LI, López-Meyer M, López-Valenzuela JA, Maldonado-Mendoza IE, Galindo-Flores H, Campista-León S, Medina-Godoy S. Comparative proteomic analysis of leaf tissue from tomato plants colonized with Rhizophagus irregularis. Symbiosis 2017. [DOI: 10.1007/s13199-016-0470-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Larrainzar E, Wienkoop S. A Proteomic View on the Role of Legume Symbiotic Interactions. FRONTIERS IN PLANT SCIENCE 2017; 8:1267. [PMID: 28769967 PMCID: PMC5513976 DOI: 10.3389/fpls.2017.01267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/05/2017] [Indexed: 05/04/2023]
Abstract
Legume plants are key elements in sustainable agriculture and represent a significant source of plant-based protein for humans and animal feed worldwide. One specific feature of the family is the ability to establish nitrogen-fixing symbiosis with Rhizobium bacteria. Additionally, like most vascular flowering plants, legumes are able to form a mutualistic endosymbiosis with arbuscular mycorrhizal (AM) fungi. These beneficial associations can enhance the plant resistance to biotic and abiotic stresses. Understanding how symbiotic interactions influence and increase plant stress tolerance are relevant questions toward maintaining crop yield and food safety in the scope of climate change. Proteomics offers numerous tools for the identification of proteins involved in such responses, allowing the study of sub-cellular localization and turnover regulation, as well as the discovery of post-translational modifications (PTMs). The current work reviews the progress made during the last decades in the field of proteomics applied to the study of the legume-Rhizobium and -AM symbioses, and highlights their influence on the plant responses to pathogens and abiotic stresses. We further discuss future perspectives and new experimental approaches that are likely to have a significant impact on the field including peptidomics, mass spectrometric imaging, and quantitative proteomics.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Department of Environmental Sciences, Universidad Pública de NavarraPamplona, Spain
- *Correspondence: Estíbaliz Larrainzar
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
- Stefanie Wienkoop
| |
Collapse
|
13
|
Soto-Suárez M, Serrato AJ, Rojas-González JA, Bautista R, Sahrawy M. Transcriptomic and proteomic approach to identify differentially expressed genes and proteins in Arabidopsis thaliana mutants lacking chloroplastic 1 and cytosolic FBPases reveals several levels of metabolic regulation. BMC PLANT BIOLOGY 2016; 16:258. [PMID: 27905870 PMCID: PMC5134223 DOI: 10.1186/s12870-016-0945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/22/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND During the photosynthesis, two isoforms of the fructose-1,6-bisphosphatase (FBPase), the chloroplastidial (cFBP1) and the cytosolic (cyFBP), catalyse the first irreversible step during the conversion of triose phosphates (TP) to starch or sucrose, respectively. Deficiency in cyFBP and cFBP1 isoforms provokes an imbalance of the starch/sucrose ratio, causing a dramatic effect on plant development when the plastidial enzyme is lacking. RESULTS We study the correlation between the transcriptome and proteome profile in rosettes and roots when cFBP1 or cyFBP genes are disrupted in Arabidopsis thaliana knock-out mutants. By using a 70-mer oligonucleotide microarray representing the genome of Arabidopsis we were able to identify 1067 and 1243 genes whose expressions are altered in the rosettes and roots of the cfbp1 mutant respectively; whilst in rosettes and roots of cyfbp mutant 1068 and 1079 genes are being up- or down-regulated respectively. Quantitative real-time PCR validated 100% of a set of 14 selected genes differentially expressed according to our microarray analysis. Two-dimensional (2-D) gel electrophoresis-based proteomic analysis revealed quantitative differences in 36 and 26 proteins regulated in rosettes and roots of cfbp1, respectively, whereas the 18 and 48 others were regulated in rosettes and roots of cyfbp mutant, respectively. The genes differentially expressed and the proteins more or less abundant revealed changes in protein metabolism, RNA regulation, cell signalling and organization, carbon metabolism, redox regulation, and transport together with biotic and abiotic stress. Notably, a significant set (25%) of the proteins identified were also found to be regulated at a transcriptional level. CONCLUSION This transcriptomic and proteomic analysis is the first comprehensive and comparative study of the gene/protein re-adjustment that occurs in photosynthetic and non-photosynthetic organs of Arabidopsis mutants lacking FBPase isoforms.
Collapse
Affiliation(s)
- Mauricio Soto-Suárez
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
- Present address: Corporación Colombiana de Investigación Agropecuaria, CORPOICA, Km 14 vía Mosquera, Mosquera, Cundinamarca Colombia
| | - Antonio J. Serrato
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - José A. Rojas-González
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática/SCBI, Edificio de Bioinnovación, Parque Tecnológico de Andalucía, Universidad de Málaga, C/ Severo Ochoa 34, 29590 Campanillas, Spain
| | - Mariam Sahrawy
- Departamento de Bioquímica, Biología Molecular y Celular de Plantas, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
14
|
Bona E, Scarafoni A, Marsano F, Boatti L, Copetta A, Massa N, Gamalero E, D’Agostino G, Cesaro P, Cavaletto M, Berta G. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. Sci Rep 2016; 6:26439. [PMID: 27216714 PMCID: PMC4877657 DOI: 10.1038/srep26439] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022] Open
Abstract
Maize is one of the most important crops worldwide and is strongly dependent on arbuscular mycorrhiza (AM) fungi, organisms that form a mutualistic association with land plants. In maize, AM symbiosis enhances spike dry weight, spike length, spike circumference, and the dry weight and dimensions of the grain. Notwithstanding its ubiquitous nature, the detailed relationship between AM fungal colonization and plant development is not completely understood. To facilitate a better understanding of the effects of AM fungi on plants, the work reported here assessed the effects of a consortium of AM fungi on the kernel proteome of maize, cultivated in open-field conditions. To our knowledge, this is the first report of the modulation of a plant seed proteome following AM fungal inoculation in the field. Here, it was found that AM fungi modify the maize seed proteome by up-regulating enzymes involved in energetic metabolism, embryo development, nucleotide metabolism, seed storage and stress responses.
Collapse
Affiliation(s)
- Elisa Bona
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Alessio Scarafoni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Francesco Marsano
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Lara Boatti
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Andrea Copetta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Nadia Massa
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Elisa Gamalero
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | | | - Patrizia Cesaro
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Maria Cavaletto
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Graziella Berta
- Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale Amedeo Avogadro, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| |
Collapse
|
15
|
Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire. J Proteomics 2016; 143:199-208. [PMID: 27109347 DOI: 10.1016/j.jprot.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
UNLABELLED Plasma membrane (PM) encompasses total cellular contents, serving as semi-porous barrier to cell exterior. This living barrier regulates all cellular exchanges in a spatio-temporal fashion. Most of the essential tasks of PMs including molecular transport, cell-cell interaction and signal transduction are carried out by their proteinaceous components, which make the PM protein repertoire to be diverse and dynamic. Here, we report the systematic analysis of PM proteome of a food legume, chickpea and develop a PM proteome reference map. Proteins were extracted from highly enriched PM fraction of four-week-old seedlings using aqueous two-phase partitioning. To address a population of PM proteins that is as comprehensive as possible, both gel-based and gel-free approaches were employed, which led to the identification of a set of 2732 non-redundant proteins. These included both integral proteins having bilayer spanning domains as well as peripheral proteins associated with PMs through posttranslational modifications or protein-protein interactions. Further, the proteins were subjected to various in-silico analyses and functionally classified based on their gene ontology. Finally an inventory of the complete set of PM proteins, identified in several monocot and dicot species, was created for comparative study with the generated PM protein dataset of chickpea. BIOLOGICAL SIGNIFICANCE Chickpea, a rich source of dietary proteins, is the second most cultivated legume, which is grown over 10 million hectares of land worldwide. The annual global production of chickpea hovers around 8.5 million metric tons. Recent chickpea genome sequencing effort has provided a broad genetic basis for highlighting the important traits that may fortify other crop legumes. Improvement in chickpea varieties can further strengthen the world food security, which includes food availability, access and utilization. It is known that the phenotypic trait of a cultivar is the manifestation of the orchestrated functions of its proteins. Study of the PM proteome offers insights into the mechanism of communication between the cell and its environment by identification of receptors, signalling proteins and membrane transporters. Knowledge of the PM protein repertoire of a relatively dehydration tolerant chickpea variety, JG-62, can contribute in development of strategies for metabolic reprograming of crop species and breeding applications.
Collapse
|
16
|
Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N. Legume proteomics: Progress, prospects, and challenges. Proteomics 2015; 16:310-27. [DOI: 10.1002/pmic.201500257] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/19/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Dipak Gayen
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Saurabh Gayali
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research; Aruna Asaf Ali Marg New Delhi India
| |
Collapse
|
17
|
Proteomic analysis of upland rice (Oryza sativa L.) exposed to intermittent water deficit. Protein J 2014; 33:221-30. [PMID: 24652039 DOI: 10.1007/s10930-014-9554-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rice is the most important crop consumed all over the world. In Brazil, irrigated rice covers 50 % of the rice producing area and is responsible for 75 % of the national production. Upland rice covers most of the remaining area, and is therefore, a very important production system in the country. In the present study, we have used the drought tolerant upland rice variety Três Meses Antigo to investigate the proteomic changes that occur during drought stress. Plants were submitted to drought by the reposition of 50 % of the water lost daily. Twenty days after the beginning of the drought stress period, leaves were harvested and used for protein extraction. The 2D maps obtained from treated and control plants revealed 408 reproducible spots, 44 of which were identified by mass spectrometry, including 15 differential proteins. Several unaltered proteins were also identified (39 spots) and were mainly involved in photosynthesis. Taken together, the results obtained suggest that the tolerant upland rice up-regulates anti-oxidant and energy production related proteins in order to cope with water deficit.
Collapse
|
18
|
Wipf D, Mongelard G, van Tuinen D, Gutierrez L, Casieri L. Transcriptional responses of Medicago truncatula upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:680. [PMID: 25520732 PMCID: PMC4251294 DOI: 10.3389/fpls.2014.00680] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/14/2014] [Indexed: 05/18/2023]
Abstract
Sulfur plays an essential role in plants' growth and development and in their response to various abiotic and biotic stresses despite its leachability and its very low abundance in the only form that plant roots can uptake (sulfate). It is part of amino acids, glutathione (GSH), thiols of proteins and peptides, membrane sulfolipids, cell walls and secondary products, so reduced availability can drastically alter plant growth and development. The nutritional benefits of symbiotic interactions can help the plant in case of S deficiency. In particular the arbuscular mycorrhizal (AM) interaction improves N, P, and S plant nutrition, but the mechanisms behind these exchanges are not fully known yet. Although the transcriptional changes in the leguminous model plant Medicago truncatula have been already assessed in several biotic and/or abiotic conditions, S deficiency has not been considered so far. The aim of this work is to get a first overview on S-deficiency responses in the leaf and root tissues of plants interacting with the AM fungus Rhizophagus irregularis. Several hundred genes displayed significantly different transcript accumulation levels. Annotation and GO ID association were used to identify biological processes and molecular functions affected by sulfur starvation. Beside the beneficial effects of AM interaction, plants were greatly affected by the nutritional status, showing various differences in their transcriptomic footprints. Several pathways in which S plays an important role appeared to be differentially affected according to mycorrhizal status, with a generally reduced responsiveness to S deficiency in mycorrhized plants.
Collapse
Affiliation(s)
- Daniel Wipf
- UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, Université de BourgogneDijon, France
| | - Gaëlle Mongelard
- CRRBM and BIOPI EA3900, Université de Picardie Jules VerneAmiens, France
| | - Diederik van Tuinen
- Institut National de la Recherche Agronomique, UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRSDijon, France
| | - Laurent Gutierrez
- CRRBM and BIOPI EA3900, Université de Picardie Jules VerneAmiens, France
| | - Leonardo Casieri
- UMR 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, Université de BourgogneDijon, France
| |
Collapse
|
19
|
Guillier C, Cacas JL, Recorbet G, Deprêtre N, Mounier A, Mongrand S, Simon-Plas F, Wipf D, Dumas-Gaudot E. Direct purification of detergent-insoluble membranes from Medicago truncatula root microsomes: comparison between floatation and sedimentation. BMC PLANT BIOLOGY 2014; 14:255. [PMID: 25267185 PMCID: PMC4193990 DOI: 10.1186/s12870-014-0255-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/20/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Membrane microdomains are defined as highly dynamic, sterol- and sphingolipid-enriched domains that resist to solubilization by non-ionic detergents. In plants, these so-called Detergent Insoluble Membrane (DIM) fractions have been isolated from plasma membrane by using conventional ultracentrifugation on density gradient (G). In animals, a rapid (R) protocol, based on sedimentation at low speed, which avoids the time-consuming sucrose gradient, has also been developed to recover DIMs from microsomes as starting material. In the current study, we sought to compare the ability of the Rapid protocol versus the Gradient one for isolating DIMs directly from microsomes of M. truncatula roots. For that purpose, Triton X-100 detergent-insoluble fractions recovered with the two methods were analyzed and compared for their sterol/sphingolipid content and proteome profiles. RESULTS Inferred from sterol enrichment, presence of typical sphingolipid long-chain bases from plants and canonical DIM protein markers, the possibility to prepare DIMs from M. truncatula root microsomes was confirmed both for the Rapid and Gradient protocols. Contrary to sphingolipids, the sterol and protein profiles of DIMs were found to depend on the method used. Namely, DIM fractions were differentially enriched in spinasterol and only shared 39% of common proteins as assessed by GeLC-MS/MS profiling. Quantitative analysis of protein indicated that each purification procedure generated a specific subset of DIM-enriched proteins from Medicago root microsomes. Remarkably, these two proteomes were found to display specific cellular localizations and biological functions. In silico analysis of membrane-associative features within R- and G-enriched proteins, relative to microsomes, showed that the most noticeable difference between the two proteomes corresponded to an increase in the proportion of predicted signal peptide-containing proteins after sedimentation (R) compared to its decrease after floatation (G), suggesting that secreted proteins likely contribute to the specificity of the R-DIM proteome. CONCLUSIONS Even though microsomes were used as initial material, we showed that the protein composition of the G-DIM fraction still mostly mirrored that of plasmalemma-originating DIMs conventionally retrieved by floatation. In parallel, the possibility to isolate by low speed sedimentation DIM fractions that seem to target the late secretory pathway supports the existence of plant microdomains in other organelles.
Collapse
Affiliation(s)
- Christelle Guillier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Jean-Luc Cacas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Ghislaine Recorbet
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Nicolas Deprêtre
- />UMR CSGA: Centre des Sciences du Goût et de l’alimentation, UMR 6265 CNRS, 1324 INRA-uB, Dijon, France
| | - Arnaud Mounier
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Sébastien Mongrand
- />CNRS, Laboratoire de Biogenèse Membranaire (LBM), Université Bordeaux UMR 5200, F-33000 Villenave d’Ornon, France
| | - Françoise Simon-Plas
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Daniel Wipf
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- />UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, Pôle Interactions Plantes-Microorganismes - ERL 6300 CNRS, 17 Rue Sully, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
20
|
Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J Proteomics 2014; 108:354-68. [PMID: 24925269 DOI: 10.1016/j.jprot.2014.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/07/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
UNLABELLED Arbuscular mycorrhizal (AM) symbiosis that associates roots of most land plants with soil-borne fungi (Glomeromycota), is characterized by reciprocal nutritional benefits. Fungal colonization of plant roots induces massive changes in cortical cells where the fungus differentiates an arbuscule, which drives proliferation of the plasma membrane. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza still remains to be explored. In this study, we first examined the qualitative composition of the root membrane proteome of Medicago truncatula after microsome enrichment and subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 1226 root membrane protein candidates whose cellular and functional classifications predispose plastids and protein synthesis as prevalent organelle and function, respectively. Changes at the protein abundance level between the membrane proteomes of mycorrhizal and nonmycorrhizal roots were further monitored by spectral counting, which retrieved a total of 96 proteins that displayed a differential accumulation upon AM symbiosis. Besides the canonical markers of the periarbuscular membrane, new candidates supporting the importance of membrane trafficking events during mycorrhiza establishment/functioning were identified, including flotillin-like proteins. The data have been deposited to the ProteomeXchange with identifier PXD000875. BIOLOGICAL SIGNIFICANCE During arbuscular mycorrhizal symbiosis, one of the most widespread mutualistic associations in nature, the endomembrane system of plant roots is believed to undergo qualitative and quantitative changes in order to sustain both the accommodation process of the AM fungus within cortical cells and the exchange of nutrients between symbionts. Large-scale GeLC-MS/MS proteomic analysis of the membrane fractions from mycorrhizal and nonmycorrhizal roots of M. truncatula coupled to spectral counting retrieved around one hundred proteins that displayed changes in abundance upon mycorrhizal establishment. The symbiosis-related membrane proteins that were identified mostly function in signaling/membrane trafficking and nutrient uptake regulation. Besides extending the coverage of the root membrane proteome of M. truncatula, new candidates involved in the symbiotic program emerged from the current study, which pointed out a dynamic reorganization of microsomal proteins during the accommodation of AM fungi within cortical cells.
Collapse
Affiliation(s)
- Cosette Abdallah
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France; Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| | - Benoit Valot
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Christelle Guillier
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Arnaud Mounier
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Thierry Balliau
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Michel Zivy
- UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, France.
| | - Diederik van Tuinen
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Jenny Renaut
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| | - Daniel Wipf
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.
| | - Ghislaine Recorbet
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, Belvaux L-4422, Luxembourg.
| |
Collapse
|
21
|
Checker VG, Khurana P. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. PLANT CELL REPORTS 2013; 32:1729-41. [PMID: 23942844 DOI: 10.1007/s00299-013-1483-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Group1 remorins may help the plants to optimize their growth under adverse conditions by their involvement in mediating osmotic stress responses in plants. ABSTRACT Mulberry (Morus indica), a deciduous woody tree, serves as the cardinal component of the sericulture industry. Genomic endeavors in sequencing of mulberry ESTs provided clues to stress-specific clones, but their functional relevance remains fragmentary. Therefore in this study, we assessed the functional significance of a remorin gene family member that was identified in leaf ESTs. Remorins represent a large, plant-specific multigene family gaining importance in recent times with respect to their role in plant-microbe interactions, although their role in response to environmental stresses remains speculative as in vivo functions of remorin genes are limited. Mulberry remorin (MiREM) localizes to plasma membrane and is ubiquitously present in all plant organs. Expression analysis of MiREM by northern analysis reveals that its transcript increases under different abiotic stress conditions especially during dehydration and salt stress, implicating it in regulation of stress signaling pathways. Concomitantly, transgenic Arabidopsis plants overexpressing heterologous remorin show tolerance to dehydration and salinity at the germination and seedling stages as revealed by percentage germination, root inhibition assays, fresh weight and activity of photosystem II. This study predicts the possible function of group 1 remorin gene in mediating osmotic stress thus bringing novel perspectives in understanding the function of remorins in plant abiotic stress responses.
Collapse
Affiliation(s)
- Vibha G Checker
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | | |
Collapse
|
22
|
Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E. Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence. THE NEW PHYTOLOGIST 2013; 199:26-40. [PMID: 23638913 DOI: 10.1111/nph.12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/14/2013] [Indexed: 05/24/2023]
Abstract
The roots of most land plants can enter a relationship with soil-borne fungi belonging to the phylum Glomeromycota. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic interactions, involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. Although profiling technologies have generated an increasing depository of plant and fungal proteins eligible for sustaining AM accommodation and functioning, a bottleneck exists for their functional analysis as these experiments are difficult to carry out with mycorrhiza. Nonetheless, the expansion of gene-to-phenotype reverse genetic tools, including RNA interference and transposon silencing, have recently succeeded in elucidating some of the plant-related protein candidates. Likewise, despite the ongoing absence of transformation tools for AM fungi, host-induced gene silencing has allowed knockdown of fungal gene expression in planta for the first time, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan proteins during mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge about the plant and fungal protein actors that have been demonstrated to be functionally implicated in sustaining AM symbiosis mostly on the basis of silencing approaches.
Collapse
Affiliation(s)
- Ghislaine Recorbet
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Cosette Abdallah
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Jenny Renaut
- Environmental and Agro-Biotechnologies Department, Centre de Recherche Public- Gabriel Lippmann, 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Daniel Wipf
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup, Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
23
|
Jolivet P, Acevedo F, Boulard C, d'Andréa S, Faure JD, Kohli A, Nesi N, Valot B, Chardot T. Crop seed oil bodies: from challenges in protein identification to an emerging picture of the oil body proteome. Proteomics 2013; 13:1836-49. [PMID: 23589365 DOI: 10.1002/pmic.201200431] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 02/08/2013] [Accepted: 02/11/2013] [Indexed: 01/27/2023]
Abstract
Oleaginous seeds store lipids in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids bound by proteins embedded in a phospholipid monolayer. OB proteins are well conserved in plants and have long been grouped into only two categories: structural proteins or enzymes. Recent work, however, which identified other classes of proteins associated with OBs, clearly shows that this classification is obsolete. Proteomics-mediated OB protein identification is facilitated in plants for which the genome is sequenced and annotated. However, it is not clear whether this knowledge can be dependably transposed to less well-characterized plants, including the well-established commercial sources of seed oil as well as the many others being proposed as novel sources for biodiesel, especially in Africa and Asia. Toward an update of the current data available on OB proteins this review discusses (i) the specific difficulties for proteomic studies of organelles; (ii) a 2012 census of the proteins found in seed OBs from various crops; (iii) the oleosin composition of OBs and their role in organelle stability; (iv) PTM of OB proteins as an emerging field of investigation; and finally we describe the emerging model of the OB proteome from oilseed crops.
Collapse
Affiliation(s)
- Pascale Jolivet
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Visioli G, Marmiroli N. The proteomics of heavy metal hyperaccumulation by plants. J Proteomics 2012; 79:133-45. [PMID: 23268120 DOI: 10.1016/j.jprot.2012.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 10/27/2022]
Abstract
Hyperaccumulators are distinguished from non-hyperaccumulators on the basis of their capacity to extract heavy metal ions from the soil, their more efficient root-to-shoot translocation of these ions and their greater ability to detoxify and sequester heavy metals in the shoot. The understanding of the mechanisms underlying metal ion accumulation has progressed beyond the relevant biochemistry and physiology to encompass the genetic and molecular regulatory systems which differentiate hyperaccumulators from non-hyperaccumulators. This paper reviews the literature surrounding the application of proteomics technology to plant metal hyperaccumulation, in particular involving the elements As, Cd, Cu, Ni, Pb and Zn. The hyperaccumulation process across a number of unrelated plant species appears to be associated with proteins involved in energy metabolism, the oxidative stress response and abiotic and biotic stress. The relevance of transducers of the metal stress response to the phenomenon of hyperaccumulation is summarized. Proteomic data complement the more voluminous genomic and transcriptomic data sets in providing a more nuanced picture of the process, and should therefore help in the identification of the major genetic determinants of the hyperaccumulation phenomenon.
Collapse
Affiliation(s)
- Giovanna Visioli
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma Italy
| | | |
Collapse
|
25
|
Casieri L, Gallardo K, Wipf D. Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. PLANTA 2012; 235:1431-47. [PMID: 22535379 DOI: 10.1007/s00425-012-1645-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/02/2012] [Indexed: 05/03/2023]
Abstract
Sulphur is an essential macronutrient for plant growth, development and response to various abiotic and biotic stresses due to its key role in the biosynthesis of many S-containing compounds. Sulphate represents a very small portion of soil S pull and it is the only form that plant roots can uptake and mobilize through H(+)-dependent co-transport processes implying sulphate transporters. Unlike the other organically bound forms of S, sulphate is normally leached from soils due to its solubility in water, thus reducing its availability to plants. Although our knowledge of plant sulphate transporters has been growing significantly in the past decades, little is still known about the effect of the arbuscular mycorrhiza interaction on sulphur uptake. Carbon, nitrogen and sulphur measurements in plant parts and expression analysis of genes encoding putative Medicago sulphate transporters (MtSULTRs) were performed to better understand the beneficial effects of mycorrhizal interaction on Medicago truncatula plants colonized by Glomus intraradices at different sulphate concentrations. Mycorrhization significantly promoted plant growth and sulphur content, suggesting increased sulphate absorption. In silico analyses allowed identifying eight putative MtSULTRs phylogenetically distributed over the four sulphate transporter groups. Some putative MtSULTRs were transcribed differentially in roots and leaves and affected by sulphate concentration, while others were more constitutively transcribed. Mycorrhizal-inducible and -repressed MtSULTRs transcripts were identified allowing to shed light on the role of mycorrhizal interaction in sulphate uptake.
Collapse
Affiliation(s)
- Leonardo Casieri
- Pôle Interactions Plantes-Microorganismes, ERL 6300 CNRS, UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, 17 Rue Sully, BP 86510, 21065, Dijon Cedex, France.
| | | | | |
Collapse
|
26
|
Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K. Gel-based and gel-free quantitative proteomics approaches at a glance. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:494572. [PMID: 23213324 PMCID: PMC3508552 DOI: 10.1155/2012/494572] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/12/2012] [Indexed: 05/06/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) is widely applied and remains the method of choice in proteomics; however, pervasive 2-DE-related concerns undermine its prospects as a dominant separation technique in proteome research. Consequently, the state-of-the-art shotgun techniques are slowly taking over and utilising the rapid expansion and advancement of mass spectrometry (MS) to provide a new toolbox of gel-free quantitative techniques. When coupled to MS, the shotgun proteomic pipeline can fuel new routes in sensitive and high-throughput profiling of proteins, leading to a high accuracy in quantification. Although label-based approaches, either chemical or metabolic, gained popularity in quantitative proteomics because of the multiplexing capacity, these approaches are not without drawbacks. The burgeoning label-free methods are tag independent and suitable for all kinds of samples. The challenges in quantitative proteomics are more prominent in plants due to difficulties in protein extraction, some protein abundance in green tissue, and the absence of well-annotated and completed genome sequences. The goal of this perspective assay is to present the balance between the strengths and weaknesses of the available gel-based and -free methods and their application to plants. The latest trends in peptide fractionation amenable to MS analysis are as well discussed.
Collapse
Affiliation(s)
- Cosette Abdallah
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Boite Postal 86510, 21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, Boite Postal 86510, 21065 Dijon Cedex, France
| | - Jenny Renaut
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
| | - Kjell Sergeant
- Environment and Agro-Biotechnologies Department, Centre de Recherche Public-Gabriel Lippmann, 41 rue du Brill, 4422 Belvaux, Luxembourg
- *Kjell Sergeant:
| |
Collapse
|
27
|
Agrawal GK, Bourguignon J, Rolland N, Ephritikhine G, Ferro M, Jaquinod M, Alexiou KG, Chardot T, Chakraborty N, Jolivet P, Doonan JH, Rakwal R. Plant organelle proteomics: collaborating for optimal cell function. MASS SPECTROMETRY REVIEWS 2011; 30:772-853. [PMID: 21038434 DOI: 10.1002/mas.20301] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 05/10/2023]
Abstract
Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in cell, their proper function and evolution.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), P.O. Box 13265, Sanepa, Kathmandu, Nepal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G. Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 2011; 10:3811-34. [PMID: 20957753 DOI: 10.1002/pmic.200900436] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arbuscular mycorrhizae (AM) are the most widespread mutualistic symbioses between the roots of most land plants and a phylum of soil fungi. AM are known to influence plant performance by improving mineral nutrition, protecting against pathogens and enhancing resistance or tolerance to biotic and abiotic stresses. The aim of this study was to investigate the frond proteome of the arsenic hyperaccumulator fern Pteris vittata in plants that had been inoculated with one of the two AM fungi (Glomus mosseae or Gigaspora margarita) with and without arsenic treatment. A protective role for AM fungi colonisation in the absence of arsenic was indicated by the down-regulation of oxidative damage-related proteins. Arsenic treatment of mycorrhizal ferns induced the differential expression of 130 leaf proteins with specific responses in G. mosseae- and Gi. margarita-colonised plants. Up-regulation of multiple forms of glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and enolase, primarily in G. mosseae-inoculated plants, suggests a central role for glycolytic enzymes in arsenic metabolism. Moreover, a putative arsenic transporter, PgPOR29, has been identified as an up-regulated protein by arsenic treatment.
Collapse
Affiliation(s)
- Elisa Bona
- Department of Environmental and Life Sciences, University of Piemonte Orientale A. Avogadro, Alessandria, Novara, Vercelli, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Parádi I, van Tuinen D, Morandi D, Ochatt S, Robert F, Jacas L, Dumas-Gaudot E. Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1175-1183. [PMID: 20687807 DOI: 10.1094/mpmi-23-9-1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycorrhizal mutants of the wild-type J5 was assessed. Strictly AM-penetration-defective TRV25-C and TRV25-D (dmi3, Mtsym13), hypomycorrhizal TR25 and TR89 (dmi2, Mtsym2) mutants, and a hypermycorrhizal mutant TRV17 (sunn, Mtsym12) were compared with J5 3 and 7 weeks after inoculation. No MtBcp1 transcripts were detected in the mutants blocked at the appressoria stage. Conversely, TR25, TR89, and J5 showed a gradual increase of the expression of both MtBcp1 genes in 3- and 7-week-old plants, similar to the increase in colonization intensity and arbuscule abundance. The strong correlation between the expression level of AM-specific blue copper-binding protein-encoding genes and AM colonization may imply a basic role in symbiotic functioning for these genes, which may serve as new molecular markers of arbuscule development in M. truncatula.
Collapse
Affiliation(s)
- István Parádi
- UMR 1088 INRA/5184 CNRS/Université de Bourgogne, Plante-Microbe-Environnement, INRA-CMSE, Dijon BP 86510, 21065 Dijon Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Colditz F, Braun HP. Medicago truncatula proteomics. J Proteomics 2010; 73:1974-85. [PMID: 20621211 DOI: 10.1016/j.jprot.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990 th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.
Collapse
Affiliation(s)
- Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Dept. III, Plant Molecular Biology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|
31
|
Daher Z, Recorbet G, Valot B, Robert F, Balliau T, Potin S, Schoefs B, Dumas-Gaudot E. Proteomic analysis of Medicago truncatula root plastids. Proteomics 2010; 10:2123-37. [DOI: 10.1002/pmic.200900345] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Moche M, Stremlau S, Hecht L, Göbel C, Feussner I, Stöhr C. Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. PLANTA 2010; 231:425-36. [PMID: 19937342 PMCID: PMC2799628 DOI: 10.1007/s00425-009-1057-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/04/2009] [Indexed: 05/20/2023]
Abstract
Plant plasma membrane (pm) vesicles from mycorrhizal tobacco (Nicotiana tabacum cv. Samsun) roots were isolated with negligible fungal contamination by the aqueous two-phase partitioning technique as proven by fatty acid analysis. Palmitvaccenic acid became apparent as an appropriate indicator for fungal membranes in root pm preparations. The pm vesicles had a low specific activity of the vanadate-sensitive ATPase and probably originated from non-infected root cells. In a phosphate-limited tobacco culture system, root colonisation by the vesicular arbuscular mycorrhizal fungus, Glomus mosseae, is inhibited by external nitrate in a dose-dependent way. However, detrimental high concentrations of 25 mM nitrate lead to the highest colonisation rate observed, indicating that the defence system of the plant is impaired. Nitric oxide formation by the pm-bound nitrite:NO reductase increased in parallel with external nitrate supply in mycorrhizal roots in comparison to the control plants, but decreased under excess nitrate. Mycorrhizal pm vesicles had roughly a twofold higher specific activity as the non-infected control plants when supplied with 10-15 mM nitrate.
Collapse
Affiliation(s)
- Martin Moche
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| | - Stefanie Stremlau
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| | - Lars Hecht
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| | - Cornelia Göbel
- Plant Biochemistry, Georg-August-University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Ivo Feussner
- Plant Biochemistry, Georg-August-University, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Christine Stöhr
- Institute of Botany and Landscape Ecology, Greifswald University, Grimmer Str. 88, 17487 Greifswald, Germany
| |
Collapse
|
33
|
Pumplin N, Harrison MJ. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. PLANT PHYSIOLOGY 2009; 151:809-19. [PMID: 19692536 PMCID: PMC2754618 DOI: 10.1104/pp.109.141879] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 08/11/2009] [Indexed: 05/18/2023]
Abstract
In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. As each arbuscule develops, the cortical cell undergoes a transient reorganization and envelops the arbuscule in a novel symbiosis-specific membrane, called the periarbuscular membrane. The periarbuscular membrane, which is continuous with the plant plasma membrane of the cortical cell, is a key interface in the symbiosis; however, relatively little is known of its composition or the mechanisms of its development. Here, we used fluorescent protein fusions to obtain both spatial and temporal information about the protein composition of the periarbuscular membrane. The data indicate that the periarbuscular membrane is composed of at least two distinct domains, an "arbuscule branch domain" that contains the symbiosis-specific phosphate transporter, MtPT4, and an "arbuscule trunk domain" that contains MtBcp1. This suggests a developmental transition from plasma membrane to periarbuscular membrane, with biogenesis of a novel membrane domain associated with the repeated dichotomous branching of the hyphae. Additionally, we took advantage of available organelle-specific fluorescent marker proteins to further evaluate cells during arbuscule development and degeneration. The three-dimensional data provide new insights into relocation of Golgi and peroxisomes and also illustrate that cells with arbuscules can retain a large continuous vacuolar system throughout development.
Collapse
Affiliation(s)
- Nathan Pumplin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | |
Collapse
|
34
|
Komatsu S, Wada T, Abaléa Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K. Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 2009; 8:4487-99. [PMID: 19658398 DOI: 10.1021/pr9002883] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane acts as the primary interface between the cellular cytoplasm and the extracellular environment. To investigate the function of the plasma membrane in response to flooding stress, plasma membrane was purified from root and hypocotyl of soybean seedlings using an aqueous two-phase partitioning method. Purified plasma membrane proteins with 81% purity were analyzed using either two-dimensional polyacrylamide gel electrophoresis followed by mass spectrometry and protein sequencing (2-DE MS/sequencer)-based proteomics or nanoliquid chromatography followed by mass spectrometry (nanoLC-MS/MS)-based proteomics. The number of hydrophobic proteins identified by nanoLC-MS/MS-based proteomics was compared with those identified by 2-DE MS/sequencer-based proteomics. These techniques were applied to identify the proteins in soybean that are responsive to flooding stress. Results indicate insights of plasma membrane into the response of soybean to flooding stress: (i) the proteins located in the cell wall are up-regulated in plasma membrane; (ii) the proteins related to antioxidative system play a crucial role in protecting cells from oxidative damage; (iii) the heat shock cognate protein plays a role in protecting proteins from denaturation and degradation during flooding stress; and (iv) the signaling related proteins might regulate ion homeostasis.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Castillejo MÁ, Maldonado AM, Dumas-Gaudot E, Fernández-Aparicio M, Susín R, Diego R, Jorrín JV. Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula. BMC Genomics 2009; 10:294. [PMID: 19575787 PMCID: PMC2714000 DOI: 10.1186/1471-2164-10-294] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 07/03/2009] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Parasitic angiosperm Orobanche crenata infection represents a major constraint for the cultivation of legumes worldwide. The level of protection achieved to date is either incomplete or ephemeral. Hence, an efficient control of the parasite requires a better understanding of its interaction and associated resistance mechanisms at molecular levels. RESULTS In order to study the plant response to this parasitic plant and the molecular basis of the resistance we have used a proteomic approach. The root proteome of two accessions of the model legume Medicago truncatula displaying differences in their resistance phenotype, in control as well as in inoculated plants, over two time points (21 and 25 days post infection), has been compared. We report quantitative as well as qualitative differences in the 2-DE maps between early- (SA 27774) and late-resistant (SA 4087) genotypes after Coomassie and silver-staining: 69 differential spots were observed between non-inoculated genotypes, and 42 and 25 spots for SA 4087 and SA 27774 non-inoculated and inoculated plants, respectively. In all, 49 differential spots were identified by peptide mass fingerprinting (PMF) following MALDI-TOF/TOF mass spectrometry. Many of the proteins showing significant differences between genotypes and after parasitic infection belong to the functional category of defense and stress-related proteins. A number of spots correspond to proteins with the same function, and might represent members of a multigenic family or post-transcriptional forms of the same protein. CONCLUSION The results obtained suggest the existence of a generic defense mechanism operating during the early stages of infection and differing in both genotypes. The faster response to the infection observed in the SA 27774 genotype might be due to the action of proteins targeted against key elements needed for the parasite's successful infection, such as protease inhibitors. Our data are discussed and compared with those previously obtained with pea 1 and transcriptomic analysis of other plant-pathogen and plant-parasitic plant systems.
Collapse
Affiliation(s)
- Ma Ángeles Castillejo
- Institute for Sustainable Agriculture, CSIC, Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - Ana M Maldonado
- Department of Biochemistry and Molecular Biology, University of Cordoba, Rabanales Campus, Córdoba, Spain
| | - Eliane Dumas-Gaudot
- UMR 1088 INRA/CNRS/UB (Plant-Microbe Environment) INRA-CMSE, BP 86510, 21065 DIJON Cedex, France
| | - Mónica Fernández-Aparicio
- Institute for Sustainable Agriculture, CSIC, Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - Rafael Susín
- Department of Biochemistry and Molecular Biology, University of Cordoba, Rabanales Campus, Córdoba, Spain
| | - Rubiales Diego
- Institute for Sustainable Agriculture, CSIC, Alameda del Obispo s/n, Apdo. 4084, 14080 Córdoba, Spain
| | - Jesús V Jorrín
- Department of Biochemistry and Molecular Biology, University of Cordoba, Rabanales Campus, Córdoba, Spain
| |
Collapse
|
36
|
Duroc Y, Hiard S, Vrielynck N, Ragu S, Budar F. The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. PLANT MOLECULAR BIOLOGY 2009; 70:123-37. [PMID: 19199092 DOI: 10.1007/s11103-009-9461-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 01/19/2009] [Indexed: 05/08/2023]
Abstract
The Ogura cytoplasmic male sterility causing protein, ORF138, was found to be part of a complex with an apparent size of over 750 kDa in the inner membrane of mitochondria of sterile plants. ORF138 did not colocalize with any of the oxidative phosphorylation complexes, nor did its presence modify their apparent size or amount, compared to samples from fertile isogenic plants. We attempted to detect potential proteins or nucleic acids that could be involved in the large ORF138 complex by 2D PAGE, immunoprecipitation and nuclease treatments of native extracts. All our results suggest that the ORF138 protein is the main, if not only, component of this large complex. The capacities of complexes I, II, IV, and ATP synthase were identical in samples from sterile and fertile plants. Isolated mitochondria from sterile plants showed a higher oxygen consumption than those from fertile plants. In vivo respiration measurements suggest that the difference in O(2) consumption measured at the organelle level is compensated at the cell/tissue level, completely in leaves, but only partially in male reproductive organs.
Collapse
Affiliation(s)
- Yann Duroc
- Station de Génétique et d'Amélioration des Plantes, Institut Jean-Pierre Bourgin, INRA UR254, Route de Saint-Cyr, 78026, Versailles cedex, France
| | | | | | | | | |
Collapse
|
37
|
Mathesius U. Comparative proteomic studies of root–microbe interactions. J Proteomics 2009; 72:353-66. [DOI: 10.1016/j.jprot.2008.12.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/11/2008] [Accepted: 12/12/2008] [Indexed: 01/19/2023]
|
38
|
Recorbet G, Rogniaux H, Gianinazzi-Pearson V, DumasGaudot E. Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. THE NEW PHYTOLOGIST 2009; 181:248-260. [PMID: 19121027 DOI: 10.1111/j.1469-8137.2008.02659.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Ghislaine Recorbet
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| | - Hélène Rogniaux
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| | - Vivienne Gianinazzi-Pearson
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| | - Eliane DumasGaudot
- Unité Mixte de Recherche Plante-Microbe-Environnement INRA 1088/CNRS 5184/Université de Bourgogne. INRA-CMSE. BP 86510. 21065 Dijon Cedex, France;Unité de Recherche 1268 Biopolymères- Interactions-Assemblages, Spectrométrie de Masse, INRA, rue de la Géraudière. BP 71627, 44316 Nantes Cedex 3, France
| |
Collapse
|
39
|
Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C, Amri EZ. Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol 2008; 9:26. [PMID: 18302751 PMCID: PMC2279142 DOI: 10.1186/1471-2199-9-26] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/26/2008] [Indexed: 12/14/2022] Open
Abstract
Background It is well established that adipose tissue plays a key role in energy storage and release but is also a secretory organ and a source of stem cells. Among different lineages, stem cells are able to differentiate into adipocytes and osteoblasts. As secreted proteins could regulate the balance between both lineages, we aimed at characterizing the secretome of human multipotent adipose-derived stem cell (hMADS) at an early step of commitment to adipocytes and osteoblasts. Results A proteomic approach, using mono-dimensional electrophoresis and tandem mass spectrometry, allowed us to identify a total of 73 proteins at day 0 and day 3 of adipocyte and osteoblast differentiation. Analysis of identified proteins showed that 52 % corresponded to classical secreted proteins characterized by a signal peptide, that 37 % previously described in the extracellular compartment were devoid of signal peptide and that 11 % neither exhibited a signal peptide nor had been previously described extracellularly. These proteins were classified into 8 clusters according to their function. Quantitative analysis has been performed for 8 candidates: PAI-1, PEDF, BIGH3, PTX3, SPARC, ENO1, GRP78 and MMP2. Among them, PAI-1 was detected at day 0 and day 3 of osteoblast differentiation but never in adipocyte secretome. Furthermore we showed that PAI-1 mRNA was down-regulated in the bone of ovariectomized mice. Conclusion Given its regulation during the early events of hMADS cell differentiation and its status in ovariectomized mice, PAI-1 could play a role in the adipocyte/osteoblast balance and thus in bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Chiara Chiellini
- ISBDC, Université de Nice Sophia-Antipolis, CNRS ; 28 avenue de Valrose, 06100 Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Negroni L, Samson M, Guigonis JM, Rossi B, Pierrefite-Carle V, Baudoin C. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation. Mol Cancer Ther 2008; 6:2747-56. [PMID: 17938268 DOI: 10.1158/1535-7163.mct-07-0040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The bacterial cytosine deaminase (CD) gene, associated with the 5-fluorocytosine (5FC) prodrug, is one of the most widely used suicide systems in gene therapy. Introduction of the CD gene within a tumor induces, after 5FC treatment of the animal, a local production of 5-fluorouracil resulting in intratumor chemotherapy. Destruction of the gene-modified tumor is then followed by the triggering of an antitumor immune reaction resulting in the regression of distant wild-type metastasis. The global effects of 5FC on colorectal adenocarcinoma cells expressing the CD gene were analyzed using the proteomic method. Application of 5FC induced apoptosis and 19 proteins showed a significant change in 5FC-treated cells compared with control cells. The up-regulated and down-regulated proteins include cytoskeletal proteins, chaperones, and proteins involved in protein synthesis, the antioxidative network, and detoxification. Most of these proteins are involved in resistance to anticancer drugs and resistance to apoptosis. In addition, we show that the heat shock protein Hsp90beta is phosphorylated on serine 254 upon 5FC treatment. Our results suggest that activation of Hsp90beta by phosphorylation might contribute to tumor regression and tumor immunogenicity. Our findings bring new insights into the mechanism of the anticancer effects induced by CD/5FC treatment.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Amino Acid Sequence
- Animals
- Annexin A5/metabolism
- Apoptosis/drug effects
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Cytosine Deaminase/genetics
- Electrophoresis, Gel, Two-Dimensional
- Flucytosine/therapeutic use
- Gene Transfer Techniques
- Genes, Transgenic, Suicide
- Genetic Therapy
- Genetic Vectors
- HSP90 Heat-Shock Proteins/metabolism
- Molecular Sequence Data
- Phosphorylation
- Proteome/metabolism
- Rats
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transduction, Genetic
- Tumor Cells, Cultured/drug effects
Collapse
|
41
|
Schliemann W, Ammer C, Strack D. Metabolite profiling of mycorrhizal roots of Medicago truncatula. PHYTOCHEMISTRY 2008; 69:112-46. [PMID: 17706732 DOI: 10.1016/j.phytochem.2007.06.032] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/27/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Metabolite profiling of soluble primary and secondary metabolites, as well as cell wall-bound phenolic compounds from roots of barrel medic (Medicago truncatula) was carried out by GC-MS, HPLC and LC-MS. These analyses revealed a number of metabolic characteristics over 56 days of symbiotic interaction with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, when compared to the controls, i.e. nonmycorrhizal roots supplied with low and high amounts of phosphate. During the most active stages of overall root mycorrhization, elevated levels of certain amino acids (Glu, Asp, Asn) were observed accompanied by increases in amounts of some fatty acids (palmitic and oleic acids), indicating a mycorrhiza-specific activation of plastidial metabolism. In addition, some accumulating fungus-specific fatty acids (palmitvaccenic and vaccenic acids) were assigned that may be used as markers of fungal root colonization. Stimulation of the biosynthesis of some constitutive isoflavonoids (daidzein, ononin and malonylononin) occurred, however, only at late stages of root mycorrhization. Increase of the levels of saponins correlated AM-independently with plant growth. Only in AM roots was the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives) observed. The structures of the unknown cyclohexenone derivatives were identified by spectroscopic methods as glucosides of blumenol C and 13-hydroxyblumenol C and their corresponding malonyl conjugates. During mycorrhization, the levels of typical cell wall-bound phenolics (e.g. 4-hydroxybenzaldehyde, vanillin, ferulic acid) did not change; however, high amounts of cell wall-bound tyrosol were exclusively detected in AM roots. Principal component analyses of nonpolar primary and secondary metabolites clearly separated AM roots from those of the controls, which was confirmed by an hierarchical cluster analysis. Circular networks of primary nonpolar metabolites showed stronger and more frequent correlations between metabolites in the mycorrhizal roots. The same trend, but to a lesser extent, was observed in nonmycorrhizal roots supplied with high amounts of phosphate. These results indicate a tighter control of primary metabolism in AM roots compared to control plants. Network correlation analyses revealed distinct clusters of amino acids and sugars/aliphatic acids with strong metabolic correlations among one another in all plants analyzed; however, mycorrhizal symbiosis reduced the cluster separation and enlarged the sugar cluster size. The amino acid clusters represent groups of metabolites with strong correlations among one another (cliques) that are differently composed in mycorrhizal and nonmycorrhizal roots. In conclusion, the present work shows for the first time that there are clear differences in development- and symbiosis-dependent primary and secondary metabolism of M. truncatula roots.
Collapse
Affiliation(s)
- Willibald Schliemann
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
42
|
Rossignol M, Peltier JB, Mock HP, Matros A, Maldonado AM, Jorrín JV. Plant proteome analysis: A 2004–2006 update. Proteomics 2006; 6:5529-48. [PMID: 16991197 DOI: 10.1002/pmic.200600260] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the appearance of the review entitled "Plant Proteome Analysis" in Proteomics in February 2004 (Cánovas, F. M., Dumas-Gaudot, E., Recorbert, G., Jorrín, J. et al., Proteomics 2004, 4, 285-298), about 200 original articles focusing on plant proteomics have been published. Although this represents less than 1% of the global proteomics output during this period, it nevertheless reflects an increase in activity over the period 1999-2004. These papers concern the proteome of at least 35 plant species but have concentrated mainly on thale cress (Arabidopsis thaliana) and rice (Oryza sativa). The scientific objectives have ranged from a proteomic analysis of organs, tissues, cell suspensions, or subcellular fractions to the study of plant development and response to various stresses. A number of contributions have covered PTMs and protein interactions. The dominant analytical platform has been 2-DE coupled to MS, but "second generation" techniques such as DIGE, multidimensional protein identification technology, isotope-coded affinity tags, and stable isotope labeling by amino acids in cell culture have begun to make an impact. This review aims to provide an update of the contribution of proteomics to plant biology during the period 2004-2006, and is divided into six sections: introduction, subcellular proteomes, plant development, responses to biotic and abiotic stresses, PTMs, and protein interactions. The conclusions summarize a view of the major pitfalls and challenges of plant proteomics.
Collapse
|
43
|
Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Küster H. Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:737-748. [PMID: 32689284 DOI: 10.1071/fp06079] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/15/2006] [Indexed: 06/11/2023]
Abstract
The arbuscular mycorrhizal (AM) association between terrestrial plants and soil fungi of the phylum Glomeromycota is the most widespread beneficial plant-microbe interaction on earth. In the course of the symbiosis, fungal hyphae colonise plant roots and supply limiting nutrients, in particular phosphorus, in exchange for carbon compounds. Owing to the obligate biotrophy of mycorrhizal fungi and the lack of genetic systems to study them, targeted molecular studies on AM symbioses proved to be difficult. With the emergence of plant genomics and the selection of suitable models, an application of untargeted expression profiling experiments became possible. In the model legume Medicago truncatula, high-throughput expressed sequence tag (EST)-sequencing in conjunction with in silico and experimental transcriptome profiling provided transcriptional snapshots that together defined the global genetic program activated during AM. Owing to an asynchronous development of the symbiosis, several hundred genes found to be activated during the symbiosis cannot be easily correlated with symbiotic structures, but the expression of selected genes has been extended to the cellular level to correlate gene expression with specific stages of AM development. These approaches identified marker genes for the AM symbiosis and provided the first insights into the molecular basis of gene expression regulation during AM.
Collapse
Affiliation(s)
- Natalija Hohnjec
- Institute for Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Kolja Henckel
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Thomas Bekel
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Jerome Gouzy
- Laboratoire des Interactions Plantes Micro-organismes LIPM, Chemin de Borde-Rouge-Auzeville, BP 52627, 31326 Castanet Tolosan, Cedex, France
| | - Michael Dondrup
- International Graduate School in Bioinformatics and Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Helge Küster
- Institute for Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| |
Collapse
|