1
|
Xie Y, Liu X, Liu W, Carr LR, Lee LP, Imai N, Ortlund EA, Cohen DE. Activity and phosphatidylcholine transfer protein interactions of skeletal muscle thioesterase Them2 enable hepatic steatosis and insulin resistance. J Biol Chem 2024; 300:107855. [PMID: 39369989 PMCID: PMC11570472 DOI: 10.1016/j.jbc.2024.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP. Two residues of Them2 catalytic site were mutated (N50A/D65A) to produce the inactive enzyme while maintaining its homotetrameric structure and interaction with PC-TP. Restoration of skeletal muscle expression in Them2-/- mice using recombinant adeno-associated virus revealed that WT, but not N50A/D65A Them2, promoted high-fat diet-induced weight gain and hepatic steatosis. This was accompanied by greater impairment of insulin sensitivity in WT than N50A/D65A Them2. Pharmacological inhibition or genetic ablation of PC-TP attenuated these effects. In reductionist experiments, conditioned medium collected from WT primary cultured myotubes promoted excess lipid accumulation in oleic acid-treated primary cultured hepatocytes relative to Them2-/- myotubes, which was attributable to secreted extracellular vesicles. Reconstitution of Them2 expression in Them2-/- myotubes affirmed the requirements for catalytic activity and PC-TP interactions for extracellular vesicles to promote lipid accumulation in hepatocytes. These studies provide valuable mechanistic insights, whereby Them2 in skeletal muscle promotes hepatic steatosis and establish both Them2 and PC-TP as attractive targets for managing metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Yang Xie
- Division of Gastroenterology, Hepatology & Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xu Liu
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Wenpeng Liu
- Division of Renal Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Logan R Carr
- Division of Gastroenterology, Hepatology & Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Luke P Lee
- Division of Renal Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Norihiro Imai
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - David E Cohen
- Division of Gastroenterology, Hepatology & Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
3
|
Han S, Wu Q, Wang M, Yang M, Sun C, Liang J, Guo X, Zhang Z, Xu J, Qiu X, Xie C, Chen S, Gao Y, Meng ZX. An integrative profiling of metabolome and transcriptome in the plasma and skeletal muscle following an exercise intervention in diet-induced obese mice. J Mol Cell Biol 2023; 15:mjad016. [PMID: 36882217 PMCID: PMC10576543 DOI: 10.1093/jmcb/mjad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Exercise intervention at the early stage of type 2 diabetes mellitus (T2DM) can aid in the maintenance of blood glucose homeostasis and prevent the development of macrovascular and microvascular complications. However, the exercise-regulated pathways that prevent the development of T2DM remain largely unclear. In this study, two forms of exercise intervention, treadmill training and voluntary wheel running, were conducted for high-fat diet (HFD)-induced obese mice. We observed that both forms of exercise intervention alleviated HFD-induced insulin resistance and glucose intolerance. Skeletal muscle is recognized as the primary site for postprandial glucose uptake and for responsive alteration beyond exercise training. Metabolomic profiling of the plasma and skeletal muscle in Chow, HFD, and HFD-exercise groups revealed robust alterations in metabolic pathways by exercise intervention in both cases. Overlapping analysis identified nine metabolites, including beta-alanine, leucine, valine, and tryptophan, which were reversed by exercise treatment in both the plasma and skeletal muscle. Transcriptomic analysis of gene expression profiles in the skeletal muscle revealed several key pathways involved in the beneficial effects of exercise on metabolic homeostasis. In addition, integrative transcriptomic and metabolomic analyses uncovered strong correlations between the concentrations of bioactive metabolites and the expression levels of genes involved in energy metabolism, insulin sensitivity, and immune response in the skeletal muscle. This work established two models of exercise intervention in obese mice and provided mechanistic insights into the beneficial effects of exercise intervention on systemic energy homeostasis.
Collapse
Affiliation(s)
- Shuang Han
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Qingqian Wu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengying Wang
- Department of Big Data in Health Science School of Public Health, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Miqi Yang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chen Sun
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqi Liang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zheyu Zhang
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingya Xu
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xinyuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Gao
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
4
|
Kuramoto K, Liang H, Hong JH, He C. Exercise-activated hepatic autophagy via the FN1-α5β1 integrin pathway drives metabolic benefits of exercise. Cell Metab 2023; 35:620-632.e5. [PMID: 36812915 PMCID: PMC10079584 DOI: 10.1016/j.cmet.2023.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/01/2022] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
How exercise elicits systemic metabolic benefits in both muscles and non-contractile tissues is unclear. Autophagy is a stress-induced lysosomal degradation pathway that mediates protein and organelle turnover and metabolic adaptation. Exercise activates autophagy in not only contracting muscles but also non-contractile tissues including the liver. However, the role and mechanism of exercise-activated autophagy in non-contractile tissues remain mysterious. Here, we show that hepatic autophagy activation is essential for exercise-induced metabolic benefits. Plasma or serum from exercised mice is sufficient to activate autophagy in cells. By proteomic studies, we identify fibronectin (FN1), which was previously considered as an extracellular matrix protein, as an exercise-induced, muscle-secreted, autophagy-inducing circulating factor. Muscle-secreted FN1 mediates exercise-induced hepatic autophagy and systemic insulin sensitization via the hepatic receptor α5β1 integrin and the downstream IKKα/β-JNK1-BECN1 pathway. Thus, we demonstrate that hepatic autophagy activation drives exercise-induced metabolic benefits against diabetes via muscle-secreted soluble FN1 and hepatic α5β1 integrin signaling.
Collapse
Affiliation(s)
- Kenta Kuramoto
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Huijia Liang
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jung-Hwa Hong
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Congcong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
5
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
6
|
Mathes S, Fahrner A, Luca E, Krützfeldt J. Growth hormone/IGF-I-dependent signaling restores decreased expression of the myokine SPARC in aged skeletal muscle. J Mol Med (Berl) 2022; 100:1647-1658. [PMID: 36178526 PMCID: PMC9592655 DOI: 10.1007/s00109-022-02260-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022]
Abstract
Skeletal muscle exerts many beneficial effects on the human body including the contraction-dependent secretion of peptides termed myokines. We have recently connected the myokine secreted protein acidic and rich in cysteine (SPARC) to the formation of intramuscular adipose tissue (IMAT) in skeletal muscle from aged mice and humans. Here, we searched for inducers of SPARC in order to uncover novel treatment approaches for IMAT. Endurance exercise in mice as well as forskolin treatment in vitro only modestly activated SPARC levels. However, through pharmacological treatments in vitro, we identified IGF-I as a potent inducer of SPARC expression in muscle cells, likely through a direct activation of its promoter via phosphatidylinositol 4,5-bisphospate 3-kinase (PI3K)-dependent signaling. We employed two different mouse models of growth hormone (GH)/IGF-I deficiency to solidify our understanding of the relationship between IGF-I and SPARC in vivo. GH administration robustly increased intramuscular SPARC levels (3.5-fold) in GH releasing hormone receptor-deficient mice and restored low intramuscular SPARC expression in skeletal muscle from aged mice. Intramuscular glycerol injections induced higher levels of adipocyte markers (adiponectin, perilipin) in aged compared to young mice, which was not prevented by GH treatment. Our study provides a roadmap for the study of myokine regulation during aging and demonstrates that the GH/IGF-I axis is critical for SPARC expression in skeletal muscle. Although GH treatment did not prevent IMAT formation in the glycerol model, targeting SPARC by exercise or by activation of IGF-I signaling might offer a novel therapeutic strategy against IMAT formation during aging. KEY MESSAGES : IGF-I regulates the myokine SPARC in muscle cells directly at the promoter level. GH/IGF-I is able to restore the decreased SPARC levels in aged skeletal muscle. The glycerol model induces higher adipocyte markers in aged compared to young muscle. GH treatment does not prevent IMAT formation in the glycerol model.
Collapse
Affiliation(s)
- Sebastian Mathes
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, 8091 Zurich, Switzerland ,Life Science Zurich Graduate School, Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Alexandra Fahrner
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, 8091 Zurich, Switzerland ,Life Science Zurich Graduate School, Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Edlira Luca
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, 8091 Zurich, Switzerland
| | - Jan Krützfeldt
- Department of Endocrinology, Diabetology, and Clinical Nutrition, University Hospital Zurich (USZ), University of Zurich (UZH), Rämistrasse 100, 8091 Zurich, Switzerland ,Life Science Zurich Graduate School, Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
7
|
Howard AC, Mir D, Snow S, Horrocks J, Sayed H, Ma Z, Rogers AN. Anabolic Function Downstream of TOR Controls Trade-offs Between Longevity and Reproduction at the Level of Specific Tissues in C. elegans. FRONTIERS IN AGING 2021; 2:725068. [PMID: 35340273 PMCID: PMC8953723 DOI: 10.3389/fragi.2021.725068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/20/2022]
Abstract
As the most energetically expensive cellular process, translation must be finely tuned to environmental conditions. Dietary restriction attenuates signaling through the nutrient sensing mTOR pathway, which reduces translation and redirects resources to preserve the soma. These responses are associated with increased lifespan but also anabolic impairment, phenotypes also observed when translation is genetically suppressed. Here, we restricted translation downstream of mTOR separately in major tissues in C. elegans to better understand their roles in systemic adaptation and whether consequences to anabolic impairment were separable from positive effects on lifespan. Lowering translation in neurons, hypodermis, or germline tissue led to increased lifespan under well-fed conditions and improved survival upon withdrawal of food, indicating that these are key tissues coordinating enhanced survival when protein synthesis is reduced. Surprisingly, lowering translation in body muscle during development shortened lifespan while accelerating and increasing reproduction, a reversal of phenotypic trade-offs associated with systemic translation suppression. Suppressing mTORC1 selectively in body muscle also increased reproduction while slowing motility during development. In nature, this may be indicative of reduced energy expenditure related to foraging, acting as a "GO!" signal for reproduction. Together, results indicate that low translation in different tissues helps direct distinct systemic adaptations and suggest that unknown endocrine signals mediate these responses. Furthermore, mTOR or translation inhibitory therapeutics that target specific tissues may achieve desired interventions to aging without loss of whole-body anabolism.
Collapse
Affiliation(s)
- Amber C. Howard
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
- Department of Natural Sciences, Middle Georgia State University, Cochran, GA, United States
| | - Dilawar Mir
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Santina Snow
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
- Department of Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Jordan Horrocks
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Hussein Sayed
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Zhengxin Ma
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| | - Aric N. Rogers
- Mount Desert Island Biological Laboratory, Davis Center for Regenerative Biology and Medicine, Bar Harbor, ME, United States
| |
Collapse
|
8
|
Gonzalez-Franquesa A, Peijs L, Cervone DT, Koçana C, Zierath JR, Deshmukh AS. Insulin and 5-Aminoimidazole-4-Carboxamide Ribonucleotide (AICAR) Differentially Regulate the Skeletal Muscle Cell Secretome. Proteomes 2021; 9:37. [PMID: 34449730 PMCID: PMC8396280 DOI: 10.3390/proteomes9030037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a major contributor to whole-body glucose homeostasis and is an important endocrine organ. To date, few studies have undertaken the large-scale identification of skeletal muscle-derived secreted proteins (myokines), particularly in response to stimuli that activate pathways governing energy metabolism in health and disease. Whereas the AMP-activated protein kinase (AMPK) and insulin-signaling pathways have received notable attention for their ability to independently regulate skeletal muscle substrate metabolism, little work has examined their ability to re-pattern the secretome. The present study coupled the use of high-resolution MS-based proteomics and bioinformatics analysis of conditioned media derived from 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR-an AMPK activator)- and insulin-treated differentiated C2C12 myotubes. We quantified 858 secreted proteins, including cytokines and growth factors such as fibroblast growth factor-21 (Fgf21). We identified 377 and 118 proteins that were significantly altered by insulin and AICAR treatment, respectively. Notably, the family of insulin growth factor binding-proteins (Igfbp) was differentially regulated by each treatment. Insulin- but not AICAR-induced conditioned media increased the mitochondrial respiratory capacity of myotubes, potentially via secreted factors. These findings may serve as an important resource to elucidate secondary metabolic effects of insulin and AICAR stimulation in skeletal muscle.
Collapse
Affiliation(s)
- Alba Gonzalez-Franquesa
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Lone Peijs
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Daniel T. Cervone
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Ceren Koçana
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
| | - Juleen R. Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Atul S. Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; (A.G.-F.); (L.P.); (D.T.C.); (C.K.); (J.R.Z.)
- Clinical Proteomics, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Sarcopenia and Cognitive Function: Role of Myokines in Muscle Brain Cross-Talk. Life (Basel) 2021; 11:life11020173. [PMID: 33672427 PMCID: PMC7926334 DOI: 10.3390/life11020173] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by the progressive degeneration of muscle mass and function, and it is associated with severe complications, which are falls, functional decline, frailty, and mortality. Sarcopenia is associated with cognitive impairment, defined as a decline in one or more cognitive domains as language, memory, reasoning, social cognition, planning, making decisions, and solving problems. Although the exact mechanism relating to sarcopenia and cognitive function has not yet been defined, several studies have shown that skeletal muscle produces and secrete molecules, called myokines, that regulate brain functions, including mood, learning, locomotor activity, and neuronal injury protection, showing the existence of muscle-brain cross-talk. Moreover, studies conducted on physical exercise supported the existence of muscle-brain cross-talk, showing how physical activity, changing myokines' circulating levels, exerts beneficial effects on the brain. The review mainly focuses on describing the role of myokines on brain function and their involvement in cognitive impairment in sarcopenia.
Collapse
|
10
|
Nederveen JP, Warnier G, Di Carlo A, Nilsson MI, Tarnopolsky MA. Extracellular Vesicles and Exosomes: Insights From Exercise Science. Front Physiol 2021; 11:604274. [PMID: 33597890 PMCID: PMC7882633 DOI: 10.3389/fphys.2020.604274] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
The benefits of exercise on health and longevity are well-established, and evidence suggests that these effects are partially driven by a spectrum of bioactive molecules released into circulation during exercise (e.g., exercise factors or 'exerkines'). Recently, extracellular vesicles (EVs), including microvesicles (MVs) and exosomes or exosome-like vesicles (ELVs), were shown to be secreted concomitantly with exerkines. These EVs have therefore been proposed to act as cargo carriers or 'mediators' of intercellular communication. Given these findings, there has been a rapidly growing interest in the role of EVs in the multi-systemic, adaptive response to exercise. This review aims to summarize our current understanding of the effects of exercise on MVs and ELVs, examine their role in the exercise response and long-term adaptations, and highlight the main methodological hurdles related to blood collection, purification, and characterization of ELVs.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Department of Pediatrics, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| | - Geoffrey Warnier
- Institut of Neuroscience, UCLouvain, Université catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| | - Mats I Nilsson
- Exerkine Corporation, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada.,Exerkine Corporation, McMaster University Medical Centre (MUMC), Hamilton, ON, Canada
| |
Collapse
|
11
|
Ma J, Chen K. The role of Irisin in multiorgan protection. Mol Biol Rep 2021; 48:763-772. [PMID: 33389537 DOI: 10.1007/s11033-020-06067-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Physical exercise is an effective strategy for improving human health. Various organs, including the heart, lung and kidney, can benefit from exercise. However, the underlying molecular mechanisms by which exercise protects organs remain unknown. Irisin, a myokine secreted from muscle in response to exercise, has attracted increased attention from researchers. The role of irisin in multiorgan protection has been gradually revealed, and this muscle-derived circulating factor is regarded as an essential bridge linking exercise and organ health. The mechanisms by which irisin protects diverse organs are different. Here, we review the research progress on the multiorgan protective effects of irisin and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, People's Republic of China
| | - Ken Chen
- Department of Cardiology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, People's Republic of China. .,Department of Cardiology, The Fifth People's Hospital of Chongqing, Chongqing, 400062, People's Republic of China.
| |
Collapse
|
12
|
Florin A, Lambert C, Sanchez C, Zappia J, Durieux N, Tieppo AM, Mobasheri A, Henrotin Y. The secretome of skeletal muscle cells: A systematic review. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100019. [DOI: 10.1016/j.ocarto.2019.100019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
|
13
|
Vechetti IJ, Valentino T, Mobley CB, McCarthy JJ. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J Physiol 2020; 599:845-861. [PMID: 31944292 DOI: 10.1113/jp278929] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Regular exercise has a central role in human health by reducing the risk of type 2 diabetes, obesity, stroke and cancer. How exercise is able to promote such systemic benefits has remained somewhat of a mystery but has been thought to be in part mediated by the release of myokines, skeletal muscle-specific cytokines, in response to exercise. Recent studies have revealed skeletal muscle can also release extracellular vesicles (EVs) into circulation following a bout of exercise. EVs are small membrane-bound vesicles capable of delivering biomolecules to recipient cells and subsequently altering their metabolism. The notion that EVs may have a role in both skeletal muscle and systemic adaptation to exercise has generated a great deal of excitement within a number of different fields including exercise physiology, neuroscience and metabolism. The purpose of this review is to provide an introduction to EV biology and what is currently known about skeletal muscle EVs and their potential role in the response of muscle and other tissues to exercise.
Collapse
Affiliation(s)
- Ivan J Vechetti
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Taylor Valentino
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - C Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
14
|
Wu Y, Han M, Wang Y, Gao Y, Cui X, Xu P, Ji C, Zhong T, You L, Zeng Y. A Comparative Peptidomic Characterization of Cultured Skeletal Muscle Tissues Derived From db/db Mice. Front Endocrinol (Lausanne) 2019; 10:741. [PMID: 31736878 PMCID: PMC6828820 DOI: 10.3389/fendo.2019.00741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
As an important secretory organ, skeletal muscle has drawn attention as a potential target tissue for type 2 diabetic mellitus (T2DM). Recent peptidomics approaches have been applied to identify secreted peptides with potential bioactive. However, comprehensive analysis of the secreted peptides from skeletal muscle tissues of db/db mice and elucidation of their possible roles in insulin resistance remains poorly characterized. Here, we adopted a label-free discovery using liquid chromatography tandem mass spectrometry (LC-MS/MS) technology and identified 63 peptides (42 up-regulated peptides and 21 down-regulated peptides) differentially secreted from cultured skeletal muscle tissues of db/db mice. Analysis of relative molecular mass (Mr), isoelectric point (pI) and distribution of Mr vs pI of differentially secreted peptides presented the general feature. Furthermore, Gene ontology (GO) and pathway analyses for the parent proteins made a comprehensive functional assessment of these differential peptides, indicating the enrichment in glycolysis/gluconeogenesis and striated muscle contraction processes. Intercellular location analysis pointed out most precursor proteins of peptides were cytoplasmic or cytoskeletal. Additionally, cleavage site analysis revealed that Lysine (N-terminal)-Alanine (C-terminal) and Lysine (N-terminal)-Leucine (C-terminal) represents the preferred cleavage sites for identified peptides and proceeding peptides respectively. Mapped to the precursors' sequences, most identified peptides were observed cleaved from creatine kinase m-type (KCRM) and fructose-bisphosphate aldolase A (Aldo A). Based on UniProt and Pfam database for specific domain structure or motif, 44 peptides out of total were positioned in the functional motif or domain from their parent proteins. Using C2C12 myotubes as cell model in vitro, we found several candidate peptides displayed promotive or inhibitory effects on insulin and mitochondrial-related pathways by an autocrine manner. Taken together, this study will encourage us to investigate the biologic functions and the potential regulatory mechanism of these secreted peptides from skeletal muscle tissues, thus representing a promising strategy to treat insulin resistance as well as the associated metabolic disorders.
Collapse
Affiliation(s)
- Yanting Wu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Affiliated Maternity and Child Health Care Hospital of Nantong University, NanTong, China
| | - Mei Han
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Chenbo Ji
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Tianying Zhong
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lianghui You
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- *Correspondence: Lianghui You
| | - Yu Zeng
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Yu Zeng
| |
Collapse
|
15
|
Yoon JH, Kim D, Kim J, Lee H, Ghim J, Kang BJ, Song P, Suh PG, Ryu SH, Lee TG. NOTUM Is Involved in the Progression of Colorectal Cancer. Cancer Genomics Proteomics 2018; 15:485-497. [PMID: 30343282 DOI: 10.21873/cgp.20107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There are limitations to current colorectal cancer (CRC)-specific diagnostic methods and therapies. Tumorigenesis proceeds because of interaction between cancer cells and various surrounding cells; discovering new molecular mediators through studies of the CRC secretome is a promising approach for the development of CRC diagnostics and therapies. MATERIALS AND METHODS A comparative secretomic analysis was performed using primary and metastatic human isogenic CRC cells. Proliferation was determined by MTT and thymidine incorporation assay, migration was determined by wound-healing assay (ELISA). The level of palmitoleoyl-protein carboxylesterase (NOTUM) in plasma from patients with CRC was determined by enzyme-linked immunosorbent assay. RESULTS NOTUM expression was increased in metastatic cells. Proliferation was suppressed by inhibiting expression of NOTUM. Knockdown of NOTUM genes inhibited proliferation as well as migration, with possible involvement of p38 and c-JUN N-terminal kinase in this process. The result was verified in patients with CRC. CONCLUSION NOTUM may be a new candidate for diagnostics and therapy of CRC.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Department of Neural Development and Disease, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dayea Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jaeyoon Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Hyeongjoo Lee
- NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Jaewang Ghim
- NovaCell Technology, Inc., Pohang, Republic of Korea
| | - Byung Jun Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Parkyong Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Pann-Ghill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Taehoon G Lee
- NovaCell Technology, Inc., Pohang, Republic of Korea
| |
Collapse
|
16
|
Arpaci H. Major determinants of circulating myostatin in polycystic ovary syndrome. Exp Ther Med 2018; 17:1383-1389. [PMID: 30680017 PMCID: PMC6327416 DOI: 10.3892/etm.2018.7080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022] Open
Abstract
The present study was designed to investigate the possible impact of hormonal and demographic parameters of patients with polycystic ovary syndrome (PCOS) on the circulating levels of myostatin. The study cohort comprised 46 patients with PCOS and 42 healthy female controls, and all subjects were of normal weight. Multiple regression analysis was applied to investigate the possible associations between serum myostatin levels and other laboratory parameters. Evaluation of the levels of myostatin revealed no significant differences between the PCOS and control groups (P>0.05). In the control group, no significant correlations were identified between the myostatin levels and any other laboratory parameters. Only low-density-lipoprotein cholesterol (LDL-C) levels in the PCOS group were revealed to be significantly, although negatively, associated with myostatin levels (P=0.018). In the regression model of the PCOS group, an increase in LDL-C and prolactin (PRL) were associated with a decrease in myostatin (P=0.001 and P=0.013, respectively). Furthermore, a decrease in sex hormone-binding globulin (SHBG), fasting blood glucose (FBG) and monocytes were associated with an increase in myostatin (P=0.028, P<0.001 and P=0.026, respectively). An increase in triglycerides was also associated with an increase in myostatin (P=0.001). In the regression model of the control group, a decrease in LDL-C was associated with an increase in myostatin (P=0.003) and a decrease in thyroid-stimulating hormone was associated with a decrease in myostatin (P=0.028). These results indicated that the normal range of myostatin levels in patients with PCOS is regulated by changes in the circulating levels of PRL, LDL-C, SHBG, triglycerides, monocytes and FBG.
Collapse
Affiliation(s)
- Haldun Arpaci
- Department of Obstetrics and Gynecology, Kafkas University School of Medicine, Kars 36000, Turkey
| |
Collapse
|
17
|
Tan N, Li X, Zhai L, Liu D, Li J, Yokota H, Zhang P. Effects of knee loading on obesity-related non-alcoholic fatty liver disease in an ovariectomized mouse model with high-fat diet. Hepatol Res 2018; 48:839-849. [PMID: 29601135 PMCID: PMC6143407 DOI: 10.1111/hepr.13076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/27/2022]
Abstract
AIM Hormonal and nutritional disorders are the main causes of obesity and non-alcoholic fatty liver disease, especially in the elderly and in postmenopausal women. Although physical activity might alleviate these disorders, the elderly may often have difficulty in carrying out physical exercise. The purpose of this study was to investigate the therapeutic effect of knee loading, a new form of physical stimulation, on the symptoms of obesity and fatty liver. METHODS Using ovariectomized mice fed a high-fat diet, we evaluated the effect of knee loading that applies gentle cyclic loads to the knee. Female C57BL/6 mice were divided into five groups: control (SCD), high-fat diet (HF), HF with loading (HF + L), HF with ovariectomy (HF + OVX), and HF + OVX with loading (HF + OVX + L). Except for SCD, mice underwent sham operation or ovariectomy and were maintained on HF diet. After 6 weeks, the mice in the HF + L and HF + OVX + L groups were treated with knee loading for 6 weeks. RESULTS Compared to the obesity groups (HF and HF + OVX), knee loading significantly decreased a gain in body weight, liver weight, and white adipose tissue (all P < 0.01). It also reduced the lipid level in the serum (P < 0.01) and histological severity of hepatic steatosis (P < 0.01). Furthermore, knee loading downregulated biomarkers related to endoplasmic reticulum (ER) stress (GRP78, p-eIF2α, and ATF4) and altered biomarkers in autophagy (LC3 and p62). CONCLUSIONS Knee loading suppressed obesity-associated metabolic alterations and hepatic steatosis. These effects with knee loading might be associated with suppression of ER stress and promotion of autophagy.
Collapse
Affiliation(s)
- Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China,TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300457, China,Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA,Corresponding Author: Ping Zhang, MD, Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China, Phone: 86-22-83336818, Fax: 86-22-83336810,
| |
Collapse
|
18
|
Little HC, Tan SY, Cali FM, Rodriguez S, Lei X, Wolfe A, Hug C, Wong GW. Multiplex Quantification Identifies Novel Exercise-regulated Myokines/Cytokines in Plasma and in Glycolytic and Oxidative Skeletal Muscle. Mol Cell Proteomics 2018; 17:1546-1563. [PMID: 29735541 DOI: 10.1074/mcp.ra118.000794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/02/2018] [Indexed: 12/15/2022] Open
Abstract
Exercise is known to confer major health benefits, but the underlying mechanisms are not well understood. The systemic effects of exercise on multi-organ systems are thought to be partly because of myokines/cytokines secreted by skeletal muscle. The extent to which exercise alters cytokine expression and secretion in different muscle fiber types has not been systematically examined. Here, we assessed changes in 66 mouse cytokines in serum, and in glycolytic (plantaris) and oxidative (soleus) muscles, in response to sprint, endurance, or chronic wheel running. Both acute and short-term exercise significantly altered a large fraction of cytokines in both serum and muscle, twenty-three of which are considered novel exercise-regulated myokines. Most of the secreted cytokine receptors profiled were also altered by physical activity, suggesting an exercise-regulated mechanism that modulates the generation of soluble receptors found in circulation. A greater overlap in cytokine profile was seen between endurance and chronic wheel running. Between fiber types, both acute and chronic exercise induced significantly more cytokine changes in oxidative compared with glycolytic muscle. Further, changes in a subset of circulating cytokines were not matched by their changes in muscle, but instead reflected altered expression in liver and adipose tissues. Last, exercise-induced changes in cytokine mRNA and protein were only minimally correlated in soleus and plantaris. In sum, our results indicate that exercise regulates many cytokines whose pleiotropic actions may be linked to positive health outcomes. These data provide a framework to further understand potential crosstalk between skeletal muscle and other organ compartments.
Collapse
Affiliation(s)
- Hannah C Little
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Stefanie Y Tan
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Francesca M Cali
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Susana Rodriguez
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Xia Lei
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Andrew Wolfe
- ¶Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Christopher Hug
- ‖Division of Pulmonary Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - G William Wong
- From the ‡Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; .,§Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
19
|
Rajna A, Gibling H, Sarr O, Matravadia S, Holloway GP, Mutch DM. Alpha-linolenic acid and linoleic acid differentially regulate the skeletal muscle secretome of obese Zucker rats. Physiol Genomics 2018; 50:580-589. [PMID: 29727591 DOI: 10.1152/physiolgenomics.00038.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evidence shows that proteins secreted from skeletal muscle influence a broad range of metabolic signaling pathways. We previously reported that essential polyunsaturated fatty acids (PUFA) improved whole-body glucose homeostasis in obese Zucker rats; however, the mechanisms underlying these benefits remain enigmatic. While PUFA and obesity influence skeletal muscle function, their effects on the secretome are unknown. The aim of this work was to determine if improvements in whole-body glucose homeostasis in obese Zucker rats fed diets supplemented with either linoleic acid (LA) or alpha-linolenic acid (ALA) for 12 wk are related to changes in the skeletal muscle secretome. Secreted proteins were identified with a predictive bioinformatic analysis of microarray gene expression from red tibialis anterior skeletal muscle. Approximately 130 genes were differentially expressed (false discovery rate = 0.05) in obese rats compared with lean controls. The expression of 15 genes encoding secreted proteins was differentially regulated in obese controls, obese LA-supplemented, and obese ALA-supplemented rats compared with lean controls. Five secreted proteins ( Col3a1, Col15a1, Pdgfd, Lyz2, and Angptl4) were differentially regulated by LA and ALA. Most notably, ALA supplementation reduced Angptl4 gene expression compared with obese control and obese-LA supplemented rats and reduced circulating ANGPTL4 serum concentrations. ALA also influenced Angptl4 gene expression and ANGPTL4 secretion from differentiated rat L6 myotubes. Altogether, the present data indicate that obesity has a greater global impact on skeletal muscle gene expression than either essential PUFA; however, LA and ALA may exert their metabolic benefits in part by regulating the skeletal muscle secretome.
Collapse
Affiliation(s)
- Alex Rajna
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Heather Gibling
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Ousseynou Sarr
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Sarthak Matravadia
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
20
|
Grube L, Dellen R, Kruse F, Schwender H, Stühler K, Poschmann G. Mining the Secretome of C2C12 Muscle Cells: Data Dependent Experimental Approach To Analyze Protein Secretion Using Label-Free Quantification and Peptide Based Analysis. J Proteome Res 2018; 17:879-890. [DOI: 10.1021/acs.jproteome.7b00684] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leonie Grube
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Rafael Dellen
- Mathematical
Institute, Heinrich-Heine-University, Düsseldorf 40225, Germany
- Center for
Bioinformatics and Biostatistics, Biomedical Research Centre Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Fabian Kruse
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Holger Schwender
- Mathematical
Institute, Heinrich-Heine-University, Düsseldorf 40225, Germany
- Center for
Bioinformatics and Biostatistics, Biomedical Research Centre Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Kai Stühler
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
- Institute
for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf 40225, Germany
| | - Gereon Poschmann
- Molecular
Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf 40225, Germany
| |
Collapse
|
21
|
The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2017; 41:14-29. [DOI: 10.1007/s12272-017-0994-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/21/2017] [Indexed: 12/25/2022]
|
22
|
Lombardi G, Sansoni V, Banfi G. Measuring myokines with cardiovascular functions: pre-analytical variables affecting the analytical output. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:299. [PMID: 28856139 PMCID: PMC5555982 DOI: 10.21037/atm.2017.07.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022]
Abstract
In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Li C, Zhang T, Yu K, Xie H, Bai Y, Zhang L, Wu Y, Wang N. Neuroprotective effect of electroacupuncture and upregulation of hypoxia-inducible factor-1α during acute ischaemic stroke in rats. Acupunct Med 2017; 35:360-365. [PMID: 28536255 DOI: 10.1136/acupmed-2016-011148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acupuncture is a traditional method that has been widely used in various fields of medicine with therapeutic effect. However, evidence of effectiveness to support the application of electroacupuncture (EA) during the process of ischaemia is scarce. OBJECTIVES To investigate dynamic changes in hypoxia-inducible factor (HIF)-1α expression as well as its association with neurological status in rats subjected to acute ischaemic stroke and EA intervention. METHODS Forty adult male rats were randomly divided into three groups that received sham surgery (Control group, n=10) or underwent middle cerebral artery occlusion and EA (MCAO+EA group, n=15) or minimal acupuncture as a control treatment (MCAO+MA group, n=15). The rats in the MCAO+EA and MCAO+MA groups received EA or acupuncture without any electrical current, respectively, during 90 min of ischaemia. Rats in the Control group received the same surgical procedure but without MCAO. EA involved electrical stimulation of needles inserted into the quadriceps at 50 Hz frequency and 3 mA current intensity. Neurological status was evaluated on postoperative day 1, and cerebral infarction volume (IV) and HIF-1α expression 24 hours later. RESULTS Neurological scores were improved and cerebral IV was decreased in the MCAO+EA group compared to the MCAO+MA group (both p<0.05). Moreover, HIF-1α expression was higher in the MCAO+EA group versus the MCAO+MA group (p<0.05). CONCLUSIONS EA enhanced recovery of neurological function, decreased cerebral IV and increased HIF-1α expression in ischaemic rats. Further research is needed to determine whether EA is effective for stroke treatment through the stimulation of muscle contraction.
Collapse
Affiliation(s)
- Ce Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Tingting Zhang
- Acupuncture and Tuina College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, China
| | - Kewei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| | - Nianhong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, WuLuMuQi Middle Road 12, Shanghai, China
| |
Collapse
|
24
|
Pourteymour S, Eckardt K, Holen T, Langleite T, Lee S, Jensen J, Birkeland KI, Drevon CA, Hjorth M. Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines. Mol Metab 2017; 6:352-365. [PMID: 28377874 PMCID: PMC5369209 DOI: 10.1016/j.molmet.2017.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/19/2022] Open
Abstract
Objective Skeletal muscle is an important secretory organ, producing and releasing numerous myokines, which may be involved in mediating beneficial health effects of physical activity. More than 100 myokines have been identified by different proteomics approaches, but these techniques may not detect all myokines. We used mRNA sequencing as an untargeted approach to study gene expression of secreted proteins in skeletal muscle upon acute as well as long-term exercise. Methods Twenty-six middle-aged, sedentary men underwent combined endurance and strength training for 12 weeks. Skeletal muscle biopsies from m. vastus lateralis and blood samples were taken before and after an acute bicycle test, performed at baseline as well as after 12 weeks of training intervention. We identified transcripts encoding secretory proteins that were changed more than 1.5-fold in muscle after exercise. Secretory proteins were defined based on either curated UniProt annotations or predictions made by multiple bioinformatics methods. Results This approach led to the identification of 161 candidate secretory transcripts that were up-regulated after acute exercise and 99 that where increased after 12 weeks exercise training. Furthermore, 92 secretory transcripts were decreased after acute and/or long-term physical activity. From these responsive transcripts, we selected 17 candidate myokines sensitive to short- and/or long-term exercise that have not been described as myokines before. The expression of these transcripts was confirmed in primary human skeletal muscle cells during in vitro differentiation and electrical pulse stimulation (EPS). One of the candidates we identified was macrophage colony-stimulating factor-1 (CSF1), which influences macrophage homeostasis. CSF1 mRNA increased in skeletal muscle after acute and long-term exercise, which was accompanied by a rise in circulating CSF1 protein. In cultured muscle cells, EPS promoted a significant increase in the expression and secretion of CSF1. Conclusion We identified 17 new, exercise-responsive transcripts encoding secretory proteins. We further identified CSF1 as a novel myokine, which is secreted from cultured muscle cells and up-regulated in muscle and plasma after acute exercise. Numerous transcripts were identified that were regulated in human skeletal muscle after acute and/or long-term exercise. These transcripts encode potential myokines, which may play key roles in local and systemic adaptations to exercise. CSF1 was identified as a novel myokine. CSF1 was increased after acute exercise, and secreted from cultured human myotubes in response to EPS.
Collapse
Affiliation(s)
- S Pourteymour
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - K Eckardt
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - T Holen
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - T Langleite
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - J Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - K I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - C A Drevon
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - M Hjorth
- Department of Nutrition, Institute for Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
25
|
Wenzel K, Samal R, Hammer E, Dhople VM, Gross S, Völker U, Felix SB, Könemann S. Pathophysiological aldosterone levels modify the secretory activity of cardiac progenitor cells. Mol Cell Endocrinol 2017; 439:16-25. [PMID: 27742487 DOI: 10.1016/j.mce.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
Abstract
Cardiac progenitor cells (CPCs) trigger regenerative processes via paracrine mechanisms in response to changes in their environment. In the present study we explored alterations in the secretory activity of CPCs induced by raised aldosterone levels symptomatic for heart failure. The cytokine profile of the supernatant of CPCs that were treated with the mineralocorticoid showed an induction of interleukin-6 secretion. Mass spectrometric analyses revealed an increase in the abundance of secreted proteins associated with regeneration and cell migration like gelsolin and galectin-1. Differential regulation of proteins associated with the extracellular matrix further points to an activation of cell migration. In response to supernatant, migration and proliferation were induced in CPCs, indicating a potential role of paracrine factors in the activation of CPCs from other regions of the heart or extra-cardiac sources. Changes in the secretory activity of CPCs might aim to compensate for the detrimental actions of aldosterone in heart failure.
Collapse
Affiliation(s)
- Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Rasmita Samal
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Elke Hammer
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Vishnu M Dhople
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.
| | - Stefan Gross
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Uwe Völker
- Interfaculty Institute for Genetic and Functional Genomics, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Stephan B Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Germany.
| |
Collapse
|
26
|
The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov 2016; 15:719-29. [PMID: 27616294 DOI: 10.1038/nrd.2016.153] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exercise reduces the risk of a multitude of disorders, from metabolic disease to cancer, but the molecular mechanisms mediating the protective effects of exercise are not completely understood. The realization that skeletal muscle is an endocrine organ capable of secreting proteins termed 'myokines', which participate in tissue crosstalk, provided a critical link in the exercise-health paradigm. However, the myokine field is still emerging, and several challenges remain in the discovery and validation of myokines. This Review considers these challenges and highlights some recently identified novel myokines with the potential to be therapeutically exploited in the treatment of metabolic disease and cancer.
Collapse
|
27
|
Petriz BA, Gomes CPC, Almeida JA, de Oliveira GP, Ribeiro FM, Pereira RW, Franco OL. The Effects of Acute and Chronic Exercise on Skeletal Muscle Proteome. J Cell Physiol 2016; 232:257-269. [PMID: 27381298 DOI: 10.1002/jcp.25477] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023]
Abstract
Skeletal muscle plasticity and its adaptation to exercise is a topic that is widely discussed and investigated due to its primary role in the field of exercise performance and health promotion. Repetitive muscle contraction through exercise stimuli leads to improved cardiovascular output and the regulation of endothelial dysfunction and metabolic disorders such as insulin resistance and obesity. Considerable improvements in proteomic tools and data analysis have broth some new perspectives in the study of the molecular mechanisms underlying skeletal muscle adaptation in response to physical activity. In this sense, this review updates the main relevant studies concerning muscle proteome adaptation to acute and chronic exercise, from aerobic to resistance training, as well as the proteomic profile of natural inbred high running capacity animal models. Also, some promising prospects in the muscle secretome field are presented, in order to better understand the role of physical activity in the release of extracellular microvesicles and myokines activity. Thus, the present review aims to update the fast-growing exercise-proteomic scenario, leading to some new perspectives about the molecular events under skeletal muscle plasticity in response to physical activity. J. Cell. Physiol. 232: 257-269, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jeeser A Almeida
- Curso de Educação Física, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil.,S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil
| | - Getulio P de Oliveira
- Programa de Pós-Graduação em Patologia Molecular-Universidade de Brasília, DF, Brasil
| | - Filipe M Ribeiro
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Rinaldo W Pereira
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Octavio L Franco
- S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil.,Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| |
Collapse
|
28
|
Kim HJ, Kang WY, Seong SJ, Kim SY, Lim MS, Yoon YR. Follistatin-like 1 promotes osteoclast formation via RANKL-mediated NF-κB activation and M-CSF-induced precursor proliferation. Cell Signal 2016; 28:1137-1144. [PMID: 27234130 DOI: 10.1016/j.cellsig.2016.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/19/2016] [Accepted: 05/22/2016] [Indexed: 12/25/2022]
Abstract
Follistatin-like 1 (FSTL1) functions as a pivotal modulator of inflammation and is implicated in many inflammatory diseases such as rheumatoid arthritis. Here, we report that FSTL1 is strongly upregulated and secreted during osteoclast differentiation of bone marrow-derived macrophages (BMMs) and that FSTL1 positively regulates osteoclast formation induced by RANKL and M-CSF. The overexpression of FSTL1 or treatment with recombinant FSTL1 (rFSTL1) in BMMs enhances the formation of multinuclear osteoclasts and the induction of c-Fos and NFATc1, transcription factors important for osteoclastogenesis. Conversely, knockdown of FSTL1 using a small hairpin RNA suppresses osteoclast formation and the expression of these transcription factors. While FSTL1 does not affect RANKL-stimulated activation of p38 MAPK, phosphorylation of IκBα, JNK, and ERK were increased by overexpression or addition of rFSTL1. Furthermore, rFSTL1 increased RANKL-induced NF-κB transcriptional activity in a dose-dependent manner. In addition to its role in osteoclastogenesis, FSTL1 promotes proliferation of osteoclast precursors by increasing M-CSF-induced ERK activation, which in turn leads to accelerated osteoclast formation. Together, our findings demonstrate that FSTL1 is a secreted osteoclastogenic factor that plays a critical role in osteoclast formation via the NF-κB and MAPKs signaling pathways.
Collapse
Affiliation(s)
- Hyun-Ju Kim
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu 41944, Republic of Korea; Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| | - Woo Youl Kang
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu 41944, Republic of Korea
| | - Sook Jin Seong
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu 41944, Republic of Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Mi-Sun Lim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young-Ran Yoon
- Department of Biomedical Science, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Clinical Trial Center, School of Medicine, Kyungpook National University and Hospital, Daegu 41944, Republic of Korea.
| |
Collapse
|
29
|
Hjorth M, Pourteymour S, Görgens SW, Langleite TM, Lee S, Holen T, Gulseth HL, Birkeland KI, Jensen J, Drevon CA, Norheim F. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells. Acta Physiol (Oxf) 2016; 217:45-60. [PMID: 26572800 DOI: 10.1111/apha.12631] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/24/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
AIM Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. METHODS Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. RESULTS Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. CONCLUSION Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- M. Hjorth
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. Pourteymour
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - T. M. Langleite
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - S. Lee
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - T. Holen
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - H. L. Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - K. I. Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine; Oslo University Hospital and Institute of Clinical Medicine; University of Oslo; Oslo Norway
| | - J. Jensen
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - C. A. Drevon
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| | - F. Norheim
- Department of Nutrition; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
30
|
Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 2015; 94:146-50. [DOI: 10.1038/icb.2015.101] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 01/04/2023]
|
31
|
Jung S, Ahn N, Kim S, Byun J, Joo Y, Kim S, Jung Y, Park S, Hwang I, Kim K. The effect of ladder-climbing exercise on atrophy/hypertrophy-related myokine expression in middle-aged male Wistar rats. J Physiol Sci 2015; 65:515-21. [PMID: 26223833 PMCID: PMC10717129 DOI: 10.1007/s12576-015-0388-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/02/2015] [Indexed: 01/15/2023]
Abstract
We investigated the change in myokine expression related to hypertrophy (IL-4, IL-6, IL-10) and atrophy (TNF-α, NFκB, IL-1β) in middle-aged rats after resistance exercise with ladder climbing. 50- and 10-week-old male Wistar rats were randomly assigned to two groups: the sedentary and exercise groups. The exercise groups underwent a ladder-climbing exercise for 8 weeks. While the tibialis anterior muscle mass in the young group significantly increased after the ladder-climbing exercise, the middle-aged group did not show any changes after undergoing the same exercise. To understand the molecular mechanism causing this difference, we analyzed the change in hypertrophy- and atrophy-related myokine levels from the tibialis anterior muscle. After 8 weeks of ladder-climbing exercise, the IL-4 and IL-10 protein levels did not change. However, the IL-6 level significantly increased after exercise training, but the amount of increase in the young training group was higher than in the middle-aged training group. IL-1β and TNF-α as well as NFκB protein levels were significantly higher in the middle-aged group than in the young group. Except for TNF-α, exercise training did not affect IL-1β and NFκB protein levels. The TNF-α level significantly decreased in the middle-aged exercise training group. AMPK and PGC-1α levels also significantly increased after exercise training, but there was no difference between age-related groups. Therefore, 8-week high-intensity exercise training using ladder climbing downregulates the skeletal muscle production of myokine involved in atrophy and upregulates hypertrophic myokine. However, the extent of these responses was lower in the middle-aged than young group.
Collapse
Affiliation(s)
- Suryun Jung
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Sanghyun Kim
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Jayoung Byun
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Youngsik Joo
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Sungwook Kim
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Yeunho Jung
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Solee Park
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Ilseon Hwang
- Department of Pathology, College of Medicine, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea.
| |
Collapse
|
32
|
Deshmukh AS, Cox J, Jensen LJ, Meissner F, Mann M. Secretome Analysis of Lipid-Induced Insulin Resistance in Skeletal Muscle Cells by a Combined Experimental and Bioinformatics Workflow. J Proteome Res 2015; 14:4885-95. [PMID: 26457550 DOI: 10.1021/acs.jproteome.5b00720] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skeletal muscle has emerged as an important secretory organ that produces so-called myokines, regulating energy metabolism via autocrine, paracrine, and endocrine actions; however, the nature and extent of the muscle secretome has not been fully elucidated. Mass spectrometry (MS)-based proteomics, in principle, allows an unbiased and comprehensive analysis of cellular secretomes; however, the distinction of bona fide secreted proteins from proteins released upon lysis of a small fraction of dying cells remains challenging. Here we applied highly sensitive MS and streamlined bioinformatics to analyze the secretome of lipid-induced insulin-resistant skeletal muscle cells. Our workflow identified 1073 putative secreted proteins including 32 growth factors, 25 cytokines, and 29 metalloproteinases. In addition to previously reported proteins, we report hundreds of novel ones. Intriguingly, ∼40% of the secreted proteins were regulated under insulin-resistant conditions, including a protein family with signal peptide and EGF-like domain structure that had not yet been associated with insulin resistance. Finally, we report that secretion of IGF and IGF-binding proteins was down-regulated under insulin-resistant conditions. Our study demonstrates an efficient combined experimental and bioinformatics workflow to identify putative secreted proteins from insulin-resistant skeletal muscle cells, which could easily be adapted to other cellular models.
Collapse
Affiliation(s)
- Atul S Deshmukh
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany.,The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Blegdamsvej 3B, Building 6.1, DK-2200 Copenhagen, Denmark
| | - Juergen Cox
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Lars Juhl Jensen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Blegdamsvej 3B, Building 6.1, DK-2200 Copenhagen, Denmark
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, D-82152 Martinsried, Germany.,The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Blegdamsvej 3B, Building 6.1, DK-2200 Copenhagen, Denmark
| |
Collapse
|
33
|
Electric Pulse Stimulation of Myotubes as an In Vitro Exercise Model: Cell-Mediated and Non-Cell-Mediated Effects. Sci Rep 2015; 5:10944. [PMID: 26091097 PMCID: PMC4473537 DOI: 10.1038/srep10944] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/27/2015] [Indexed: 01/05/2023] Open
Abstract
Regular exercise has emerged as one of the best therapeutic strategies to prevent and treat type-2-diabetes. Exercise-induced changes in the muscle secretome, consisting of myokines and metabolites, may underlie the inter-organ communication between muscle and other organs. To investigate this crosstalk, we developed an in vitro system in which mouse C2C12 myotubes underwent electric pulse stimulation (EPS) to induce contraction. Subsequently the effects of EPS-conditioned media (EPS-CM) on hepatocytes were investigated. Here, we demonstrate that EPS-CM induces Metallothionein 1/2 and Slc30a2 gene expression and reduces Cyp2a3 gene expression in rat hepatocytes. When testing EPS-CM that was generated in the absence of C2C12 myotubes (non-cell EPS-CM) no decrease in Cyp2a3 expression was detected. However, similar inductions in hepatic Mt1/2 and Slc30a2 expression were observed. Non-cell EPS-CM were also applied to C2C12 myotubes and compared to C2C12 myotubes that underwent EPS: here changes in AMPK phosphorylation and myokine secretion largely depended on EPS-induced contraction. Taken together, these findings indicate that EPS can alter C2C12 myotube function and thereby affect gene expression in cells subjected to EPS-CM (Cyp2a3). However, EPS can also generate non-cell-mediated changes in cell culture media, which can affect gene expression in cells subjected to EPS-CM too. While EPS clearly represents a valuable tool in exercise research, care should be taken in experimental design to control for non-cell-mediated effects.
Collapse
|
34
|
Yoon JH, Kim D, Jang JH, Ghim J, Park S, Song P, Kwon Y, Kim J, Hwang D, Bae YS, Suh PG, Berggren PO, Ryu SH. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance. Mol Cell Proteomics 2015; 14:882-92. [PMID: 25616869 DOI: 10.1074/mcp.m114.039651] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
Elevated levels of the free fatty acid palmitate are found in the plasma of obese patients and induce insulin resistance. Skeletal muscle secretes myokines as extracellular signaling mediators in response to pathophysiological conditions. Here, we identified and characterized the skeletal muscle secretome in response to palmitate-induced insulin resistance. Using a quantitative proteomic approach, we identified 36 secretory proteins modulated by palmitate-induced insulin resistance. Bioinformatics analysis revealed that palmitate-induced insulin resistance induced cellular stress and modulated secretory events. We found that the decrease in the level of annexin A1, a secretory protein, depended on palmitate, and that annexin A1 and its receptor, formyl peptide receptor 2 agonist, played a protective role in the palmitate-induced insulin resistance of L6 myotubes through PKC-θ modulation. In mice fed with a high-fat diet, treatment with the formyl peptide receptor 2 agonist improved systemic insulin sensitivity. Thus, we identified myokine candidates modulated by palmitate-induced insulin resistance and found that the annexin A1- formyl peptide receptor 2 pathway mediated the insulin resistance of skeletal muscle, as well as systemic insulin sensitivity.
Collapse
Affiliation(s)
| | - Dayea Kim
- From the ‡Department of Life Sciences
| | - Jin-Hyeok Jang
- §School of Interdisciplinary Bioscience and Bioengineering
| | | | | | | | | | - Jaeyoon Kim
- ‖The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Daehee Hwang
- §School of Interdisciplinary Bioscience and Bioengineering, ¶Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784, Republic of Korea, ‖‖Center for Plant Aging Research, Institute for Basic Science and Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, Republic of Korea
| | - Yoe-Sik Bae
- **Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea, ‡‡Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710, Republic of Korea
| | - Pann-Ghill Suh
- §§School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, Republic of Korea
| | - Per-Olof Berggren
- ‖The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm SE-171 77, Sweden, Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | | |
Collapse
|
35
|
Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. Int J Mol Sci 2014; 15:23163-78. [PMID: 25514415 PMCID: PMC4284758 DOI: 10.3390/ijms151223163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in industrialized countries. The increasing prevalence of NAFLD mirrors the outbreak of obesity in western countries, highlighting the connection between these two conditions. Nevertheless, there is currently no specific pharmacotherapy for its treatment. Accepted management begins with weight loss and exercise. Moreover, exercise can provide metabolic benefits independently of weight loss. It is known how long-term aerobic training produces improvements in hepatic triglycerides, visceral adipose tissue and free fatty acids, even if there is no weight reduction. A recent study from Boström et al. unravels a potential molecular mechanism that may explain how exercise, independently of weight loss, can potentially improve metabolic parameters through a new messenger system (irisin) linking muscle and fat tissue. Irisin has been proposed to act as a hormone on subcutaneous white fat cells increasing energy expenditure by means of a program of brown-fat-like development. Moreover, it was also shown that irisin plasma concentration was higher in people who exercise, suggesting a molecular mechanism by which exercise may improve metabolism. The present systematic review is based on the possibility that irisin might represent a hypothetical connection between NAFLD pathogenesis and disease progression.
Collapse
|
36
|
Ojima K, Oe M, Nakajima I, Shibata M, Chikuni K, Muroya S, Nishimura T. Proteomic analysis of secreted proteins from skeletal muscle cells during differentiation. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation. Nat Rev Rheumatol 2014; 11:86-97. [DOI: 10.1038/nrrheum.2014.193] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Exercise-induced myokines in health and metabolic diseases. Integr Med Res 2014; 3:172-179. [PMID: 28664094 PMCID: PMC5481763 DOI: 10.1016/j.imr.2014.09.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 01/03/2023] Open
Abstract
Skeletal muscle has been emerging as a research field since the past 2 decades. Contraction of a muscle, which acts as a secretory organ, stimulates production, secretion, and expression of cytokines or other muscle fiber-derived peptides, i.e., myokines. Exercise-induced myokines influence crosstalk between different organs in an autocrine, endocrine, or paracrine fashion. Myokines are recently recognized as potential candidates for treating metabolic diseases through their ability to stimulate AMP-activated protein kinase signaling, increase glucose uptake, and improve lipolysis. Myokines may have positive effects on metabolic disorders, type 2 diabetes, or obesity. Numerous studies on myokines suggested that myokines offer a potential treatment option for preventing metabolic diseases. This review summarizes the current understanding of the positive effects of exercise-induced myokines, such as interleukin-15, brain-derived neurotrophic factor, leukemia inhibitory factor, irisin, fibroblast growth factor 21, and secreted protein acidic and rich in cysteine, on metabolic diseases.
Collapse
|
39
|
Weigert C, Lehmann R, Hartwig S, Lehr S. The secretome of the working human skeletal muscle--a promising opportunity to combat the metabolic disaster? Proteomics Clin Appl 2014; 8:5-18. [PMID: 24376246 DOI: 10.1002/prca.201300094] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 12/02/2013] [Indexed: 01/08/2023]
Abstract
Recent years have provided clear evidence for the skeletal muscle as an endocrine organ. Muscle contraction during physical activity has emerged as an important activator of the release of the proteins and peptides called "myokines." Diverse proteomic profiling approaches were applied to rodent and human skeletal muscle cells to characterize the complete secretome, to study the regulation of the secretome during cell differentiation or the release of myokines upon contractile activity of myotubes. Several of the exercise-regulated factors have the potency to mediate an interorgan crosstalk. The paracrine function of the secreted peptides and proteins to regulate muscle regeneration, tissue remodeling, and trainability can have direct effects on whole-body glucose disposal and oxygen consumption. The overall composition and dynamic of the myokinome are still incompletely characterized. Recent advantages in metabolomics and lipidomics will add metabolites and lipids with autocrine, paracrine, or endocrine function to the contraction-induced secretome of the skeletal muscle. The identification of these metabolites will lead to a more comprehensive view described by a new myo(metabo)kinome consisting of peptides, proteins, and metabolites.
Collapse
Affiliation(s)
- Cora Weigert
- Division of Endocrinology, Diabetology, Angiology, Nephrology, Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine, University of Tuebingen, Tuebingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen, University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | | | | |
Collapse
|
40
|
Müller MJ, Baracos V, Bosy-Westphal A, Dulloo AG, Eckel J, Fearon KCH, Hall KD, Pietrobelli A, Sørensen TIA, Speakman J, Trayhurn P, Visser M, Heymsfield SB. Functional body composition and related aspects in research on obesity and cachexia: report on the 12th Stock Conference held on 6 and 7 September 2013 in Hamburg, Germany. Obes Rev 2014; 15:640-56. [PMID: 24835453 PMCID: PMC4107095 DOI: 10.1111/obr.12187] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/04/2014] [Indexed: 12/24/2022]
Abstract
The 12th Stock Conference addressed body composition and related functions in two extreme situations, obesity and cancer cachexia. The concept of 'functional body composition' integrates body components into regulatory systems relating the mass of organs and tissues to corresponding in vivo functions and metabolic processes. This concept adds to an understanding of organ/tissue mass and function in the context of metabolic adaptations to weight change and disease. During weight gain and loss, there are associated changes in individual body components while the relationships between organ and tissue mass are fixed. Thus an understanding of body weight regulation involves an examination of the relationships between organs and tissues rather than individual organ and tissue masses only. The between organ/tissue mass relationships are associated with and explained by crosstalks between organs and tissues mediated by cytokines, hormones and metabolites that are coupled with changes in body weight, composition and function as observed in obesity and cancer cachexia. In addition to established roles in intermediary metabolism, cell function and inflammation, organ-tissue crosstalk mediators are determinants of body composition and its change with weight gain and loss. The 12th Stock Conference supported Michael Stocks' concept of gaining new insights by integrating research ideas from obesity and cancer cachexia. The conference presentations provide an in-depth understanding of body composition and metabolism.
Collapse
Affiliation(s)
- M J Müller
- Institute of Human Nutrition and Food Sciences, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Henningsen J, Blagoev B, Kratchmarova I. Analysis of secreted proteins using SILAC. Methods Mol Biol 2014; 1188:313-26. [PMID: 25059621 DOI: 10.1007/978-1-4939-1142-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Secreted proteins serve a crucial role in the communication between cells, tissues, and organs. Proteins released to the extracellular environment exert their function either locally or at distant points of the organism. Proteins are secreted in a highly dynamic fashion by cells and tissues in the body responding to the stimuli and requirements presented by the extracellular milieu. Characterization of secretomes derived from various cell types has been performed using different quantitative mass spectrometry-based proteomics strategies, several of them taking advantage of labeling with stable isotopes. Here, we describe the use of Stable Isotope Labeling by Amino acids in Cell culture (SILAC) for the quantitative analysis of the skeletal muscle secretome during myogenesis.
Collapse
Affiliation(s)
- Jeanette Henningsen
- Center for Experimental BioInformatics (CEBI), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | | | | |
Collapse
|
42
|
Harder-Lauridsen NM, Krogh-Madsen R, Holst JJ, Plomgaard P, Leick L, Pedersen BK, Fischer CP. Effect of IL-6 on the insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2014; 306:E769-78. [PMID: 24473436 DOI: 10.1152/ajpendo.00571.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Elevated interleukin-6 (IL-6) levels are associated with type 2 diabetes, but its role in glucose metabolism is controversial. We investigated the effect of IL-6 on insulin-stimulated glucose metabolism in type 2 diabetes patients and hypothesized that an acute, moderate IL-6 elevation would increase the insulin-mediated glucose uptake. Men with type 2 diabetes not treated with insulin [n = 9, age 54.9 ± 9.7 (mean ± SD) yr, body mass index 34.8 ± 6.1 kg/m(2), HbA1c 7.0 ± 1.0%] received continuous intravenous infusion with either recombinant human IL-6 (rhIL-6) or placebo. After 1 h with placebo or rhIL-6, a 3-h hyperinsulinemic-isoglycemic clamp was initiated. Whole body glucose metabolism was measured using stable isotope-labeled tracers. Signal transducer and activator of transcription 3 (STAT3) phosphorylation and suppressor of cytokine signaling 3 (SOCS3) expression were measured in muscle biopsies. Whole body energy expenditure was measured using indirect calorimetry. In response to the infusion of rhIL-6, circulating levels of IL-6 (P < 0.001), neutrophils (P < 0.001), and cortisol (P < 0.001) increased while lymphocytes decreased (P < 0.01). However, IL-6 infusion did not change glucose infusion rate, rate of appearance, or rate of disappearance during the clamp. While IL-6 enhanced phosphorylation of STAT3 in skeletal muscle (P = 0.041), the expression of SOCS3 remained unchanged. Whole body oxygen uptake (P < 0.01) and expired carbon dioxide (P < 0.01) increased during rhIL-6 infusion. In summary, although IL-6 induced local and systemic responses, the insulin-stimulated glucose uptake was not affected. While different contributing factors may be involved, our results are in contrast to our hypothesis and previous findings in young, healthy men.
Collapse
Affiliation(s)
- N M Harder-Lauridsen
- Faculty of Health Sciences, Department of Infectious Diseases and CMRC, The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
43
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
44
|
Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Couté Y, Rome S. Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One 2014; 9:e84153. [PMID: 24392111 PMCID: PMC3879278 DOI: 10.1371/journal.pone.0084153] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 11/19/2013] [Indexed: 12/17/2022] Open
Abstract
Exosomes are nanometer-sized microvesicles formed in multivesicular bodies (MVBs) during endosome maturation. Exosomes are released from cells into the microenvironment following fusion of MVBs with the plasma membrane. During the last decade, skeletal muscle-secreted proteins have been identified with important roles in intercellular communications. To investigate whether muscle-derived exosomes participate in this molecular dialog, we determined and compared the protein contents of the exosome-like vesicles (ELVs) released from C2C12 murine myoblasts during proliferation (ELV-MB), and after differentiation into myotubes (ELV-MT). Using a proteomic approach combined with electron microscopy, western-blot and bioinformatic analyses, we compared the protein repertoires within ELV-MB and ELV-MT. We found that these vesicles displayed the classical properties of exosomes isolated from other cell types containing components of the ESCRT machinery of the MVBs, as well as numerous tetraspanins. Specific muscle proteins were also identified confirming that ELV composition also reflects their muscle origin. Furthermore quantitative analysis revealed stage-preferred expression of 31 and 78 proteins in ELV-MB and ELV-MT respectively. We found that myotube-secreted ELVs, but not ELV-MB, reduced myoblast proliferation and induced differentiation, through, respectively, the down-regulation of Cyclin D1 and the up-regulation of myogenin. We also present evidence that proteins from ELV-MT can be incorporated into myoblasts by using the GFP protein as cargo within ELV-MT. Taken together, our data provide a useful database of proteins from C2C12-released ELVs throughout myogenesis and reveals the importance of exosome-like vesicles in skeletal muscle biology.
Collapse
Affiliation(s)
- Alexis Forterre
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Audrey Jalabert
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Emmanuelle Berger
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Mathieu Baudet
- CEA, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Grenoble Alpes University, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
| | - Karim Chikh
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Elisabeth Errazuriz
- Centre Commun d’Imagerie de Laënnec (CeCIL), SFR Santé Lyon-Est, University of Lyon, Lyon, France
| | - Joffrey De Larichaudy
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Stéphanie Chanon
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Michèle Weiss-Gayet
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire (CGPhiMC), CNRS UMR5534, University of Lyon, Lyon, France
| | - Anne-Marie Hesse
- CEA, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Grenoble Alpes University, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
| | - Michel Record
- INSERM-UMR 1037, Centre de Recherche en Cancerologie de Toulouse (CRCT), Toulouse, France
| | - Alain Geloen
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Etienne Lefai
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Hubert Vidal
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
| | - Yohann Couté
- CEA, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
- INSERM, U1038, Grenoble, France
- Grenoble Alpes University, IRTSV, Laboratoire Biologie à Grande Echelle, Grenoble, France
| | - Sophie Rome
- CarMeN Laboratory (INSERM 1060, INRA 1362, INSA) University of Lyon, Faculté de Médecine Lyon-Sud, Oullins, France
- * E-mail:
| |
Collapse
|
45
|
Abstract
Skeletal muscle is the largest organ in the body. Skeletal muscles are primarily characterized by their mechanical activity required for posture, movement, and breathing, which depends on muscle fiber contractions. However, skeletal muscle is not just a component in our locomotor system. Recent evidence has identified skeletal muscle as a secretory organ. We have suggested that cytokines and other peptides that are produced, expressed, and released by muscle fibers and exert either autocrine, paracrine, or endocrine effects should be classified as "myokines." The muscle secretome consists of several hundred secreted peptides. This finding provides a conceptual basis and a whole new paradigm for understanding how muscles communicate with other organs such as adipose tissue, liver, pancreas, bones, and brain. In addition, several myokines exert their effects within the muscle itself. Many proteins produced by skeletal muscle are dependent upon contraction. Therefore, it is likely that myokines may contribute in the mediation of the health benefits of exercise.
Collapse
Affiliation(s)
- Bente K Pedersen
- The Centre of Inflammation and Metabolism at Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
46
|
Agrawal L, Narula K, Basu S, Shekhar S, Ghosh S, Datta A, Chakraborty N, Chakraborty S. Comparative Proteomics Reveals a Role for Seed Storage Protein AmA1 in Cellular Growth, Development, and Nutrient Accumulation. J Proteome Res 2013; 12:4904-30. [DOI: 10.1021/pr4007987] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lalit Agrawal
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Kanika Narula
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Swaraj Basu
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Shubhendu Shekhar
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Sudip Ghosh
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Asis Datta
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- Laboratory 104 and ‡Laboratory 105, National Institute of Plant Genome Research, Aruna
Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
47
|
Hartwig S, Raschke S, Knebel B, Scheler M, Irmler M, Passlack W, Muller S, Hanisch FG, Franz T, Li X, Dicken HD, Eckardt K, Beckers J, de Angelis MH, Weigert C, Häring HU, Al-Hasani H, Ouwens DM, Eckel J, Kotzka J, Lehr S. Secretome profiling of primary human skeletal muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:1011-7. [PMID: 23994228 DOI: 10.1016/j.bbapap.2013.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/31/2013] [Accepted: 08/11/2013] [Indexed: 01/12/2023]
Abstract
The skeletal muscle is a metabolically active tissue that secretes various proteins. These so-called myokines have been proposed to affect muscle physiology and to exert systemic effects on other tissues and organs. Yet, changes in the secretory profile may participate in the pathophysiology of metabolic diseases. The present study aimed at characterizing the secretome of differentiated primary human skeletal muscle cells (hSkMC) derived from healthy, adult donors combining three different mass spectrometry based non-targeted approaches as well as one antibody based method. This led to the identification of 548 non-redundant proteins in conditioned media from hSkmc. For 501 proteins, significant mRNA expression could be demonstrated. Applying stringent consecutive filtering using SignalP, SecretomeP and ER_retention signal databases, 305 proteins were assigned as potential myokines of which 12 proteins containing a secretory signal peptide were not previously described. This comprehensive profiling study of the human skeletal muscle secretome expands our knowledge of the composition of the human myokinome and may contribute to our understanding of the role of myokines in multiple biological processes. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
Affiliation(s)
- Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - Silja Raschke
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - Mika Scheler
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Germany
| | - Waltraud Passlack
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - Stefan Muller
- Center for Molecular Medicine Cologne, Cologne, Germany
| | | | - Thomas Franz
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hans-Dieter Dicken
- Multimedia Center, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Kristin Eckardt
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany; German Center for Diabetes Research (DZD), Germany
| | - Cora Weigert
- Division of Endocrinology, Diabetology, Angiology, Nephrology, Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine, University Tuebingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany
| | - Hans-Ulrich Häring
- Division of Endocrinology, Diabetology, Angiology, Nephrology, Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine, University Tuebingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum Muenchen at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Germany
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - D Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; Department of Endocrinology, Ghent University Hospital, Ghent, Belgium; German Center for Diabetes Research (DZD), Germany
| | - Jürgen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - Jorg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany; German Center for Diabetes Research (DZD), Germany.
| |
Collapse
|
48
|
Adipo-myokines: two sides of the same coin--mediators of inflammation and mediators of exercise. Mediators Inflamm 2013; 2013:320724. [PMID: 23861558 PMCID: PMC3686148 DOI: 10.1155/2013/320724] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022] Open
Abstract
This review summarizes the current literature regarding the most discussed contraction-regulated moykines like IL-6, IL-15, irisin, BDNF, ANGPTL4, FGF21, myonectin and MCP-1. It is suggested that the term myokine is restricted to proteins secreted from skeletal muscle cells, excluding proteins that are secreted by other cell types in skeletal muscle tissue and excluding proteins which are only described on the mRNA level. Interestingly, many of the contraction-regulated myokines described in the literature are additionally known to be secreted by adipocytes. We termed these proteins adipo-myokines. Within this review, we try to elaborate on the question why pro-inflammatory adipokines on the one hand are upregulated in the obese state, and have beneficial effects after exercise on the other hand. Both, adipokines and myokines do have autocrine effects within their corresponding tissues. In addition, they are involved in an endocrine crosstalk with other tissues. Depending on the extent and the kinetics of adipo-myokines in serum, these molecules seem to have a beneficial or an adverse effect on the target tissue.
Collapse
|
49
|
Chakraborty N, Ghosh R, Ghosh S, Narula K, Tayal R, Datta A, Chakraborty S. Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase. PLANT PHYSIOLOGY 2013; 162:364-378. [PMID: 23482874 PMCID: PMC3641215 DOI: 10.1104/pp.112.209197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/09/2013] [Indexed: 05/29/2023]
Abstract
The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value.
Collapse
|
50
|
Raschke S, Eckardt K, Bjørklund Holven K, Jensen J, Eckel J. Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS One 2013; 8:e62008. [PMID: 23637948 PMCID: PMC3634789 DOI: 10.1371/journal.pone.0062008] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/17/2013] [Indexed: 12/15/2022] Open
Abstract
Proteins secreted by skeletal muscle, so called myokines, have been shown to affect muscle physiology and additionally exert systemic effects on other tissues and organs. Although recent profiling studies have identified numerous myokines, the amount of overlap from these studies indicates that the secretome of skeletal muscle is still incompletely characterized. One limitation of the models used is the lack of contraction, a central characteristic of muscle cells. Here we aimed to characterize the secretome of primary human myotubes by cytokine antibody arrays and to identify myokines regulated by contraction, which was induced by electrical pulse stimulation (EPS). In this study, we validated the regulation and release of two selected myokines, namely pigment epithelium derived factor (PEDF) and dipeptidyl peptidase 4 (DPP4), which were recently described as adipokines. This study reveals that both factors, DPP4 and PEDF, are secreted by primary human myotubes. PEDF is a contraction-regulated myokine, although PEDF serum levels from healthy young men decrease after 60 min cycling at VO2max of 70%. Most interestingly, we identified 52 novel myokines which have not been described before to be secreted by skeletal muscle cells. For 48 myokines we show that their release is regulated by contractile activity. This profiling study of the human skeletal muscle secretome expands the number of myokines, identifies novel contraction-regulated myokines and underlines the overlap between proteins which are adipokines as well as myokines.
Collapse
Affiliation(s)
- Silja Raschke
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | - Kristin Eckardt
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| | | | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jürgen Eckel
- Paul-Langerhans-Group of Integrative Physiology, German Diabetes Center, Düsseldorf, Germany
| |
Collapse
|