1
|
Huang Y, Cai S, Ying W, Niu T, Yan J, Hu H, Ruan S. Exogenous titanium dioxide nanoparticles alleviate cadmium toxicity by enhancing the antioxidative capacity of Tetrastigma hemsleyanum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116166. [PMID: 38430577 DOI: 10.1016/j.ecoenv.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Nanotechnology is one of the most recent approaches employed to defend plants against both biotic and abiotic stress including heavy metals such as Cadmium (Cd). In this study, we evaluated the effects of titanium dioxide (TiO2) nanoparticles (TiO2 NPs) in alleviating Cd stress in Tetrastigma hemsleyanum Diels et Gilg. Compared with Cd treatment, TiO2 NPs decreased leaf Cd concentration, restored Cd exposure-related reduction in the biomass to about 69% of control and decreased activities of antioxidative enzymes. Integrative analysis of transcriptome and metabolome revealed 325 differentially expressed genes associated with TiO2 NP treatment, most of which were enriched in biosynthesis of secondary metabolites. Among them, the flavonoid and phenylpropanoid biosynthetic pathways were significantly regulated to improve the growth of T. hemsleyanum when treated with Cd. In the KEGG Markup Language (KGML) network analysis, we found some commonly regulated pathways between Cd and Cd+TiO2 NP treatment, including phenylpropanoid biosynthesis, ABC transporters, and isoflavonoid biosynthesis, indicating their potential core network positions in controlling T. hemsleyanum response to Cd stress. Overall, our findings revealed a complex response system for tolerating Cd, encompassing the transportation, reactive oxygen species scavenging, regulation of gene expression, and metabolite accumulation in T. hemsleyanum. Our results indicate that TiO2 NP can be used to reduce Cd toxicity in T. hemsleyanum.
Collapse
Affiliation(s)
- Yuqing Huang
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| | - Shengguan Cai
- Agronomy Department, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Wu Ying
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Tianxin Niu
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jianli Yan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Hongliang Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Songlin Ruan
- Institute of Crop Science, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China.
| |
Collapse
|
2
|
Li Y, Xu R, Ma C, Yu J, Lei S, Han Q, Wang H. Potential functions of engineered nanomaterials in cadmium remediation in soil-plant system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122340. [PMID: 37562530 DOI: 10.1016/j.envpol.2023.122340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental issue facing agriculture. Under certain conditions, the stable Cd that bound to soil particles tend to be remobilized and absorbed into plants, which is seriously toxic to plant growth and threat food safety. Engineering nanomaterials (ENMs) has attracted increasing attentions in the remediation of Cd pollution in soil-plant system due to their excellent properties with nano-scale size. Herein, this article firstly systematically summarized Cd transformation in soil, transport in soil-plant system, and the toxic effects in plants, following which the functions of ENMs in these processes to remediate Cd pollution are comprehensively reviewed, including immobilization of Cd in soil, inhibition in Cd uptake, transport, and accumulation, as well as physiological detoxication to Cd stress. Finally, some issues to be further studied were raised to promote nano-remediation technology in the environment. This review provides a significant reference for the practical application of ENMs in remediation of Cd pollution in soil, and contributes to sustainable development of agriculture.
Collapse
Affiliation(s)
- Yadong Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ronghua Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Shang Lei
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Qianying Han
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
de Almeida NM, de Almeida AAF, de Almeida Santos N, Mora-Ocampo IY, Pirovani CP. Leaf proteomic profiles in cacao scion-rootstock combinations tolerant and intolerant to cadmium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107987. [PMID: 37722279 DOI: 10.1016/j.plaphy.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Cd contamination in cacao beans is one of the major problems faced by cocoa producing countries in Latin America. Cacao scion-rootstock combinations influence the Cd accumulation in the shoot of the plant. The objective of this work was to carry out a comparative analysis between cacao scion rootstock combinations (CCN 51/BN 34, CCN 51/PS 13.19, CCN 51/PH 16 and CCN 51/CCN 51), contrasting for tolerance to cadmium (Cd) toxicity, by means of leaf proteomic profiles, in order to elucidate molecular mechanisms involved in tolerance to Cd toxicity. Cacao scion-rootstock combinations were grown in soil with 150 mg Cd kg-1 soil, together with the control treatment. Leaf samples were collected 96 h after treatments were applied. There were alterations in the leaf proteome of the cacao scion-rootstock combinations, whose molecular responses to Cd toxicity varied depending on the combination. Leaf proteomic analyzes provided important information regarding the molecular mechanisms involved in the tolerance and intolerance of cacao scion-rootstock combinations to Cd toxicity. Enzymatic and non-enzymatic antioxidant systems, efficient for eliminating ROS, especially the expressions of APX and SOD, in addition to the increase in the abundance of metalloproteins, such as ferredoxins, rubredoxin, ALMT, Trx-1 and ABC-transporter were key mechanisms used in the Cd detoxification in cacao scion-rootstock combinations tolerant to Cd toxicity. Carboxylic acid metabolism, glucose activation and signal transduction were also important processes in the responses of cacao scion-rootstock combinations to Cd toxicity. The results confirmed CCN 51/BN 34 as a cacao scion-rootstock combination efficient in tolerance to Cd toxicity.
Collapse
Affiliation(s)
- Nicolle Moreira de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Nayara de Almeida Santos
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Irma Yuliana Mora-Ocampo
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| |
Collapse
|
4
|
Vinogradova N, Vinogradova E, Chaplygin V, Mandzhieva S, Kumar P, Rajput VD, Minkina T, Seth CS, Burachevskaya M, Lysenko D, Singh RK. Phenolic Compounds of the Medicinal Plants in an Anthropogenically Transformed Environment. Molecules 2023; 28:6322. [PMID: 37687151 PMCID: PMC10488847 DOI: 10.3390/molecules28176322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
In this article, the impact of an anthropogenically transformed environment on the content of pharmaceutically valuable biologically active compounds in medicinal plants is analyzed. The studied biologically active substances included phenolic compounds (flavonoids, anthocyanins, tannins, and phenolic acids). The number of transmissible forms of heavy metals (HMs), including cadmium, lead, and mercury, were discharged from factories that are present in the soil. Plants uptake these toxic metals from the soil. HM causes changes in the activity of the several enzymes such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI) and other enzymes. These enzymes play an important role in biosynthesis of phenolic compounds in medicinal plants. It has been demonstrated that plant materials possess high antioxidant potential due to their high phenolic content. As a result, the present review discusses a thorough investigation of anthropogenically transformed environment effects on the quantity of pharmaceutically valuable phenolic compounds in medicinal plants.
Collapse
Affiliation(s)
- Natalya Vinogradova
- Department of Management, Economics of Pharmacy, Pharmacognosy and Pharmaceutical Technology, Federal State Budgetary Educational Institution of Higher Professional Education, M. Gorky Donetsk State Medical University, 283003 Donetsk, Russia;
| | - Elena Vinogradova
- Laboratory of Dendrology of the Federal State Budgetary Scientific Institution “Donetsk Botanical Garden”, 283001 Donetsk, Russia;
| | - Victor Chaplygin
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.C.); (S.M.); (T.M.); (M.B.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.C.); (S.M.); (T.M.); (M.B.)
| | - Pradeep Kumar
- Department of Botany, Banaras Hindu University, Varanasi 221005, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.C.); (S.M.); (T.M.); (M.B.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.C.); (S.M.); (T.M.); (M.B.)
| | | | - Marina Burachevskaya
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.C.); (S.M.); (T.M.); (M.B.)
| | - Dionise Lysenko
- Faculty of Pharmacy, Saint Petersburg State Chemical and Pharmaceutical University, 197022 St. Petersburg, Russia;
| | - Rupesh Kumar Singh
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4704-553 Braga, Portugal;
| |
Collapse
|
5
|
Li Y, Qi X. Tryptophan pretreatment adjusts transcriptome and metabolome profiles to alleviate cadmium toxicity in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131226. [PMID: 36934628 DOI: 10.1016/j.jhazmat.2023.131226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is highly toxic to all organisms including plants, and recently tryptophan (Trp) pretreatment of plant seedlings is shown to improve Cd tolerance. But the underlying mechanism remains largely unknown. In this study, we used Arabidopsis (Arabidopsis thaliana) to determine the physiological relevance of Trp pretreatment in alleviating Cd toxicity in plants and explore its molecular mechanism with a focus on the metabolic pathways. The results showed that Trp pretreatment maintained the biomass and root lengths, relieved Cd-induced lipid peroxidation, and reduced Cd transport to the shoots, and eventually improved the response against Cd in Arabidopsis seedlings. The integrative analyses of the transcriptome and metabolome further revealed that Trp pretreatment alleviated Cd toxicity not only through a known mechanism of producing a major auxin indole-3-acetic acid and maintaining its levels, but also through two previously unrecognized mechanisms: increasing the area and strength of cell walls by promoting lignification to further reduce Cd entry, and fine-tuning Cd detoxification products derived from sulfur-containing amino acid metabolism. Our findings thereby provide deep mechanical insights into how Trp alleviates Cd toxicity in plants.
Collapse
Affiliation(s)
- Yuanqiu Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaoting Qi
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement and College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
6
|
Yang Z, Wu HT, Yang H, Chen WD, Liu JL, Yang F, Tai L, Li BB, Yuan B, Liu WT, Zhang YF, Luo YR, Chen KM. Overexpression of Sedum SpHMA2, SpHMA3 and SpNramp6 in Brassica napus increases multiple heavy metals accumulation for phytoextraction. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130970. [PMID: 36801723 DOI: 10.1016/j.jhazmat.2023.130970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Phytoextraction is an environmentally friendly phytoremediation technology that can reduce the total amount of heavy metals (HMs) in the soil. Hyperaccumulators or hyperaccumulating transgenic plants with biomass are important biomaterials for phytoextraction. In this study, we show that three different HM transporters from the hyperaccumulator Sedum pumbizincicola, SpHMA2, SpHMA3, and SpNramp6, possess Cd transport. These three transporters are located at the plasma membrane, tonoplast, and plasma membrane, respectively. Their transcripts could be strongly stimulated by multiple HMs treatments. To create potential biomaterials for phytoextraction, we overexpressed the three single genes and two combining genes, SpHMA2&SpHMA3 and SpHMA2&SpNramp6, in rapes having high biomass and environmental adaptability, and found that the aerial parts of the SpHMA2-OE3 and SpHMA2&SpNramp6-OE4 lines accumulated more Cd from single Cd-contaminated soil because SpNramp6 transports Cd from root cells to the xylem and SpHMA2 from the stems to the leaves. However, the accumulation of each HM in the aerial parts of all selected transgenic rapes was strengthened in multiple HMs-contaminated soils, probably due to the synergistic transport. The HMs residuals in the soil after the transgenic plant phytoremediation were also greatly reduced. These results provide effective solutions for phytoextraction in both Cd and multiple HMs-contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wan-Di Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Yuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
7
|
Wang S, Yao H, Li L, Du H, Guo P, Wang D, Rennenberg H, Ma M. Differentially-expressed genes related to glutathione metabolism and heavy metal transport reveals an adaptive, genotype-specific mechanism to Hg 2+ exposure in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121340. [PMID: 36828354 DOI: 10.1016/j.envpol.2023.121340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Rice consumption is an essential cause of mercury (Hg) exposure for humans in Asia. However, the mechanism of Hg transport and accumulation in rice plants (Oryza sativa L.) remains unclear. Here, rice genotypes with contrasting Hg uptake and translocation abilities, i.e. H655 (high Hg-accumulator) and H767 (low Hg-accumulator), were selected from 261 genotypes. Through comparative physiological and transcriptome analyses, we investigated the processes responsible for the relationship between Hg accumulation, transport and tolerance. The results showed significant stimulation of antioxidative metabolism, particularly glutathione (GSH) accumulation, and up-regulated expression of regulatory genes of glutathione metabolism for H655, but not for H767. In addition, up-regulated expression of GSH S-transferase (GST) and OsPCS1 in H655 that catalyzes the binding of Hg and GSH, enhances the Hg detoxification capacity, while high-level expression of YSL2 in H655 enhances the transport ability for Hg. Conclusively, Hg accumulation in rice is a consequence of enhanced expression of genes related to Hg binding with GSH and Hg transport. With these results, the present study contributes to the selection of rice genotypes with limited Hg accumulation and to the mitigation of Hg migration in food chains thereby enhancing nutritional safety of Hg-polluted rice fields.
Collapse
Affiliation(s)
- Shufeng Wang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hesheng Yao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Lingyi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Chongqing 400715, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Gong Z, Duan Y, Liu D, Zong Y, Zhang D, Shi X, Hao X, Li P. Physiological and transcriptome analysis of response of soybean (Glycine max) to cadmium stress under elevated CO 2 concentration. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130950. [PMID: 36860078 DOI: 10.1016/j.jhazmat.2023.130950] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The continuous accumulation of Cd has long-lasting detrimental effects on plant growth and food safety. Although elevated CO2 concentration (EC) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of elevated CO2 concentration and its mechanisms in the possible alleviation of Cd toxicity in soybean are limited. Here, we used physiological and biochemical methods together with transcriptomic comparison to explore the effects of EC on Cd-stressed soybean. Under Cd stress, EC significantly increased the weight of roots and leaves, promoted the accumulations of proline, soluble sugars, and flavonoid. In addition, the enhancement of GSH activity and GST gene expressions promoted Cd detoxification. These defensive mechanisms reduced the contents of Cd2+, MDA, and H2O2 in soybean leaves. The up-regulation of genes encoding phytochelatin synthase, MTPs, NRAMP, and vacuoles protein storage might play vital roles in the transportation and compartmentalization process of Cd. The MAPK and some transcription factors such as bHLH, AP2/ERF, and WRKY showed changed expressions and might be engaged in mediation of stress response. These findings provide a boarder view on the regulatory mechanism of EC on Cd stress and provide numerous potential target genes for future engineering of Cd-tolerant cultivars in soybean breeding programs under climate changes scenarios.
Collapse
Affiliation(s)
- Zehua Gong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuqian Duan
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Danmei Liu
- School of Life Science, Shanxi University, 030036, Taiyuan, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
9
|
Song LY, Liu X, Zhang LD, Hu WJ, Xu CQ, Li J, Song SW, Guo ZJ, Sun CY, Tang HC, Wang JC, Zhu XY, Zheng HL. Proteomic analysis reveals differential responsive mechanisms in Solanum nigrum exposed to low and high dose of cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130880. [PMID: 36736216 DOI: 10.1016/j.jhazmat.2023.130880] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/08/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination is becoming a widespread environmental problem. However, the differential responsive mechanisms of Cd hyperaccumulator Solanum nigrum to low or high dose of Cd are not well documented. In this study, phenotypic and physiological analysis firstly suggested that the seedlings of S. nigrum showed slight leaf chlorosis symptoms under 25 μM Cd and severe inhibition on growth and photosynthesis under 100 μM Cd. Further proteomic analysis identified 105 differentially expressed proteins (DEPs) in the Cd-treated leaves. Under low dose of Cd stress, 47 DEPs are mainly involved in primary metabolic processes, while under high dose of Cd stress, 92 DEPs are mainly involved in photosynthesis, energy metabolism, production of phytochelatin and reactive oxygen species (ROS). Protein-protein interaction (PPI) network analysis of DEPs support above differential responses in the leaves of S. nigrum to low and high dose of Cd treatments. This work provides the differential responsive mechanisms in S. nigrum to low and high dose of Cd, and the theoretical foundation for the application of hyperaccumulating plants in the phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xiang Liu
- Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Shi-Wei Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ze-Jun Guo
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Chen-Yang Sun
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Han-Chen Tang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Ji-Cheng Wang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
10
|
Hira QUAA, Mahboob M, Azhar R, Munir F, Gul A, Hayat A, Shah T, Amir R. An integrated remediation approach using combinations of biochar, Rhizobium leguminosarum, and Vigna radiata for immobilizing and dissipating cadmium contaminants from the soil-mustard plant system. FRONTIERS IN PLANT SCIENCE 2023; 14:1139136. [PMID: 36950354 PMCID: PMC10025393 DOI: 10.3389/fpls.2023.1139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) contamination of soils is an environmental concern, as cadmium harms food crops and can therefore impact human health. The use of combinations of biochar (seeded with Rhizobium leguminosarum) and Vigna radiata (as an intercrop) has the potential to reduce the mobilization of Cd from soil via mustard plants (Brassica juncea). Mustard plants are grown as a food and oil production crop that is consumed worldwide. However, this plant has the property of hyperaccumulation; thus, it bioaccumulates Cd in its tissues, which in turn, if eaten, can become part of the human food chain. Hence, reducing Cd bioaccumulation in mustard plants is crucial to making these plants a reliable and safe source of food for consumption. To improve soil sorption capacity and immobilization efficiency, biochar (in the form of wheat husk) was mixed with R. leguminosarum and intercropped (using V. radiata) with mustard plants for further investigation. Sampling was performed at an early growth stage (i.e., at 30 days) and at maturity (i.e., at 60 days) to determine the impact of Cd on a plant's morphophysiological attributes. Data were analyzed in two ways: first by analysis of variance (ANOVA) and then by the post hoc Tukey's honestly significant difference (HSD) test. The statistical analysis concluded that combinations effectively improved plant traits by 65%-90% in the early growth stage and by 70%-90% in the maturity stage. The T6 treatment combination [i.e., biochar + R. leguminosarum + V. radiata (BC + RL + VR)] provided the most effective results in terms of growth, biomass, pod yield, and pigmentation content. In addition, this combination reduced the translocation of Cd in mustard plants by 70%-95%. The combination of BC + RL + VR effectively reduced Cd contamination of mustard tissue and provided a suitable growing environment for the plants. A post-harvesting soil analysis using X-ray diffraction (XRD) found that Cd was undetectable in soil. This provides clear confirmation that these approaches can lead to Cd soil remediation. Moreover, this study provided insight into the responses of different morphophysiological attributes of mustard plants to Cd stress and could aid in developing Cd stress tolerance in mustard plants.
Collapse
Affiliation(s)
- Qurat-ul-Ain Ali Hira
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Midhat Mahboob
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rimsha Azhar
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Asim Hayat
- Land Resource Research Institute, National Agricultural Research Center (NARC), Islamabad, Pakistan
| | - Tariq Shah
- Plant Science Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Washington, DC, United States
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
11
|
Nano-Iron and Nano-Zinc Induced Growth and Metabolic Changes in Vigna radiata. SUSTAINABILITY 2022. [DOI: 10.3390/su14148251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The widespread industrial use and consequent release of nanosized iron (nFe3O4) and zinc oxide (nZnO) particles into the environment have raised concerns over their effects on living organisms, including plants. These nanoparticles are the source of their respective metal ions and although plants require both Fe and Zn ions for proper growth, excessive levels of these metals are toxic to them. A better understanding of the effects of these nanoparticles on plants also offers an opportunity for their useful applications in agriculture. The present work evaluates the changes in seed germination, plant growth, photosynthetic capacity, levels of biomolecules and antioxidant enzymes in Vigna radiata (L.) Wilczek when grown in the presence of nFe3O4 (size 1–4 nm) and nZnO (size 10–20 nm) and compared to the control plants. The plants were raised hydroponically for up to 14 days at two different concentrations of nanoparticles, viz. 10 and 100 mg/L. Inductively coupled plasma mass spectrometry (ICP-MS) results established that V. radiata can accumulate Fe and Zn in shoots with high efficiency. The results indicated that nFe3O4 had a favourable effect on V. radiata, whereas no apparent benefit or toxicity of nZnO was observed at the tested concentrations.
Collapse
|
12
|
Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119035. [PMID: 35196562 DOI: 10.1016/j.envpol.2022.119035] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 05/21/2023]
Abstract
Nowadays, the accumulation of toxic heavy metals in soil and water streams is considered a serious environmental problem that causes various harmful effects on plants and animals. Phytoremediation is an effective, green, and economical bioremediation approach by which the harmful heavy metals in the contaminated ecosystem can be detoxified and accumulated in the plant. Hyperaccumulators exude molecules called transporters that carry and translocate the heavy metals present in the soil to different plant parts. The hyperaccumulator plant genes can confine higher concentrations of toxic heavy metals in their tissues. The efficiency of phytoremediation relies on various parameters such as soil properties (pH and soil type), organic matters in soil, heavy metal type, nature of rhizosphere, characteristics of rhizosphere microflora, etc. The present review comprehensively discusses the toxicity effect of heavy metals on the environment and different phytoremediation mechanisms for the transport and accumulation of heavy metals from polluted soil. This review gave comprehensive insights into plants tolerance for the higher heavy metal concentration their responses for heavy metal accumulation and the different mechanisms involved for heavy metal tolerance. The current status and the characteristic features that need to be improved in the phytoremediation process are also reviewed in detail.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
13
|
Munyai R, Raletsena MV, Modise DM. LC-MS Based Metabolomics Analysis of Potato ( Solanum tuberosum L.) Cultivars Irrigated with Quicklime Treated Acid Mine Drainage Water. Metabolites 2022; 12:221. [PMID: 35323664 PMCID: PMC8952287 DOI: 10.3390/metabo12030221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022] Open
Abstract
In water-scarce areas, the reuse of (un)treated acid mine drainage (AMD) water for crop irrigation has become a requirement, but it also carries a wide range of contaminants that can elicit the synthesis of diverse metabolites necessary for the survival of the plants. There is still a paucity of studies on the impact of quicklime treated-AMD water on the metabolite synthesis of potatoes. This study examined the effect of the irrigation of two potato cultivars (Marykies and Royal cultivars) with quicklime-treated AMD water on their metabolite profiles. A greenhouse study was conducted with five experimental treatments with different solution ratios, replicated three times in a completely randomized design. A total of 40 and 36 metabolites from Marykies and Royal cultivars which include amino acids, organic acids, and aromatic amines were identified, respectively. The results revealed elevation in the abundance of metabolites under the irrigation with treated AMD water for both cultivars with subtle variations. This will provide information on the primary metabolite shifst in potato that enhance their survival and growth under AMD conditions. However, more specific data on toxicity due to AMD irrigation would be required for a refined risk assessment.
Collapse
Affiliation(s)
- Rabelani Munyai
- Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Roodepoort 1709, South Africa;
| | - Maropeng Vellry Raletsena
- Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Roodepoort 1709, South Africa;
| | - David Mxolisi Modise
- Faculty of Natural and Agricultural Sciences, Potchefstroom Campus, North West University, Private Bag X6001, Potchefstroom 2520, South Africa;
| |
Collapse
|
14
|
Wu J, Gao T, Zhao L, Bao H, Yu C, Hu J, Ma F. Investigating Phragmites australis response to copper exposure using physiologic, Fourier Transform Infrared and metabolomic approaches. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:365-381. [PMID: 35290177 DOI: 10.1071/fp21258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Phragmites australis (Cav.) Trin. ex Steud is a landscape plant with resistance to heavy metals that has significance in phytoremediation. However, little is known about the metabolomic background of the heavy metal resistance mechanisms of Phragmites . We studied copper stress on Phragmites and monitored physiological indicators such as malondialdehyde (MDA) and electrolyte leakage (EL). In addition, Fourier Transform Infrared (FTIR) was used to study the related chemical composition in the roots, stems, and leaves under copper stress. Furthermore, LC-MS technology was used to analyse the plants metabolic profile. Results showed that increased copper concentration in Phragmites led to the accumulation of MDA and EL. FTIR spectrum detected the presence of O-H and C=O stretching. O-H stretching was related to the presence of flavonoids, while C=O stretching reflected the presence of protein amide I. The latter was related to the change of amino acid composition. Both flavonoids and amino acids are regarded as contributors to the antioxidant of Phragmites under copper stress. Metabolomics analysis revealed that arginine and ayarin were accumulated and Phragmites leaves responded to copper stress with changes in the pool size of arginine and ayarin. It is speculated that they could improve resistance. Arginine is accumulated through two pathways: the citrulline decomposition and conversion pathway; and the circular pathway composed of ornithine, citrulline, l -argininosuccinate and arginine. Ayarin is synthesised through the quercetin methylation pathway. This study elucidates the antioxidant mechanisms for enhancing its resistance to heavy metal stress, thus improving of phytoremediation efficiency.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Hongxu Bao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| |
Collapse
|
15
|
Murawska-Wlodarczyk K, Korzeniak U, Chlebicki A, Mazur E, Dietrich CC, Babst-Kostecka A. Metalliferous habitats and seed microbes affect the seed morphology and reproductive strategy of Arabidopsis halleri. PLANT AND SOIL 2022; 472:175-192. [PMID: 36389645 PMCID: PMC9648182 DOI: 10.1007/s11104-021-05203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 05/13/2023]
Abstract
Purpose Plant reproduction in metalliferous habitats is challenged by elevated concentrations of metal trace elements in soil. As part of their survival strategy, metal-tolerant plants have adjusted reproductive traits, including seed morphology, dormancy, and germination rate. These traits are particularly relevant, yet poorly understood, in metal hyperaccumulators that are promising candidates for phytoremediation. Methods We assessed seed shape characteristics, dormancy, and germination rate in the hyperaccumulating model species Arabidopsis halleri. Seed morphological parameters were evaluated using seeds collected from two metalliferous and two non-metalliferous sites (~ 1000 seeds per location). We also addressed the potential influence of seed surface-associated microbes and endophytic fungi on germination success. Results Seeds from non-metallicolous populations were on average 18% bigger than those from metal-contaminated post-mining sites, which contrasts the general expectation about reproductive parts in metallicolous plants. Irrespective of their origin, surface-sterilized seeds had up to ~ 20% higher germination rates and germinated earlier than non-sterilized seeds, hinting at a negative effect of seed-associated microbial communities. Surface sterilization also facilitated the emergence of an endophytic fungus (Aspergillus niger) that is a known seed-borne pathogen. Interestingly, A. niger actually promoted germination in surface-sterilized seeds from some locations. Conclusion Despite species-wide metal tolerance in A. halleri, metalliferous conditions seem to differently affect reproductive traits compared to non-metalliferous environments (e.g., smaller seeds). Yet, higher germination rates in these populations hint at the potential of A. halleri to successfully colonize post-mining habitats. This process is modulated by site-specific interactions with seed microbiota.
Collapse
Affiliation(s)
| | - Urszula Korzeniak
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Andrzej Chlebicki
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Edyta Mazur
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Charlotte C Dietrich
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| | - Alicja Babst-Kostecka
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
- Department of Ecology, W. Szafer Institute of Botany Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
16
|
Borovaya S, Klykov A, Barsukova E, Chaikina E. Study of the Effect of Selective Media with High Doses of Zinc on Regeneration Ability and Rutin Accumulation in Common Buckwheat In Vitro. PLANTS 2022; 11:plants11030264. [PMID: 35161245 PMCID: PMC8915187 DOI: 10.3390/plants11030264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/03/2022]
Abstract
Biotechnological methods are widely used in modern common buckwheat (Fagopyrum esculentum Moench) studies, constitute an effective tool to create the best agronomic traits of the crop, and can also be used to breed forms, resistant to heavy metal ion toxicity, which is important in the environment of constantly growing anthropogenic pressure on ecosystems. The studied high concentrations of zinc salts (808–1313 mg L−1) in the nutrient medium in vitro had an inhibitory effect on buckwheat, which was manifested by a decrease in values of its morphological indicators. Ion stress had an adverse effect on 7–9% of plants from their total number, indicating high plasticity and resistance of F. esculentum to highly toxic doses of zinc. The stress state of F. esculentum significantly increases the production of flavonoid compounds, including rutin, in plant cells, which is used in biotechnology to assess and obtain buckwheat forms of high flavonoid induction capacity. The processes of rutin biosynthesis were most intense in test-tube plants of the Izumrud × Inzerskaya hybrid obtained after exposure to high doses of zinc 1010–1212 mg L−1. F. esculentum genotypes obtained using selective backgrounds with high zinc concentrations are promising biosystems for synthesis of rutin, valuable for pharmacology and medicine.
Collapse
Affiliation(s)
- Svetlana Borovaya
- Federal Scientific Center of Agricultural Biotechnology of the Far East Named after A.K. Chaiki, 30 Volozhenina St., Timiryazevsky Stl., 692539 Ussuriysk, Russia; (A.K.); (E.B.)
- Correspondence:
| | - Alexey Klykov
- Federal Scientific Center of Agricultural Biotechnology of the Far East Named after A.K. Chaiki, 30 Volozhenina St., Timiryazevsky Stl., 692539 Ussuriysk, Russia; (A.K.); (E.B.)
| | - Elena Barsukova
- Federal Scientific Center of Agricultural Biotechnology of the Far East Named after A.K. Chaiki, 30 Volozhenina St., Timiryazevsky Stl., 692539 Ussuriysk, Russia; (A.K.); (E.B.)
| | - Elena Chaikina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| |
Collapse
|
17
|
Xi L, Shen Y, Zhao X, Zhou M, Mi Y, Li X, Chen H, Wei Y, Su H, Hou H. Effects of arbuscular mycorrhizal fungi on frond antimony enrichment, morphology, and proteomics in Pteris cretica var. nervosa during antimony phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:149904. [PMID: 34508929 DOI: 10.1016/j.scitotenv.2021.149904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Pteris cretica var. nervosa is a dominant fern species found in antimony (Sb) mining areas, capable of forming symbiosis with arbuscular mycorrhizal fungi (AMF), especially with those members of the Glomus genus. Despite this fern's relevance and the potential contribution of mycorrhizal symbiosis to phytoremediation, the AMF's impact on P. var. nervosa phytoremediation of Sb remains unknown. Here, we exposed P. var. nervosa to different concentrations of Sb for 6 months. Our results showed that Sb reduced shoot biomass, enlarged the root/shoot ratio, and disrupted the fronds' intracellular structure. AMF inoculation, however, was able to moderate these phenotypic changes and increased the accumulation level of Sb in plants. From a proteomics analysis of this plant's fronds, a total of 283 proteins were identified. Notably, those proteins with catalytic function, carbon fixing and ATP metabolic function were highly enriched. K-means clustering demonstrated protein-changing patterns involved in multiple metabolic pathways during exposure to Sb. Further, these patterns can be moderated by AMF inoculation. Pearson correlations were used to assess the plant biomarkers-soil Sb relationships; This revealed a strong correlation between ribosome alteration and the root/shoot ratio when inoculated with AMF, and a positive correlation between photosynthesis proteins and chlorophyll (SPAD value). Our results indicate AMF could moderate the fronds impairment by maintaining the sufficient protein levels for ribosomal functioning, photosynthesis activity and to counter ROS production. We demonstrate the effective use of AMF associated with P. cretica var. nervosa for Sb phytoremediation and the potential of applying proteomics to better understand the mechanism behind this symbiotic plant physiological response.
Collapse
Affiliation(s)
- Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - YaQin Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xin Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - YiDong Mi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - XinRu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - HaiYan Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - HaiLei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hong Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
18
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
19
|
He Q, Zhou T, Sun J, Wang P, Yang C, Bai L, Liu Z. Transcriptome Profiles of Leaves and Roots of Goldenrain Tree ( Koelreuteria paniculata Laxm.) in Response to Cadmium Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12046. [PMID: 34831798 PMCID: PMC8621797 DOI: 10.3390/ijerph182212046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022]
Abstract
Cadmium (Cd) pollution is a widespread environmental problem. In this study, we explored the transcriptome and biochemical responses of goldenrain tree (Koelreuteria paniculata Laxm.) leaves and roots to Cd stress. Leaf and root growth decreased substantially under Cd stress (50 mg/L CdCl2), but leaf and root antioxidant mechanisms were significantly activated. In RNA-seq analysis, roots treated with 25 mg/L CdCl2 featured enriched GO terms in cellular components related to intracellular ribonucleoprotein complex, ribonucleoprotein complex, and macromolecular complex. In leaves under Cd stress, most differentially expressed genes were enriched in the cellular component terms intrinsic component of membrane and membrane part. Weighted gene co-expression network analysis and analysis of module-trait relations revealed candidate genes associated with superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and malondialdehyde (MDA). Ten transcription factors responded to Cd stress expression, including those in C2H2, MYB, WRKY, and bZIP families. Transcriptomic analysis of goldenrain tree revealed that Cd stress rapidly induced the intracellular ribonucleoprotein complex in the roots and the intrinsic component of membrane in the leaves. The results also indicate directions for further analyses of molecular mechanisms of Cd tolerance and accumulation in goldenrain tree.
Collapse
Affiliation(s)
- Qihao He
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Chunping Yang
- Guangdong Provincial Key Laboratory of Petrochemcial Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Lei Bai
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (T.Z.); (J.S.); (L.B.)
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| |
Collapse
|
20
|
Comparative and Systematic Omics Revealed Low Cd Accumulation of Potato StMTP9 in Yeast: Suggesting a New Mechanism for Heavy Metal Detoxification. Int J Mol Sci 2021; 22:ijms221910478. [PMID: 34638819 PMCID: PMC8508701 DOI: 10.3390/ijms221910478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/25/2021] [Accepted: 09/25/2021] [Indexed: 01/08/2023] Open
Abstract
The metal tolerance protein (MTP) family is a very old family with evolutionary conservation and less specific amplification. It seems to retain the original functions of the ancestral genes and plays an important role in maintaining metal homeostasis in plant cells. We identified the potato MTP family members for the first time, the specific and conservative StMPTs were discovered by using systematic and comparative omics. To be surprised, members of the StMTP family seem to have mutated before the evolution of dicotyledon and monocotyledon, and even the loss of the entire subfamily (subfamily G6, G7). Interestingly, StMTP9 represents the conserved structure of the entire subfamily involved in toxic metal regulation. However, the gene structure and transmembrane domain of StMTP8 have undergone specific evolution, showing that the transmembrane domain (Motif13) located at the NH2 terminal has been replaced by the signal peptide domain, so it was selected as the control gene of StMTP9. Through real-time fluorescence quantitative analysis of StMTPs under Cd and Zn stress, a co-expression network was constructed, and it was found that StMTP9 responded significantly to Cd stress, while StMTP8 did the opposite. What excites us is that by introducing StMTPs 8/9 into the ∆ycf1 yeast cadmium-sensitive mutant strain, the functional complementation experiment proved that StMTPs 8/9 can restore Cd tolerance. In particular, StMTP9 can greatly reduce the cadmium content in yeast cells, while StMTP8 cannot. These findings provide a reference for further research on the molecular mechanism of potato toxic metal accumulation.
Collapse
|
21
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
22
|
Llerena JPP, Coasaca RL, Rodriguez HOL, Llerena SÁP, Valencia YD, Mazzafera P. Metallothionein production is a common tolerance mechanism in four species growing in polluted Cu mining areas in Peru. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112009. [PMID: 33556811 DOI: 10.1016/j.ecoenv.2021.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Cu pollution is a problem in mining areas in Peru. Here we evaluate the phytoextraction capacity, physiological and proteomic responses of four species growing in copper-contaminated areas in Arequipa, Peru. The plants used in the experiments were obtained by collecting seedlings (Tessaria integrifolia, Bacharis salicifolia), rhizomes (Eleocharis montevidensis) and seeds (Chenopodium murale) along a polluted river. They were exposed to solutions containing 2, 4, 8, 16 and 32 mg Cu L-1 during 20 days. Growth was affected in a concentration-dependent way. According to the tolerance index, B. salicifolia and C. murale were the most sensitive species, but with greater Cu phytoextraction capacity and accumulation in the biomass. The content and ratio of photosynthetic pigments changed differently for each specie and carotenoids level were less affected than chlorophyll. Cu also induced changes in the protein and sugar contents. Antioxidant enzyme activities (catalase and superoxide dismutase) increased with a decrease in the malondialdehyde. There were marked changes in the protein 2D-PAGE profiles with an increase in the abundance of metallothioneins (MT) of class II type I and II. Our results suggest that these species can grow in Cu polluted areas because they developed multiple tolerance mechanisms, such as and MTs production seems a important one.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| | - Raúl Lima Coasaca
- Department of Sanitation and Environment, Faculty of Civil Engineering, Architecture and Urbanism, State University of Campinas, Campinas, SP 13083-970, Brazil; School of Chemical Engineering, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Herbert Omar Lazo Rodriguez
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Sofía Ángela Portilla Llerena
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Ysabel Diaz Valencia
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Crop Science, College of Agriculture "Luiz de Queiroz" - ESALQ, University of São Paulo - USP, Piracicaba, SP, Brazil
| |
Collapse
|
23
|
Rai KK, Pandey N, Meena RP, Rai SP. Biotechnological strategies for enhancing heavy metal tolerance in neglected and underutilized legume crops: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111750. [PMID: 33396075 DOI: 10.1016/j.ecoenv.2020.111750] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/15/2023]
Abstract
Contamination of agricultural land and water by heavy metals due to rapid industrialization and urbanization including various natural processes have become one of the major constraints to crop growth and productivity. Several studies have reported that to counteract heavy metal stress, plants should be able to maneuver various physiological, biochemical and molecular processes to improve their growth and development under heavy metal stress. With the advent of modern biotechnological tools and techniques it is now possible to tailor legume and other plants overexpressing stress-induced genes, transcription factors, proteins, and metabolites that are directly involved in heavy metal stress tolerance. This review provides an in-depth overview of various biotechnological approaches and/or strategies that can be used for enhancing detoxification of the heavy metals by stimulating phytoremediation processes. Synthetic biology tools involved in the engineering of legume and other crop plants against heavy metal stress tolerance are also discussed herewith some pioneering examples where synthetic biology tools that have been used to modify plants for specific traits. Also, CRISPR based genetic engineering of plants, including their role in modulating the expression of several genes/ transcription factors in the improvement of abiotic stress tolerance and phytoremediation ability using knockdown and knockout strategies has also been critically discussed.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Neha Pandey
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Botany, CMP PG College, University of Allahabad, Prayagraj, India
| | - Ram Prasad Meena
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Computer Science, IIT, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Shashi Pandey Rai
- Centre of Advance Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
24
|
Wang R, Lin K, Chen H, Qi Z, Liu B, Cao F, Chen H, Wu F. Metabolome Analysis Revealed the Mechanism of Exogenous Glutathione to Alleviate Cadmium Stress in Maize ( Zea mays L.) Seedlings. PLANTS 2021; 10:plants10010105. [PMID: 33419127 PMCID: PMC7825527 DOI: 10.3390/plants10010105] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) is one of the major heavy metal pollutants in the environment and imposes severe limitations on crop growth and production. Glutathione (GSH) plays an important role in plant Cd tolerance which is able to scavenge stresses-induced reactive oxygen species (ROS) and is involved in the biosynthesis of phytochelatins (PCs). Our previous study revealed that Cd stress affects maize growth, and the GSH treatment could relieve Cd stress in maize seedlings. In this study, we attempted to characterize the metabolomics changes in maize leaves and roots under Cd stress and exogenous GSH conditions. We identified 145 and 133 metabolites in the leaves and roots, respectively. Cd stress decreased the tricarboxylic acid cycle (TCA cycle) metabolism and increased the amino acid contents in the leaves, while it decreased the amino acid contents, increased the TCA cycle metabolism, the sugar contents, and shikimic acid metabolism in the roots. On the other hand, exogenous GSH increased the GSH content, changed the production of metabolites related to antioxidant systems (such as ascorbic acid-related metabolites and flavonoid-related metabolites), and alleviated lipid peroxidation, thereby alleviating the toxic effect of Cd stress on maize. These findings support the idea that GSH alleviates Cd-induced stress in maize and may help to elucidate the mechanism governing Cd-induced stress and the GSH-driven alleviation effect.
Collapse
Affiliation(s)
- Runfeng Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China; (R.W.); (K.L.); (H.C.); (B.L.); (F.W.)
| | - Kaina Lin
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China; (R.W.); (K.L.); (H.C.); (B.L.); (F.W.)
| | - Huabin Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China; (R.W.); (K.L.); (H.C.); (B.L.); (F.W.)
| | - Zhenyu Qi
- Experimental Station, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China;
| | - Bohan Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China; (R.W.); (K.L.); (H.C.); (B.L.); (F.W.)
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha 410128, China
| | - Fangbin Cao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China; (R.W.); (K.L.); (H.C.); (B.L.); (F.W.)
- Correspondence: (F.C.); (H.C.)
| | - Hao Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China; (R.W.); (K.L.); (H.C.); (B.L.); (F.W.)
- Correspondence: (F.C.); (H.C.)
| | - Feibo Wu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou 310058, China; (R.W.); (K.L.); (H.C.); (B.L.); (F.W.)
| |
Collapse
|
25
|
Intraspecific Variability Largely Affects the Leaf Metabolomics Response to Isosmotic Macrocation Variations in Two Divergent Lettuce ( Lactuca sativa L.) Varieties. PLANTS 2021; 10:plants10010091. [PMID: 33466229 PMCID: PMC7824788 DOI: 10.3390/plants10010091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 02/04/2023]
Abstract
Mineral elements are essential for plant growth and development and strongly affect crop yield and quality. To cope with an everchanging environment, plants have developed specific responses to combined nutrient variations. In this work, we investigated the effects of multifactorial treatments with three macrocations (K, Ca, and Mg) on lettuce (Lactuca sativa L.) varieties that strongly diverge in leaf pigmentation (full red or green). Specifically, we monitored main leaf parameters and metabolomics profiles of hydroponically grown plants fed with isosmotic nutrient solutions that have different proportions of macroelements. The result revealed a high biochemical plasticity of lettuce, significantly affected by the genotype, the nutrient solution, and their interaction. Our work also provided evidence and insights into the different intraspecific responses to multifactorial variation of macrocations, with two varieties having distinct strategies to metabolically respond to nutrient variation. Overall, plant adaptive mechanisms increased the phytochemical diversity between the varieties both among and within the main classes of plant secondary metabolites. Finally, our work also implies that the interaction of a pre-existing phytochemical diversity with the management of multiple mineral elements can offer added health-related benefits to the edible product specific to the variety.
Collapse
|
26
|
Mishra D, Kumar S, Mishra BN. An Overview of Morpho-Physiological, Biochemical, and Molecular Responses of Sorghum Towards Heavy Metal Stress. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 256:155-177. [PMID: 33866418 DOI: 10.1007/398_2020_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Heavy metal (HM) contamination is a serious global environmental crisis. Over the past decade, industrial effluents, modern agricultural practices, and other anthropogenic activities have significantly depleted the soil environment. In plants, metal toxicity leads to compromised growth, development, productivity, and yield. Also, HMs negatively affect human health due to food chain contamination. Thus, it is imperative to reduce metal accumulation and toxicity. In nature, certain plant species exhibit an inherent capacity of amassing large amounts of HMs with remarkable tolerance. These plants with unique characteristics can be employed for the remediation of contaminated soil and water. Among different plant species, Sorghum bicolor has the potential of accumulating huge amounts of HMs, thus could be regarded as a hyperaccumulator. This means that it is a metal tolerant, high biomass producing energy crop, and thus can be utilized for phytoremediation. However, high concentrations of HMs hamper plant height, root hair density, shoot biomass, number of leaves, chlorophyll, carotenoid, and carbohydrate content. Thus, understanding the response of Sorghum towards different HMs holds considerable importance. Considering this, we have uncovered the basic information about the metal uptake, translocation, and accumulation in Sorghum. Plants respond to different HMs via sensing, signaling, and modulations in physico-chemical processes. Therefore, in this review, a glimpse of HM toxicity and the response of Sorghum at the morphological, physiological, biochemical, and molecular levels has been provided. The review highlights the future research needs and emphasizes the extensive molecular dissection of Sorghum to explore its genetic adaptability towards different abiotic stresses that can be exploited to develop resilient crop varieties.
Collapse
Affiliation(s)
- Dewanshi Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Smita Kumar
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
27
|
Dai F, Luo G, Li Z, Wei X, Wang Z, Lin S, Tang C. Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111298. [PMID: 32950806 DOI: 10.1016/j.ecoenv.2020.111298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Mulberry (Morus atropurpurea) is an economically important woody tree and has great potential for the remediation of heavy metals. To investigate how cadmium accumulates and its detoxification in mulberry, we assessed the physiological and transcriptomic effects of cadmium contamination and as well as its chemical forms and subcellular distribution. Cadmium significantly inhibited mulberry plant growth and primarily accumulated in mulberry roots. Antioxidant enzymes were induced by cadmium in all tissues of mulberry. Subcellular fractionation analyses of cadmium indicated that the majority was compartmentalized in soluble fraction in roots while it mainly located in cell wall in leaves and stems. The greatest amount of the cadmium was integrated with proteins and pectates in all mulberry tissues. RNA-seq transcriptomic analyses of mulberry roots revealed that various metabolic pathways involved in cadmium stress response such as RNA regulation, hormone metabolism, and response to stress, secondary metabolism, as well as signaling, protein metabolism, transport, and cell-wall metabolism. These results will increase our understanding of the molecular mechanisms of cadmium detoxification in mulberry and provide new insights into engineering woody plants for phytoremediation.
Collapse
Affiliation(s)
- Fanwei Dai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Guoqing Luo
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhiyi Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wei
- University of Florida, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Sen Lin
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cuiming Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
28
|
Dai F, Luo G, Li Z, Wei X, Wang Z, Lin S, Tang C. Physiological and transcriptomic analyses of mulberry (Morus atropurpurea) response to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020. [PMID: 32950806 DOI: 10.artn11129810.1016/j.ecoenv.2020.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mulberry (Morus atropurpurea) is an economically important woody tree and has great potential for the remediation of heavy metals. To investigate how cadmium accumulates and its detoxification in mulberry, we assessed the physiological and transcriptomic effects of cadmium contamination and as well as its chemical forms and subcellular distribution. Cadmium significantly inhibited mulberry plant growth and primarily accumulated in mulberry roots. Antioxidant enzymes were induced by cadmium in all tissues of mulberry. Subcellular fractionation analyses of cadmium indicated that the majority was compartmentalized in soluble fraction in roots while it mainly located in cell wall in leaves and stems. The greatest amount of the cadmium was integrated with proteins and pectates in all mulberry tissues. RNA-seq transcriptomic analyses of mulberry roots revealed that various metabolic pathways involved in cadmium stress response such as RNA regulation, hormone metabolism, and response to stress, secondary metabolism, as well as signaling, protein metabolism, transport, and cell-wall metabolism. These results will increase our understanding of the molecular mechanisms of cadmium detoxification in mulberry and provide new insights into engineering woody plants for phytoremediation.
Collapse
Affiliation(s)
- Fanwei Dai
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Guoqing Luo
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhiyi Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xu Wei
- University of Florida, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL, 33850, USA
| | - Zhenjiang Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China
| | - Sen Lin
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cuiming Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture, Guangzhou, China.
| |
Collapse
|
29
|
Kareya MS, Mariam I, Shaikh KM, Nesamma AA, Jutur PP. Photosynthetic Carbon Partitioning and Metabolic Regulation in Response to Very-Low and High CO 2 in Microchloropsis gaditana NIES 2587. FRONTIERS IN PLANT SCIENCE 2020; 11:981. [PMID: 32719702 PMCID: PMC7348049 DOI: 10.3389/fpls.2020.00981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Photosynthetic organisms fix inorganic carbon through carbon capture machinery (CCM) that regulates the assimilation and accumulation of carbon around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, few constraints that govern the central carbon metabolism are regulated by the carbon capture and partitioning machinery. In order to divert the cellular metabolism toward lipids and/or biorenewables it is important to investigate and understand the molecular mechanisms of the CO2-driven carbon partitioning. In this context, strategies for enhancement of CO2 fixation which will increase the overall biomass and lipid yields, can provide clues on understanding the carbon assimilation pathway, and may lead to new targets for genetic engineering in microalgae. In the present study, we have focused on the physiological and metabolomic response occurring within marine oleaginous microalgae Microchloropsis gaditana NIES 2587, under the influence of very-low CO2 (VLC; 300 ppm, or 0.03%) and high CO2 (HC; 30,000 ppm, or 3% v/v). Our results demonstrate that HC supplementation in M. gaditana channelizes the carbon flux toward the production of long chain polyunsaturated fatty acids (LC-PUFAs) and also increases the overall biomass productivities (up to 2.0 fold). Also, the qualitative metabolomics has identified nearly 31 essential metabolites, among which there is a significant fold change observed in accumulation of sugars and alcohols such as galactose and phytol in VLC as compared to HC. In conclusion, our focus is to understand the entire carbon partitioning and metabolic regulation within these photosynthetic cell factories, which will be further evaluated through multiomics approach for enhanced productivities of biomass, biofuels, and bioproducts (B3).
Collapse
Affiliation(s)
| | | | | | | | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
30
|
Mwamba TM, Islam F, Ali B, Lwalaba JLW, Gill RA, Zhang F, Farooq MA, Ali S, Ulhassan Z, Huang Q, Zhou W, Wang J. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. CHEMOSPHERE 2020; 250:126308. [PMID: 32135439 DOI: 10.1016/j.chemosphere.2020.126308] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/21/2023]
Abstract
Recently, oilseed rape has gathered interest for its ability to withstand elevated metal contents in plant, a key feature for remediation of contaminated soils. In this study, comparative and functional metabolomic analyses using liquid chromatography/mass spectrometry were undertaken to explore the metabolic basis of this attribute under cadmium (Cd) stress. Results revealed both conserved and differential metabolomic responses between genotype CB671 (tolerant Cd-accumulating) and its sensitive counterpart ZD622. CB671 responded to Cd stress by rearranging carbon flux towards production of compatible solutes, sugar storage forms and ascorbate, as well as jasmonates, ethylene and vitamin B6. Intriguingly, IAA abundance was reduced by 1.91-fold, which was in connection with tryptophan funnelling into serotonin (3.48-fold rise). In ZD622 by contrast, Cd provoked drastic depletion of carbohydrates and vitamins, but subtle hormones alteration. A striking accumulation of unsaturated fatty acids and oxylipins in CB671, paralleled by glycerophospholipids build-up and induction of inositol-derived signalling metabolites (up to 5.41-fold) suggested ability for prompt triggering of detoxifying mechanisms. Concomitantly, phytosteroids, monoterpenes and carotenoids were induced, denoting fine-tuned mechanisms for membrane maintenance, which was not evident in ZD622. Further, ZD622 markedly accumulated phenolics from upstream sub-classes of flavonoids; in CB671 however, a distinct phenolic wiring was activated, prioritizing anthocyanins and lignans instead. Along with cell wall (CW) saccharides, the activation of lignans evoked CW priming in CB671. Current results have demonstrated existence of notable metabolomic-based strategies for Cd tolerance in metal-accumulating oilseed rapes, and provided a holistic view of metabolites potentially contributing to Cd tolerance in this species.
Collapse
Affiliation(s)
- T M Mwamba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China; Department of Crop Science, University of Lubumbashi, Lubumbashi, 1825, DR Congo
| | - F Islam
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - B Ali
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
| | - J L W Lwalaba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China; Department of Crop Science, University of Lubumbashi, Lubumbashi, 1825, DR Congo
| | - R A Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - F Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - M A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - S Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Z Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Q Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - W Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - J Wang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Oliveira BRM, de Almeida AAF, Pirovani CP, Barroso JP, de C Neto CH, Santos NA, Ahnert D, Baligar VC, Mangabeira PAO. Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:340-358. [PMID: 32107699 DOI: 10.1007/s10646-020-02178-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Cd is a non-essential metal and highly toxic to plants, animals and humans, even at very low concentrations. Cd has been found in cocoa beans and in their products, as in the case of chocolate. Mn plays an important role in photosynthetic and can interact with Cd and attenuate its toxic effects on plants. The objective of this work was to evaluate the mechanisms of Mn response in the mitigation of Cd toxicity in young plants of the CCN 51 cacao genotype submitted to 0.8 mmol Cd kg-1, 1.6 mmol Mn kg-1 or the combination of 0.4 mmol Cd kg-1 + 0.8 mmol Mn kg-1 soil, together with the control treatment (without addition of Cd and Mn in soil), by means of analysis of changes in the profile of exclusive proteins (EP) and differentially accumulated proteins (DAP). Leaf and root proteins were extracted and quantified from the different treatments, followed by proteomic analysis. About eight DAP and 38 EP were identified in leaves, whereas in roots 43 DAP and 21 EP were identified. Some important proteins induced in the presence of Cd and repressed in the presence of Cd + Mn or vice versa, were ATPases, isoflavone reductase, proteasome and chaperonin. It was concluded that proteins involved in oxidoreduction and defense and stress response processes, in addition to other processes, were induced in the presence of Cd and repressed in the presence of Cd + Mn. This demonstrated that Mn was able to mitigate the toxic effects of Cd on young plants of the CCN 51 cocoa genotype.
Collapse
Affiliation(s)
- Bruna Rafaela Machado Oliveira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Carlos P Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Joedson P Barroso
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Carlos H de C Neto
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Nayara A Santos
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Dário Ahnert
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Viropax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Pedro Antonio O Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| |
Collapse
|
32
|
Serre NBC, Sarthou M, Gigarel O, Figuet S, Corso M, Choulet J, Rofidal V, Alban C, Santoni V, Bourguignon J, Verbruggen N, Ravanel S. Protein lysine methylation contributes to modulating the response of sensitive and tolerant Arabidopsis species to cadmium stress. PLANT, CELL & ENVIRONMENT 2020; 43:760-774. [PMID: 31759334 DOI: 10.1111/pce.13692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 05/10/2023]
Abstract
The mechanisms underlying the response and adaptation of plants to excess of trace elements are not fully described. Here, we analysed the importance of protein lysine methylation for plants to cope with cadmium. We analysed the effect of cadmium on lysine-methylated proteins and protein lysine methyltransferases (KMTs) in two cadmium-sensitive species, Arabidopsis thaliana and A. lyrata, and in three populations of A. halleri with contrasting cadmium accumulation and tolerance traits. We showed that some proteins are differentially methylated at lysine residues in response to Cd and that a few genes coding KMTs are regulated by cadmium. Also, we showed that 9 out of 23 A. thaliana mutants disrupted in KMT genes have a tolerance to cadmium that is significantly different from that of wild-type seedlings. We further characterized two of these mutants, one was knocked out in the calmodulin lysine methyltransferase gene and displayed increased tolerance to cadmium, and the other was interrupted in a KMT gene of unknown function and showed a decreased capacity to cope with cadmium. Together, our results showed that lysine methylation of non-histone proteins is impacted by cadmium and that several methylation events are important for modulating the response of Arabidopsis plants to cadmium stress.
Collapse
Affiliation(s)
- Nelson B C Serre
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Manon Sarthou
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Océane Gigarel
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Sylvie Figuet
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Massimiliano Corso
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Justine Choulet
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Valérie Rofidal
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier, Cedex 2, France
| | - Claude Alban
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier, Montpellier, Cedex 2, France
| | | | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Stéphane Ravanel
- University of Grenoble Alpes, CEA, INRA, CNRS, IRIG, PCV, Grenoble, France
| |
Collapse
|
33
|
Ding Y, Ding L, Xia Y, Wang F, Zhu C. Emerging Roles of microRNAs in Plant Heavy Metal Tolerance and Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1958-1965. [PMID: 32003983 DOI: 10.1021/acs.jafc.9b07468] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Heavy metal stress is a major growth- and yield-limiting factor for plants. Heavy metals include essential metals (copper, iron, zinc, and manganese) and non-essential metals (cadmium, mercury, aluminum, arsenic, and lead). Plants use complex mechanisms of gene regulation under heavy metal stress. MicroRNAs are 21-nucleotide non-coding small RNAs as important modulators of gene expression post-transcriptionally. Recently, high-throughput sequencing has led to the identification of an increasing number of heavy-metal-responsive microRNAs in plants. Metal-regulated microRNAs and their target genes are part of a complex regulatory network that controls various biological processes, including heavy metal uptake and transport, protein folding and assembly, metal chelation, scavenging of reactive oxygen species, hormone signaling, and microRNA biogenesis. In this review, we summarize the recent molecular studies that identify heavy-metal-regulated microRNAs and their roles in the regulation of target genes as part of the microRNA-associated regulatory network in response to heavy metal stress in plants.
Collapse
Affiliation(s)
- Yanfei Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
- Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong, People's Republic of China
| | - Lihong Ding
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Yiji Xia
- Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong, People's Republic of China
| | - Feijuan Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
| | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences , China Jiliang University , Hangzhou , Zhejiang 310018 , People's Republic of China
| |
Collapse
|
34
|
Multi-Omics Integration Reveals Short and Long-Term Effects of Gestational Hypoxia on the Heart Development. Cells 2019; 8:cells8121608. [PMID: 31835778 PMCID: PMC6952773 DOI: 10.3390/cells8121608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Antenatal hypoxia caused epigenetic reprogramming of methylome and transcriptome in the developing heart and increased the risk of heart disease later in life. Herein, we investigated the impact of gestational hypoxia in proteome and metabolome in the hearts of fetus and adult offspring. Pregnant rats were treated with normoxia or hypoxia (10.5% O2) from day 15 to 21 of gestation. Hearts were isolated from near-term fetuses and 5 month-old offspring, and proteomics and metabolomics profiling was determined. The data demonstrated that antenatal hypoxia altered proteomics and metabolomics profiling in the heart, impacting energy metabolism, lipid metabolism, oxidative stress, and inflammation-related pathways in a developmental and sex dependent manner. Of importance, integrating multi-omics data of transcriptomics, proteomics, and metabolomics profiling revealed reprogramming of the mitochondrion, especially in two clusters: (a) the cluster associated with "mitochondrial translation"/"aminoacyl t-RNA biosynthesis"/"one-carbon pool of folate"/"DNA methylation"; and (b) the cluster with "mitochondrion"/"TCA cycle and respiratory electron transfer"/"acyl-CoA dehydrogenase"/"oxidative phosphorylation"/"complex I"/"troponin myosin cardiac complex". Our study provides a powerful means of multi-omics data integration and reveals new insights into phenotypic reprogramming of the mitochondrion in the developing heart by fetal hypoxia, contributing to an increase in the heart vulnerability to disease later in life.
Collapse
|
35
|
Watanabe M, Hoefgen R. Sulphur systems biology-making sense of omics data. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4155-4170. [PMID: 31404467 PMCID: PMC6698701 DOI: 10.1093/jxb/erz260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 05/22/2023]
Abstract
Systems biology approaches have been applied over the last two decades to study plant sulphur metabolism. These 'sulphur-omics' approaches have been developed in parallel with the advancing field of systems biology, which is characterized by permanent improvements of high-throughput methods to obtain system-wide data. The aim is to obtain a holistic view of sulphur metabolism and to generate models that allow predictions of metabolic and physiological responses. Besides known sulphur-responsive genes derived from previous studies, numerous genes have been identified in transcriptomics studies. This has not only increased our knowledge of sulphur metabolism but has also revealed links between metabolic processes, thus indicating a previously unexpected complex interconnectivity. The identification of response and control networks has been supported through metabolomics and proteomics studies. Due to the complex interlacing nature of biological processes, experimental validation using targeted or systems approaches is ongoing. There is still room for improvement in integrating the findings from studies of metabolomes, proteomes, and metabolic fluxes into a single unifying concept and to generate consistent models. We therefore suggest a joint effort of the sulphur research community to standardize data acquisition. Furthermore, focusing on a few different model plant systems would help overcome the problem of fragmented data, and would allow us to provide a standard data set against which future experiments can be designed and compared.
Collapse
Affiliation(s)
- Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Nara Institute of Science and Technology, Ikoma, Japan
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
36
|
Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A. Modulation of the Functional Components of Growth, Photosynthesis, and Anti-Oxidant Stress Markers in Cadmium Exposed Brassica juncea L. PLANTS (BASEL, SWITZERLAND) 2019; 8:E260. [PMID: 31370349 PMCID: PMC6724130 DOI: 10.3390/plants8080260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
Abstract
Abstract: Heavy metals (including Cadmium) are being entered into the environment through various sources and cause toxicity to plants. Response of Brassica juncea L. var. RLC-1 was evaluated after exposing them to different concentration of cadmium (Cd) for seven days. Seeds of B. juncea were treated with different concentrations of Cd like 0.2-0.6 mM for 7 days, allowing them to grow in Petri-dishes, and seedlings were examined for different physiological responses. Following exposure to Cd, in the seedlings of B. juncea, growth parameters (root and shoot length), stress markers (lipid peroxidation and H2O2 content), secondary metabolites, photosynthetic pigments, and ion analysis, were estimated along with enzymatic and non-enzymatic antioxidants. We observed a significant reduction in root and shoot length after Cd treatment as compared to control seedlings. Malondialdehyde and H2O2 contents were increased accompanied by enhanced Cd uptake. Activities of antioxidative enzymes were also significantly altered following Cd exposure to the seedlings of B. juncea. Conclusively, we suggest that Cd exposure to the seedlings triggered an induction of several defense responses in B. juncea including major metabolites.
Collapse
Affiliation(s)
- Dhriti Kapoor
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway Phagwara 144411, Punjab, India
| | - Mahendra P Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Delhi-Jalandhar Highway Phagwara 144411, Punjab, India
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Anket Sharma
- Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
37
|
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019; 24:E2452. [PMID: 31277395 PMCID: PMC6651195 DOI: 10.3390/molecules24132452] [Citation(s) in RCA: 703] [Impact Index Per Article: 140.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023] Open
Abstract
Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia
| | - Abdul Rehman
- Department of Crop Science and Biotechnology, Dankook University, Chungnam 31116, Korea
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
38
|
Rinschen MM, Ivanisevic J, Giera M, Siuzdak G. Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 2019; 20:353-367. [PMID: 30814649 PMCID: PMC6613555 DOI: 10.1038/s41580-019-0108-4] [Citation(s) in RCA: 589] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The metabolome, the collection of small-molecule chemical entities involved in metabolism, has traditionally been studied with the aim of identifying biomarkers in the diagnosis and prediction of disease. However, the value of metabolome analysis (metabolomics) has been redefined from a simple biomarker identification tool to a technology for the discovery of active drivers of biological processes. It is now clear that the metabolome affects cellular physiology through modulation of other 'omics' levels, including the genome, epigenome, transcriptome and proteome. In this Review, we focus on recent progress in using metabolomics to understand how the metabolome influences other omics and, by extension, to reveal the active role of metabolites in physiology and disease. This concept of utilizing metabolomics to perform activity screens to identify biologically active metabolites - which we term activity metabolomics - is already having a broad impact on biology.
Collapse
Affiliation(s)
- Markus M Rinschen
- The Scripps Research Institute, Center for Metabolomics and Mass Spectrometry, La Jolla, CA, USA
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, Leiden, Netherlands.
| | - Gary Siuzdak
- The Scripps Research Institute, Center for Metabolomics and Mass Spectrometry, La Jolla, CA, USA.
| |
Collapse
|
39
|
Wang XK, Gong X, Cao F, Wang Y, Zhang G, Wu F. HvPAA1 Encodes a P-Type ATPase, a Novel Gene for Cadmium Accumulation and Tolerance in Barley ( Hordeum vulgare L.). Int J Mol Sci 2019; 20:ijms20071732. [PMID: 30965578 PMCID: PMC6480696 DOI: 10.3390/ijms20071732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/21/2022] Open
Abstract
The identification of gene(s) that are involved in Cd accumulation/tolerance is vital in developing crop cultivars with low Cd accumulation. We developed a doubled haploid (DH) population that was derived from a cross of Suyinmai 2 (Cd-sensitive) × Weisuobuzhi (Cd-tolerant) to conduct quantitative trait loci (QTL) mapping studies. We assessed chlorophyll content, traits that are associated with development, metal concentration, and antioxidative enzyme activity in DH population lines and parents under control and Cd stress conditions. A single QTL, designated as qShCd7H, was identified on chromosome 7H that was linked to shoot Cd concentration; qShCd7H explained 17% of the phenotypic variation. Comparative genomics, map-based cloning, and gene silencing were used in isolation, cloning, and functional characterization of the candidate gene. A novel gene HvPAA1, being related to shoot Cd concentration, was identified from qShCd7H. Sequence comparison indicated that HvPAA1 carried seven domains with an N-glycosylation motif. HvPAA1 is predominantly expressed in shoots. Subcellular localization verified that HvPAA1 is located in plasma membrane. The silencing of HvPAA1 resulted in growth inhibition, greater Cd accumulation, and a significant decrease in Cd tolerance. We conclude HvPAA1 is a novel plasma membrane-localized ATPase that contributes to Cd tolerance and accumulation in barley. The results provide us with new insights that may aid in the screening and development of Cd-tolerant and low-Cd-accumulation crops.
Collapse
Affiliation(s)
- Xin-Ke Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Xue Gong
- School of Agriculture, Food and Wine, the University of Adelaide, Waite Campus, Adelaide 5064, Australia.
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
40
|
Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism. ENVIRONMENTAL CHEMISTRY LETTERS 2018; 16:1169-1192. [DOI: 10.1007/s10311-018-0741-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/19/2018] [Indexed: 06/27/2023]
|
41
|
Xu S, Hu C, Hussain S, Tan Q, Wu S, Sun X. Metabolomics analysis reveals potential mechanisms of tolerance to excess molybdenum in soybean seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:589-596. [PMID: 30149358 DOI: 10.1016/j.ecoenv.2018.08.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 08/12/2018] [Accepted: 08/17/2018] [Indexed: 05/21/2023]
Abstract
Most plants exhibit strong tolerance to excess molybdenum (Mo). However, the metabolic profile and tolerance mechanisms of plants in response to excess Mo remain unknown. We comprehensively analyzed changes in the metabolic profiles of leaves and roots in soybean (Glycine max L.) seedlings cultured under normal-Mo and excess-Mo conditions by using ultra performance liquid chromatography (UPLC) combined with MS/MS (mass spectrometry). There were 42 differential metabolites in the roots and 19 differential metabolites in the leaves in response to excess Mo stress. In roots, the organic acids, levels of gluconic acid, D-glucarate and citric acid increased by 107.63-, 4.42- and 2.87-folds after excess Mo exposure. Several hormones (salicylic acid, jasmonic acid) and lipids (PG, MG, DG etc) also increased significantly under excess Mo condition. Metabolites related to ascorbate-glutathione metabolism and flavonoid and isoflavone biosynthesis notably accumulated in roots. Only lipid metabolism and salicylic acid accumulation were induced in leaves under excess Mo stress. It is speculated that organic compounds such as 2-oxoarginine, L-nicotine, gluconic acid, D-glucurate, and citric acid played important roles to chelate Mo and reduce its toxicity. Signaling molecules (JA, SA, and some lipids) and non-enzyme antioxidants such as flavonoids/isoflavones act synergistically to detoxify ROS and contribute to Mo tolerance in soybean seedlings. More metabolic pathways were induced by Mo excess in roots than in leaves, suggesting that roots play more implant role in Mo tolerance.
Collapse
Affiliation(s)
- Shoujun Xu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China; Micro-Element Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China; Micro-Element Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalābād, Punjab 38000, Pakistan
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China; Micro-Element Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Songwei Wu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China; Micro-Element Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China; Micro-Element Research Center, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
42
|
Gutsch A, Keunen E, Guerriero G, Renaut J, Cuypers A, Hausman J, Sergeant K, Luo Z. Long-term cadmium exposure influences the abundance of proteins that impact the cell wall structure in Medicago sativa stems. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:1023-1035. [PMID: 29908008 PMCID: PMC6221066 DOI: 10.1111/plb.12865] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a non-essential, toxic heavy metal that poses serious threats to both ecosystems and human health. Plants employ various cellular and molecular mechanisms to minimise the impact of Cd toxicity and cell walls function as a defensive barrier during Cd exposure. In this study, we adopted a quantitative gel-based proteomic approach (two-dimensional difference gel electrophoresis) to investigate changes in the abundance of cell wall and soluble proteins in stems of Medicago sativa L. upon long-term exposure to Cd (10 mg·Cd·kg-1 soil as CdSO4 ). Obtained protein data were complemented with targeted gene expression analyses. Plants were affected by Cd exposure at an early growth stage but seemed to recover at a more mature stage as no difference in biomass was observed. The accumulation of Cd was highest in roots followed by stems and leaves. Quantitative proteomics revealed a changed abundance for 179 cell wall proteins and 30 proteins in the soluble fraction upon long-term Cd exposure. These proteins are involved in cell wall remodelling, defence response, carbohydrate metabolism and promotion of the lignification process. The data indicate that Cd exposure alters the cell wall proteome and underline the role of cell wall proteins in defence against Cd stress. The identified proteins are linked to alterations in cell wall structure and lignification process in stems of M. sativa, underpinning the function of the cell wall as an effective barrier against Cd stress.
Collapse
Affiliation(s)
- A. Gutsch
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - E. Keunen
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - G. Guerriero
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - J. Renaut
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - A. Cuypers
- Centre for Environmental SciencesHasselt UniversityDiepenbeekBelgium
| | - J.‐F. Hausman
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | - K. Sergeant
- Environmental Research and Innovation DepartmentLuxembourg Institute of Science and TechnologyEsch‐sur‐AlzetteLuxembourg
| | | |
Collapse
|
43
|
Ai TN, Naing AH, Yun BW, Lim SH, Kim CK. Overexpression of RsMYB1 Enhances Anthocyanin Accumulation and Heavy Metal Stress Tolerance in Transgenic Petunia. FRONTIERS IN PLANT SCIENCE 2018; 9:1388. [PMID: 30294338 PMCID: PMC6159756 DOI: 10.3389/fpls.2018.01388] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/31/2018] [Indexed: 05/24/2023]
Abstract
The RsMYB1 transcription factor (TF) controls the regulation of anthocyanin in radishes (Raphanus sativus), and its overexpression in tobacco and petunias strongly enhances anthocyanin production. However, there are no data on the involvement of RsMYB1 in the mechanisms underlying abiotic stress tolerance, despite strong sequence similarity with other MYBs that confer such tolerance. In this study, we used the anthocyanin-enriched transgenic petunia lines PM6 and PM2, which overexpress RsMYB1. The tolerance of these lines to heavy metal stress was investigated by examining several physiological and biochemical factors, and the transcript levels of genes related to metal detoxification and antioxidant activity were quantified. Under normal conditions (control conditions), transgenic petunia plants (T2-PM6 and T2-PM2) expressing RsMYB1, as well as wild-type (WT) plants, were able to thrive by producing well-developed broad leaves and regular roots. In contrast, a reduction in plant growth was observed when these plants were exposed to heavy metals (CuSO4, ZnSO4, MnSO4, or K2Cr2O7). However, T2-PM6 and T2-PM2 were found to be more stress tolerant than the WT plants, as indicated by superior results in all analyzed parameters. In addition, RsMYB1 overexpression enhanced the expression of genes related to metal detoxification [glutathione S-transferase (GST) and phytochelatin synthase (PCS)] and antioxidant activity [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX)]. These results suggest that enhanced expression levels of the above genes can improve metal detoxification activities and antioxidant activity, which are the main components of defense mechanism included in abiotic stress tolerance of petunia. Our findings demonstrate that RsMYB1 has potential as a dual-function gene that can have an impact on the improvement of anthocyanin production and heavy metal stress tolerance in horticultural crops.
Collapse
Affiliation(s)
- Trinh Ngoc Ai
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
- School of Agriculture and Aquaculture, Tra Vinh University, Trà Vinh, Vietnam
| | - Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sun Hyung Lim
- National Institute of Agricultural Science, RDA, Jeonju, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
44
|
Bakshi M, Ghosh S, Chakraborty D, Hazra S, Chaudhuri P. Assessment of potentially toxic metal (PTM) pollution in mangrove habitats using biochemical markers: A case study on Avicennia officinalis L. in and around Sundarban, India. MARINE POLLUTION BULLETIN 2018; 133:157-172. [PMID: 30041303 DOI: 10.1016/j.marpolbul.2018.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Spatial distribution of potentially toxic metals (PTMs) and their accumulation in mangrove Avicennia officinalis L. were studied along 8 locations in and around Sundarban mangrove wetland, India. Among 8 locations, S3 (Chemaguri) and S5 (Ghushighata) showed higher concentration of PTMs (Cd, Cr, Cu, Ni, Pb, Zn) characterized by higher enrichment factors (3.45-10.03), geo-accumulation indices (0.04-1.22), contamination factors (1.14-3.51) and pollution load indices (1.3-1.45) indicating progressive deterioration of estuarine quality and considerable ecotoxicological risk. Metal concentration in A. officinalis leaves showed significant correlation with sediment metals implying elevated level of bioaccumulation. Significant statistical correlation between photosynthetic pigments (Chlorophyll a, Chlorophyll b), antioxidant response (free radical scavenging and reducing ability) and stress enzymatic activity (Peroxidase, Catalase, Super-oxide dismutase) of A. officinalis with increasing metal concentration in the contaminated locations reflects active detoxification mechanism of the plant. The study indicates the potentiality of biomonitoring metal pollution using studied biochemical markers in mangrove habitats.
Collapse
Affiliation(s)
- Madhurima Bakshi
- Department of Environmental Science, University of Calcutta, India
| | - Somdeep Ghosh
- Department of Environmental Science, University of Calcutta, India
| | | | - Sugata Hazra
- School of Oceanographic Studies, Jadavpur University, India
| | | |
Collapse
|
45
|
Navarro-Reig M, Jaumot J, Piña B, Moyano E, Galceran MT, Tauler R. Metabolomic analysis of the effects of cadmium and copper treatment in Oryza sativa L. using untargeted liquid chromatography coupled to high resolution mass spectrometry and all-ion fragmentation. Metallomics 2018; 9:660-675. [PMID: 28480907 DOI: 10.1039/c6mt00279j] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While the knowledge of plant metabolomes has increased in the last few years, their response to the presence of toxicants is still poorly understood. Here, we analyse the metabolomic changes in Japanese rice (Oryza sativa var. Japonica) upon exposure to heavy metals (Cd(ii) and Cu(ii)) in concentrations from 10 to 1000 μM. After harvesting, rice metabolites were extracted from aerial parts of the plants and analysed by HPLC (HILIC TSK gel amide-80 column) coupled to a mass spectrometer quadrupole-Orbitrap (Q-Exactive). Full scan and all ion fragmentation (AIF) mass spectrometry modes were used during the analysis. The proposed untargeted metabolomics data analysis strategy is based on the application of the multivariate curve resolution alternating least squares (MCR-ALS) method for feature detection, allowing the simultaneous resolution of pure chromatographic profiles and mass spectra of all metabolites present in the analysed rice extracts. All-ion fragmentation data were used to confirm the identification of MCR-ALS resolved metabolites. A total of 112 metabolites were detected, and 97 of them were subsequently identified and confirmed. Pathway analysis of the observed metabolic changes suggested an underlying similarity of the responses of the plant to Cd(ii) and Cu(ii), although the former treatment appeared to be the more severe of the two. In both cases, secondary metabolism and amino acid-, purine-, carbon- and glycerolipid-metabolism pathways were affected, in a pattern consistent with reduction in plant growth and/or photosynthetic capacity and with induction of defence mechanisms to reduce cell damage.
Collapse
Affiliation(s)
- Meritxell Navarro-Reig
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
46
|
Kiiskila JD, Sarkar D, Feuerstein KA, Datta R. A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27985-27993. [PMID: 28990146 DOI: 10.1007/s11356-017-0401-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Acid mine drainage (AMD) is extremely acidic, sulfate-rich effluent from abandoned or active mine sites that also contain elevated levels of heavy metals. Untreated AMD can contaminate surface and groundwater and pose severe ecological risk. Both active and passive methods have been developed for AMD treatment consisting of abiotic and biological techniques. Abiotic techniques are expensive and can create large amounts of secondary wastes. Passive biological treatment mainly consists of aerobic or anaerobic constructed wetlands. While aerobic wetlands are economical, they are not effective if the pH of the AMD is < 5. Anaerobic wetlands use organic-rich substrates to provide carbon source to iron- and sulfate-reducing bacteria. The efficiency of these systems declines overtime and requires continuous maintenance. Our objective is to develop an alternative, low-cost, and sustainable floating wetland treatment (FWT) system for AMD for the abandoned Tab-Simco coal mining site in Illinois using vetiver grass (Chrysopogon zizanioides). Tab-Simco AMD is highly acidic, with mean pH value of 2.64, and contains high levels of sulfate and metals. A greenhouse study was performed for a 30-day period in order to screen and optimize the necessary parameters to design a FWT system. Water quality and plant growth parameters were continuously monitored. Results show significant SO42- removal, resulting in increased pH, particularly at higher planting densities. Vetiver also helped in metal removal; high amounts of Fe, Zn, and Cu were removed, with relatively lower amounts of Pb, Al, and Ni. Iron plaque formation on the root was observed, which increased metal stabilization in root and lowered root to shoot metal translocation. Vetiver was tolerant of AMD, showing minimal change in biomass and plant growth. Results obtained are encouraging, and a large scale mesocosm study is now in progress, as the next step to develop the vetiver-based system for AMD treatment.
Collapse
Affiliation(s)
- Jeffrey D Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kailey A Feuerstein
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
47
|
Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1302. [PMID: 28824660 PMCID: PMC5545584 DOI: 10.3389/fpls.2017.01302] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 05/12/2023]
Abstract
Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Plant Sciences, University of Hyderabad (UoH)Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Arun K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU)Amarkantak, India
| |
Collapse
|
48
|
Wężowicz K, Rozpądek P, Turnau K. Interactions of arbuscular mycorrhizal and endophytic fungi improve seedling survival and growth in post-mining waste. MYCORRHIZA 2017; 27:499-511. [PMID: 28317065 PMCID: PMC5486607 DOI: 10.1007/s00572-017-0768-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/10/2017] [Indexed: 05/08/2023]
Abstract
The impact of fungal endophytes and the modulating role of arbuscular mycorrhizal fungi (AMF) on the vitality of Verbascum lychnitis, grown in the laboratory in a substratum from a post-mining waste dump was investigated. We report that inoculation with a single endophyte negatively affected the survival rate and biomass production of most of the plant-endophyte consortia examined. The introduction of arbuscular mycorrhiza fungi into this setup (dual inoculation) had a beneficial effect on both biomass yield and survivability. V. lychnitis co-inoculated with AMF and Cochliobolus sativus, Diaporthe sp., and Phoma exigua var. exigua yielded the highest biomass, exceeding the growth rate of both non-inoculated and AMF plants. AMF significantly improved the photosynthesis rates of the plant-endophyte consortia, which were negatively affected by inoculation with single endophytes. The abundance of PsbC, a photosystem II core protein previously shown to be upregulated in plants colonized by Epichloe typhina, exhibited a significant increase when the negative effect of the fungal endophyte was attenuated by AMF.
Collapse
Affiliation(s)
- Katarzyna Wężowicz
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
49
|
Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance. Sci Rep 2017. [PMID: 28623252 PMCID: PMC5473843 DOI: 10.1038/s41598-017-03540-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50% of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0.
Collapse
|
50
|
Khan WU, Yasin NA, Ahmad SR, Ali A, Ahmed S, Ahmad A. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:470-477. [PMID: 27739873 DOI: 10.1080/15226514.2016.1244167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg-1) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg-1) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- a College of Earth and Environmental Sciences, University of the Punjab , Lahore , Pakistan
| | | | - Sajid Rashid Ahmad
- a College of Earth and Environmental Sciences, University of the Punjab , Lahore , Pakistan
| | - Aamir Ali
- c Department of Botany , University of Sargodha , Sargodha , Pakistan
| | - Shakil Ahmed
- d Department of Botany , University of the Punjab , Lahore , Pakistan
| | - Aqeel Ahmad
- e Institute of Agricultural Sciences, University of the Punjab , Lahore , Pakistan
| |
Collapse
|