1
|
Xie F, Zhang S, Yang M, He J, Li S, Zhang Y. Frustrated Lewis Pair-Promoted Organocatalytic Transformation of Hydrosilanes into Silanols with Water Oxidant. J Am Chem Soc 2024; 146:29373-29382. [PMID: 39412826 DOI: 10.1021/jacs.4c07818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Owing to their unique properties, the silanols have attracted intense attention but remain challenging to prepare from the organocatalytic oxidation of hydrosilanes using H2O as a green oxidant. Herein, we employ a frustrated Lewis pair (FLP) to successfully suppress the formation of undesired siloxanes and produce silanols in high to excellent yields in the presence of H2O. Mechanistic studies suggest that the reaction is initiated with the activation of FLP by H2O rather than by silanes and goes through a concerted SN2 mechanism. More importantly, the combination of the FLP-catalyzed oxidation of hydrosilanes with B(C6F5)3-catalyzed dehydrogenation enables us to realize the precise synthesis of sequence-controlled oligosiloxanes. This method exhibits a broad substrate scope and can be easily scaled up, thus exhibiting promising application potentials in the precision synthesis of silicon-containing polymer materials.
Collapse
Affiliation(s)
- Fuyu Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Sutao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Mo Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
2
|
Grafskaia K, Qin Q, Li J, Magnin D, Dellemme D, Surin M, Glinel K, Jonas AM. Chain stretching in brushes favors sequence recognition for nucleobase-functionalized flexible precise oligomers. SOFT MATTER 2024; 20:8303-8311. [PMID: 39387435 DOI: 10.1039/d4sm00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Six different flexible stereocontrolled oligo(triazole-urethane)s substituted by precise sequences of nucleobases or analogs are synthesized. Molecular dynamics simulations indicate that the flexibility of the backbone leads to unspecific complexation of pairs of oligomers, irrespective of the complementarity of their sequences. This is ascribed to the existence of other interactions between pairs of oligomers, as well as to the spatial blurring of the sequence order encoded in the chemical structure of the chain due to its flexibility. The same conclusions are drawn when investigating the irreversible adsorption of different probe oligomers onto a layer of target oligomers grafted by click chemistry in a mushroom configuration on a silicon substrate. In contrast, when the target oligomers are grafted in denser brush configurations, irreversible adsorption becomes more specific, with it being twice as probable that probe chains of complementary sequence would be irreversibly-bound to the layer of target chains than those of non-complementary sequence. This is ascribed to lateral excluded volume interactions between chains in the brush, leading to partial chain stretching and increased spatial preservation of the information contained in the monomer sequence of the chains. At even higher grafting densities, however, the penetration of the probe chains in the brush becomes increasingly difficult, resulting in a loss of binding efficiency. Our work thus demonstrates the adverse role of chain flexibility in the specificity of complexation between nucleobase-functionalized oligomers and provides directions for an improvement of specificity by tuning the grafting density of target chains on a substrate.
Collapse
Affiliation(s)
- Kseniia Grafskaia
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Qian Qin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Jie Li
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Delphine Magnin
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - David Dellemme
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS, Avenue Maistriau, 17, B-7000 Mons, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Université de Mons - UMONS, Avenue Maistriau, 17, B-7000 Mons, Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 L7.04.02, Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
van Trijp JP, Hribernik N, Lim JH, Dal Colle MCS, Mena YV, Ogawa Y, Delbianco M. Enzyme-Triggered Assembly of Glycan Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202410634. [PMID: 39008635 DOI: 10.1002/anie.202410634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well-defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation-assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme-triggered assembly (ETA) for the on-demand formation of well-defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo-electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non-natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures.
Collapse
Affiliation(s)
- Jacobus P van Trijp
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nives Hribernik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jia Hui Lim
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Marlene C S Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yadiel Vázquez Mena
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Yu Ogawa
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
4
|
Gan Z, Xu Z, Tian K, Zhou D, Li L, Ma Z, Tan R, Li W, Dong XH. Stabilizing hexagonally close-packed phase in single-component block copolymers through rational symmetry breaking. Nat Commun 2024; 15:6581. [PMID: 39097587 PMCID: PMC11297994 DOI: 10.1038/s41467-024-50906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Despite being predicted to be a thermodynamically equilibrium structure, the absence of direct experimental evidence of hexagonally close-packed spherical phase in single-component block copolymers raises uncomfortable concerns regarding the existing fundamental phase principles. This work presents a robust approach to regulate the phase behavior of linear block copolymers by deliberately breaking molecular symmetry, and the hexagonally close-packed lattice is captured in a rigorous single-component system. A collection of discrete A1BA2 triblock copolymers is designed and prepared through an iterative growth method. The precise chemical composition and uniform chain length eliminates inherent size distribution and other molecular defects. Simply by tuning the relative chain length of two end A blocks, a rich array of ordered nanostructures, including Frank-Kasper A15 and σ phases, are fabricated without changing the overall chemistry or composition. More interestingly, hexagonally close-packed spherical phase becomes thermodynamically stable and experimentally accessible attributed to the synergistic contribution of the two end blocks. The shorter A blocks are pulled out from the core domain into the matrix to release packing frustration, while the longer ones stabilize the ordered spherical phase against composition fluctuation that tends to disrupt the lattice. This study adds a missing puzzle piece to the block copolymer phase diagram and provides a robust approach for rational structural engineering.
Collapse
Affiliation(s)
- Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China
| | - Zhuoqi Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Kun Tian
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Rui Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, China.
| |
Collapse
|
5
|
Virameteekul S, Lees AJ, Bhidayasiri R. Small Particles, Big Potential: Polymeric Nanoparticles for Drug Delivery in Parkinson's Disease. Mov Disord 2024. [PMID: 39077831 DOI: 10.1002/mds.29939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the availability of a number of efficacious treatments for Parkinson's disease, their limitations and drawbacks, particularly related to low brain bioavailability and associated side effects, emphasize the need for alternative and more effective therapeutic approaches. Nanomedicine, the application of nanotechnology in medicine, has received considerable interest in recent years as a method of effectively delivering potentially therapeutic molecules to the brain. In particular, polymeric nanoparticles, constructed from biodegradable polymer, have shown great promise in enhancing therapeutic efficacy, reducing toxicity, and ensuring targeted delivery. However, their clinical translation remains a considerable challenge. This article reviews recent in vitro and in vivo studies using polymeric nanoparticles as drug and gene delivery systems for Parkinson's disease with their challenges and future directions. We are also particularly interested in the technical properties, mechanism, drugs release patterns, and delivery strategies to overcome the blood-brain barrier. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sasivimol Virameteekul
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, UK
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
6
|
Murphy E, Zhang C, Bates CM, Hawker CJ. Chromatographic Separation: A Versatile Strategy to Prepare Discrete and Well-Defined Polymer Libraries. Acc Chem Res 2024; 57:1202-1213. [PMID: 38530881 PMCID: PMC11025024 DOI: 10.1021/acs.accounts.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
ConspectusThe preparation of discrete and well-defined polymers is an emerging strategy for emulating the remarkable precision achieved by macromolecular synthesis in nature. Although modern controlled polymerization techniques have unlocked access to a cornucopia of materials spanning a broad range of monomers, molecular weights, and architectures, the word "controlled" is not to be confused with "perfect". Indeed, even the highest-fidelity polymerization techniques─yielding molar mass dispersities in the vicinity of Đ = 1.05─unavoidably create a considerable degree of structural and/or compositional dispersity due to the statistical nature of chain growth. Such dispersity impacts many of the properties that researchers seek to control in the design of soft materials.The development of strategies to minimize or entirely eliminate dispersity and access molecularly precise polymers therefore remains a key contemporary challenge. While significant advances have been made in the realm of iterative synthetic methods that construct oligomers with an exact molecular weight, head-to-tail connectivity, and even stereochemistry via small-molecule organic chemistry, as the word "iterative" suggests, these techniques involve manually propagating monomers one reaction at a time, often with intervening protection and deprotection steps. As a result, these strategies are time-consuming, difficult to scale, and remain limited to lower molecular weights. The focus of this Account is on an alternative strategy that is more accessible to the general scientific community because of its simplicity, versatility, and affordability: chromatography. Researchers unfamiliar with the intricacies of synthesis may recall being exposed to chromatography in an undergraduate chemistry lab. This operationally simple, yet remarkably powerful, technique is most commonly encountered in the purification of small molecules through their selective (differential) adsorption to a column packed with a low-cost stationary phase, usually silica. Because the requisite equipment is readily available and the actual separation takes little time (on the order of 1 h), chromatography is used extensively in small-molecule chemistry throughout industry and academia alike. It is, therefore, perhaps surprising that similar types of chromatography are not more widely leveraged in the field of polymer science as well.Here, we discuss recent advances in using chromatography to control the structure and properties of polymeric materials. Emphasis is placed on the utility of an adsorption-based mechanism that separates polymers based on polarity and composition at tractable (gram) scales for materials science, in contrast to size exclusion, which is extremely common but typically analyzes very small quantities of a sample (∼1 mg) and is limited to separating by molar mass. Key concepts that are highlighted include (1) the separation of low-molecular-weight homopolymers into discrete oligomers (Đ = 1.0) with precise chain lengths and (2) the efficient fractionation of block copolymers into high-quality and widely varied libraries for accelerating materials discovery. In summary, the authors hope to convey the exciting possibilities in polymer science afforded by chromatography as a scalable, versatile, and even automated technique that unlocks new avenues of exploration into well-defined materials for a diverse assortment of researchers with different training and expertise.
Collapse
Affiliation(s)
- Elizabeth
A. Murphy
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Cheng Zhang
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
- Australian
Institute for Bioengineering and Nanotechnology and Centre for Advanced
Imaging University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher M. Bates
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials
Research Laboratory, Department of Chemistry & Biochemistry, Department of Chemical
Engineering, andMaterials Department, University of California
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
7
|
Morla-Folch J, Ranzenigo A, Fayad ZA, Teunissen AJP. Nanotherapeutic Heterogeneity: Sources, Effects, and Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307502. [PMID: 38050951 PMCID: PMC11045328 DOI: 10.1002/smll.202307502] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Nanomaterials have revolutionized medicine by enabling control over drugs' pharmacokinetics, biodistribution, and biocompatibility. However, most nanotherapeutic batches are highly heterogeneous, meaning they comprise nanoparticles that vary in size, shape, charge, composition, and ligand functionalization. Similarly, individual nanotherapeutics often have heterogeneously distributed components, ligands, and charges. This review discusses nanotherapeutic heterogeneity's sources and effects on experimental readouts and therapeutic efficacy. Among other topics, it demonstrates that heterogeneity exists in nearly all nanotherapeutic types, examines how nanotherapeutic heterogeneity arises, and discusses how heterogeneity impacts nanomaterials' in vitro and in vivo behavior. How nanotherapeutic heterogeneity skews experimental readouts and complicates their optimization and clinical translation is also shown. Lastly, strategies for limiting nanotherapeutic heterogeneity are reviewed and recommendations for developing more reproducible and effective nanotherapeutics provided.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Ranzenigo
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zahi Adel Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Abraham Jozef Petrus Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
8
|
Corbet CHWA, van den Bersselaar BWL, de Waal BFM, Reynaerts R, Mali KS, De Feyter S, Jonas AM, Meijer EW, Vantomme G. Self-Assembly of Discrete Oligomers of Naphthalenediimides in Bulk and on Surfaces. Chemistry 2024; 30:e202303107. [PMID: 38009432 DOI: 10.1002/chem.202303107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Here, we report on the synthesis of discrete oligomers of alkyl-bridged naphthalenediimides (NDIs) and study their molecular nanostructures both in bulk, in solution, and at the liquid-solid interface. Via an iterative synthesis method, multiple NDI cores were bridged with short and saturated alkyl-diamines (C3 and C12 ) or long and unsaturated alkyl-diamines (u2 C33 to u8 C100 ) at their imide termini. The strong intermolecular interaction between the NDI cores was observed by probing their photophysical properties in solution. In bulk, the discrete NDI oligomers preferentially ordered in lamellar morphologies, irrespective of whether a saturated or unsaturated spacer was employed. Moreover, both the molecular architecture as well as the crystallization conditions play a significant role in the nanoscale ordering. The long unsaturated alkyl chains lead preferably to folded-chain conformations while their saturated analogues form stretched arrangements. At the solution-solid interface, well-defined lamellar regions were observed. These results show that precision in chemical structure alone is not sufficient to reach well-defined structures of discrete oligomers, but that it must be combined with precision in processing conditions.
Collapse
Affiliation(s)
- Christiaan H W A Corbet
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Robby Reynaerts
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Ottignies-Louvain-la-Neuve, Louvain-la-Neuve, B-1348, Belgium
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, Australia
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
9
|
Ma Z, Liu Z, Zheng T, Gan Z, Tan R, Dong XH. Discrete Miktoarm Star Block Copolymers with Tailored Molecular Architecture. ACS POLYMERS AU 2023; 3:457-465. [PMID: 38107413 PMCID: PMC10722564 DOI: 10.1021/acspolymersau.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
Molecular architecture is a critical factor in regulating phase behaviors of the block copolymer and prompting the formation of unconventional nanostructures. This work meticulously designed a library of isomeric miktoarm star polymers with an architectural evolution from the linear-branched block copolymer to the miktoarm star block copolymer and to the star-like block copolymer (i.e., 3AB → 3(AB1)B2 → 3(AB)). All of the polymers have precise chemical composition and uniform chain length, eliminating inherent molecular uncertainties such as chain length distribution or architectural defects. The self-assembly behaviors were systematically studied and compared. Gradually increasing the relative length of the branched B1 block regulates the ratio between the bridge and loop configuration and effectively releases packing frustration in the formation of the spherical or cylindrical structures, leading to a substantial deflection of phase boundaries. Complex structures, such as Frank-Kasper phases, were captured at a surprisingly higher volume fraction. Rationally regulating the molecular architecture offers rich possibilities to tune the packing symmetry of block copolymers.
Collapse
Affiliation(s)
- Zhuang Ma
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
| | - Zhongguo Liu
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
| | - Tianyu Zheng
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
| | - Rui Tan
- College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Emergent Soft Matter, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Hribernik N, Vargová D, Dal Colle MCS, Lim JH, Fittolani G, Yu Y, Fujihara J, Ludwig K, Seeberger PH, Ogawa Y, Delbianco M. Controlling the Assembly of Cellulose-Based Oligosaccharides through Sequence Modifications. Angew Chem Int Ed Engl 2023; 62:e202310357. [PMID: 37823670 DOI: 10.1002/anie.202310357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Peptides and nucleic acids with programmable sequences are widely explored for the production of tunable, self-assembling functional materials. Herein we demonstrate that the primary sequence of oligosaccharides can be designed to access materials with tunable shapes and properties. Synthetic cellulose-based oligomers were assembled into 2D or 3D rod-like crystallites. Sequence modifications within the oligosaccharide core influenced the molecular packing and led to the formation of square-like assemblies based on the rare cellulose IVII allomorph. In contrast, modifications at the termini generated elongated aggregates with tunable surfaces, resulting in self-healing supramolecular hydrogels.
Collapse
Affiliation(s)
- Nives Hribernik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Marlene C S Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jia Hui Lim
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yang Yu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Junki Fujihara
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Kai Ludwig
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yu Ogawa
- Univ. Grenoble Alpes CNRS, CERMAV, 38000, Grenoble, France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
11
|
Mattsson I, Majoinen J, Lahtinen M, Sandberg T, Fogde A, Saloranta-Simell T, Rojas OJ, Ikkala O, Leino R. Stereochemistry-dependent thermotropic liquid crystalline phases of monosaccharide-based amphiphiles. SOFT MATTER 2023; 19:8360-8377. [PMID: 37873653 PMCID: PMC10630951 DOI: 10.1039/d3sm00939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
Conformational rigidity controls the bulk self-assembly and liquid crystallinity from amphiphilic block molecules to copolymers. The effects of block stereochemistry on the self-assembly have, however, been less explored. Here, we have investigated amphiphilic block molecules involving eight open-chain monosaccharide-based polyol units possessing different stereochemistries, derived from D-glucose, D-galactose, L-arabinose, D-mannose and L-rhamnose (allylated monosaccharides t-Glc*, e-Glc*, t-Gal*, e-Gal*, t-Ara*, e-Ara*, t-Man*, and t-Rha*), end-functionalized with repulsive tetradecyl alkyl chain blocks to form well-defined amphiphiles with block molecule structures. All compounds studied showed low temperature crystalline phases due to polyol crystallization, and smectic (lamellar) and isotropic phases upon heating in bulk. Hexagonal cylindrical phase was additionally observed for the composition involving t-Man*. Cubic phases were observed for e-Glc*, e-Gal*, e-Ara*, and t-Rha* derived compounds. Therein, the rich array of WAXS-reflections suggested that the crystalline polyol domains are not ultra-confined in spheres as in classic cubic phases but instead show network-like phase continuity, which is rare in bulk liquid crystals. Importantly, the transition temperatures of the self-assemblies were observed to depend strongly on the polyol stereochemistry. The findings underpin that the stereochemistry in carbohydrate-based assemblies involves complexity, which is an important parameter to be considered in material design when developing self-assemblies for different functions.
Collapse
Affiliation(s)
- Ida Mattsson
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Johanna Majoinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- VTT Technical Research Centre of Finland Ltd, FI-02150, Finland.
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, FI-40014, Finland
| | - Thomas Sandberg
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Anna Fogde
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Tiina Saloranta-Simell
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| | - Reko Leino
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Finland.
| |
Collapse
|
12
|
Fan Y, Zhang Y, Sheng L, Chen D, Ma Y, Zhao C, Yang W. UV-Induced Thiol-Ene "Click" Surface Grafting Polymerization on BOPP Substrate and Its Postmodifying for Hydrophilic and Antibacterial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13908-13920. [PMID: 37737879 DOI: 10.1021/acs.langmuir.3c01448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This paper proposed a novel and versatile surface modification route by integrating UV light-mediated thiol-ene "click" surface grafting polymerization and postmodification via the reactions of the surface thiol groups. At first, poly(thiol ether) layers with tunable thiol group density, up to 8.2 × 102 ea/nm3 for cross-linked grafting layers, were grafted from biaxially oriented polypropylene (BOPP) film. Then, the surface -SH groups reacted with epoxy compounds to introduce quaternary ammonium salt. With the immobilized quaternary ammonium salt and coordinated Zn2+ ions, the modified film demonstrated 99.98% antibacterial rate against Staphylococcus aureusafter soaking in DI water for 21 days and in a highly alkaline environment (0.1 M NaOH aqueous solution) for 3 days, and the surface water contact angle decreased to 39°. At last, the polymethacrylate chains were also successfully grafted from the surface thiol groups of the cross-linked poly(thiol ether) under visible light irradiation. With 2-(dimethyldodecylammonium) ethyl methacrylate as the grafting monomer, the modified BOPP film had shown a 99.99% antibacterial rate against both Escherichia coliand S. aureus. Meanwhile, with 2-methacryloxyethyl phosphoryl choline as grafting monomer, the modified surface showed an excellent antibioadhesion of living S. aureus, and the surface water contact angle was as low as 48°.
Collapse
Affiliation(s)
- Yuqing Fan
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Zhang
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Sheng
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- Beijing Engineering Research Center of Syntheses and Applications of Waterborne Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Tariq M, Khokhar R, Javed A, Usman M, Anjum SMM, Rasheed H, Bukhari NI, Yan C, Nawaz HA. Novel Hydrophilic Oligomer-Crosslinked Gelatin-Based Hydrogels for Biomedical Applications. Gels 2023; 9:564. [PMID: 37504443 PMCID: PMC10379017 DOI: 10.3390/gels9070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Gelatin-based hydrogels have shown good injectability and biocompatibility and have been broadly used for drug delivery and tissue regeneration. However, their low mechanical strengths and fast degradation rates must be modified for long-term implantation applications. With an aim to develop mechanically stable hydrogels, reactive anhydride-based oligomers were developed and used to fabricate gelatin-based crosslinked hydrogels in this study. A cascade of hydrophilic oligomers containing reactive anhydride groups was synthesized by free radical polymerization. These oligomers varied in degree of reactivity, comonomer composition, and showed low molecular weights (Mn < 5 kDa). The reactive oligomers were utilized to fabricate hydrogels that differed in their mechanical strengths and degradation profiles. These formulations exhibited good cytocompatibility with human adipose tissue-derived stem cells (hADCs). In conclusion, the reactive MA-containing oligomers were successfully synthesized and utilized for the development of oligomer-crosslinked hydrogels. Such oligomer-crosslinked gelatin-based hydrogels hold promise as drug or cell carriers in various biomedical applications.
Collapse
Affiliation(s)
- Mamoona Tariq
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai 200240, China
| | - Rabia Khokhar
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Arslan Javed
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Muhammad Usman
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Syed Muhammad Muneeb Anjum
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Huma Rasheed
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Nadeem Irfan Bukhari
- Punjab University College of Pharmacy (PUCP), University of the Punjab, Lahore 54000, Pakistan
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Minhang District, Shanghai 200240, China
| | - Hafiz Awais Nawaz
- Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore 54000, Pakistan
| |
Collapse
|
14
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
15
|
Catt SO, Hackner M, Spatz JP, Blasco E. Macromolecular Engineering: From Precise Macromolecular Inks to 3D Printed Microstructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300844. [PMID: 37078908 DOI: 10.1002/smll.202300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Macromolecules with complex, defined structures exist in nature but rarely is this degree of control afforded in synthetic macromolecules. Sequence-defined approaches provide a solution for precise control of the primary macromolecular structure. Despite a growing interest, very few examples for applications of sequence-defined macromolecules exist. In particular, the use of sequence-defined macromolecules as printable materials remains unexplored. Herein, the rational design of precise macromolecular inks for 3D microprinting is investigated for the first time. Specifically, three printable oligomers are synthesized, consisting of eight units, either crosslinkable (C) or non-functional (B) with varied sequence (BCBCBCBC, alternating; BBCCCBB, triblock; and BBBBCCCC, block). The oligomers are printed using two-photon laser printing and characterized. It is clearly demonstrated that the macromolecular sequence, specifically the positioning of the crosslinkable group, plays a critical role in both the printability and final properties of the printed material. Thus, through precise design and printability of sequence-defined macromolecules, an exciting avenue for the next generation of functional materials for 3D printing is created.
Collapse
Affiliation(s)
- Samantha O Catt
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
| | - Maximillian Hackner
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
- Department of Cellular Biophysics, Germany Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Joachim P Spatz
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
- Department of Cellular Biophysics, Germany Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM) and Organic Chemistry Institute (OCI), Heidelberg University, 69120, Heidelberg, Germany
| |
Collapse
|
16
|
Zhou D, Xu M, Gan Z, Yan XY, Ma Z, Zheng J, Dong XH. Discrete Diblock Copolymers with Precise Stereoconfiguration. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xiao-Yun Yan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
17
|
Shi QQ, Zhou X, Xu J, Wang N, Zhang JL, Hu XL, Liu SY. Controlled Fabrication of Uniform Digital Nanorods from Precise Sequence-Defined Amphiphilic Polymers in Aqueous Media. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
18
|
Chen Y, Ishiwari F, Fukui T, Kajitani T, Liu H, Liang X, Nakajima K, Tokita M, Fukushima T. Overcoming the entropy of polymer chains by making a plane with terminal groups: a thermoplastic PDMS with a long-range 1D structural order. Chem Sci 2023; 14:2431-2440. [PMID: 36873840 PMCID: PMC9977418 DOI: 10.1039/d2sc05491d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Due to its unique physical and chemical properties, polydimethylsiloxane (PDMS) is widely used in many applications, in which covalent cross-linking is commonly used to cure the fluidic polymer. The formation of a non-covalent network achieved through the incorporation of terminal groups that exhibit strong intermolecular interactions has also been reported to improve the mechanical properties of PDMS. Through the design of a terminal group capable of two-dimensional (2D) assembly, rather than the generally used multiple hydrogen bonding motifs, we have recently demonstrated an approach for inducing long-range structural ordering of PDMS, resulting in a dramatic change in the polymer from a fluid to a viscous solid. Here we present an even more surprising terminal-group effect: simply replacing a hydrogen with a methoxy group leads to extraordinary enhancement of the mechanical properties, giving rise to a thermoplastic PDMS material without covalent cross-linking. This finding would update the general notion that less polar and smaller terminal groups barely affect polymer properties. Based on a detailed study of the thermal, structural, morphological and rheological properties of the terminal-functionalized PDMS, we revealed that 2D assembly of the terminal groups results in networks of PDMS chains, which are arranged as domains with long-range one-dimensional (1D) periodic order, thereby increasing the storage modulus of the PDMS to exceed its loss modulus. Upon heating, the 1D periodic order is lost at around 120 °C, while the 2D assembly is maintained up to ∼160 °C. The 2D and 1D structures are recovered in sequence upon cooling. Due to the thermally reversible, stepwise structural disruption/formation as well as the lack of covalent cross-linking, the terminal-functionalized PDMS shows thermoplastic behavior and self-healing properties. The terminal group presented herein, which can form a 'plane', might also drive other polymers to assemble into a periodically ordered network structure, thereby allowing for significant modulation of their mechanical properties.
Collapse
Affiliation(s)
- Yugen Chen
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Fumitaka Ishiwari
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Haonan Liu
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Xiaobin Liang
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Masatoshi Tokita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
19
|
Ma Z, Zhou D, Xu M, Gan Z, Zheng T, Wang S, Tan R, Dong XH. Discrete Linear–Branched Block Copolymer with Broken Architectural Symmetry. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Tianyu Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Matsumoto M, Sutrisno L, Ariga K. Covalent nanoarchitectonics: Polymer synthesis with designer structures and sequences. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michio Matsumoto
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Linawati Sutrisno
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI‐MANA) National Institute for Materials Science (NIMS) Ibaraki Japan
- Graduate School of Frontier Sciences The University of Tokyo Chiba Japan
| |
Collapse
|
21
|
Cheng X, Du F, Li Z. Synthesis of precision poly(1,3‐bicyclo[1.1.1]pentane alkylene)s via acyclic diene metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiang‐Yue Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Fu‐Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering Peking University Beijing China
| |
Collapse
|
22
|
Boyer C, Kamigaito M, Satoh K, Moad G. Radical-Promoted Single-unit Monomer Insertion (SUMI) [aka. Reversible-Deactivation Radical Addition (RDRA)]. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Lamers BAG, Fors BP, Meijer EW. Mixing discrete block co‐oligomers: When does it behave like a disperse sample? JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Brigitte A. G. Lamers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - E. W. Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
24
|
Kamon Y, Miura J, Okuno K, Yamasaki S, Nakahata M, Hashidzume A. Synthesis of Stereoregular Uniform Oligomers Possessing a Dense 1,2,3-Triazole Backbone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Junji Miura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Koji Okuno
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Shota Yamasaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
25
|
Wang W, Jiang Y, Huang Z, Nguyen HVT, Liu B, Hartweg M, Shirakura M, Qin KP, Johnson JA. Discrete, Chiral Polymer-Insulin Conjugates. J Am Chem Soc 2022; 144:23332-23339. [PMID: 36126328 PMCID: PMC10440729 DOI: 10.1021/jacs.2c07382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymer conjugation has been widely used to improve the stability and pharmacokinetics of therapeutic biomacromolecules; however, conventional methods to generate such conjugates often use disperse and/or achiral polymers with limited functionality. The heterogeneity of such conjugates may lead to manufacturing variability, poorly controlled biological performance, and limited ability to optimize structure-property relationships. Here, using insulin as a model therapeutic polypeptide, we introduce a strategy for the synthesis of polymer-protein conjugates based on discrete, chiral polymers synthesized through iterative exponential growth (IEG). These conjugates eliminate manufacturing variables originating from polymer dispersity and poorly controlled absolute configuration. Moreover, they offer tunable molecular features, such as conformational rigidity, that can be modulated to impact protein function, enabling faster or longer-lasting blood glucose responses in diabetic mice when compared to PEGylated insulin and the commercial insulin variant Lantus. Furthermore, IEG-insulin conjugates showed no signs of decreased activity, immunogenicity, or toxicity following repeat dosing. This work represents a significant step toward the synthesis of precise synthetic polymer-biopolymer conjugates and reveals that fine tuning of synthetic polymer structure may be used to optimize such conjugates in the future.
Collapse
Affiliation(s)
- Wencong Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yivan Jiang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhihao Huang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Manuel Hartweg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Masamichi Shirakura
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - K. Peter Qin
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Kohlan TB, Atespare AE, Yildiz M, Menceloglu YZ, Unal S, Dizman B. Synthesis and Structure-Property Relationship of Amphiphilic Poly(2-ethyl- co-2-(alkyl/aryl)-2-oxazoline) Copolymers. ACS OMEGA 2022; 7:40067-40077. [PMID: 36385860 PMCID: PMC9648074 DOI: 10.1021/acsomega.2c04809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Poly(2-oxazoline)s (POZs) are widely investigated for their applications in various fields due to their unique properties. To exploit and combine different characteristics of the POZ family, 2-oxazoline monomers can be copolymerized to prepare tailor-made copolymers with the desired glass transition temperature (T g), melting temperature (T m), amphiphilicity, and functionality. Here, we report the synthesis and characterization of 2-oxazoline monomers and a range of POZ copolymers produced, thereof. 2-Propyl-2-oxazoline (PrOZ) and 2-pentyl-2-oxazoline (PeOZ) monomers were synthesized by two different methods starting from nitriles or carboxylic acids. A number of POZ copolymers were synthesized by copolymerization of 2-ethyl-2-oxazoline (EOZ) with either one of PrOZ, PeOZ, or 2-phenyl-2-oxazoline (PhOZ) at three different compositions (25:75, 50:50, and 75:25) and three molecular weights (1000, 2000, and 5000 Da). The successful synthesis of the monomers and copolymers was demonstrated through their structural analysis by 1H NMR and FTIR. SEC results confirmed the targeted molar masses of the copolymers and living nature of the polymerization by showing low dispersity values. Thermal properties of the copolymers were studied using DSC and TGA. DSC studies revealed the amorph and random state of the copolymers with obtained T g values for the copolymers in the range of -3 to 84 °C depending on their molecular weight and type of the side chain. While the presence of longer aliphatic side chains resulted in lower T g values, the presence of 2-phenyl substituents on the polymer led to higher T g values. The decomposition temperatures determined by TGA were in the range of 328 to 383 °C depending on the molecular weight, composition, and side chain of the copolymers. It was observed that higher molecular weights led to higher T g values and decomposition temperatures. While copolymers with aliphatic side chains exhibited a single-step decomposition profile, the decomposition of copolymers having aromatic side chains occurred in multiple steps. The variations in the molecular weight, composition, and side chains of the copolymers resulted in a library of tailorable amphiphilic copolymers suitable for multiple applications ranging from biomedical applications to composite manufacturing.
Collapse
Affiliation(s)
- Taha Behroozi Kohlan
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Asu Ece Atespare
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Mehmet Yildiz
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Yusuf Ziya Menceloglu
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Serkan Unal
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Bekir Dizman
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
27
|
Hu J, Liu S. Emerging Trends of Discrete Poly(ethylene glycol) in Biomedical Applications. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Ide Y, Manabe Y, Inaba Y, Kinoshita Y, Pirillo J, Hijikata Y, Yoneda T, Shivakumar KI, Tanaka S, Asakawa H, Inokuma Y. Determination of the critical chain length for macromolecular crystallization using structurally flexible polyketones. Chem Sci 2022; 13:9848-9854. [PMID: 36199636 PMCID: PMC9434099 DOI: 10.1039/d2sc03083g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Critical chain length that divides small molecule crystallization from macromolecular crystallization is an important index in macro-organic chemistry to predict chain-length dependent properties of oligomers and polymers. However, extensive research on crystallization behavior of individual oligomers has been inhibited by difficulties in their synthesis and crystallization. Here, we report on the determination of critical chain length of macromolecular crystallization for structurally flexible polyketones consisting of 3,3-dimethylpentane-2,4-dione. Discrete polyketone oligomers were synthesized via stepwise elongation up to 20-mer. Powder and single crystal X-ray diffraction showed that the critical chain length for polyketones existed at an unexpectedly short chain length, 5-mer. While shorter oligomers adopted unique conformations and packing structures in the solid state, higher oligomers longer than 4-mer produced helical conformations and similar crystal packing. The critical chain length helped with understanding the inexplicable changes in melting point in the shorter chain length region resulting from chain conformations and packing styles.
Collapse
Affiliation(s)
- Yuki Ide
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Yumehiro Manabe
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yuya Inaba
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Yusuke Kinoshita
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Jenny Pirillo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Yuh Hijikata
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Tomoki Yoneda
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| | - Kilingaru I Shivakumar
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
| | - Saki Tanaka
- Nanomaterials Research Institute (NanoMaRi), Graduate School of Natural Science and Technology, and Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kanazawa 920-1192 Japan
| | - Hitoshi Asakawa
- Nanomaterials Research Institute (NanoMaRi), Graduate School of Natural Science and Technology, and Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kanazawa 920-1192 Japan
| | - Yasuhide Inokuma
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Kita 21, Nishi 10, Kita-ku Sapporo Hokkaido 001-0021 Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University Kita 13, Nishi 8, Kita-ku Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
29
|
Zhou D, Xu M, Ma Z, Gan Z, Zheng J, Tan R, Dong XH. Discrete Diblock Copolymers with Tailored Conformational Asymmetry: A Precise Model Platform to Explore Complex Spherical Phases. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Zheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Kim D, Lee JM, Song J, Lee SW, Lee HG, Kim KT. Synthesis of Enantiomeric ω-Substituted Hydroxy Acids from Terminal Epoxides and Alkenes: Functional Building Blocks for Discrete and Sequence-Defined Polyesters. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dogyun Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jeong Min Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jeongeun Song
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seul Woo Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hong Geun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
31
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence‐Specific Peptide Recognition. Angew Chem Int Ed Engl 2022; 61:e202206456. [DOI: 10.1002/anie.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yusuke Saito
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Ryutaro Honda
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Masanori Nagao
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Applied Chemistry Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
32
|
Kamigaito M. Evolutions of precision radical polymerizations from metal-catalyzed radical addition: living polymerization, step-growth polymerization, and monomer sequence control. Polym J 2022. [DOI: 10.1038/s41428-022-00680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Wang L, Yang Y, Cui Q, Liu X. Time-resolved spectroscopy of oligomerized phenyl modified carbon nitride. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Kardas S, Fossépré M, Lemaur V, Fernandes AE, Glinel K, Jonas AM, Surin M. Revealing the Organization of Catalytic Sequence-Defined Oligomers via Combined Molecular Dynamics Simulations and Network Analysis. J Chem Inf Model 2022; 62:2761-2770. [PMID: 35608867 DOI: 10.1021/acs.jcim.2c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Similar to biological macromolecules such as DNA and proteins, the precise control over the monomer position in sequence-defined polymers is of paramount importance for tuning their structures and properties toward achieving specific functions. Here, we apply molecular network analysis on three-dimensional structures issued from molecular dynamics simulations to decipher how the chain organization of trifunctional catalytic oligomers is influenced by the oligomer sequence and the length of oligo(ethylene oxide) spacers. Our findings demonstrate that the tuning of their primary structures is crucial for favoring cooperative interactions between the catalytic units and thus higher catalytic activities. This combined approach can assist in establishing structure-property relationships, leading to a more rational design of sequence-defined catalytic oligomers via computational chemistry.
Collapse
Affiliation(s)
- Sinan Kardas
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium.,Institute for Complex Molecular Systems, Eindhoven University of Technology-TU/e, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Antony E Fernandes
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Louvain-la-Neuve B-1348, Belgium.,Certech, Rue Jules Bordet 45, Zone Industrielle C, Seneffe B-7180, Belgium
| | - Karine Glinel
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, University of Mons-UMONS, Place du Parc 20, Mons B-7000, Belgium
| |
Collapse
|
35
|
Ma Z, Tan R, Gan Z, Zhou D, Yang Y, Zhang W, Dong XH. Modulation of the Complex Spherical Packings through Rationally Doping a Discrete Homopolymer into a Discrete Block Copolymer: A Quantitative Study. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yida Yang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
36
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Saito
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Ryutaro Honda
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Sotaro Akashi
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Hinata Takimoto
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Masanori Nagao
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Yoshiko Miura
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering 744 MotookaNishi-kuFukuoka 8190001 JAPAN
| | - Yu Hoshino
- Kyushu University Department of Chemical Engineering 744 Motooka 819-0395 Fukuoka JAPAN
| |
Collapse
|
37
|
Cai D, Li J, Ma Z, Gan Z, Shao Y, Xing Q, Tan R, Dong XH. Effect of Molecular Architecture and Symmetry on Self-Assembly: A Quantitative Revisit Using Discrete ABA Triblock Copolymers. ACS Macro Lett 2022; 11:555-561. [PMID: 35575328 DOI: 10.1021/acsmacrolett.1c00788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The inherent statistical heterogeneities associated with chain length, composition, and architecture of synthetic block copolymers compromise the quantitative interpretation of their self-assembly process. This study scrutinizes the contribution of molecular architecture on phase behaviors using discrete ABA triblock copolymers with precise chemical structure and uniform chain length. A group of discrete triblock copolymers with varying composition and symmetry were modularly synthesized through a combination of iterative growth methods and efficient coupling reactions. The symmetric ABA triblock copolymers self-assemble into long-range ordered structures with expanded domain spacings and enhanced phase stability, compared with the diblock counterparts snipped at the middle point. By tuning the relative chain length of two end blocks, the molecular asymmetry reduces the packing frustration, and thus increases the order-to-disorder transition temperature and enlarges the domain sizes. This study would serve as a quantitative model system to correlate the experimental observations with the theoretical assessments and to provide quantitative understandings for the relationship between molecular architecture and self-assembly.
Collapse
Affiliation(s)
- Dong Cai
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Jinbin Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Yu Shao
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Xing
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
38
|
Recent advances in the synthesis of discrete oligomers and polymers: chemistry, strategy and technology. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Precise Pentamers with Diverse Monomer Sequences and Their Thermal Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2689-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Miyajima M, Satoh K, Kamigaito M. Periodically Functionalized Sequence‐Regulated Vinyl Polymers via Iterative Atom Transfer Radical Additions and Acyclic Diene Metathesis Polymerization. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Masato Miyajima
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| | - Kotaro Satoh
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2‐12‐1‐H120 Ookayama, Meguro‐ku Tokyo 152‐8550 Japan
| | - Masami Kamigaito
- Department of Molecular and Macromolecular Chemistry Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya 464‐8603 Japan
| |
Collapse
|
41
|
De Franceschi I, Mertens C, Badi N, Du Prez F. Uniform soluble support for the large-scale synthesis of sequence-defined macromolecules. Polym Chem 2022. [DOI: 10.1039/d2py00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monodisperse soluble support is used as an effective tool for the large-scale, liquid-phase synthesis of sequence-defined macromolecules. This uniform support allows for direct characterisation and leads to a single peak in mass spectrometry.
Collapse
Affiliation(s)
- Irene De Franceschi
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Chiel Mertens
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Jose A, Porel M. Backbone and side chain-linker tunability among dithiocarbamate, ester and amide in sequence-defined oligomers: Synthesis and structure-property-function relationship. Polym Chem 2022. [DOI: 10.1039/d1py01586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural diversity and tunable properties achieved by the defined monomeric sequence are the trademarks of a sequence-defined polymer. Herein, we report a modular synthetic platform where, in addition to the...
Collapse
|
43
|
Schmidt BVKJ. Polymer chemistry: fundamentals and applications. Beilstein J Org Chem 2021; 17:2922-2923. [PMID: 34956411 PMCID: PMC8685552 DOI: 10.3762/bjoc.17.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
|
44
|
Liu R, Yang C, Huang Z, French R, Gu Z, Cheng J, Guo K, Xu J. Unraveling Sequence Effect on Glass Transition Temperatures of Discrete Unconjugated Oligomers. Macromol Rapid Commun 2021; 43:e2100666. [PMID: 34850490 DOI: 10.1002/marc.202100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Sequence plays a critical role in enabling unique properties and functions of natural biomolecules, which has promoted the rapid advancement of synthetic sequence-defined polymers in recent decades. Particularly, investigation of short chain sequence-defined oligomers (also called discrete oligomers) on their properties has become a hot topic. However, most studies have focused on discrete oligomers with conjugated structures. In contrast, unconjugated oligomers remain relatively underexplored. In this study, three pairs of discrete oligomers with the same composition but different sequence for each pair are employed for investigating their glass transition temperatures (Tg s). The resultant Tg s of sequenced oligomers in each pair are found to be significantly different (up to 11.6 °C), attributable to variations in molecular packing as demonstrated by molecular dynamics and density function theory simulations. Intermolecular interaction is demonstrated to have less impact on Tg s than intramolecular interaction. The mechanistic investigation into two model dimers suggests that monomer sequence caused the difference in intramolecular rotational flexibility of the sequenced oligomers. In addition, despite having different monomer sequence and Tg s, the oligomers have very similar solubility parameters, which supports their potential use as effective oligomeric plasticizers to tune the Tg s of bulk polymer materials.
Collapse
Affiliation(s)
- Ruizhe Liu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Chao Yang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zixuan Huang
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Rohan French
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, P. R. China
| | - Kunkun Guo
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
45
|
Romio M, Grob B, Trachsel L, Mattarei A, Morgese G, Ramakrishna SN, Niccolai F, Guazzelli E, Paradisi C, Martinelli E, Spencer ND, Benetti EM. Dispersity within Brushes Plays a Major Role in Determining Their Interfacial Properties: The Case of Oligoxazoline-Based Graft Polymers. J Am Chem Soc 2021; 143:19067-19077. [PMID: 34738797 PMCID: PMC8769490 DOI: 10.1021/jacs.1c08383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Many synthetic polymers used to form polymer-brush films feature a main backbone with functional, oligomeric side chains. While the structure of such graft polymers mimics biomacromolecules to an extent, it lacks the monodispersity and structural purity present in nature. Here we demonstrate that side-chain heterogeneity within graft polymers significantly influences hydration and the occurrence of hydrophobic interactions in the subsequently formed brushes and consequently impacts fundamental interfacial properties. This is demonstrated for the case of poly(methacrylate)s (PMAs) presenting oligomeric side chains of different length (n) and dispersity. A precise tuning of brush structure was achieved by first synthesizing oligo(2-ethyl-2-oxazoline) methacrylates (OEOXMAs) by cationic ring-opening polymerization (CROP), subsequently purifying them into discrete macromonomers with distinct values of n by column chromatography, and finally obtaining poly[oligo(2-ethyl-2-oxazoline) methacrylate]s (POEOXMAs) by reversible addition-fragmentation chain-transfer (RAFT) polymerization. Assembly of POEOXMA on Au surfaces yielded graft polymer brushes with different side-chain dispersities and lengths, whose properties were thoroughly investigated by a combination of variable angle spectroscopic ellipsometry (VASE), quartz crystal microbalance with dissipation (QCMD), and atomic force microscopy (AFM) methods. Side-chain dispersity, or dispersity within brushes, leads to assemblies that are more hydrated, less adhesive, and more lubricious and biopassive compared to analogous films obtained from graft polymers characterized by a homogeneous structure.
Collapse
Affiliation(s)
- Matteo Romio
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Benjamin Grob
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Lucca Trachsel
- George
& Josephine Butler Polymer Research Laboratory, Department of
Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200, United States
| | - Andrea Mattarei
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giulia Morgese
- Institute
of Materials and Process Engineering (IMPE), School of Engineering
(SoE), Zürich University of Applied
Sciences (ZHAW), Technikumstrasse 9, 8401 Winterthur, Switzerland
| | - Shivaprakash N. Ramakrishna
- Soft Materials
and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg
5, 8093 Zürich, Switzerland
| | - Francesca Niccolai
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Elisa Guazzelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Cristina Paradisi
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Elisa Martinelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Edmondo M. Benetti
- Biointerfaces
Lab, Swiss Federal Laboratories for Materials
Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| |
Collapse
|
46
|
Zhou D, Xu M, Ma Z, Gan Z, Tan R, Wang S, Zhang Z, Dong XH. Precisely Encoding Geometric Features into Discrete Linear Polymer Chains for Robust Structural Engineering. J Am Chem Soc 2021; 143:18744-18754. [PMID: 34714634 DOI: 10.1021/jacs.1c09575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular shape is an essential parameter that regulates the self-organization and recognition process, which has not yet been well appreciated and exploited in block polymers due to the lack of precise and efficient modulation methods. This work (i) develops a robust approach to break the intrinsic symmetry of linear polymers by introducing geometric features into otherwise homogeneous chains and (ii) quantitatively highlights the critical contribution of molecular geometry/architecture to the self-assembly behaviors. Iteratively connecting homologous monomers of different side chains according to pre-designed sequences generates discrete polymers with exact chemical structure, uniform chain length, and programmable side-chain gradient along the backbone, which transcribes into diverse shapes. The precise chemistry eliminates all the defects and heterogeneities, providing a delicate platform for fundamental inquiries into the role of molecular geometry. A rich collection of unconventional complex phases, including Frank-Kasper A15 and σ phases, as well as a dodecagonal quasicrystal phase, were captured in these rigorous single-component systems. The self-assembly behaviors are strikingly sensitive to subtle variations of geometry, such that simply migrating a few methylene units among the side chains would generate substantial differences in lattice size or phase stability, or even trigger a phase transition toward distinct structures. The phenomena can be rationalized with a geometric argument that nonuniform side chain distribution leads to conformational mismatch between two immiscible blocks, resulting in varied interfacial curvatures and distinct lattice symmetries. The profound contribution demonstrates that molecular geometry is an effective and robust parameter for structural engineering.
Collapse
Affiliation(s)
- Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhanhui Gan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Shuai Wang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengbiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
47
|
Zhang L, Liu R, Lin S, Xu J. PET-RAFT single unit monomer insertion of β-methylstyrene derivatives: RAFT degradation and reaction selectivity. Chem Commun (Camb) 2021; 57:10759-10762. [PMID: 34585689 DOI: 10.1039/d1cc03927j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) single unit monomer insertion (SUMI) of β-methylstyrene derivatives into diverse RAFT agents presented fast reaction kinetics, but significant degradation of the SUMI products occurred due to a hydrogen abstraction reaction. Fortunately, such degradation can be suppressed through appropriate design of initial RAFT agents attributed to effective chain transfer and selective photoactivation.
Collapse
Affiliation(s)
- Lei Zhang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Ruizhe Liu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Shiyang Lin
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Jiangtao Xu
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
48
|
Falcón-Torres PD, Morales-Segoviano AG, Martínez-Salazar AA, Ortiz-Aldaco MG, Navarro R, Marcos-Fernández Á, Ramírez-Hernández A, Moreno KJ, Báez JE. Terpenes versus linear alkyl substituents: effect of the terminal groups on the oligomers derived from poly(ε-caprolactone). CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
50
|
Nagao M, Kichize M, Hoshino Y, Miura Y. Influence of Monomer Structures for Polymeric Multivalent Ligands: Consideration of the Molecular Mobility of Glycopolymers. Biomacromolecules 2021; 22:3119-3127. [PMID: 34152744 DOI: 10.1021/acs.biomac.1c00553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular mobility is important for interactions of biofunctional polymers with target molecules. Monomer structures for synthetic biofunctional polymers are usually selected based on their compatibility with polymerization systems, whereas the influence of monomer structures on the interaction with target molecules is hardly considered. In this report, we evaluate the correlation between the monomer structures of glycopolymers and their interactions with concanavalin A (ConA) with respect to the molecular mobility. Two types of glycopolymers bearing mannose are synthesized with acrylamide or acrylate monomers. Despite the similar structures, except for amide or ester bonds in the side chains, the acrylate-type glycopolymers exhibit stronger interaction with ConA both in the isothermal titration calorimetry measurement and in a hemagglutination inhibition assay. Characterization of the acrylate-type glycopolymers suggests that the higher binding constant arises from the higher molecular mobility of mannose units, which results from the rotational freedom of ester bonds in their side chains.
Collapse
Affiliation(s)
- Masanori Nagao
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaya Kichize
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|