1
|
Škulj S, Kožić M, Barišić A, Vega A, Biarnés X, Piantanida I, Barisic I, Bertoša B. Comparison of two peroxidases with high potential for biotechnology applications - HRP vs. APEX2. Comput Struct Biotechnol J 2024; 23:742-751. [PMID: 38298178 PMCID: PMC10828542 DOI: 10.1016/j.csbj.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 02/02/2024] Open
Abstract
Peroxidases are essential elements in many biotechnological applications. An especially interesting concept involves split enzymes, where the enzyme is separated into two smaller and inactive proteins that can dimerize into a fully active enzyme. Such split forms were developed for the horseradish peroxidase (HRP) and ascorbate peroxidase (APX) already. Both peroxidases have a high potential for biotechnology applications. In the present study, we performed biophysical comparisons of these two peroxidases and their split analogues. The active site availability is similar for all four structures. The split enzymes are comparable in stability with their native analogues, meaning that they can be used for further biotechnology applications. Also, the tertiary structures of the two peroxidases are similar. However, differences that might help in choosing one system over another for biotechnology applications were noticed. The main difference between the two systems is glycosylation which is not present in the case of APX/sAPEX2, while it has a high impact on the HRP/sHRP stability. Further differences are calcium ions and cysteine bridges that are present only in the case of HRP/sHRP. Finally, computational results identified sAPEX2 as the systems with the smallest structural variations during molecular dynamics simulations showing its dominant stability comparing to other simulated proteins. Taken all together, the sAPEX2 system has a high potential for biotechnological applications due to the lack of glycans and cysteines, as well as due to high stability.
Collapse
Affiliation(s)
- Sanja Škulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Matej Kožić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Antun Barišić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| | - Aitor Vega
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xevi Biarnés
- Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10 000 Zagreb, Croatia
| | - Ivan Barisic
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, Vienna 1210, Austria
- Eko Refugium, Crno Vrelo 2, Slunj 47240, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb HR-10000, Croatia
| |
Collapse
|
2
|
Zhou Y, Zhang J, You S, Lin W, Zhang B, Wang M, Su R, Qi W. High terephthalic acid purity: Effective polyethylene terephthalate degradation process based on pH regulation with dual-function hydrolase. BIORESOURCE TECHNOLOGY 2024; 413:131461. [PMID: 39255945 DOI: 10.1016/j.biortech.2024.131461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Eco-friendly enzymatic-recycling has been widely utilized in tackling plastic pollution. However, the limited activity on the polyethylene terephthalate (PET) degradation product mono-hydroxyethyl terephthalate (MHET) leads to the formation of heterogeneous hydrolysis products, resulting in PET downcycling. Herein, by applying a dual-function PET hydrolase IsPETasePA with balanced PET and MHET degradation efficiency, an effective PET hydrolysis process was developed to enhance the terephthalic acid (TPA) product purity. Firstly, the impact of pH on the catalytic activity of IsPETasePA revealed that the pH reduction caused by TPA generation hindered the complete conversion of MHET to TPA. Further investigation of the catalytic mechanism showed that the pH-induced protonation of His208 in the catalytic triad destabilized the interaction between IsPETasePA and MHET. Thus, by introducing pH regulation strategy on the bifunctional IsPETasePA, the single-enzyme process could achieve high-purity TPA recovery (>99 %). Overall, this work ensured the high-quality PET enzymatic-recycling for effectively addressing plastic pollution.
Collapse
Affiliation(s)
- Yu Zhou
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Beijing Meihao Biotechnology Co., Ltd, PR China
| | - Wei Lin
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Baoyu Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Mengfan Wang
- School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Yuantian Biotechnology (Tianjin) Co., Ltd, PR China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
3
|
Pandya A, Zhang C, Barata TS, Brocchini S, Howard MJ, Zloh M, Dalby PA. Molecular Dynamics Simulations Reveal How Competing Protein-Surface Interactions for Glycine, Citrate, and Water Modulate Stability in Antibody Fragment Formulations. Mol Pharm 2024; 21:5497-5509. [PMID: 39431440 PMCID: PMC11539065 DOI: 10.1021/acs.molpharmaceut.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
The design of stable formulations remains a major challenge for protein therapeutics, particularly the need to minimize aggregation. Experimental formulation screens are typically based on thermal transition midpoints (Tm), and forced degradation studies at elevated temperatures. Both approaches give limited predictions of long-term storage stability, particularly at low temperatures. Better understanding of the mechanisms of action for formulation of excipients and buffers could lead to improved strategies for formulation design. Here, we identified a complex impact of glycine concentration on the experimentally determined stability of an antibody Fab fragment and then used molecular dynamics simulations to reveal mechanisms that underpin these complex behaviors. Tm values increased monotonically with glycine concentration, but associated ΔSvh measurements revealed more complex changes in the native ensemble dynamics, which reached a maximum at 30 mg/mL. The aggregation kinetics at 65 °C were similar at 0 and 20 mg/mL glycine, but then significantly slower at 50 mg/mL. These complex behaviors indicated changes in the dominant stabilizing mechanisms as the glycine concentration was increased. MD revealed a complex balance of glycine self-interaction, and differentially preferred interactions of glycine with the Fab as it displaced hydration-shell water, and surface-bound water and citrate buffer molecules. As a result, glycine binding to the Fab surface had different effects at different concentrations, and led from preferential interactions at low concentrations to preferential exclusion at higher concentrations. During preferential interaction, glycine displaced water from the Fab hydration shell, and a small number of water and citrate molecules from the Fab surface, which reduced the protein dynamics as measured by root-mean-square fluctuation (RMSF) on the short time scales of MD. By contrast, the native ensemble dynamics increased according to ΔSvh, suggesting increased conformational changes on longer time scales. The aggregation kinetics did not change at low glycine concentrations, and so the opposing dynamics effects either canceled out or were not directly relevant to aggregation. During preferential exclusion at higher glycine concentrations, glycine could only bind to the Fab surface through the displacement of citrate buffer molecules already favorably bound on the Fab surface. Displacement of citrate increased the flexibility (RMSF) of the Fab, as glycine formed fewer bridging hydrogen bonds to the Fab surface. Overall, the slowing of aggregation kinetics coincided with reduced flexibility in the Fab ensemble at the very highest glycine concentrations, as determined by both RMSF and ΔSvh, and occurred at a point where glycine binding displaced neither water nor citrate. These final interactions with the Fab surface were driven by mass action and were the least favorable, leading to a macromolecular crowding effect under the regime of preferential exclusion that stabilized the dynamics of Fab.
Collapse
Affiliation(s)
- Akash Pandya
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Cheng Zhang
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| | - Teresa S. Barata
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Steve Brocchini
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Mark J. Howard
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
| | - Mire Zloh
- School
of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K.
| | - Paul A. Dalby
- Department
of Biochemical Engineering, University College
London, Gower Street, London WC1E
6BT, U.K.
| |
Collapse
|
4
|
Kobzar O, Beiko A, Merzhyievskyi D, Shablykin O, Brovarets V, Tanchuk V, Vovk A. Design, Synthesis, and Xanthine Oxidase Inhibitory Activity of 4-(5-Aminosubstituted-4-cyanooxazol-2-yl)benzoic Acids. ChemMedChem 2024; 19:e202400478. [PMID: 39031172 DOI: 10.1002/cmdc.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
Xanthine oxidase is a known therapeutic target for the treatment of hyperuricemia and related diseases. Despite the availability of current drugs such as allopurinol and febuxostat, the search for new compounds to effectively inhibit this enzyme remains relevant. In our study, 75 virtual structures of 4-(5-aminosubstituted-4-cyanooxazol-2-yl)benzoic acids with structural similarity to febuxostat were designed for evaluation of their potency against xanthine oxidase. After molecular docking simulations, eight compounds were selected for synthesis and in vitro testing. The synthesized compounds were found to exhibit in vitro xanthine oxidase inhibitory activity in the nanomolar concentration range. The most effective inhibitors with 4-benzylpiperidin-1-yl or 1,2,3,4-tetrahydroisoquinolin-2-yl substituents at position 5 of the oxazole ring had IC50 values close to that of febuxostat. The kinetic data suggest a mixed-type inhibition when the inhibitor binds preferentially to the free enzyme rather than to the enzyme-substrate complex. Molecular docking and molecular dynamic simulations were carried out to get insight into the key interactions of the inhibitors bound to the xanthine oxidase active site.
Collapse
Affiliation(s)
- Oleksandr Kobzar
- Department of Bioorganic Mechanisms, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine
| | - Alona Beiko
- Department of Bioorganic Mechanisms, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine
| | - Danylo Merzhyievskyi
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Oleg Shablykin
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine
| | - Volodymyr Brovarets
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine
| | - Vsevolod Tanchuk
- Department of Bioorganic Mechanisms, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine
| | - Andriy Vovk
- Department of Bioorganic Mechanisms, V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, Academika Kukharya Str. 1, 02094, Kyiv, Ukraine
| |
Collapse
|
5
|
Samanta S, Sk MF, Koirala S, Kar P. Dynamic Interplay of Loop Motions Governs the Molecular Level Regulatory Dynamics in Spleen Tyrosine Kinase: Insights from Molecular Dynamics Simulations. J Phys Chem B 2024; 128:10565-10580. [PMID: 39432460 DOI: 10.1021/acs.jpcb.4c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The spleen tyrosine kinase (Syk) is a key regulator in immune cell signaling and is linked to various mechanisms in cancer and neurodegenerative diseases. Although most computational research on Syk focuses on novel drug design, the molecular-level regulatory dynamics remain unexplored. In this study, we utilized 5 × 1 μs all-atom molecular dynamics simulations of the Syk kinase domain, examining it in combinations of activation segment phosphorylated/unphosphorylated (at Tyr525, Tyr526) and the "DFG"-Asp protonated/deprotonated (at Asp512) states to investigate conformational variations and regulatory dynamics of various loops and motifs within the kinase domain. Our findings revealed that the formation and disruption of several electrostatic interactions among residues within and near the activation segment likely influenced its dynamics. The protein structure network analysis indicated that the N-terminal and C-terminal anchors were stabilized by connections with the nearby stable helical regions. The P-loop showed conformational variation characterized by movements toward and away from the conserved "HRD"-motif. Additionally, there was a significant correlation between the movement of the β3-αC loop and the P-loop, which controls the dimensions of the adenine-binding cavity of the C-spine region. Overall, understanding these significant motions of the Syk kinase domain enhances our knowledge of its functional regulatory mechanism and can guide future research.
Collapse
Affiliation(s)
- Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Md Fulbabu Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Suman Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, MP 453552, India
| |
Collapse
|
6
|
de Oliveira Santos LAB, Batista MVDA. Structure-based virtual screening and drug repurposing studies indicate potential inhibitors of bovine papillomavirus E6 oncoprotein. Microbiol Immunol 2024. [PMID: 39467039 DOI: 10.1111/1348-0421.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Bovine papillomavirus type 1 (BPV1) is an oncogenic virus that causes lesions and cancer in infected cattle. Despite being one of the most studied genotypes in the family and occurring in herds worldwide, there are currently no vaccines or drugs for its control. The viral E6 oncoprotein plays a crucial role in infection by this virus, making it a promising target for the development of new therapies. In this regard, we integrated structure-based virtual screening approaches, drug repositioning, and molecular dynamics to identify approved drugs with the potential to inhibit BPV1 E6. Our results reveal that Lumacaftor and MK-3207 are promising candidates for controlling BPV1 infection. The findings of this study may contribute to the development of E6 oncoprotein blockers in an accelerated and cost-effective manner.
Collapse
Affiliation(s)
- Lucas Alexandre Barbosa de Oliveira Santos
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
7
|
Ahn SY, Obermeyer AC. Selectivity of Complex Coacervation in Multiprotein Mixtures. JACS AU 2024; 4:3800-3812. [PMID: 39483238 PMCID: PMC11522905 DOI: 10.1021/jacsau.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 11/03/2024]
Abstract
Liquid-liquid phase separation of biomolecules is increasingly recognized as being relevant to various cellular functions, and complex coacervation of biomacromolecules, particularly proteins, is emerging as a key mechanism for this phenomenon. Complex coacervation is also being explored as a potential protein purification method due to its potential scalability, aqueous operation, and ability to produce a highly concentrated product. However, to date, most studies of complex coacervation have evaluated the phase behavior of a binary mixture of two oppositely charged macromolecules. Therefore, a comprehensive understanding of the phase behavior of complex biological mixtures is yet to be established. To address this, a panel of engineered proteins was designed to allow for quantitative analysis of the complex coacervation of individual proteins within a multicomponent mixture. The behavior of individual proteins was evaluated using a defined mixture of proteins that mimics the charge profile of the Escherichia coli proteome. To allow for the direct quantification of proteins in each phase, spectrally separated fluorescent proteins were used to construct the protein mixture. From this quantitative analysis, we observed that protein coacervation was synchronized in the mixture, which was distinctive from the behavior when each protein was evaluated in a single-protein system. Subtle differences in biophysical properties between the proteins, such as the ionization of individual charged residues and overall charge density, became noticeable in the mixture, which allowed us to elucidate parameters for protein complex coacervation. With this understanding, we successfully designed methods to enrich a range of proteins of interest from a mixture of proteins.
Collapse
Affiliation(s)
- So Yeon Ahn
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Allie C. Obermeyer
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
de Visser SP, Wong HPH, Zhang Y, Yadav R, Sastri CV. Tutorial Review on the Set-Up and Running of Quantum Mechanical Cluster Models for Enzymatic Reaction Mechanisms. Chemistry 2024; 30:e202402468. [PMID: 39109881 DOI: 10.1002/chem.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions. A popular approach in modelling is the use of quantum mechanical cluster models of enzymes that take the first- and second coordination sphere of the enzyme active site into consideration. These QM cluster models are widely applied but often the results obtained are dependent on model choice and model selection. Herein, we show that QM cluster models can give highly accurate results that reproduce experimental product distributions and free energies of activation within several kcal mol-1, regarded that large cluster models with >300 atoms are used that include key hydrogen bonding interactions and charged residues. In this tutorial review, we give general guidelines on the set-up and applications of the QM cluster method and discuss its accuracy and reproducibility. Finally, several representative QM cluster model examples on metal-containing enzymes are presented, which highlight the strength of the approach.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
9
|
Paiardi G, Ferraz M, Rusnati M, Wade RC. The accomplices: Heparan sulfates and N-glycans foster SARS-CoV-2 spike:ACE2 receptor binding and virus priming. Proc Natl Acad Sci U S A 2024; 121:e2404892121. [PMID: 39401361 PMCID: PMC11513917 DOI: 10.1073/pnas.2404892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Although it is well established that the SARS-CoV-2 spike glycoprotein binds to the host cell ACE2 receptor to initiate infection, far less is known about the tissue tropism and host cell susceptibility to the virus. Differential expression across different cell types of heparan sulfate (HS) proteoglycans, with variably sulfated glycosaminoglycans (GAGs), and their synergistic interactions with host and viral N-glycans may contribute to tissue tropism and host cell susceptibility. Nevertheless, their contribution remains unclear since HS and N-glycans evade experimental characterization. We, therefore, carried out microsecond-long all-atom molecular dynamics simulations, followed by random acceleration molecular dynamics simulations, of the fully glycosylated spike:ACE2 complex with and without highly sulfated GAG chains bound. By considering the model GAGs as surrogates for the highly sulfated HS expressed in lung cells, we identified key cell entry mechanisms of spike SARS-CoV-2. We find that HS promotes structural and energetic stabilization of the active conformation of the spike receptor-binding domain (RBD) and reorientation of ACE2 toward the N-terminal domain in the same spike subunit as the RBD. Spike and ACE2 N-glycans exert synergistic effects, promoting better packing, strengthening the protein:protein interaction, and prolonging the residence time of the complex. ACE2 and HS binding trigger rearrangement of the S2' functional protease cleavage site through allosteric interdomain communication. These results thus show that HS has a multifaceted role in facilitating SARS-CoV-2 infection, and they provide a mechanistic basis for the development of GAG derivatives with anti-SARS-CoV-2 potential.
Collapse
Affiliation(s)
- Giulia Paiardi
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Heidelberg University, Heidelberg69117, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg69120, Germany
| | - Matheus Ferraz
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE50740-465, Brazil
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE50740-560, Brazil
| | - Marco Rusnati
- Macromolecular Interaction Analysis Unit, Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, Brescia25123, Italy
| | - Rebecca C. Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg69118, Germany
- Heidelberg University, Heidelberg69117, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg69120, Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg69120, Germany
| |
Collapse
|
10
|
Inandiklioglu N, Onat T, Raheem KY, Kaya S. The Potential of JWH-133 to Inhibit the TLR4/NF-κB Signaling Pathway in Uterine Ischemia-Reperfusion Injury. Life (Basel) 2024; 14:1214. [PMID: 39459513 PMCID: PMC11508640 DOI: 10.3390/life14101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, significant progress has been made in understanding the biological and molecular pathways that regulate the effects of ischemia-reperfusion (I/R) injuries. However, despite these developments, various pharmacological agents are still being tested to either protect against or mitigate the damage caused by the IR's harmful consequences. JWH133 is a CB2R-selective agonist and belongs to the class of Δ8-tetrahydrocannabinol. The present study aimed to determine the in vivo effect of JWH-133 on uterine IR injury via the TLR4/NF-κB, pathway. Female Wistar albino rats (n = 40) were randomly divided into five groups. Three different doses of JWH-133 (0.2, 1, and 5 mg/kg) were administered to the rats. RNA was isolated from uterine tissue samples, and gene expression was measured by RT-PCR using specific primers. The interaction energies and binding affinities of JWH-133 with IL-1β, IL-6, NF-κB, TLR-4, and TNF-α were calculated through molecular docking analysis. The expression analysis revealed that JWH-133 administration significantly reduced the expression levels of IL-1β, IL-6, NF-κB, TLR-4, and TNF-α (p < 0.05). Notably, in the 1 mg/kg JWH-133 group, all of the gene expression levels decreased significantly (p < 0.05). The molecular docking results showed that JWH-133 formed hydrogen bonds with GLU64 of IL-1β, SER226 of IL-6, and SER62 of TNF-α. This study highlights the molecular binding affinity of JWH-133 and its potential effects on inflammation in IR injury. These results pave the way for future research on its potential as a therapeutic target.
Collapse
Affiliation(s)
- Nihal Inandiklioglu
- Faculty of Medicine, Department of Medical Biology, Yozgat Bozok University, 66200 Yozgat, Türkiye
| | - Taylan Onat
- Faculty of Medicine, Department of Obstetrics and Gynecology, Yozgat Bozok University, 66200 Yozgat, Türkiye;
| | - Kayode Yomi Raheem
- Faculty of Science, Department of Biochemistry, Adekunle Ajasin University, Akungba 342111, Ondo State, Nigeria;
| | - Savas Kaya
- Faculty of Science, Department of Chemistry, Cumhuriyet University, 58140 Sivas, Türkiye;
| |
Collapse
|
11
|
Shivarov V, Tsvetkova G, Micheva I, Hadjiev E, Petrova J, Ivanova A, Madjarova G, Ivanova M. Differential modulation of mutant CALR and JAK2 V617F-driven oncogenesis by HLA genotype in myeloproliferative neoplasms. Front Immunol 2024; 15:1427810. [PMID: 39351227 PMCID: PMC11439724 DOI: 10.3389/fimmu.2024.1427810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
It has been demonstrated previously that human leukocyte antigen class I (HLA-I) and class II (HLA-II) alleles may modulate JAK2 V617F and CALR mutation (CALRmut)-associated oncogenesis in myeloproliferative neoplasms (MPNs). However, the role of immunogenetic factors in MPNs remains underexplored. We aimed to investigate the potential involvement of HLA genes in CALRmut+ MPNs. High-resolution genotyping of HLA-I and -II loci was conducted in 42 CALRmut+ and 158 JAK2 V617F+ MPN patients and 1,083 healthy controls. A global analysis of the diversity of HLA-I genotypes revealed no significant differences between CALRmut+ patients and controls. However, one HLA-I allele (C*06:02) showed an inverse correlation with presence of CALR mutation. A meta-analysis across independent cohorts and healthy individuals from the 1000 Genomes Project confirmed an inverse correlation between the presentation capabilities of the HLA-I loci for JAK2 V617F and CALRmut-derived peptides in both patients and healthy individuals. scRNA-Seq analysis revealed low expression of TAP1 and CIITA genes in CALRmut+ hematopoietic stem and progenitor cells. In conclusion, the HLA-I genotype differentially restricts JAK2 V617F and CALRmut-driven oncogenesis potentially explaining the mutual exclusivity of the two mutations and differences in their presentation latency. These findings have practical implications for the development of neoantigen-based vaccines in MPNs.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Gergana Tsvetkova
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Ilina Micheva
- Department of Clinical Hematology, Saint Marina University Hospital, Medical University Varna, Varna, Bulgaria
| | - Evgueniy Hadjiev
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Jasmina Petrova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Galia Madjarova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
12
|
El-Feky AM, Aboulthana WM, El-Rashedy AA. Assessment of the in vitro anti-diabetic activity with molecular dynamic simulations of limonoids isolated from Adalia lemon peels. Sci Rep 2024; 14:21478. [PMID: 39277638 PMCID: PMC11401861 DOI: 10.1038/s41598-024-71198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
Limonoids are important constituents of citrus that have a significant impact on promoting human health. Therefore, the primary focus of this research was to assess the overall limonoid content and isolate limonoids from Adalia lemon (Citrus limon L.) peels for their potential use as antioxidants and anti-diabetic agents. The levels of limonoid aglycones in the C. limon peel extract were quantified through a colorimetric assay, revealing a concentration of 16.53 ± 0.93 mg/L limonin equivalent. Furthermore, the total concentration of limonoid glucosides was determined to be 54.38 ± 1.02 mg/L. The study successfully identified five isolated limonoids, namely limonin, deacetylnomilin, nomilin, obacunone 17-O-β-D-glucopyranoside, and limonin 17-O-β-D-glucopyranoside, along with their respective yields. The efficacy of the limonoids-rich extract and the five isolated compounds was evaluated at three different concentrations (50, 100, and 200 µg/mL). It was found that both obacunone 17-O-β-D-glucopyranoside and limonin 17-O-β-D-glucopyranoside possessed the highest antioxidant, free radical scavenging, and anti-diabetic activities, followed by deacetylnomilin, and then the limonoids-rich extract. The molecular dynamic simulations were conducted to predict the behavior of the isolated compounds upon binding to the protein's active site, as well as their interaction and stability. The results revealed that limonin 17-O-β-D-glucopyranoside bound to the protein complex system exhibited a relatively more stable conformation than the Apo system. The analysis of Solvent Accessible Surface Area (SASA), in conjunction with the data obtained from Root-Mean-Square Deviation (RMSD), Root-Mean-Square Fluctuation (RMSF), and Radius of Gyration (ROG) computations, provided further evidence that the limonin 17-O-β-D-glucopyranoside complex system remained stable within the catalytic domain binding site of the human pancreatic alpha-amylase (HPA)-receptor. The research findings suggest that the limonoids found in Adalia lemon peels have the potential to be used as effective natural substances in creating innovative therapeutic treatments for conditions related to oxidative stress and disorders in carbohydrate metabolism.
Collapse
Affiliation(s)
- Amal M El-Feky
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
13
|
Świderek K, Martí S, Arafet K, Moliner V. Computational study of the mechanism of a polyurethane esterase A (PueA) from Pseudomonas chlororaphis. Faraday Discuss 2024; 252:323-340. [PMID: 38836643 DOI: 10.1039/d4fd00022f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The effective management of plastic waste has become a global imperative, given our reliance on a linear model in which plastics are manufactured, used once, and then discarded. This has led to the pervasive accumulation of plastic debris in landfills and environmental contamination. Recognizing this issue, numerous initiatives are underway to address the environmental repercussions associated with plastic disposal. In this study, we investigate the possible molecular mechanism of polyurethane esterase A (PueA), which has been previously identified as responsible for the degradation of a polyester polyurethane (PU) sample in Pseudomonas chlororaphis, as an effort to develop enzymatic biodegradation solutions. After generating the unsolved 3D structure of the protein by AlphaFold2 from its known genome, the enzymatic hydrolysis of the same model PU compound previously used in experiments has been explored employing QM/MM molecular dynamics simulations. This required a preliminary analysis of the 3D structure of the apo-enzyme, identifying the putative active site, and the search for the optimal protein-substrate binding site. Finally, the resulting free energy landscape indicates that wild-type PueA can degrade PU chains, although with low-level activity. The reaction takes place by a characteristic four-step path of the serine hydrolases, involving an acylation followed by a diacylation step. Energetics and structural analysis of the evolution of the active site along the reaction suggests that PueA can be considered a promising protein scaffold for further development to achieve efficient biodegradation of PU.
Collapse
Affiliation(s)
- Katarzyna Świderek
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| | - Sergio Martí
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| | - Kemel Arafet
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| | - Vicent Moliner
- BioComp Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
14
|
Li W, Mei W, Jiang H, Wang J, Li X, Quan L, Diao Y, Ma Y, Fan S, Xie Z, Gong M, Zhu H, Bi D, Zhang F, Ma L, Zhang J, Gao Y, Paschalidis A, Lin H, Liu F, Liu K, Ye M, Zhao Z, Duan Y, Chen Z, Xu Y, Xiao W, Tao S, Zhu L, Li H. Blocking the PD-1 signal transduction by occupying the phosphorylated ITSM recognition site of SHP-2. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2706-2. [PMID: 39235560 DOI: 10.1007/s11427-024-2706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction. Furthermore, we identify SHP-2 as the direct molecular target of PA for inhibiting the PD-1 signaling transduction. Subsequently, mechanistic studies suggest that PA binds to a new druggable site in the phosphorylated PD-1 ITSM recognition site of SHP-2, inhibiting the recruitment of SHP-2 by PD-1. Taken together, our findings demonstrate that PA has a potential application in cancer immunotherapy and occupying the phosphorylated ITSM recognition site of SHP-2 may serve as an alternative strategy to develop PD-1 signaling inhibitors. In addition, our success in target recognition provides a paradigm of target identification and confirmation for natural products.
Collapse
Affiliation(s)
- Wenjie Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Wenyi Mei
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Hewei Jiang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Lina Quan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yanni Ma
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sisi Fan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhuwei Xie
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Mengdie Gong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Huan Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Dewen Bi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China
| | - Feng Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Aris Paschalidis
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Fangfang Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650500, China.
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai, 200237, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, 200062, China.
- Lingang Laboratory, Shanghai, 200031, China.
| |
Collapse
|
15
|
Kim G, Van NTH, Nam JH, Lee W. Unraveling the Molecular Reason of Opposing Effects of α-Mangostin and Norfluoxetine on TREK-2 at the Same Binding Site. ChemMedChem 2024:e202400409. [PMID: 39145995 DOI: 10.1002/cmdc.202400409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
TWIK-related K+ channel (TREK)-2, expressed in sensory neurons, is involved in setting membrane potential, and its modulations contributes to the generation of nociceptive signals. Although acute and chronic pain is a common symptom experienced by patients with various conditions, most existing analgesics exhibit low efficacy and are associated with adverse effects. For this reason, finding the novel modulator of TREK-2 is of significance for the development of new analgesics. Recent studies have shown that α-Mangostin (α-MG) activates TREK-2, facilitating analgesic effects, yet the underlying molecular mechanisms remain elusive. Intriguingly, even though norfluoxetine (NFx) is known to inhibit TREK-2, α-MG is also observed to share a same binding site with NFx, and this implies that TREK-2 might be modulated in a highly complicated manner. Therefore, we examine the mechanism of how TREK-2 is activated by α-MG using computational methods and patch clamp experiments in the present study. Based on these results, we offer an explanation of how α-MG and NFx exhibit opposing effects at the same binding site of TREK-2. These findings will broaden our understanding of TREK-2 modulation, providing clues for designing novel analgesic drugs.
Collapse
Affiliation(s)
- Gangrae Kim
- Department of Biochemistry, Kangwon National University, College of Natural Sciences, Chuncheon, 24341, Republic of Korea
| | - Nhung Thi Hong Van
- Department of Physiology, Dongguk University, College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University, College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Wook Lee
- Department of Biochemistry, Kangwon National University, College of Natural Sciences, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
16
|
Nam K, Thodika ARA, Tischlik S, Phoeurk C, Nagy TM, Schierholz L, Ådén J, Rogne P, Drescher M, Sauer-Eriksson AE, Wolf-Watz M. Magnesium induced structural reorganization in the active site of adenylate kinase. SCIENCE ADVANCES 2024; 10:eado5504. [PMID: 39121211 PMCID: PMC11313852 DOI: 10.1126/sciadv.ado5504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | - Sonja Tischlik
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Chanrith Phoeurk
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Bio-Engineering, Royal University of Phnom Penh, Phnom Penh, Cambodia
| | | | - Léon Schierholz
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Malte Drescher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | | |
Collapse
|
17
|
Kim MJ, Ibrahim MM, Jablonski MM. Deepening insights into cholinergic agents for intraocular pressure reduction: systems genetics, molecular modeling, and in vivo perspectives. Front Mol Biosci 2024; 11:1423351. [PMID: 39130374 PMCID: PMC11310038 DOI: 10.3389/fmolb.2024.1423351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Parasympathetic activation in the anterior eye segment regulates various physiological functions. This process, mediated by muscarinic acetylcholine receptors, also impacts intraocular pressure (IOP) through the trabecular meshwork. While FDA-approved M3 muscarinic receptor (M3R) agonists exist for IOP reduction, their systemic cholinergic adverse effects pose limitations in clinical use. Therefore, advancing our understanding of the cholinergic system in the anterior segment of the eye is crucial for developing additional IOP-reducing agents with improved safety profiles. Systems genetics analyses were utilized to explore correlations between IOP and the five major muscarinic receptor subtypes. Molecular docking and dynamics simulations were applied to human M3R homology model using a comprehensive set of human M3R ligands and 1,667 FDA-approved or investigational drugs. Lead compounds from the modeling studies were then tested for their IOP-lowering abilities in mice. Systems genetics analyses unveiled positive correlations in mRNA expressions among the five major muscarinic receptor subtypes, with a negative correlation observed only in M3R with IOP. Through modeling studies, rivastigmine and edrophonium emerged as the most optimally suited cholinergic drugs for reducing IOP via a potentially distinct mechanism from pilocarpine or physostigmine. Subsequent animal studies confirmed comparable IOP reductions among rivastigmine, edrophonium, and pilocarpine, with longer durations of action for rivastigmine and edrophonium. Mild cholinergic adverse effects were observed with pilocarpine and rivastigmine but absent with edrophonium. These findings advance ocular therapeutics, suggesting a more nuanced role of the parasympathetic system in the anterior eye segment for reducing IOP than previously thought.
Collapse
Affiliation(s)
- Minjae J. Kim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mohamed M. Ibrahim
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Monica M. Jablonski
- Department of Ophthalmology, The Hamilton Eye Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
18
|
Banayan NE, Hsu A, Hunt JF, Palmer AG, Friesner RA. Parsing Dynamics of Protein Backbone NH and Side-Chain Methyl Groups using Molecular Dynamics Simulations. J Chem Theory Comput 2024; 20:6316-6327. [PMID: 38957960 PMCID: PMC11528701 DOI: 10.1021/acs.jctc.4c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Experimental NMR spectroscopy and theoretical molecular dynamics (MD) simulations provide complementary insights into protein conformational dynamics and hence into biological function. The present work describes an extensive set of backbone NH and side-chain methyl group generalized order parameters for the Escherichia coli ribonuclease HI (RNH) enzyme derived from 2-μs microsecond MD simulations using the OPLS4 and AMBER-FF19SB force fields. The simulated generalized order parameters are compared with values derived from NMR 15N and 13CH2D spin relaxation measurements. The squares of the generalized order parameters, S2 for the N-H bond vector and Saxis2 for the methyl group symmetry axis, characterize the equilibrium distribution of vector orientations in a molecular frame of reference. Optimal agreement between simulated and experimental results was obtained by averaging S2 or Saxis2 calculated by dividing the simulated trajectories into 50 ns blocks (∼five times the rotational diffusion correlation time for RNH). With this procedure, the median absolute deviations (MAD) between experimental and simulated values of S2 and Saxis2 are 0.030 (NH) and 0.061 (CH3) for OPLS4 and 0.041 (NH) and 0.078 (CH3) for AMBER-FF19SB. The MAD between OPLS4 and AMBER-FF19SB are 0.021 (NH) and 0.072 (CH3). The generalized order parameters for the methyl group symmetry axis can be decomposed into contributions from backbone fluctuations, between-rotamer dihedral angle transitions, and within-rotamer dihedral angle fluctuations. Analysis of the simulation trajectories shows that (i) backbone and side chain conformational fluctuations exhibit little correlation and that (ii) fluctuations within rotamers are limited and highly uniform with values that depend on the number of dihedral angles considered. Low values of Saxis2, indicative of enhanced side-chain flexibility, result from between-rotamer transitions that can be enhanced by increased local backbone flexibility.
Collapse
Affiliation(s)
- Nooriel E. Banayan
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Andrew Hsu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - John F. Hunt
- Department of Biological Sciences, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | - Arthur G. Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Richard A. Friesner
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| |
Collapse
|
19
|
Todorovic J, Swapna I, Suma A, Carnevale V, Zakon H. Dual mechanisms contribute to enhanced voltage dependence of an electric fish potassium channel. Biophys J 2024; 123:2097-2109. [PMID: 38429925 PMCID: PMC11309972 DOI: 10.1016/j.bpj.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The voltage dependence of different voltage-gated potassium channels, described by the voltage at which half of the channels are open (V1/2), varies over a range of 80 mV and is influenced by factors such as the number of positive gating charges and the identity of the hydrophobic amino acids in the channel's voltage sensor (S4). Here we explore by experimental manipulations and molecular dynamics simulation the contributions of two derived features of an electric fish potassium channel (Kv1.7a) that is among the most voltage-sensitive Shaker family potassium channels known. These are a patch of four contiguous negatively charged glutamates in the S3-S4 extracellular loop and a glutamate in the S3b helix. We find that these negative charges affect V1/2 by separate, complementary mechanisms. In the closed state, the S3-S4 linker negative patch reduces the membrane surface charge biasing the channel to enter the open state while, upon opening, the negative amino acid in the S3b helix faces the second (R2) gating charge of the voltage sensor electrostatically biasing the channel to remain in the open state. This work highlights two evolutionary novelties that illustrate the potential influence of negatively charged amino acids in extracellular loops and adjacent helices to voltage dependence.
Collapse
Affiliation(s)
- Jelena Todorovic
- Department of Neuroscience, The University of Texas, Austin, Texas
| | - Immani Swapna
- Department of Neuroscience, The University of Texas, Austin, Texas
| | - Antonio Suma
- Institute for Computational Molecular Science, College of Science and Technology & Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology & Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Harold Zakon
- Department of Neuroscience, The University of Texas, Austin, Texas; Department of Integrative Biology, The University of Texas, Austin, Texas.
| |
Collapse
|
20
|
González-Gordo S, López-Jaramillo J, Rodríguez-Ruiz M, Taboada J, Palma JM, Corpas FJ. Pepper catalase: a broad analysis of its modulation during fruit ripening and by nitric oxide. Biochem J 2024; 481:883-901. [PMID: 38884605 DOI: 10.1042/bcj20240247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Catalase is a major antioxidant enzyme located in plant peroxisomes that catalyzes the decomposition of H2O2. Based on our previous transcriptomic (RNA-Seq) and proteomic (iTRAQ) data at different stages of pepper (Capsicum annuum L.) fruit ripening and after exposure to nitric oxide (NO) enriched atmosphere, a broad analysis has allowed us to characterize the functioning of this enzyme. Three genes were identified, and their expression was differentially modulated during ripening and by NO gas treatment. A dissimilar behavior was observed in the protein expression of the encoded protein catalases (CaCat1-CaCat3). Total catalase activity was down-regulated by 50% in ripe (red) fruits concerning immature green fruits. This was corroborated by non-denaturing polyacrylamide gel electrophoresis, where only a single catalase isozyme was identified. In vitro analyses of the recombinant CaCat3 protein exposed to peroxynitrite (ONOO-) confirmed, by immunoblot assay, that catalase underwent a nitration process. Mass spectrometric analysis identified that Tyr348 and Tyr360 were nitrated by ONOO-, occurring near the active center of catalase. The data indicate the complex regulation at gene and protein levels of catalase during the ripening of pepper fruits, with activity significantly down-regulated in ripe fruits. Nitration seems to play a key role in this down-regulation, favoring an increase in H2O2 content during ripening. This pattern can be reversed by the exogenous NO application. While plant catalases are generally reported to be tetrameric, the analysis of the protein structure supports that pepper catalase has a favored quaternary homodimer nature. Taken together, data show that pepper catalase is down-regulated during fruit ripening, becoming a target of tyrosine nitration, which provokes its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | | | - Marta Rodríguez-Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Jorge Taboada
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, E-18008 Granada, Spain Granada, Spain
| |
Collapse
|
21
|
Alshehri MA, Asiri SA, Helmi N, Baeissa HM, Hamadi A, Alzahrani A, Alghamdi RM, Rafeeq MM, Alharbi ZM, Kamal MA. Unrevealing the multitargeted potency of 3-1-BCMIYPPA against lung cancer structural maintenance and suppression proteins through pharmacokinetics, QM-DFT, and multiscale MD simulation studies. PLoS One 2024; 19:e0303784. [PMID: 38905286 PMCID: PMC11192378 DOI: 10.1371/journal.pone.0303784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024] Open
Abstract
Lung cancer, a relentless and challenging disease, demands unwavering attention in drug design research. Single-target drugs have yielded limited success, unable to effectively address this malignancy's profound heterogeneity and often developed resistance. Consequently, the clarion call for lung cancer drug design echoes louder than ever, and multitargeted drug design emerges as an imperative approach in this landscape, which is done by concurrently targeting multiple proteins and pathways and offering a beacon of hope. This study is focused on the multitargeted drug designing approach by identifying drug candidates against human cyclin-dependent kinase-2, SRC-2 domains of C-ABL, epidermal growth factor and receptor extracellular domains, and insulin-like growth factor-1 receptor kinase. We performed the multitargeted molecular docking studies of Drug Bank compounds using HTVS, SP and XP algorithms and poses filter with MM\GBSA against all proteins and identified DB02504, namely [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BCMIYPPA) as multitargeted lead with docking and MM\GBSA score range from -8.242 to -6.274 and -28.2 and -44.29 Kcal/mol, respectively. Further, the QikProp-based pharmacokinetic computations and QM-based DFT showed acceptance results against standard values, and interaction fingerprinting reveals that THR, MET, GLY, VAL, LEU, GLU and ASP were among the most interacting residues. The NPT ensemble-based 100ns MD simulation in a neutralised state with an SPC water model has also shown a stable performance and produced deviation and fluctuations <2Å with huge interactions, making it a promising multitargeted drug candidate-however, experimental studies are suggested.
Collapse
Affiliation(s)
- Mohammed Ali Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Saeed A. Asiri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Kingdom of Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hanadi M. Baeissa
- Department of Biological Science, College of Science, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Abdulrahman Alzahrani
- Department of Applied Medical Sciences, Applied College, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - Rashed Mohammed Alghamdi
- Department of Laboratory Medicine, Faculty of Applied College, Al-Baha University, Al-Baha City, Kingdom of Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh. King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Zeyad M. Alharbi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Hristova SH, Zhivkov AM. Intermolecular Electrostatic Interactions in Cytochrome c Protein Monolayer on Montmorillonite Alumosilicate Surface: A Positive Cooperative Effect. Int J Mol Sci 2024; 25:6834. [PMID: 38999945 PMCID: PMC11241403 DOI: 10.3390/ijms25136834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Montmorillonite (MM) crystal nanoplates acquire anticancer properties when coated with the mitochondrial protein cytochrome c (cytC) due to the cancer cells' capability to phagocytize cytC-MM colloid particles. The introduced exogenous cytC initiates apoptosis: an irreversible cascade of biochemical reactions leading to cell death. In the present research, we investigate the organization of the cytC layer on the MM surface by employing physicochemical and computer methods-microelectrophoresis, static, and electric light scattering-to study cytC adsorption on the MM surface, and protein electrostatics and docking to calculate the local electric potential and Gibbs free energy of interacting protein globules. The found protein concentration dependence of the adsorbed cytC quantity is nonlinear, manifesting a positive cooperative effect that emerges when the adsorbed cytC globules occupy more than one-third of the MM surface. Computer analysis reveals that the cooperative effect is caused by the formation of protein associates in which the cytC globules are oriented with oppositely charged surfaces. The formation of dimers and trimers is accompanied by a strong reduction in the electrostatic component of the Gibbs free energy of protein association, while the van der Waals component plays a secondary role.
Collapse
Affiliation(s)
- Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Alexandar M Zhivkov
- Scientific Research Center, "St. Kliment Ohridski" Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
23
|
Pick LM, Oehme V, Hartmann J, Wenzlaff J, Tang Q, Grogan G, Ansorge-Schumacher MB. SilE-R and SilE-S-DABB Proteins Catalying Enantiospecific Hydrolysis of Organosilyl Ethers. Angew Chem Int Ed Engl 2024; 63:e202404105. [PMID: 38630059 DOI: 10.1002/anie.202404105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 06/11/2024]
Abstract
Silyl ethers fulfil a fundamental role in synthetic organic chemistry as protecting groups and their selective cleavage is an important factor in their application. We present here for the first time two enzymes, SilE-R and SilE-S, which are able to hydrolyse silyl ethers. They belong to the stress-response dimeric A/B barrel domain (DABB) family and are able to cleave the Si-O bond with opposite enantiopreference. Silyl ethers containing aromatic, cyclic or aliphatic alcohols and, depending on the alcohol moiety, silyl functions as large as TBDMS are accepted. The X-ray crystal structure of SilE-R, determined to a resolution of 1.98 Å, in combination with mutational studies, revealed an active site featuring two histidine residues, H8 and H79, which likely act synergistically as nucleophile and Brønsted base in the hydrolytic mechanism, which has not previously been described for enzymes. Although the natural function of SilE-R and SilE-S is unknown, we propose that these 'silyl etherases' may have significant potential for synthetic applications.
Collapse
Affiliation(s)
- Lisa M Pick
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Viviane Oehme
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Julia Hartmann
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Jessica Wenzlaff
- Professur für Molekulare Biotechnologie, Technische Universität Dresden, 01062, Dresden, Germany
| | - Qingyun Tang
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | | |
Collapse
|
24
|
Wu D, Hierons SJ, Polepalli S, Gucwa M, Fritzen R, Markiewicz M, Sabín J, Minor W, Murzyn K, Blindauer CA, Stewart AJ. Targeted removal of the FA2 site on human albumin prevents fatty acid-mediated inhibition of Zn 2+ binding. J Lipid Res 2024; 65:100560. [PMID: 38750995 PMCID: PMC11179626 DOI: 10.1016/j.jlr.2024.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Zinc is required for virtually all biological processes. In plasma, Zn2+ is predominantly transported by human serum albumin (HSA), which possesses two Zn2+-binding sites of differing affinities (sites A and B). Fatty acids (FAs) are also transported by HSA, with seven structurally characterized FA-binding sites (named FA1-FA7) known. FA binding inhibits Zn2+-HSA interactions, in a manner that can impact upon hemostasis and cellular zinc uptake, but the degree to which binding at specific FA sites contributes to this inhibition is unclear. Wild-type HSA and H9A, H67A, H247A, and Y150F/R257A/S287A (FA2-KO) mutant albumins were expressed in Pichia pastoris. Isothermal titration calorimetry studies revealed that the Zn2+-binding capacity at the high-affinity Zn2+ site (site A) was reduced in H67A and H247A mutants, with site B less affected. The H9A mutation decreased Zn2+ binding at the lower-affinity site, establishing His9 as a site B ligand. Zn2+ binding to HSA and H9A was compromised by palmitate, consistent with FA binding affecting site A. 13C-NMR experiments confirmed that the FA2-KO mutations prohibited FA binding at site FA2. Zn2+ binding to the FA2-KO mutant was unaffected by myristate, suggesting binding at FA2 is solely responsible for inhibition. Molecular dynamics studies identified the steric obstruction exerted by bound FA in site FA2, which impedes the conformational change from open (FA-loaded) to closed (FA-free) states, required for Zn2+ to bind at site A. The successful targeting of the FA2 site will aid functional studies exploring the interplay between circulating FA levels and plasma Zn2+ speciation in health and disease.
Collapse
Affiliation(s)
- Dongmei Wu
- School of Medicine, University of St. Andrews, St. Andrews, UK
| | | | | | - Michal Gucwa
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Remi Fritzen
- School of Medicine, University of St. Andrews, St. Andrews, UK
| | - Michal Markiewicz
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Juan Sabín
- AFFINImeter Scientific Team, Software 4 Science Developments, Santiago de Compostela, Spain; Applied Physics Department, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | | | - Alan J Stewart
- School of Medicine, University of St. Andrews, St. Andrews, UK.
| |
Collapse
|
25
|
Mirgaux M, Leherte L, Wouters J. Human indoleamine-2,3-dioxygenase 2 cofactor lability and low substrate affinity explained by homology modeling, molecular dynamics and molecular docking. J Biomol Struct Dyn 2024; 42:4475-4488. [PMID: 37301605 DOI: 10.1080/07391102.2023.2220830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
The human indoleamine-2,3-dioxygenase 2 (hIDO2) protein is growing of interest as it is increasingly implicated in multiple diseases (cancer, autoimmune diseases, COVID-19). However, it is only poorly reported in the literature. Its mode of action remains unknown because it does not seem to catalyze the reaction for which it is attributed: the degradation of the L-Tryptophan into N-formyl-kynurenine. This contrasts with its paralog, the human indoleamine-2,3-dioxygenase 1 (hIDO1), which has been extensively studied in the literature and for which several inhibitors are already in clinical trials. Yet, the recent failure of one of the most advanced hIDO1 inhibitors, the Epacadostat, could be caused by a still unknown interaction between hIDO1 and hIDO2. In order to better understand the mechanism of hIDO2, and in the absence of experimental structural data, a computational study mixing homology modeling, Molecular Dynamics, and molecular docking was conducted. The present article highlights an exacerbated lability of the cofactor as well as an inadequate positioning of the substrate in the active site of hIDO2, which might bring part of an answer to its lack of activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manon Mirgaux
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Laurence Leherte
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Johan Wouters
- Department of Chemistry, Laboratoire de Chimie Biologique Structurale (CBS), Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Namur, Belgium
| |
Collapse
|
26
|
Sohraby F, Nunes-Alves A. Characterization of the Bottlenecks and Pathways for Inhibitor Dissociation from [NiFe] Hydrogenase. J Chem Inf Model 2024; 64:4193-4203. [PMID: 38728115 PMCID: PMC11134402 DOI: 10.1021/acs.jcim.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
[NiFe] hydrogenases can act as efficient catalysts for hydrogen oxidation and biofuel production. However, some [NiFe] hydrogenases are inhibited by gas molecules present in the environment, such as O2 and CO. One strategy to engineer [NiFe] hydrogenases and achieve O2- and CO-tolerant enzymes is by introducing point mutations to block the access of inhibitors to the catalytic site. In this work, we characterized the unbinding pathways of CO in the complex with the wild-type and 10 different mutants of [NiFe] hydrogenase from Desulfovibrio fructosovorans using τ-random accelerated molecular dynamics (τRAMD) to enhance the sampling of unbinding events. The ranking provided by the relative residence times computed with τRAMD is in agreement with experiments. Extensive data analysis of the simulations revealed that from the two bottlenecks proposed in previous studies for the transit of gas molecules (residues 74 and 122 and residues 74 and 476), only one of them (residues 74 and 122) effectively modulates diffusion and residence times for CO. We also computed pathway probabilities for the unbinding of CO, O2, and H2 from the wild-type [NiFe] hydrogenase, and we observed that while the most probable pathways are the same, the secondary pathways are different. We propose that introducing mutations to block the most probable paths, in combination with mutations to open the main secondary path used by H2, can be a feasible strategy to achieve CO and O2 resistance in the [NiFe] hydrogenase from Desulfovibrio fructosovorans.
Collapse
Affiliation(s)
- Farzin Sohraby
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Ariane Nunes-Alves
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
27
|
Amorim VMDF, Soares EP, Ferrari ASDA, Merighi DGS, de Souza RF, Guzzo CR, de Souza AS. 3-Chymotrypsin-like Protease (3CLpro) of SARS-CoV-2: Validation as a Molecular Target, Proposal of a Novel Catalytic Mechanism, and Inhibitors in Preclinical and Clinical Trials. Viruses 2024; 16:844. [PMID: 38932137 PMCID: PMC11209289 DOI: 10.3390/v16060844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Proteases represent common targets in combating infectious diseases, including COVID-19. The 3-chymotrypsin-like protease (3CLpro) is a validated molecular target for COVID-19, and it is key for developing potent and selective inhibitors for inhibiting viral replication of SARS-CoV-2. In this review, we discuss structural relationships and diverse subsites of 3CLpro, shedding light on the pivotal role of dimerization and active site architecture in substrate recognition and catalysis. Our analysis of bioinformatics and other published studies motivated us to investigate a novel catalytic mechanism for the SARS-CoV-2 polyprotein cleavage by 3CLpro, centering on the triad mechanism involving His41-Cys145-Asp187 and its indispensable role in viral replication. Our hypothesis is that Asp187 may participate in modulating the pKa of the His41, in which catalytic histidine may act as an acid and/or a base in the catalytic mechanism. Recognizing Asp187 as a crucial component in the catalytic process underscores its significance as a fundamental pharmacophoric element in drug design. Next, we provide an overview of both covalent and non-covalent inhibitors, elucidating advancements in drug development observed in preclinical and clinical trials. By highlighting various chemical classes and their pharmacokinetic profiles, our review aims to guide future research directions toward the development of highly selective inhibitors, underscore the significance of 3CLpro as a validated therapeutic target, and propel the progression of drug candidates through preclinical and clinical phases.
Collapse
Affiliation(s)
| | | | | | | | | | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 5508-900, Brazil; (V.M.d.F.A.); (E.P.S.); (A.S.d.A.F.); (D.G.S.M.); (R.F.d.S.)
| |
Collapse
|
28
|
Schmiege P, Donnelly L, Elghobashi-Meinhardt N, Lee CH, Li X. Structure and inhibition of the human lysosomal transporter Sialin. Nat Commun 2024; 15:4386. [PMID: 38782953 PMCID: PMC11116495 DOI: 10.1038/s41467-024-48535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Sialin, a member of the solute carrier 17 (SLC17) transporter family, is unique in its ability to transport not only sialic acid using a pH-driven mechanism, but also transport mono and diacidic neurotransmitters, such as glutamate and N-acetylaspartylglutamate (NAAG), into synaptic vesicles via a membrane potential-driven mechanism. While most transporters utilize one of these mechanisms, the structural basis of how Sialin transports substrates using both remains unclear. Here, we present the cryogenic electron-microscopy structures of human Sialin: apo cytosol-open, apo lumen-open, NAAG-bound, and inhibitor-bound. Our structures show that a positively charged cytosol-open vestibule accommodates either NAAG or the Sialin inhibitor Fmoc-Leu-OH, while its luminal cavity potentially binds sialic acid. Moreover, functional analyses along with molecular dynamics simulations identify key residues in binding sialic acid and NAAG. Thus, our findings uncover the essential conformational states in NAAG and sialic acid transport, demonstrating a working model of SLC17 transporters.
Collapse
Affiliation(s)
- Philip Schmiege
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda Donnelly
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Cao Y, Zhou W, Shen C, Qiu H, Guo W. Proton Coulomb Blockade Effect Involving Covalent Oxygen-Hydrogen Bond Switching. PHYSICAL REVIEW LETTERS 2024; 132:188401. [PMID: 38759163 DOI: 10.1103/physrevlett.132.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/13/2024] [Indexed: 05/19/2024]
Abstract
Instead of the canonical Grotthuss mechanism, we show that a knock-on proton transport process is preferred between organic functional groups (e.g., -COOH and -OH) and adjacent water molecules in biological proton channel and synthetic nanopores through comprehensive quantum and classical molecular dynamics simulations. The knock-on process is accomplished by the switching of covalent O─H bonds of the functional group under externally applied electric fields. The proton transport through the synthetic nanopore exhibits nonlinear current-voltage characteristics, suggesting an unprecedented proton Coulomb blockade effect. These findings not only enhance the understanding of proton transport in nanoconfined systems but also pave the way for the design of a variety of proton-based nanofluidic devices.
Collapse
Affiliation(s)
- Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Wanqi Zhou
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chun Shen
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Hu Qiu
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Wanlin Guo
- National Key Laboratory of Mechanics and Control for Aerospace Structures and Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
30
|
Dey S, Pratibha M, Singh Dagur H, Rajakumara E. Characterization of host receptor interaction with envelop protein of Kyasanur forest disease virus and predicting suitable epitopes for vaccine candidate. J Biomol Struct Dyn 2024; 42:4110-4120. [PMID: 37272880 DOI: 10.1080/07391102.2023.2218924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Kyasanur forest disease (KFD) is a zoonotic disease that is endemic to southern India and caused by KFD virus (KFDV) belonging to the family Flaviviridae. Humans are the dead-end host of the KFDV life cycle. The absence of effective treatment strategies against KFD can be attributed to a lack of studies on the mechanistic part of the spread of the disease. Hypothesizing molecular etiological similarity of KFDV to other well characterized flaviviruses, such as dengue virus (DENV), we focused on predicting the target receptor protein(s) in host and provided molecular basis of receptor-mediated recognition of the human host by KFDV envelop protein (EKFDV), drawing from the extant knowledge on the dengue counterpart, EDENV. Indeed, in silico approach helped to identify that the EKFDV structure closely resembles the EDENV structure and indicated DC-SIGN and/or Mannose receptors to be the plausible target host receptors. Immune-informatics approach aided in predicting 10 epitopes from E, NS1, NS2A, and NS2B proteins of the KFDV-P9605 genotype for vaccine design against KFDV. Further, molecular dynamics simulation (MDS) analyses of their complexes with human leukocyte antigens (HLAs) identified the epitopes DISLTCRVT and YAMEIRPVH as two high ranking candidates for vaccine design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sreenath Dey
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, India
| | - Manickavasagam Pratibha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, India
| | - Hanuman Singh Dagur
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad, Kandi, India
| |
Collapse
|
31
|
Abouelenein MG, Mohamed MBI, Elsenety MM, El-Rashedy AA, Ghalib SH, Mohamed FAE, El-Ebiary NMA, Ageeli AA. Facile and Novel Synthetic Approach, Molecular Docking, Molecular Dynamics, and Drug-Likeness Evaluation of 9-Substituted Acridine Derivatives as Dual Anticancer and Antimicrobial Agents. Chem Biodivers 2024; 21:e202301986. [PMID: 38478727 DOI: 10.1002/cbdv.202301986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024]
Abstract
In the present study, numerous acridine derivatives A1-A20 were synthesized via aromatic nucleophilic substitution (SNAr) reaction of 9-chloroacridine with carbonyl hydrazides, amines, or phenolic derivatives depending upon facile, novel, and eco-friendly approaches (Microwave and ultrasonication assisted synthesis). The structures of the new compounds were elucidated using spectroscopic methods. The title products were assessed for their antimicrobial, antioxidant, and antiproliferative activities using numerous assays. Promisingly, the investigated compounds mainstream revealed promising antibacterial and anticancer activities. Thereafter, the investigated compounds' expected mode of action was debated by using an array of in silico studies. Compounds A2 and A3 were the most promising antimicrobial agents, while compounds A2, A5, and A7 revealed the most cytotoxic activities. Accordingly, RMSD, RMSF, Rg, and SASA analyses of compounds A2 and A3 were performed, and MMPBSA was calculated. Lastly, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) analyses of the novel acridine derivatives were investigated. The tested compounds' existing screening results afford an inspiring basis leading to developing new compelling antimicrobial and anticancer agents based on the acridine scaffold.
Collapse
Affiliation(s)
- Mohamed G Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Koam, Menofia, Egypt
| | | | - Mohamed M Elsenety
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt, P.O., 11884
| | - Ahmed A El-Rashedy
- Natural and Microbial Products Department, National Research Center (NRC), Egypt
| | - Samirah H Ghalib
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | | | - Nora M A El-Ebiary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry Department, Faculty of Science, Jazan University, Jazan, P.O. Box, 82817, Saudi Arabia
| |
Collapse
|
32
|
Hamed AR, Nabih HK, El-Rashedy AA, Mohamed TA, Mostafa OE, K. Ali S, Efferth T, Hegazy MEF. Salvimulticanol from Salvia multicaulis suppresses LPS-induced inflammation in RAW264.7 macrophages: in vitro and in silico studies. 3 Biotech 2024; 14:144. [PMID: 38706927 PMCID: PMC11065832 DOI: 10.1007/s13205-024-03987-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/07/2024] [Indexed: 05/07/2024] Open
Abstract
Sustained inflammatory responses can badly affect several vital organs and lead to chronic inflammation-related disorders, such as atherosclerosis, pneumonia, rheumatoid arthritis, obesity, diabetes, Alzheimer's disease, and cancers. Salvia multicaulis is one of the widely distributed plants that contains several biologically active phytochemicals and diterpenoids with anti-inflammatory effects. Therefore, finding alternative and safer natural plant-extracted compounds with good curative anti-inflammatory efficiencies is an urgent need for the clinical treatment of inflammation-related diseases. In the current study, S. multicaulis Vahl was used to extract and isolate two compounds identified as salvimulticanol and candesalvone B methyl ester to examine their effects against inflammation in murine macrophage RAW264.7 cells that were induced by lipopolysaccharide (LPS). Accordingly, after culturing RAW264.7 cells and induction of inflammation by LPS (100 ng/ml), cells were exposed to different concentrations (9, 18, 37.5, 75, and 150 µM) of each compound. Then, Griess assay for detection of nitric oxide (NO) levels and western blotting for the determination of inducible nitric oxide synthase (iNOS) expression were performed. Molecular docking and molecular dynamics (MD) simulation studies were employed to investigate the anti-inflammatory mechanism. Our obtained results validated that the level of NO was significantly decreased in the macrophage cell suspensions as a response to salvimulticanol treatment in a dose-dependent manner (IC50: 25.1 ± 1.2 µM) as compared to the methyl ester of candesalvone B which exerted a weaker inhibition (IC50: 69.2 ± 3.0 µM). This decline in NO percentage was comparable with a down-regulation of iNOS expression by western blotting. Salvimulticanol strongly interacted with both the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex and the inhibitor of nuclear factor kappa-B (NF-κB) kinase subunit beta (IKKβ) to disrupt their inflammatory activation due to the significant hydrogen bonds and effective interactions with amino acid residues present in the target proteins' active sites. S.multicaulis is a rich natural source of the aromatic abietane diterpenoid, salvimulticanol, which exerted a strong anti-inflammatory effect through targeting iNOS and diminishing NO production in LPS-induced RAW264.7 cells in a mechanism that is dependent on the inhibition of TLR4-MD-2 and IKKβ as activators of the classical NF-κB-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Ahmed R. Hamed
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
- Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Heba K. Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Ahmed A. El-Rashedy
- Molecular Dynamics Unit, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Olfat E. Mostafa
- Poison Control Center, Ain Shams University Hospitals, P.O. 1181, Abbasia, Cairo Egypt
| | - Sherine K. Ali
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Thomas Efferth
- Pharmaceutical Biology Department, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
33
|
Csizi KS, Reiher M. Automated preparation of nanoscopic structures: Graph-based sequence analysis, mismatch detection, and pH-consistent protonation with uncertainty estimates. J Comput Chem 2024; 45:761-776. [PMID: 38124290 DOI: 10.1002/jcc.27276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Structure and function in nanoscale atomistic assemblies are tightly coupled, and every atom with its specific position and even every electron will have a decisive effect on the electronic structure, and hence, on the molecular properties. Molecular simulations of nanoscopic atomistic structures therefore require accurately resolved three-dimensional input structures. If extracted from experiment, these structures often suffer from severe uncertainties, of which the lack of information on hydrogen atoms is a prominent example. Hence, experimental structures require careful review and curation, which is a time-consuming and error-prone process. Here, we present a fast and robust protocol for the automated structure analysis and pH-consistent protonation, in short, ASAP. For biomolecules as a target, the ASAP protocol integrates sequence analysis and error assessment of a given input structure. ASAP allows for pK a prediction from reference data through Gaussian process regression including uncertainty estimation and connects to system-focused atomistic modeling described in Brunken and Reiher (J. Chem. Theory Comput. 16, 2020, 1646). Although focused on biomolecules, ASAP can be extended to other nanoscopic objects, because most of its design elements rely on a general graph-based foundation guaranteeing transferability. The modular character of the underlying pipeline supports different degrees of automation, which allows for (i) efficient feedback loops for human-machine interaction with a low entrance barrier and for (ii) integration into autonomous procedures such as automated force field parametrizations. This facilitates fast switching of the pH-state through on-the-fly system-focused reparametrization during a molecular simulation at virtually no extra computational cost.
Collapse
Affiliation(s)
- Katja-Sophia Csizi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Markus Reiher
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Huang H, Zhao DX, Zhao J, Chen X, Liu C, Yang ZZ. Origin of Enantioselectivity in Engineered Cytochrome c-Catalyzed Carbon-Radical FePP Hydrolysis Revealed Using QM/MM (ABEEM Polarizable Force Field) and MD Simulations. J Phys Chem B 2024; 128:3807-3823. [PMID: 38605466 DOI: 10.1021/acs.jpcb.3c07158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The origin of highly efficient asymmetric aminohydroxylation of styrene catalyzed by engineered cytochrome c is investigated by the developed Atom-Bond Electronegativity Equalization Method polarizable force field (ABEEM PFF), which is a combined outcome of electronic and steric effects. Model molecules were used to establish the charge parameters of the ABEEM PFF, for which the bond-stretching and angle-bending parameters were obtained by using a combination of modified Seminario and scan methods. The interactions between carbon-radical Fe-porphyrin (FePP) and waters are simulated by molecular dynamics, which shows a clear preference for the pre-R over the pre-S. This preference is attributed to the hydrogen-bond between the mutated 100S and 101P residues as well as van der Waals interactions, enforcing a specific conformation of the carbon-radical FePP complex within the binding pocket. Meanwhile, the hydrogen-bond between water and the nitrogen atom in the active intermediate dictates the stereochemical outcome. Quantum mechanics/molecular mechanics (QM/MM (ABEEM PFF)) and free-energy perturbation calculations elucidate that the 3RTS is characterized by sandwich-like structure among adjacent amino acid residues, which exhibits greater stability than crowed arrangement in 3STS and enables the R enantiomer to form more favorably. Thus, this study provides mechanistic insight into the catalytic reaction of hemoproteins.
Collapse
Affiliation(s)
- Hong Huang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Jian Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xin Chen
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| |
Collapse
|
35
|
Pusara S. Molecular Dynamics Insights into the Aggregation Behavior of N-Terminal β-Lactoglobulin Peptides. Int J Mol Sci 2024; 25:4660. [PMID: 38731878 PMCID: PMC11083573 DOI: 10.3390/ijms25094660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
β-lactoglobulin (BLG) forms amyloid-like aggregates at high temperatures, low pH, and low ionic strengths. At a pH below 2, BLG undergoes hydrolysis into peptides, with N-terminal peptides 1-33 and 1-52 being prone to fibrillization, forming amyloid-like fibrils. Due to their good mechanical properties, BLG amyloids demonstrate great potential for diverse applications, including biosensors, nanocomposites, and catalysts. Consequently, further studies are essential to comprehensively understand the factors governing the formation of BLG amyloid-like morphologies. In this study, all-atom molecular dynamics simulations were employed to explore the aggregation of N-terminal 1-33 and 1-52 BLG peptides under conditions of pH 2 and at 10 mM NaCl concentration. The simulations revealed that the peptides spontaneously assembled into aggregates of varying sizes. The aggregation process was enabled by the low charge of peptides and the presence of hydrophobic residues within them. As the peptides associated into aggregates, there was a concurrent increase in β-sheet structures and the establishment of hydrogen bonds, enhancing the stability of the aggregates. Notably, on average, 1-33 peptides formed larger aggregates compared to their 1-52 counterparts, while the latter exhibited a slightly higher content of β-sheets and higher cluster orderliness. The applied approach facilitated insights into the early stages of amyloid-like aggregation and molecular-level insight into the formation of β-sheets, which serve as nucleation points for further fibril growth.
Collapse
Affiliation(s)
- Srdjan Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Cai Z, Peng H, Sun S, He J, Luo F, Huang Y. DeepKa Web Server: High-Throughput Protein p Ka Prediction. J Chem Inf Model 2024; 64:2933-2940. [PMID: 38530291 DOI: 10.1021/acs.jcim.3c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
DeepKa is a deep-learning-based protein pKa predictor proposed in our previous work. In this study, a web server was developed that enables online protein pKa prediction driven by DeepKa. The web server provides a user-friendly interface where a single step of entering a valid PDB code or uploading a PDB format file is required to submit a job. Two case studies have been attached in order to explain how pKa's calculated by the web server could be utilized by users. Finally, combining the web server with post processing as described in case studies, this work suggests a quick workflow of investigating the relationship between protein structure and function that are pH dependent. The web server of DeepKa is freely available at http://www.computbiophys.com/DeepKa/main.
Collapse
Affiliation(s)
- Zhitao Cai
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Hao Peng
- National Pilot School of Software, Yunnan University, Kunming 650504, China
| | - Shuo Sun
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Jiahao He
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Fangfang Luo
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| | - Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
37
|
Lin RD, Xing X, Yu Y, Li WD, Chang DD, Tao FY, Wang N. Theoretical Analysis of Selectivity Differences in Ketoreductases toward Aldehyde and Ketone Carbonyl Groups. J Chem Inf Model 2024; 64:3400-3410. [PMID: 38537611 DOI: 10.1021/acs.jcim.3c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Lactobacillus kefir alcohol dehydrogenase (LkADH) and ketoreductase from Chryseobacterium sp. CA49 (ChKRED12) exhibit different chemoselectivity and stereoselectivity toward a substrate with both keto and aldehyde carbonyl groups. LkADH selectively reduces the keto carbonyl group while retaining the aldehyde carbonyl group, producing optically pure R-alcohols. In contrast, ChKRED12 selectively reduces the aldehyde group and exhibits low reactivity toward ketone carbonyls. This study investigated the structural basis for these differences and the role of specific residues in the active site. Molecular dynamics (MD) simulations and quantum chemical calculations were used to investigate the interactions between the substrate and the enzymes and the essential cause of this phenomenon. The present study has revealed that LkADH and ChKRED12 exhibit significant differences in the structure of their respective active pockets, which is a crucial determinant of their distinct chemoselectivity toward the same substrate. Moreover, residues N89, N113, and E144 within LkADH as well as Q151 and D190 within ChKRED12 have been identified as key contributors to substrate stabilization within the active pocket through electrostatic interactions and van der Waals forces, followed by hydride transfer utilizing the coenzyme NADPH. Furthermore, the enantioselectivity mechanism of LkADH has been elucidated using quantum chemical methods. Overall, these findings not only provide fundamental insights into the underlying reasons for the observed differences in selectivity but also offer a detailed mechanistic understanding of the catalytic reaction.
Collapse
Affiliation(s)
- Ru-De Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiu Xing
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Wen-Dian Li
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Dan-Dan Chang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Fei-Yan Tao
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
38
|
Alsaiari AA, Gharib AF, Bakhuraysah MM, Alrehaili AA, Algethami SM, Alsaif HA, Al Harthi N, Hakami MA. Chlordiazepoxide against signalling, receptor and regulatory proteins of breast cancer: a structure-based in-silico approach. Med Oncol 2024; 41:117. [PMID: 38630325 DOI: 10.1007/s12032-024-02366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Among the most prevalent forms of cancer are breast, lung, colon-rectum, and prostate cancers, and breast cancer is a major global health challenge, contributing to 2.26 million cases with approximately 685,000 deaths worldwide in 2020 alone, typically beginning in the milk ducts or lobules that produce and transport milk during lactation and it is becoming challenging to treat as the tissues are developing resistance, which makes urgent calls for new multitargeted drugs. The multitargeted drug design provides a better solution, simultaneously targeting multiple pathways, even when the drug resists one, it remains effective for others. In this study, we included four crucial proteins that perform signalling, receptor, and regulatory action, namely- NUDIX Hydrolases, Dihydrofolate Reductase, HER2/neu Kinase and EGFR and performed multitargeted molecular docking studies against human-approved drugs using HTVS, SP and extra precise algorithms and filtered the poses with MM\GBSA, suggested a benzodiazepine derivative chlordiazepoxide, used as an anxiolytic agent, can be a multitargeted inhibitor with docking and MM\GBSA score ranging from - 4.628 to - 7.877 and - 18.59 to - 135.86 kcal/mol, respectively, and the most interacted residues were 6ARG, 6GLU, 3TRP, and 3VAL. The QikProp-based ADMET and DFT computations showed the suitability and stability of the drug candidate followed by 100 ns MD simulation in water and MMGBSA on trajectories, resulting in stable performance and many intermolecular interactions to make the complexes stable, which favours that chlordiazepoxide can be a multitargeted breast cancer inhibitor. However, experimental validation is needed before its use.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Maha Mahfouz Bakhuraysah
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amani A Alrehaili
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Shatha M Algethami
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hayfa Ali Alsaif
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Norah Al Harthi
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
39
|
Zhao X, Cao X, Qiu H, Liang W, Jiang Y, Wang Q, Wang W, Li C, Li Y, Han B, Tang K, Zhao L, Zhang X, Wang X, Liang H. Rational molecular design converting fascaplysin derivatives to potent broad-spectrum inhibitors against bacterial pathogens via targeting FtsZ. Eur J Med Chem 2024; 270:116347. [PMID: 38552428 DOI: 10.1016/j.ejmech.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 μg/mL) and Gram-negative (MIC = 1.56-12.5 μg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.
Collapse
Affiliation(s)
- Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuanyu Cao
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Weile Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chengxi Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Bowen Han
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xuan Zhang
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
40
|
Barts N, Bhatt RH, Toner C, Meyer WK, Durrant JD, Kohl KD. Functional convergence in gastric lysozymes of foregut-fermenting rodents, ruminants, and primates is not attributed to convergent molecular evolution. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110949. [PMID: 38341948 DOI: 10.1016/j.cbpb.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of Peromyscus leucopus shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.
Collapse
Affiliation(s)
- Nick Barts
- Department of Biological and Clinical Sciences, University of Central Missouri, Warrensburg, MO, USA; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Roshni H Bhatt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA. https://twitter.com/RoshniBhatt3
| | - Chelsea Toner
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wynn K Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA. https://twitter.com/sorrywm
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA. https://twitter.com/KevinDKohl
| |
Collapse
|
41
|
Mehta MJ, Kim HJ, Lim SB, Naito M, Miyata K. Recent Progress in the Endosomal Escape Mechanism and Chemical Structures of Polycations for Nucleic Acid Delivery. Macromol Biosci 2024; 24:e2300366. [PMID: 38226723 DOI: 10.1002/mabi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.
Collapse
Affiliation(s)
- Mohit J Mehta
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Sung Been Lim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
42
|
Clark R, Newman KE, Khalid S. Titratable residues that drive RND efflux: Insights from molecular simulations. QRB DISCOVERY 2024; 5:e5. [PMID: 38689873 PMCID: PMC11058585 DOI: 10.1017/qrd.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
The resistance-nodulation-division efflux machinery confers antimicrobial resistance to Gram-negative bacteria by actively pumping antibiotics out of the cell. The protein complex is powered by proton motive force; however, the proton transfer mechanism itself and indeed even its stoichiometry is still unclear. Here we review computational studies from the last decade that focus on elucidating the number of protons transferred per conformational cycle of the pump. Given the difficulties in studying proton movement using even state-of-the-art structural biology methods, the contributions from computational studies have been invaluable from a mechanistic perspective.
Collapse
Affiliation(s)
- Robert Clark
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
43
|
Marino V, Phromkrasae W, Bertacchi M, Cassini P, Chakrabandhu K, Dell'Orco D, Studer M. Disrupted protein interaction dynamics in a genetic neurodevelopmental disorder revealed by structural bioinformatics and genetic code expansion. Protein Sci 2024; 33:e4953. [PMID: 38511490 PMCID: PMC10955615 DOI: 10.1002/pro.4953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | | | | - Paul Cassini
- University Côte d'Azur, CNRS, Inserm, iBVNiceFrance
| | | | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological ChemistryUniversity of VeronaVeronaItaly
| | | |
Collapse
|
44
|
Mosa FES, Alqahtani MA, El-Ghiaty MA, Barakat K, El-Kadi AOS. Identifying novel aryl hydrocarbon receptor (AhR) modulators from clinically approved drugs: In silico screening and In vitro validation. Arch Biochem Biophys 2024; 754:109958. [PMID: 38499054 DOI: 10.1016/j.abb.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024]
Abstract
The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.
Collapse
Affiliation(s)
- Farag E S Mosa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed A Alqahtani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
45
|
Binshaya AS, Alkahtani OS, Aldakheel FM, Hjazi A, Almasoudi HH. Structure-based multitargeted docking screening, pharmacokinetics, DFT, and dynamics simulation studies reveal mitoglitazone as a potent inhibitor of cellular survival and stress response proteins of lung cancer. Med Oncol 2024; 41:101. [PMID: 38546811 DOI: 10.1007/s12032-024-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
Lung cancer is a disease in which lung cells grow abnormally and uncontrollably, and the cause of it is direct smoking, secondhand smoke, radon, asbestos, and certain chemicals. The worldwide leading cause of death is lung cancer, which is responsible for more than 1.8 million deaths yearly and is expected to rise to 2.2 million by 2030. The most common type of lung cancer is non-small cell lung cancer (NSCLC), which accounts for about 80% and small cell lung cancer (SCLC), which is more aggressive than NSCLC and is often diagnosed later and accounts for 20% of cases. The global concern for lung cancer demands efficient drugs with the slightest chance of developing resistance, and the idea of multitargeted drug designing came up with the solution. In this study, we have performed multitargeted molecular docking studies of Drug Bank compounds with HTVS, SP and XP algorithms followed by MM\GBSA against the four proteins of lung cancer cellular survival and stress responses, which revealed Mitoglitazone as a multitargeted inhibitor with a docking and MM\GBSA score ranging from - 5.784 to - 7.739 kcal/mol and - 25.81 to - 47.65kcal/mol, respectively. Moreover, we performed pharmacokinetics studies and QM-based DFT analysis, showing suitable candidate and interaction pattern analysis revealed the most count of interacting residues was 4GLY, 5PHE, 6ASP, 6GLU, 6LYS, and 6THR. Further, the results were validated with SPC water model-based MD simulation for 100ns in neutralised condition, showing the cumulative deviation and fluctuation < 2Å with many intermolecular interactions. The whole analysis has suggested that Mitoglitazone can be used as a multitargeted inhibitor against lung cancer-however, experimental studies are needed before human use.
Collapse
Affiliation(s)
- Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Omar Saad Alkahtani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| |
Collapse
|
46
|
Kumar A, Vashisth H. Quantitative Assessment of Energetic Contributions of Residues in a SARS-CoV-2 Viral Enzyme/Nanobody Interface. J Chem Inf Model 2024; 64:2068-2076. [PMID: 38460144 PMCID: PMC10966652 DOI: 10.1021/acs.jcim.3c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
The highly conserved protease enzyme from SARS-CoV-2 (MPro) is crucial for viral replication and is an attractive target for the design of novel inhibitory compounds. MPro is known to be conformationally flexible and has been stabilized in an extended conformation in a complex with a novel nanobody (NB2B4), which inhibits the dimerization of the enzyme via binding to an allosteric site. However, the energetic contributions of the nanobody residues stabilizing the MPro/nanobody interface remain unresolved. We probed these residues using all-atom MD simulations in combination with alchemical free energy calculations by studying the physical residue-residue interactions and discovered the role of hydrophobic and electrostatic interactions in stabilizing the complex. Specifically, we found via mutational analysis that three interfacial nanobody residues (Y59, R106, and L109) contributed significantly, two residues (L107 and P110) contributed moderately, and two residues (H112 and T113) contributed minimally to the overall binding affinity of the nanobody. We also discovered that the nanobody affinity could be enhanced via a charge-reversal mutation (D62R) that alters the local interfacial electrostatic environment of this residue in the complex. These findings are potentially useful in designing novel synthetic nanobodies as allosteric inhibitors of MPro.
Collapse
Affiliation(s)
- Amit Kumar
- Department
of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, United States
| | - Harish Vashisth
- Department
of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
47
|
Edholm F, Nandy A, Reinhardt CR, Kastner DW, Kulik HJ. Protein3D: Enabling analysis and extraction of metal-containing sites from the Protein Data Bank with molSimplify. J Comput Chem 2024; 45:352-361. [PMID: 37873926 DOI: 10.1002/jcc.27242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Metalloenzymes catalyze a wide range of chemical transformations, with the active site residues playing a key role in modulating chemical reactivity and selectivity. Unlike smaller synthetic catalysts, a metalloenzyme active site is embedded in a larger protein, which makes interrogation of electronic properties and geometric features with quantum mechanical calculations challenging. Here we implement the ability to fetch crystallographic structures from the Protein Data Bank and analyze the metal binding sites in the program molSimplify. We show the usefulness of the newly created protein3D class to extract the local environment around non-heme iron enzymes containing a two histidine motif and prepare 372 structures for quantum mechanical calculations. Our implementation of protein3D serves to expand the range of systems molSimplify can be used to analyze and will enable high-throughput study of metal-containing active sites in proteins.
Collapse
Affiliation(s)
- Freya Edholm
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
48
|
Esser TK, Böhning J, Önür A, Chinthapalli DK, Eriksson L, Grabarics M, Fremdling P, Konijnenberg A, Makarov A, Botman A, Peter C, Benesch JLP, Robinson CV, Gault J, Baker L, Bharat TAM, Rauschenbach S. Cryo-EM of soft-landed β-galactosidase: Gas-phase and native structures are remarkably similar. SCIENCE ADVANCES 2024; 10:eadl4628. [PMID: 38354247 PMCID: PMC10866560 DOI: 10.1126/sciadv.adl4628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Native mass spectrometry (MS) has become widely accepted in structural biology, providing information on stoichiometry, interactions, homogeneity, and shape of protein complexes. Yet, the fundamental assumption that proteins inside the mass spectrometer retain a structure faithful to native proteins in solution remains a matter of intense debate. Here, we reveal the gas-phase structure of β-galactosidase using single-particle cryo-electron microscopy (cryo-EM) down to 2.6-Å resolution, enabled by soft landing of mass-selected protein complexes onto cold transmission electron microscopy (TEM) grids followed by in situ ice coating. We find that large parts of the secondary and tertiary structure are retained from the solution. Dehydration-driven subunit reorientation leads to consistent compaction in the gas phase. By providing a direct link between high-resolution imaging and the capability to handle and select protein complexes that behave problematically in conventional sample preparation, the approach has the potential to expand the scope of both native mass spectrometry and cryo-EM.
Collapse
Affiliation(s)
- Tim K. Esser
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
- Thermo Fisher Scientific, 1 Boundary Park, Hemel Hempstead, Hertfordshire HP2 7GE, UK
| | - Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alpcan Önür
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Dinesh K. Chinthapalli
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Lukas Eriksson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Marko Grabarics
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Paul Fremdling
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | - Alexander Makarov
- Thermo Fisher Scientific, Bremen 28199, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Aurelien Botman
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
| | - Christine Peter
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Justin L. P. Benesch
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Lindsay Baker
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephan Rauschenbach
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, UK
| |
Collapse
|
49
|
Mai M, Zazubovich V, Mansbach RA. Identification of Residues Potentially Involved in Optical Shifts in the Water-Soluble Chlorophyll a-Binding Protein through Molecular Dynamics Simulations. J Phys Chem B 2024; 128:1371-1384. [PMID: 38299975 PMCID: PMC10876061 DOI: 10.1021/acs.jpcb.3c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Reversible light and thermally induced spectral shifts are universally observed in a wide variety of pigment-protein complexes at temperatures ranging from cryogenic to ambient. In this paper, we employed large-scale molecular dynamics (MD) simulations of a prototypical pigment-protein complex to better understand these shifts at a molecular scale. Although multiple mechanisms have been proposed over the years, no verification of these proposals via MD simulations has thus far been performed; our work represents the first step in this direction. From simulations of the water-soluble chlorophyll-binding protein complex, we determined that rearrangements of long hydrogen bonds were unlikely to be the origin of the multiwell landscape features necessary to explain observed spectral shifts. We also assessed small motions of amino acid residues and identified side chain rotations of some of these residues as likely candidates for the origin of relevant multiwell landscape features. The protein free-energy landscapes associated with side chain rotations feature energy barriers of around 1100-1600 cm-1, in agreement with optical spectroscopy results, with the most promising residue type associated with experimental signatures being serine, which possesses a symmetric triple-well landscape and moment of inertia of a relevant magnitude.
Collapse
Affiliation(s)
- Martina Mai
- Department of Physics, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| | - Valter Zazubovich
- Department of Physics, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| | - Rachael A. Mansbach
- Department of Physics, Concordia
University, Montréal, Quebec H4B 1R6, Canada
| |
Collapse
|
50
|
Mahdizadeh S, Stier M, Carlesso A, Lamy A, Thomas M, Eriksson LA. Multiscale In Silico Study of the Mechanism of Activation of the RtcB Ligase by the PTP1B Phosphatase. J Chem Inf Model 2024; 64:905-917. [PMID: 38282538 PMCID: PMC10865347 DOI: 10.1021/acs.jcim.3c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Inositol-requiring enzyme 1 (IRE1) is a transmembrane sensor that is part of a trio of sensors responsible for controlling the unfolded protein response within the endoplasmic reticulum (ER). Upon the accumulation of unfolded or misfolded proteins in the ER, IRE1 becomes activated and initiates the cleavage of a 26-nucleotide intron from human X-box-containing protein 1 (XBP1). The cleavage is mediated by the RtcB ligase enzyme, which splices together two exons, resulting in the formation of the spliced isoform XBP1s. The XBP1s isoform activates the transcription of genes involved in ER-associated degradation to maintain cellular homeostasis. The catalytic activity of RtcB is controlled by the phosphorylation and dephosphorylation of three tyrosine residues (Y306, Y316, and Y475), which are regulated by the ABL1 tyrosine kinase and PTP1B phosphatase, respectively. This study focuses on investigating the mechanism by which the PTP1B phosphatase activates the RtcB ligase using a range of advanced in silico methods. Protein-protein docking identified key interacting residues between RtcB and PTP1B. Notably, the phosphorylated Tyr306 formed hydrogen bonds and salt bridge interactions with the "gatekeeper" residues Arg47 and Lys120 of the inactive PTP1B. Classical molecular dynamics simulation emphasized the crucial role of Asp181 in the activation of PTP1B, driving the conformational change from an open to a closed state of the WPD-loop. Furthermore, QM/MM-MD simulations provided insights into the free energy landscape of the dephosphorylation reaction mechanism of RtcB, which is mediated by the PTP1B phosphatase.
Collapse
Affiliation(s)
- Sayyed
Jalil Mahdizadeh
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Stier
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| | - Antonio Carlesso
- Department
of Pharmacology, Sahlgrenska Academy, University
of Gothenburg, 413 90 Gothenburg, Sweden
- Università
della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler
Institute, Via G. Buffi
13, CH-6900 Lugano, Switzerland
| | - Aurore Lamy
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
- Department
of Bioinformatics and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400 Apt, France
| | - Melissa Thomas
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| | - Leif A. Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|