1
|
Wang Z, Jiang Q, Zhu Q, Ji C, Li J, Yin M, Shen J, Yan S. Nanoenabled Antiviral Pesticide for Tobacco Mosaic Virus: Excellent Adhesion Performance and Strong Inhibitory Effect to Alleviate the Damage on Photosynthetic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356630 DOI: 10.1021/acs.jafc.4c06885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Tobacco mosaic virus (TMV) is a major agricultural threat. Here, a cationic star polymer (SPc) was designed to construct an efficient nanodelivery system for moroxydine hydrochloride (ABOB). ABOB could self-assemble with SPc via a hydrogen bond and van der Waals force, and this complexation reduced the particle size of ABOB from 2406 to 45 nm. With the aid of SPc, the contact angle of ABOB decreased from 100.8 to 79.0°, and its retention increased from 6.3 to 13.8 mg/cm2. Furthermore, the complexation with SPc could attenuate the degradation of ABOB in plants, and the bioactivity of SPc-loaded ABOB significantly improved with a reduction in relative viral expression from 0.57 to 0.17. The RNA-seq analysis revealed that the ABOB/SPc complex could up-regulate the expression of growth- and photosynthesis-related genes in tobacco seedlings, and the chlorophyll content increased by 2.5 times. The current study introduced an efficient nanodelivery system to improve the bioactivity of traditional antiviral agents.
Collapse
Affiliation(s)
- Zeng Wang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qinhong Jiang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qian Zhu
- China Association of Pesticide Development and Application, Beijing 100125, People's Republic of China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jie Shen
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuo Yan
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Huang X, Ni X, Li H, Wei Y, Wang Z, Zhen C, Yin M, Shen J, Shi W, Zhang Y, Yan S. Synergistic mechanism of botanical pesticide camptothecin encapsulated in a nanocarrier against fall armyworm: Enhanced stability and amplified growth suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116900. [PMID: 39168084 DOI: 10.1016/j.ecoenv.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Botanical pesticides are one of the most promising alternatives to synthetic insecticides for green pest management. However, their efficacies must be further improved to meet real needs. Here we designed a nanoscale camptothecin (CPT) encapsulated in a star polycation (SPc) and determined its bioactivity against a devastating agricultural pest, Spodoptera frugiperda. The self-assembly of CPT/SPc complex was mainly driven by hydrogen bonding and Van der Waals forces to decrease the particle size from 789 to 298 nm. With the help of SPc, the contact angle of CPT decreased from 116° to 92° on maize leaves, and its retention was increased from 5.53 to 11.97 mg/cm2. The stability of SPc-loaded CPT was also improved in an alkaline environment, which is beneficial for its acting in lepidopteran insect guts. The CPT/SPc complex had stronger larvicidal activity and ovicidal activity against S. frugiperda than CPT alone, led to more complex transcriptomic changes in larvae, and had obvious adverse impacts on the activities of two digestive enzymes. Our findings demonstrated that the encapsulation of CPT by SPc-based nanodelivery system enabled better insecticidal activities against S. frugiperda, which holds great promise for the development of more efficient and sustainable pest control strategies to meet the demands of modern crop protection.
Collapse
Affiliation(s)
- Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China; Sanya Institute of China Agricultural University, Sanya 572000, PR China
| | - Xueqi Ni
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Huali Li
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Ying Wei
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Zeng Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Cong'ai Zhen
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China
| | - Wangpeng Shi
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
3
|
Jiang Q, Xie Y, Zhou B, Wang Z, Ning D, Li H, Zhang J, Yin M, Shen J, Yan S. Nanomaterial inactivates environmental virus and enhances plant immunity for controlling tobacco mosaic virus disease. Nat Commun 2024; 15:8509. [PMID: 39353964 PMCID: PMC11445512 DOI: 10.1038/s41467-024-52851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Tobacco mosaic virus (TMV) is extremely pathogenic and resistant to stress There are great needs to develop methods to reduce the virus in the environment and induce plant immunity simultaneously. Here, we report a multifunctional nano-protectant to reduce the virus in the environment and induce plant immunity simultaneously. The star polycation (SPc) nanocarrier can act as an active ingredient to interact with virus coat protein via electrostatic interaction, which reduces the proportion of TMV particles to 2.9% and leads to a reduction of the amount of virus in the environment by half. SPc can act as an adjuvant to spontaneously assemble with an immune inducer lentinan (LNT) through hydrogen bonding into nanoscale (142 nm diameter) LNT/SPc complex, which improves the physicochemical property of LNT for better wetting performance on leaves and cellular uptake, and further activates plant immune responses. Finally, the LNT/SPc complex displays preventive and curative effects on TMV disease, reducing TMV-GFP relative expression by 26% in the laboratory and achieving 82% control efficacy in the field We hope the strategy reported here would be useful for control of crop virus disease.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yonghui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Bingcheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhijiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Dekai Ning
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Hongming Li
- Kunming Branch of Yunnan Provincial Tobacco Company, 650051, Kunming, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
4
|
Jiang B, Yang J, Zhong X, Yan S, Yin M, Shen J, Lei B, Li Z, Zhou Y, Duan L. Triacontanol delivery by nano star shaped polymer promoted growth in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108815. [PMID: 38861820 DOI: 10.1016/j.plaphy.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Plant Growth Regulators (PGRs) are functional compounds known for enhancing plant growth and development. However, their environmental impact is a concern due to poor water solubility and the need for substantial organic solvents. Recently, nano-delivery systems have emerged as a solution, offering a broad range of applications for small molecule compounds. This study introduces a nano-delivery system for Triacontanol (TA), utilizing a star polymer (SPc), aimed at promoting maize growth and improving physiological indicators. The system forms nearly spherical nanoparticles through TA's hydroxyl group and SPc's tertiary amine group. The TA/SPc nano-complex notably outperforms separate TA or SPc treatments in maize, increasing biomass, chlorophyll content, and nutrient absorption. It elevates chlorophyll content by 16.4%, 10.0%, and 6.2% over water, TA, and SPc treatments, respectively, and boosts potassium and nitrate ion uptake by up to 2 and 1.6 times compared to TA alone, leading to enhanced plant height and leaf growth. qRT-PCR analysis further demonstrated that the nano-complex enhanced cellular uptake through the endocytosis pathway by up-regulating endocytosis-related gene expression. The employment of TEM to observe vesicle formation during the internalization of maize leaves furnishes corroborative evidence for the participation of the endocytosis pathway in this process. This research confirms that SPc is an effective carrier for TA, significantly enhancing biological activity and reducing TA dosage requirements.
Collapse
Affiliation(s)
- Bingyao Jiang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jia Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xingyu Zhong
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15 North Third Ring East Road, Chaoyang District, Beijing, 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory for Monitoring and Green Management, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Bin Lei
- Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuyi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Liusheng Duan
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
5
|
Wu S, Jiang Q, Xia Z, Sun Z, Mu Q, Huang C, Song F, Yin M, Shen J, Li H, Yan S. Perfect cooperative pest control via nano-pesticide and natural predator: High predation selectivity and negligible toxicity toward predatory stinkbug. CHEMOSPHERE 2024; 355:141784. [PMID: 38537714 DOI: 10.1016/j.chemosphere.2024.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
The improper use of synthetic pesticides has caused adverse effects on global ecosystems and human health. As a part of sustainable pest management strategy, natural predators, along with nano-pesticides, have made significant contributions to ecological agriculture. The cooperative application of both approaches may overcome their limitations, substantially reducing pesticide application while controlling insect pests efficiently. Herein, the current study introduced a cationic star polymer (SPc) to prepare two types of nano-pesticides, which were co-applied with predatory stinkbugs Picromerus lewisi to achieve perfect cooperative pest control. The SPc exhibited nearly no toxicity against predatory stinkbugs at the working concentration, but it led to the death of predatory stinkbugs at extremely high concentration with the lethal concentration 50 (LC50) value of 13.57 mg/mL through oral feeding method. RNA-seq analysis revealed that the oral feeding of SPc could induce obvious stress responses, leading to stronger phagocytosis, exocytosis, and energy synthesis to ultimately result in the death of predatory stinkbugs. Then, the broflanilide and chlorobenzuron were employed to prepare the self-assembled nano-pesticides via hydrogen bond and Van der Waals force, and the complexation with SPc broke the self-aggregated structures of pesticides and reduced their particle sizes down to nanoscale. The bioactivities of prepared nano-pesticides were significantly improved toward common cutworm Spodoptera litura with the corrected mortality increase by approximately 30%. Importantly, predatory stinkbugs exhibited a strong predation selectivity for alive common cutworms to reduce the exposure risk of nano-pesticides, and the nano-pesticides showed negligible toxicity against predators. Thus, the nano-pesticides and predatory stinkbugs could be applied simultaneously for efficient and sustainable pest management. The current study provides an excellent precedent for perfect cooperative pest control via nano-pesticide and natural predator.
Collapse
Affiliation(s)
- Shangyuan Wu
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Qinhong Jiang
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Zhilin Xia
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Zhirong Sun
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Qing Mu
- Guizhou Provincial Tobacco Company, Qianxinan Branch, Xingyi, 562400, PR China
| | - Chunyang Huang
- Guizhou Provincial Tobacco Company, Zunyi Branch, Zunyi, 563000, PR China
| | - Fan Song
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Hu Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
6
|
Yang Y, Wei Y, Yin M, Liu E, Du X, Shen J, Dong M, Yan S. Efficient Polyamine-Based Nanodelivery System for Proline: Enhanced Uptake Improves the Drought Tolerance of Tobacco. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1550-1560. [PMID: 38207102 DOI: 10.1021/acs.jafc.3c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Drought stress is one of the most unfavorable factors affecting plant growth and productivity among various environmental stresses. Nanotechnology is expected to enhance the effectiveness of conventional biostimulants. Herein, the current study constructed an efficient proline (Pro) nanodelivery system based on a star polyamine (SPc). The hydroxyl groups of Pro could assemble with carbonyl groups of SPc, and the self-assembly of Pro with SPc formed the nanoscale particles of the Pro/SPc complex. Compared to Pro alone, the contact angle of SPc-loaded Pro decreased, and its retentivity and plant uptake increased. Importantly, the tobacco (Nicotiana benthamiana) seeds and seedlings treated with Pro/SPc complex exhibited stronger drought tolerance. RNA-Seq analysis indicated that the SPc-loaded Pro could further upregulate photosynthesis-related genes and endocytosis-related genes. The current study constructed an efficient nanodelivery system for improving the bioactivity of biostimulants, which has broad application prospects in the agricultural field.
Collapse
Affiliation(s)
- Yanxiao Yang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Enliang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiangge Du
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Min Dong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
7
|
Rehman MFU, Khan MM. Application of nanopesticides and its toxicity evaluation through Drosophila model. Bioprocess Biosyst Eng 2024; 47:1-22. [PMID: 37993740 DOI: 10.1007/s00449-023-02932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
Insects feed on plants and cause the growth of plants to be restricted. Moreover, the application of traditional pesticides causes harmful effects on non-target organisms and poses serious threats to the environment. The use of conventional pesticides has negative impacts on creatures that are not the intended targets. It also presents significant risks to the surrounding ecosystem. Insects that are exposed to these chemicals eventually develop resistance to them. This review could benefit researcher for future development of nanopesticides research. This is because a holistic approach has been taken to describe the multidimensional properties of nanopesticides, health and environmental concerns and its possible harmful effects on non-target organisms and physiochemical entities. The assessment of effects of the nanopesticides is also being discussed through the drosophotoxicology. The future outlooks have been suggested to take a critical analysis before commercialization or formulation of the nanopesticides.
Collapse
Affiliation(s)
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
8
|
Liu Y, Wei Y, Yin M, Shen J, Du X, Yan S, Dong M. Star Polymer-Based Nanodelivery System for Pesticides: Enhanced Broad-Spectrum Toxicity and Selective Toxicity. ACS OMEGA 2023; 8:41595-41602. [PMID: 37970005 PMCID: PMC10633828 DOI: 10.1021/acsomega.3c05722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
The application of nanotechnology in agriculture can break through many traditional problems of synthetic pesticides, especially for increasing bioactivity and reducing application amount. However, the safety and selective toxicity of nanocarrier-loaded pesticides should be clarified toward natural predators. In this context, an efficient spirotetramat nanodelivery system was successfully constructed based on a star polymer (SPc). Spirotetramat could complex with SPc through hydrogen bonding and van der Waals forces spontaneously. The self-assembly of the spirotetramat/SPc complex decreased the particle size of spirotetramat from 1292 to 710 nm. After the complexation with SPc, the lethal concentration 50 (LC50) values of spirotratemat decreased from 252.064 to 108.871 and 332.079 to 189.257 mg/L toward target pest Frankliniella occidentalis and nontarget predator Orius sauteri with the synergic ratios of 2.315 and 1.755, respectively. The possible reason might be due to the enhancement of the broad-spectrum toxicity of SPc-loaded pesticides. Importantly, the selective toxicity ratio (STR) of spirotetramat increased from 1.32 to 1.73 with the help of SPc, indicating the higher selectivity of the spirotratemat/SPc complex toward predators. Meanwhile, the safety coefficient (SC) of spirotratemat was not significantly changed after complexation with SPc, and the spirotratemat/SPc complex belonged to the medium risk pesticide. Overall, the assembly with SPc could not only improve the control efficacy of spirotetramat but also increase its selectivity as well as alleviate its negative effects on predators. The current study is beneficial for understanding the enhancement of broad-spectrum toxicity and the selective toxicity of nanocarrier-loaded pesticides.
Collapse
Affiliation(s)
- Yuanrui Liu
- Department
of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management
for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ying Wei
- Department
of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management
for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Meizhen Yin
- State
Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical
Materials, Beijing University of Chemical
Technology, Beijing 100029, China
| | - Jie Shen
- Department
of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management
for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiangge Du
- Department
of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management
for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department
of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management
for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Dong
- Department
of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management
for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Jiang QH, Li T, Liu Y, Zhou ZY, Yang Y, Wei Y, Yin MZ, Shen J, Yan S. A nano-delivery system expands the insecticidal target of thiamethoxam to include a devastating pest, the fall armyworm. INSECT SCIENCE 2023; 30:803-815. [PMID: 36317674 DOI: 10.1111/1744-7917.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Nano-delivery systems have been applied to deliver various synthetic/botanical pesticides to increase the efficiency of pesticide use and reduce the volumes of pesticides applied. Previous studies have supported the hypothesis that the nanocarriers can help expand the insecticidal target of pesticides to include non-target pests. However, the potential mechanism underlying this interesting phenomenon remains unclear. Herein, a widely applied star polycation (SPc) nanocarrier was synthesized to construct a thiamethoxam (TMX) nano-delivery system. The SPc-based delivery system could promote the translocation of exogenous substances across the membrane of Sf9 cells, increase the cytotoxicity of TMX against Sf9 cells by nearly 20%, and expand the insecticidal target of TMX to include Spodoptera frugiperda (the fall armyworm), with a 27.5% mortality increase at a concentration of 0.25 mg/mL. Moreover, the RNA-seq analysis demonstrated that the SPc could upregulate various transport-related genes, such as Rab, SORT1, CYTH, and PIKfyve, for the enhanced cellular uptake of TMX. Furthermore, enhanced cell death in larvae treated with the TMX-SPc complex was observed through changes in the expression levels of death-related genes, such as Casp7, BIRC5, MSK1, and PGAM5. The SPc-based nano-delivery system improved the cellular uptake of TMX and expanded its insecticidal target by adjusting the expression levels of death-related genes. The current study mainly identified the transport and cell death genes related to nanocarrier-based insecticidal target expansion, which is beneficial for understanding the bioactivity enhancement of the nano-delivery system.
Collapse
Affiliation(s)
- Qin-Hong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ting Li
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zi-Yi Zhou
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Yang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mei-Zhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Mubeen I, Fawzi Bani Mfarrej M, Razaq Z, Iqbal S, Naqvi SAH, Hakim F, Mosa WFA, Moustafa M, Fang Y, Li B. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107670. [PMID: 37018866 DOI: 10.1016/j.plaphy.2023.107670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Agrochemicals are products of advanced technologies that use inorganic pesticides and fertilizers. Widespread use of these compounds has adverse environmental effects, leading to acute and chronic exposure. Globally, scientists are adopting numerous green technologies to ensure a healthy and safe food supply and a livelihood for everyone. Nanotechnologies significantly impact all aspects of human activity, including agriculture, even if synthesizing certain nanomaterials is not environmentally friendly. Numerous nanomaterials may therefore make it easier to create natural insecticides, which are more effective and environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and extend shelf life, while controlled-release products can improve the delivery of pesticides. Nanotechnology platforms enhance the bioavailability of conventional pesticides by changing kinetics, mechanisms, and pathways. This allows them to bypass biological and other undesirable resistance mechanisms, increasing their efficacy. The development of nanomaterials is expected to lead to a new generation of pesticides that are more effective and safer for life, humans, and the environment. This article aims to express at how nanopesticides are being used in crop protection now and in the future. This review aims to shed some light on the various impacts of agrochemicals, their benefits, and the function of nanopesticide formulations in agriculture.
Collapse
Affiliation(s)
- Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates.
| | - Zarafshan Razaq
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Shehzad Iqbal
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, 3460000, Maule, Chile.
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Fahad Hakim
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Walid F A Mosa
- Plant Production Department (Horticulture- Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Guo H, Long GJ, Liu XZ, Ma YF, Zhang MQ, Gong LL, Dewer Y, Hull JJ, Wang MM, Wang Q, He M, He P. Functional characterization of tyrosine melanin genes in the white-backed planthopper and utilization of a spray-based nanoparticle-wrapped dsRNA technique for pest control. Int J Biol Macromol 2023; 230:123123. [PMID: 36603718 DOI: 10.1016/j.ijbiomac.2022.123123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
As a significant pest of rice the white-backed planthopper (WBPH) Sogatella furcifera is a focus of pest management. However, traditional chemical-based control methods risk the development of pesticide resistance as well as severe ecological repercussions. Although nanoparticle-encapsulated dsRNAs provide a promising alternative method for sustainable pest management, gene targets specific to WBPH have yet to be optimized. Genes in the tyrosine-melanin pathway impact epidermal melanization and sclerotization, two processes essential for insect development and metabolism, have been proposed as good candidate targets for pest management. Seven genes (aaNAT, black, DDC, ebony, tan, TH, and yellow-y) in this group were identified from WBPH genome and functionally characterized by using RNAi for their impact on WBPH body color, development, and mortality. Knockdown of SfDDC, Sfblack, SfaaNAT, and Sftan caused cuticles to turn black, whereas Sfyellow-y and Sfebony knockdown resulted in yellow coloration. SfTH knockdown resulted in pale-colored bodies and high mortality. Additionally, an Escherichia coli expression system for large-scale dsRNA production was coupled with star polycation nanoparticles to develop a sprayable RNAi method targeting SfTH that induced high WBPH mortality rates on rice seedlings. These findings lay the groundwork for the development of large-scale dsRNA nanoparticle sprays as a WBPH control method.
Collapse
Affiliation(s)
- Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, 12618 Giza, Egypt
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ, 85138, USA
| | - Mei-Mei Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Qin Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
12
|
Al-Kazafy Hassan Sabry, Mona Ahmed Hussein. Efficacy of Some Nano-Organic Formulations and Their Normal Formulations against the Black Cutworm, Agrotis ipsilon (Hufnagel). BIOL BULL+ 2023. [DOI: 10.1134/s1062359022700030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
13
|
Wang Y, Xie YH, Jiang QH, Chen HT, Ma RH, Wang ZJ, Yin MZ, Shen J, Yan S. Efficient polymer-mediated delivery system for thiocyclam: Nanometerization remarkably improves the bioactivity toward green peach aphids. INSECT SCIENCE 2023; 30:2-14. [PMID: 35275442 DOI: 10.1111/1744-7917.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/20/2022] [Indexed: 05/21/2023]
Abstract
The unscientific application of synthetic pesticides has brought various negative effects on the environment, hindering the sustainable development of agriculture. Nanoparticles can be applied as carriers to improve pesticide delivery, showing great potential in the development of pesticide formulation in recent years. Herein, a star polymer (SPc) was constructed as an efficient pesticide nanocarrier/adjuvant that could spontaneously assemble with thiocyclam or monosultap into a complex, through hydrophobic association and hydrogen bonding, respectively, with the pesticide-loading contents of 42.54% and 19.3%. This complexation reduced the particle sizes of thiocyclam from 543.54 to 52.74 nm for pure thiocyclam, and 3 814.16 to 1 185.89 nm for commercial preparation (cp) of thiocyclam. Interestingly, the introduction of SPc decreased the contact angles of both pure and cp thiocyclam on plant leaves, and increased the plant uptake of cp thiocyclam to 2.4-1.9 times of that without SPc. Meanwhile, the SPc could promote the bioactivity of pure/cp thiocyclam against green peach aphids through leaf dipping method and root application. For leaf dipping method, the 50% lethal concentration decreased from 0.532 to 0.221 g/L after the complexation of pure thiocyclam with SPc, and that decreased from 0.390 to 0.251 g/L for cp thiocyclam. SPc seems a promising adjuvant for nanometerization of both pure and cp insecticides, which is beneficial for improving the delivery efficiency and utilization rate of pesticides.
Collapse
Affiliation(s)
- Ye Wang
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Hui Xie
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Qin-Hong Jiang
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong-Tao Chen
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Rui-Hao Ma
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhi-Jiang Wang
- Kunming Branch of Yunnan Provincial Tobacco Company, Kunming, China
| | - Mei-Zhen Yin
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Yan S, Li N, Guo Y, Chen Y, Ji C, Yin M, Shen J, Zhang J. Chronic exposure to the star polycation (SPc) nanocarrier in the larval stage adversely impairs life history traits in Drosophila melanogaster. J Nanobiotechnology 2022; 20:515. [PMID: 36482441 PMCID: PMC9730587 DOI: 10.1186/s12951-022-01705-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nanomaterials are widely used as pesticide adjuvants to increase pesticide efficiency and minimize environmental pollution. But it is increasingly recognized that nanocarrier is a double-edged sword, as nanoparticles are emerging as new environmental pollutants. This study aimed to determine the biotoxicity of a widely applied star polycation (SPc) nanocarrier using Drosophila melanogaster, the fruit fly, as an in vivo model. RESULTS The lethal concentration 50 (LC50) value of SPc was identified as 2.14 g/L toward third-instar larvae and 26.33 g/L for adults. Chronic exposure to a sub lethal concentration of SPc (1 g/L) in the larval stage showed long-lasting adverse effects on key life history traits. Exposure to SPc at larval stage adversely impacted the lifespan, fertility, climbing ability as well as stresses resistance of emerged adults. RNA-sequencing analysis found that SPc resulted in aberrant expression of genes involved in metabolism, innate immunity, stress response and hormone production in the larvae. Orally administrated SPc nanoparticles were mainly accumulated in intestine cells, while systemic responses were observed. CONCLUSIONS These findings indicate that SPc nanoparticles are hazardous to fruit flies at multiple levels, which could help us to develop guidelines for further large-scale application.
Collapse
Affiliation(s)
- Shuo Yan
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Na Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yuankang Guo
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Yao Chen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Chendong Ji
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Meizhen Yin
- grid.48166.3d0000 0000 9931 8406State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Jie Shen
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Junzheng Zhang
- grid.22935.3f0000 0004 0530 8290Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
15
|
Xiao Y, Zhang H, Li Z, Huang T, Akihiro T, Xu J, Xu H, Lin F. An amino acid transporter-like protein (OsATL15) facilitates the systematic distribution of thiamethoxam in rice for controlling the brown planthopper. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1888-1901. [PMID: 35678495 PMCID: PMC9491460 DOI: 10.1111/pbi.13869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Characterization and genetic engineering of plant transporters involved in the pesticide uptake and translocation facilitate pesticide relocation to the tissue where the pests feed, thus improving the bioavailability of the agrichemicals. We aimed to identify thiamethoxam (THX) transporters in rice and modify their expression for better brown planthopper (BPH) control with less pesticide application. A yeast library expressing 1385 rice transporters was screened, leading to the identification of an amino acid transporter-like (ATL) gene, namely OsATL15, which facilitates THX uptake in both yeast cells and rice seedlings. In contrast to a decrease in THX content in osatl15 knockout mutants, ectopic expression of OsATL15 under the control of the CaMV 35S promoter or a vascular-bundle-specific promoter gdcsPpro significantly increased THX accumulation in rice plants, thus further enhancing the THX efficacy against BPH. OsATL15 was localized in rice cell membrane and abundant in the root transverse sections, vascular bundles of leaf blade, and stem longitudinal sections, but not in hull and brown rice at filling stages. Our study shows that OsATL15 plays an essential role in THX uptake and its systemic distribution in rice. OsATL15 could be valuable in achieving precise pest control by biotechnology approaches.
Collapse
Affiliation(s)
- Yuyan Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Hanlin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Zhiwei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Tinghong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Takashi Akihiro
- Faculty of Life and Environmental ScienceShimane UniversityShimaneJapan
| | - Jian Xu
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources/Key Laboratory of Natural Pesticide and Chemical BiologyMinistry of Education, South China Agricultural UniversityGuangzhouChina
| |
Collapse
|
16
|
Shi L, Liang Q, Zang Q, Lv Z, Meng X, Feng J. Construction of Prochloraz-Loaded Hollow Mesoporous Silica Nanoparticles Coated with Metal-Phenolic Networks for Precise Release and Improved Biosafety of Pesticides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162885. [PMID: 36014750 PMCID: PMC9414849 DOI: 10.3390/nano12162885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 05/03/2023]
Abstract
Currently, environmental-responsive pesticide delivery systems have become an essential way to improve the effective utilization of pesticides. In this paper, by using hollow mesoporous silica (HMS) as a nanocarrier and TA-Cu metal-phenolic networks as a capping agent, a pH-responsive controlled release nano-formulation loaded with prochloraz (Pro@HMS-TA-Cu) was constructed. The structure and properties of Pro@HMS-TA-Cu were adequately characterised and analysed. The results showed that the loading content of Pro@HMS-TA-Cu nanoparticles was about 17.7% and the Pro@HMS-TA-Cu nanoparticles exhibited significant pH-responsive properties. After a coating of the TA-Cu metal-phenolic network, the contact angle and adhesion work of Pro@HMS-TA-Cu nanoparticles on the surface of oilseed rape leaves after 360 s were 59.6° and 107.2 mJ·m-2, respectively, indicating that the prepared nanoparticles possessed excellent adhesion. In addition, the Pro@HMS-TA-Cu nanoparticles demonstrated better antifungal activity against Sclerotinia sclerotiorum and lower toxicity to zebrafish compared to prochloraz technical. Hence, the pH-responsive nanoparticles prepared with a TA-Cu metal-phenolic network as a capping agent are highly efficient and environmentally friendly, providing a new approach for the development of new pesticide delivery systems.
Collapse
|
17
|
Qu X, Wang S, Lin G, Li M, Shen J, Wang D. The Synergistic Effect of Thiamethoxam and Synapsin dsRNA Targets Neurotransmission to Induce Mortality in Aphis gossypii. Int J Mol Sci 2022; 23:ijms23169388. [PMID: 36012653 PMCID: PMC9408958 DOI: 10.3390/ijms23169388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Sublethal doses of insecticides have many impacts on pest control and agroecosystems. Insects that survive a sublethal dose of insecticide could adapt their physiological and behavioral functions and resist this environmental stress, which contributes to the challenge of pest management. In this study, the sublethal effects of thiamethoxam on gene expression were measured through RNA sequencing in the melon aphid Aphis gossypii. Genes regulating energy production were downregulated, while genes related to neural function were upregulated. To further address the function of genes related to neurotransmission, RNA interference (RNAi) was implemented by transdermal delivery of dsRNA targeting synapsin (syn), a gene regulating presynaptic vesicle clustering. The gene expression of synapsin was knocked down and the mortality of aphids was increased significantly over the duration of the assay. Co-delivery of syn-dsRNA and thiamethoxam reversed the upregulation of synapsin caused by low-dose thiamethoxam and resulted in lethality to melon aphids, suggesting that the decreased presynaptic function may contribute to this synergistic lethal effect. In addition, the nanocarrier star polycation, which could bind both dsRNA and thiamethoxam, greatly improved the efficacy of lethality. These results increase our knowledge of the gene regulation induced by sublethal exposure to neonicotinoids and indicated that synapsin could be a potential RNAi target for resistance management of the melon aphid.
Collapse
|
18
|
Zhang L, Yan S, Li M, Wang Y, Shi X, Liang P, Yin M, Shen J, Gao X. Nanodelivery System Alters an Insect Growth Regulator's Action Mode: From Oral Feeding to Topical Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35105-35113. [PMID: 35867633 DOI: 10.1021/acsami.2c08239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Insect growth regulators (IGRs) guide animal development through injection, oral feeding, or topical application. Among them, lufenuron is a widely used insect cuticle inhibitor but only shows a gastric toxic effect. Lacking contact toxicity limits the effective utilization when spraying the lufenuron pesticide. To overcome this shortcoming, a nanocarrier (star polycation, SPc)-based transdermal delivery system was applied to improve the penetrability and contact toxicity of lufenuron. The fluoride groups in lufenuron could interact with the tertiary amines in the branch-chain of the SPc through electrostatic interaction to form a lufenuron/SPc complex. The above interaction reduced the particle size of lufenuron from 933 to 70 nm. Interestingly, the contact toxicity of SPc-loaded lufenuron was remarkably improved with effects of higher larval mortality and lower egg hatching rate of the devastating pest fall armyworm. The physiological and molecular toxic mechanism was revealed by RNA-Seq analysis. The SPc-loaded lufenuron apparently down-regulated cuticle-related genes and thus inhibited insect cuticle formation. Such contact toxicity was achieved by the transdermal nanodelivery of lufenuron, which up-regulated endocytosis-related genes for drug uptake. This study is the first successful application of a nanoparticle-mediated transdermal delivery system to explore the contact toxicity of an IGR, which alters the IRG's action mode from oral feeding to topical application.
Collapse
Affiliation(s)
- Lei Zhang
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Mingjian Li
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Ye Wang
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Xueyan Shi
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Pei Liang
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, No. 15, North Third Ring East Road, Chaoyang District, Beijing 100029, P. R. China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| | - Xiwu Gao
- College of Plant Protection, China Agricultural University, No. 2, Yuanmingyuan West Road, Haidian District, Beijing 100193, P. R. China
| |
Collapse
|
19
|
Yan S, Gu N, Peng M, Jiang Q, Liu E, Li Z, Yin M, Shen J, Du X, Dong M. A Preparation Method of Nano-Pesticide Improves the Selective Toxicity toward Natural Enemies. NANOMATERIALS 2022; 12:nano12142419. [PMID: 35889640 PMCID: PMC9323491 DOI: 10.3390/nano12142419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 12/23/2022]
Abstract
Various nano-delivery systems have been designed to deliver synthetic/botanical pesticides for improved bioactivity. However, the enhanced toxicity of nanocarrier-loaded pesticides may injure the natural enemies, and their selective toxicity should be evaluated before the large-scale application. In this context, a star polymer (SPc)-based cyantraniliprole (CNAP) nano-delivery system was constructed, and its selective toxicity was evaluated using pest Frankliniella occidentalis (WFT) and predator Orius sauteri. The amide NH of CNAP could assemble with carbonyl groups or tertiary amines of SPc through hydrogen bonds to form CNAP/SPc complex spontaneously. The above self-assembly decreased the particle size of CNAP from 808 to 299 nm. With the help of SPc, the lethal concentration 50 (LC50) values of CNAP decreased from 99 to 54 mg/L and 230 to 173 mg/L toward WFTs and O. sauteri due to the enhancement of broad-spectrum bioactivity. Interestingly, the toxicity selective ratio (TSR) of CNAP increased from 2.33 to 3.23 with the help of SPc, revealing the higher selectivity of SPc-loaded CNAP. To our knowledge, it was the first successful exploration of the selective toxicity of nanocarrier-loaded pesticides, and the higher selective toxicity of SPc-loaded CNAP was beneficial for alleviating the negative impacts on predators.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Na Gu
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Min Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; (M.P.); (M.Y.)
| | - Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Enliang Liu
- Research Institute of Grain Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumqi 830022, China;
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; (M.P.); (M.Y.)
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Xiangge Du
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
| | - Min Dong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.Y.); (N.G.); (Q.J.); (J.S.); (X.D.)
- Correspondence:
| |
Collapse
|
20
|
Preparation of an Environmentally Friendly Nano-Insecticide through Encapsulation in Polymeric Liposomes and Its Insecticidal Activities against the Fall Armyworm, Spodoptera frugiperda. INSECTS 2022; 13:insects13070625. [PMID: 35886801 PMCID: PMC9323322 DOI: 10.3390/insects13070625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary Pests are an important factor that causes a heavy loss in corn yield and quality. The fall armyworm (FAW), Spodoptera frugiperda, is a newly invasive and extremely destructive pest, and it poses a major threat to agricultural production in China. While chemical pesticides are considered effective means for controlling the outbreak of destructive pests, pesticide delivery systems, such as microcapsules or nanoparticles, are an effective way to promote the utilization rate of traditional pesticides and to reduce environmental pollution. Therefore, the aim of this study is to design an environmentally friendly nano-insecticide that can enhance foliar retention and increase insecticidal activity. For this purpose, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000-NH2) was chosen to formulate the insecticide nanoparticles. The physicochemical properties were characterized and investigated in indoor and field efficacy trials. The results demonstrate that the nanoparticles hold promise for pest control. Abstract The insecticide emamectin benzoate (EB) was formulated with nanoparticles composed of DSPE-PEG2000-NH2 by the co-solvent method to determine its adverse impacts on the environment and to reinforce its dispersion, adhesion, and biocompatibility. A good encapsulation efficiency (70.5 ± 1.5%) of EB loaded in DSPE-PEG2000-NH2 polymeric liposomes was confirmed. Dynamic light scattering (DLS), transmission electron microscopy (TEM), and contact angle meter measurements revealed that the DSPE-EB nanoparticles had a regular distribution, spherical shape, and good leaf wettability. The contact angle on corn leaves was 47.26°, and the maximum retention was higher than that of the reference product. DSPE-EB nanoparticles had strong adhesion on maize foliage and a good, sustained release property. The efficacy trial showed that the DSPE-EB nanoparticles had a strong control effect on S. frugiperda larvae, with the LC50 of 0.046 mg/L against the third-instar S. furgiperda larve after 48 h treatment. All these results indicate that DSPE-EB nanoparticles can serve as an insecticide carrier with lower environmental impact, sustained release property, and effective control of pests.
Collapse
|
21
|
Tian F, Qiao C, Wang C, Pang T, Guo L, Li J, Pang R, Xie H. The fate of thiamethoxam and its main metabolite clothianidin in peaches and the wine-making process. Food Chem 2022; 382:132291. [DOI: 10.1016/j.foodchem.2022.132291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/06/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
|
22
|
Jiang Q, Peng M, Yin M, Shen J, Yan S. Nanocarrier-Loaded Imidaclothiz Promotes Plant Uptake and Decreases Pesticide Residue. Int J Mol Sci 2022; 23:ijms23126651. [PMID: 35743094 PMCID: PMC9224201 DOI: 10.3390/ijms23126651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
There is a great demand for improving the effective utilization of pesticides and reducing their application for sustainable agriculture, and polymeric nanoparticles have provided strong technical support for the efficient delivery of pesticides. To this context, we tried to construct a relatively safe imidaclothiz nano-delivery system for enhanced plant uptake, reduced pesticide residue and improved bioactivity toward green peach aphids. The imidaclothiz could be assembled with the hydrophobic core of SPc through hydrophobic association, which led to the self-assembly of nanoscale imidaclothiz/SPc complex consisting of nearly spherical particles. The SPc decreased the contact angle of imidaclothiz drops and remarkably increased the plant uptake. Furthermore, the bioactivity and control efficacy of imidaclothiz were significantly improved with the help of SPc in both laboratory and field. Excitingly, the residue of imidaclothiz decreased with the help of SPc 7 d after the treatment due to the faster degradation of nanoscale imidaclothiz/SPc complex, which exhibited no negative effects on agronomic traits of tobacco plants. The current study successfully constructed a nano-delivery system for imidaclothiz, which can not only increase the effective utilization of pesticides, but also decrease the pesticide residue.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Construction and application of star polycation nanocarrier-based microRNA delivery system in Arabidopsis and maize. J Nanobiotechnology 2022; 20:219. [PMID: 35525952 PMCID: PMC9077854 DOI: 10.1186/s12951-022-01443-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background MicroRNA (miRNA) plays vital roles in the regulation of both plant architecture and stress resistance through cleavage or translation inhibition of the target messenger RNAs (mRNAs). However, miRNA-induced gene silencing remains a major challenge in vivo due to the low delivery efficiency and instability of miRNA, thus an efficient and simple method is urgently needed for miRNA transformation. Previous researches have constructed a star polycation (SPc)-mediated transdermal double-stranded RNA (dsRNA) delivery system, achieving efficient dsRNA delivery and gene silencing in insect pests. Results Here, we tested SPc-based platform for direct delivery of double-stranded precursor miRNA (ds-MIRNA) into protoplasts and plants. The results showed that SPc could assemble with ds-MIRNA through electrostatic interaction to form nano-sized ds-MIRNA/SPc complex. The complex could penetrate the root cortex and be systematically transported through the vascular tissue in seedlings of Arabidopsis and maize. Meanwhile, the complex could up-regulate the expression of endocytosis-related genes in both protoplasts and plants to promote the cellular uptake. Furthermore, the SPc-delivered ds-MIRNA could efficiently increase mature miRNA amount to suppress the target gene expression, and the similar phenotypes of Arabidopsis and maize were observed compared to the transgenic plants overexpressing miRNA. Conclusion To our knowledge, we report the first construction and application of star polycation nanocarrier-based platform for miRNA delivery in plants, which explores a new enable approach of plant biotechnology with efficient transformation for agricultural application. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01443-4.
Collapse
|
24
|
A Star Polyamine-Based Nanocarrier Delivery System for Enhanced Avermectin Contact and Stomach Toxicity against Green Peach Aphids. NANOMATERIALS 2022; 12:nano12091445. [PMID: 35564154 PMCID: PMC9100206 DOI: 10.3390/nano12091445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
Abstract
The unscientific application of synthesized/botanical pesticides has not only brought the resistance of plant pathogens and pests, but also led to serious environmental pollution. In recent years, various nano-delivery systems have been used for the development of environmental-friendly pesticides with improved efficacy. Herein, the current study constructed an efficient avermectin B1a (AVM) nano-delivery system based on a star polyamine (SPc) and focused on the characterization and bioactivity of SPc-loaded AVM at various mass ratios. The hydroxyl groups of AVM could assemble with carbonyl groups of SPc through hydrogen bond and van der Waals forces, and the self-assembly of AVM and SPc formed nearly spherical particles of AVM/SPc complex with nanoscale size. The contact angle of SPc-loaded AVM decreased with the increasing mass ratio of SPc, revealing the easier distribution and spreading of the AVM/SPc complex. Furthermore, the stomach and contact toxicity of AVM/SPc complex also increased along with the increasing SPc mass ratio, which could be attributed to the enhanced systemic transportation in plants, enlarged contact area to insect pests and stronger permeability across the insect cuticle. The current study provides an efficient nano-delivery system for increasing stomach and contact toxicity of pesticides with wide applications in the agricultural field.
Collapse
|
25
|
Ma Z, Zheng Y, Chao Z, Chen H, Zhang Y, Yin M, Shen J, Yan S. Visualization of the process of a nanocarrier-mediated gene delivery: stabilization, endocytosis and endosomal escape of genes for intracellular spreading. J Nanobiotechnology 2022; 20:124. [PMID: 35264206 PMCID: PMC8905852 DOI: 10.1186/s12951-022-01336-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/26/2022] [Indexed: 12/20/2022] Open
Abstract
Nanoparticles have been widely applied as gene carrier for improving RNA interference (RNAi) efficiency in medical and agricultural fields. However, the mechanism and delivery process of nanoparticle-mediated RNAi is not directly visualized and elucidated. Here we synthesized a star polymer (SPc) consisted of a hydrophilic shell with positively-charged tertiary amine in the side chain, which was taken as an example to investigate the mechanism in gene delivery. The SPc could assemble with dsRNA spontaneously through electrostatic force, hydrogen bond and van der Waals force. Interestingly, the SPc could protect dsRNA from degradation by RNase A and insect hemolymph, thus remarkably increasing the stability of dsRNA. Meanwhile, the SPc could efficiently promote the cellular uptake and endosomal escape for intracellular spreading of dsRNA. Transcriptome analysis revealed that the SPc could up-regulate some key genes such as Chc, AP2S1 and Arf1 for activating clathrin-mediated endocytosis. Furthermore, the suppression of endocytosis hindered the cellular uptake of SPc-delivered dsRNA in vitro, and the subsequent RNAi effect was also disappeared in vivo. To our knowledge, our study is the first direct visualization of the detailed cellular delivery process and mechanism of nanocarrier-mediated gene delivery. Above mechanism supports the application of nanocarrier-based RNAi in gene therapy and pest management.
Collapse
Affiliation(s)
- Zhongzheng Ma
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.,Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yang Zheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225002, Jiangsu, People's Republic of China
| | - Zijian Chao
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yunhui Zhang
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
26
|
Awad M, Ibrahim EDS, Osman EI, Elmenofy WH, Mahmoud AWM, Atia MAM, Moustafa MAM. Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity. PLoS One 2022; 17:e0254285. [PMID: 35113879 PMCID: PMC8812990 DOI: 10.1371/journal.pone.0254285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
Frequent applications of synthetic insecticides might cause environmental pollution due to the high residue. In addition, increasing insecticide resistance in many insect pests requires novel pest control methods. Nanotechnology could be a promising field of modern agriculture, and is receiving considerable attention in the development of novel nano-agrochemicals, such as nanoinsectticides and nanofertilizers. This study assessed the effects of the lethal and sublethal concentrations of chlorantraniliprole, thiocyclam, and their nano-forms on the development, reproductive activity, oxidative stress enzyme activity, and DNA changes in the black cutworm, Agrotis ipsilon, at the molecular level. The results revealed that A. ipsilon larvae were more susceptible to the nano-forms than the regular forms of both nano chlorine and sulfur within the chlorantraniliprole and thiocyclam insecticides, respectively, with higher toxicities than the regular forms (ca. 3.86, and ca.2.06-fold, respectively). Significant differences in biological parameters, including developmental time and reproductive activity (fecundity and hatchability percent) were also observed. Correspondingly, increases in oxidative stress enzyme activities were observed, as were mutagenic effects on the genomic DNA of A. ipsilon after application of the LC50 of the nano-forms of both insecticides compared to the control. These promising results could represent a crucial step toward developing efficient nanoinsecticides for sustainable control of A. ipsilon.
Collapse
Affiliation(s)
- Mona Awad
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| | - El-Desoky S. Ibrahim
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| | - Engy I. Osman
- Faculty of Agriculture, Department of Genetics, Cairo University, Giza, Egypt
| | - Wael H. Elmenofy
- Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt
| | - Abdel Wahab M. Mahmoud
- Faculty of Agriculture, Plant Physiology Section, Botany Department, Cairo University, Giza, Egypt
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Moataz A. M. Moustafa
- Faculty of Agriculture, Department of Economic Entomology and Pesticides, Cairo University, Giza, Egypt
| |
Collapse
|
27
|
Dong M, Chen D, Che L, Gu N, Yin M, Du X, Shen J, Yan S. Biotoxicity Evaluation of a Cationic Star Polymer on a Predatory Ladybird and Cooperative Pest Control by Polymer-Delivered Pesticides and Ladybird. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6083-6092. [PMID: 35072467 DOI: 10.1021/acsami.1c24077] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although employing nanocarriers for gene/drug delivery shows great potential in agricultural fields, the biotoxicity of nanocarriers is a major concern for large-scale applications. Herein, we synthesized a cationic star polymer (SPc) as a pesticide nanocarrier/adjuvant to evaluate its safety against a widely used predatory ladybird (Harmonia axyridis). The application of SPc at extremely high concentrations nearly did not influence the hatching of ladybird eggs but it led to the death of ladybird larvae at lethal concentration 50 (LC50) values of 43.96 and 19.85 mg/mL through the soaking and feeding methods, respectively. The oral feeding of SPc downregulated many membrane protein genes and lysosome genes significantly, and the cell membrane and nucleus in gut tissues were remarkably damaged by SPc application, revealing that the lethal mechanism might be SPc-mediated membrane damage. Furthermore, the oral feeding of SPc increased the relative abundance of Serratia bacteria in ladybird guts to result in bacterial infection. Coapplication of ladybird and SPc-loaded thiamethoxam/matrine achieved desired control efficacies of more than 80% against green peach aphids, revealing that the coapplication could overcome the slow-acting property of ladybirds. To our knowledge, this is the first attempt to investigate the polymer-mediated lethal mechanism toward natural enemies and explore the possibility of coapplying SPc-loaded pesticides and natural enemies for pest management.
Collapse
Affiliation(s)
- Min Dong
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Dingming Chen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Lin Che
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Na Gu
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Meizhen Yin
- State Key Lab of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiangge Du
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
28
|
Yan S, Hu Q, Wei Y, Jiang Q, Yin M, Dong M, Shen J, Du X. Calcium nutrition nanoagent rescues tomatoes from mosaic virus disease by accelerating calcium transport and activating antiviral immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1092774. [PMID: 36561462 PMCID: PMC9764000 DOI: 10.3389/fpls.2022.1092774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 05/04/2023]
Abstract
As an essential structural, metabolic and signaling element, calcium shows low remobilization from old to young tissues in plants, restricting the nutrient-use efficiency and control efficacy against mosaic virus disease. Nanotechnology has been applied to prevent/minimize nutrient losses and improve the accessibility of poorly-available nutrients. Herein, the current study applied a star polycation (SPc) to prepare a calcium nutrition nanoagent. The SPc could assemble with calcium glycinate through hydrogen bond and Van der Waals force, forming stable spherical particles with nanoscale size (17.72 nm). Transcriptomic results revealed that the calcium glycinate/SPc complex could activate the expression of many transport-related genes and disease resistance genes in tomatoes, suggesting the enhanced transport and antiviral immunity of SPc-loaded calcium glycinate. Reasonably, the calcium transport was accelerated by 3.17 times into tomato leaves with the help of SPc, and the protective effect of calcium glycinate was remarkably improved to 77.40% and 67.31% toward tomato mosaic virus with the help of SPc after the third and fifth applications. Furthermore, SPc-loaded calcium glycinate could be applied to increase the leaf photosynthetic rate and control the unusual fast growth of tomatoes. The current study is the first success to apply nano-delivery system for enhanced calcium transport and antiviral immunity, which is beneficial for increasing nutrient-use efficiency and shows good prospects for field application.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qian Hu
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Min Dong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Xiangge Du, ; Jie Shen,
| | - Xiangge Du
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, China
- *Correspondence: Xiangge Du, ; Jie Shen,
| |
Collapse
|
29
|
Peng S, Wang A, Lian Y, Zhang X, Zeng B, Chen Q, Yang H, Li J, Li L, Dan J, Liao J, Zhou S. Smartphone-based molecularly imprinted sensors for rapid detection of thiamethoxam residues and applications. PLoS One 2021; 16:e0258508. [PMID: 34748559 PMCID: PMC8575258 DOI: 10.1371/journal.pone.0258508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
In order to achieve rapid detection of thiamethoxam residues in mango, cowpea and water, this study modified the screen printed carbon electrode (SPCE) to make a specific molecular imprinting sensor (Thiamethoxam-MIP/Au/rGO/SPCE) for thiamethoxam. An integrated smartphone platform was also built for thiamethoxam residue analysis. The performance of the complete system was analyzed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The system was then applied for the rapid determination of thiamethoxam residues in water, mango and cowpea samples. The results showed that the molecular sensor showed good linearity in the range 0.5–3.0 μmol/L of thiamethoxam. The detection limit of thiamethoxam was 0.5 μmol/L. Moreover, the sensor had good reproducibility and anti-interference performance. The average recovery rates of the pesticide residues in water, mango and cowpea samples were in the range of 90–110% with relative standard deviations < 5%. The rapid detection system for thiamethoxam residue constructed in this study was simple, reliable, reproducible and had strong anti-interference. It has broad application prospects in the field detection of thiamethoxam residue, and serves as a valuable reference for the further development of rapid detection technology of pesticide residues in the field of environment and food safety.
Collapse
Affiliation(s)
- Sihua Peng
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
- College of Plant Protection, Hainan University, Hainan, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Xi Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Bei Zeng
- College of Plant Protection, Hainan University, Hainan, China
| | - Qiulin Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Heming Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Jinlei Li
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Limin Li
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Jianguo Dan
- College of Plant Protection, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| | - Jianjun Liao
- College of Ecology and Environment, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| | - Shihao Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants, College of Forestry, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| |
Collapse
|
30
|
Yan S, Hu Q, Jiang Q, Chen H, Wei J, Yin M, Du X, Shen J. Simple Osthole/Nanocarrier Pesticide Efficiently Controls Both Pests and Diseases Fulfilling the Need of Green Production of Strawberry. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36350-36360. [PMID: 34283576 DOI: 10.1021/acsami.1c09887] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The application of botanical pesticides is a good choice in organic agriculture. However, most botanical pesticides have limitations of slow action and short persistence for pest and disease management, which constrain their further application. With the objective of exploring a green pesticide for controlling strawberry pests and diseases simultaneously, a star polymer (SPc) with a low production cost was synthesized as a pesticide nanocarrier through simple reactions. The SPc complexed with osthole quickly through electrostatic interaction and hydrophobic association, which decreased the particle size of osthole down to the nanoscale (17.66 nm). With the help of SPc, more nano-sized osthole was delivered into cytoplasm through endocytosis, leading to the enhanced cytotoxicity against insect cells. As a green botanical pesticide, the control efficacy of the osthole/SPc complex was improved against main strawberry pests (green peach aphid and two-spotted spider mite) and disease (powdery mildew), which fulfilled the need of both pest and disease management in sustainable production of strawberry. Meanwhile, the introduction of SPc not only improved plant-uptake but also decreased the residue of osthole due to the higher degradation rate. Furthermore, the application of the osthole/SPc complex exhibited no influence on the strawberry fruit quality and nontarget predators. To our knowledge, it is the first success to control plant pests and diseases simultaneously for sustainable agriculture by only one pesticidal formulation based on nanoparticle-delivered botanical pesticides.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Qian Hu
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Qinhong Jiang
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Hongtao Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiangge Du
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
31
|
Su S, Chen L, Hao L, Chen H, Zhou X, Zhou H. Preparation of p-amino salicylic acid-modified polysuccinimide as water-based nanocarriers for enhancing pesticide stability and insecticidal activity. Colloids Surf B Biointerfaces 2021; 207:111990. [PMID: 34311198 DOI: 10.1016/j.colsurfb.2021.111990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022]
Abstract
Avermectin (AVM) is a biopesticide with low toxicity and high activity, but has limited use due to its poor water solubility and easy decomposition. A delivery system that can stabilize this biopesticide can play a significant role for improving its biological activity. Herein, water-dispersible functionalized polysuccinimide nanoparticles (PAD) were prepared by a ring-opening reaction and subsequently used to encapsulate AVM via self-assembly to form AVM@PAD nanoparticles with a loading ratio of 10.04 %. The half-life under UV radiation (300 W) of AVM@PAD was three times higher than that of free AVM, demonstrating the excellent protective ability of PAD. In addition, AVM@PAD nanoparticles could sustain the release of AVM for 70 h with a cumulative release rate of 70 %. AVM@PAD nanoparticles also showed a pH-responsive release, and their maximum cumulative release rate was at neutral pH. Moreover, the median lethal concentration (LC50) value of AVM@PAD with respect to Plutella xylostella was 34.50 mg/L, while that of free AVM was 56.05 mg/L. These results showed that the AVM@PAD nanoparticles can potentially and effectively promote drug stability and biological activity in agriculture.
Collapse
Affiliation(s)
- Shaochun Su
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Long Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Li Hao
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Huayao Chen
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China
| | - Xinhua Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, Guangdong, 525000, People's Republic of China.
| | - Hongjun Zhou
- Innovative Institute for Plant Health, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, People's Republic of China.
| |
Collapse
|