1
|
S K, Senthilkumar S, Rajendar G. Tandem Acylation and Aromatization of Vinylogous Esters: A Regiospecific Approach to Resorcinyl Ketones. J Org Chem 2024; 89:15749-15763. [PMID: 39404163 DOI: 10.1021/acs.joc.4c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
This study demonstrates the direct conversion of vinylogous esters into selectively protected 6-acyl resorcinols (4-alkoxy/aryloxy-2-hydroxy arylketones) in a regiospecific manner. Resorcinyl ketones are first-time synthesized, diverging from their traditional roots, originating from non-benzenoid pool materials. Converting cyclohexenones into phenol- or resorcinol-based arylketones remains challenging due to the stability and reactivity issues of intermediate products. Addressing this critical gap, we introduce a novel strategy: sequential one-pot acylation and oxidative aromatization of vinylogous esters. This innovative approach aims to surmount the long-standing barrier, facilitating the synthesis of diverse resorcinyl ketones. Furthermore, this method proves valuable for the synthesis of functionalized diaryl ethers and in the total synthesis of bioactive natural products and drug molecules such as angolensin, isoliquiritigenin, demethylsorbicillin, ponganone VII, and ipriflavone. It is also useful for modifying bioactive acids and alcohols by introducing a resorcinol functionality in the late stage of synthesis. Synthetic analogues of oxybenzone demonstrated superior ultraviolet (UV) absorption properties, effectively covering the entire UV-A and UV-B regions, spanning from 230 to 410 nm.
Collapse
Affiliation(s)
- Keerthana S
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Sowbarnika Senthilkumar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Goreti Rajendar
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Lan X, Wang Q, Liu Y, You Q, Wei W, Zhu C, Hai D, Cai Z, Yu J, Zhang J, Liu N. Isoliquiritigenin alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the Nrf2 pathway. Redox Biol 2024; 77:103406. [PMID: 39454290 DOI: 10.1016/j.redox.2024.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that occurs when blood supply is restored to ischemic brain tissue and is one of the leading causes of adult disability and mortality. Multiple pathological mechanisms are involved in the progression of CIRI, including neuronal oxidative stress and mitochondrial dysfunction. Isoliquiritigenin (ISL) has been preliminarily reported to have potential neuroprotective effects on rats subjected to cerebral ischemic insult. However, the protective mechanisms of ISL have not been elucidated. This study aims to further investigate the effects of ISL-mediated neuroprotection and elucidate the underlying molecular mechanism. The findings indicate that ISL treatment significantly alleviated middle cerebral artery occlusion (MCAO)-induced cerebral infarction, neurological deficits, histopathological damage, and neuronal apoptosis in mice. In vitro, ISL effectively mitigated the reduction of cell viability, Na+-K+-ATPase, and MnSOD activities, as well as the degree of DNA damage induced by oxygen-glucose deprivation (OGD) injury in PC12 cells. Mechanistic studies revealed that administration of ISL evidently improved redox homeostasis and restored mitochondrial function via inhibiting oxidative stress injury and ameliorating mitochondrial biogenesis, mitochondrial fusion-fission balance, and mitophagy. Moreover, ISL facilitated the dissociation of Keap1/Nrf2, enhanced the nuclear transfer of Nrf2, and promoted the binding activity of Nrf2 with ARE. Finally, ISL obviously inhibited neuronal apoptosis by activating the Nrf2 pathway and ameliorating mitochondrial dysfunction in mice. Nevertheless, Nrf2 inhibitor brusatol reversed the mitochondrial protective properties and anti-apoptotic effects of ISL both in vivo and in vitro. Overall, our findings revealed that ISL exhibited a profound neuroprotective effect on mice following CIRI insult by reducing oxidative stress and ameliorating mitochondrial dysfunction, which was closely related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Wang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yue Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Qing You
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Wei
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongmei Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhenyu Cai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianqiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
3
|
Wang L, Zhu R, He C, Li H, Zhang Q, Cheung YM, Leung FP, Wong WT. Licorice Extract Isoliquiritigenin Protects Endothelial Function in Type 2 Diabetic Mice. Nutrients 2024; 16:3160. [PMID: 39339760 PMCID: PMC11435099 DOI: 10.3390/nu16183160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Endothelial dysfunction occurs prior to atherosclerosis, which is an independent predictor of cardiovascular diseases (CVDs). Diabetes mellitus impairs endothelial function by triggering oxidative stress and inflammation in vascular tissues. Isoliquiritigenin (ISL), one of the major bioactive ingredients extracted from licorice, has been reported to inhibit inflammation and oxidative stress. However, the therapeutic effects of ISL on ameliorating type 2 diabetes (T2D)-associated endothelial dysfunction remain unknown. In our animal study, db/db male mice were utilized as a model for T2D-associated endothelial dysfunction, while their counterpart, heterozygote db/m+ male mice, served as the control. Mouse brain microvascular endothelial cells (mBMECs) were used for in vitro experiments. Interleukin-1β (IL-1β) was used to induce endothelial cell dysfunction. ISL significantly reversed the impairment of endothelium-dependent relaxations (EDRs) in db/db mouse aortas. ISL treatment decreased ROS (reactive oxygen species) levels in db/db mice aortic sections and IL-1β-treated endothelial cells. Encouragingly, ISL attenuated the overexpression of pro-inflammatory factors MCP-1, TNF-α, and IL-6 in db/db mouse aortas and IL-1β-impaired endothelial cells. The NOX2 (NADPH oxidase 2) overexpression was inhibited by ISL treatment. Notably, ISL treatment restored the expression levels of IL-10, SOD1, Nrf2, and HO-1 in db/db mouse aortas and IL-1β-impaired endothelial cells. This study illustrates, for the first time, that ISL attenuates endothelial dysfunction in T2D mice, offering new insights into the pharmacological effects of ISL. Our findings demonstrate the potential of ISL as a promising therapeutic agent for the treatment of vascular diseases, paving the way for the further exploration of novel vascular therapies.
Collapse
Affiliation(s)
- Lin Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Ruiwen Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Chufeng He
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Huixian Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Qile Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Yiu Ming Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Fung Ping Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Wu D, Zhou W, Du J, Zhao T, Li N, Peng F, Li A, Zhang X, Zhang M, Hao A. Isoliquiritigenin ameliorates abnormal oligodendrocyte development and behavior disorders induced by white matter injury. Front Pharmacol 2024; 15:1473019. [PMID: 39323643 PMCID: PMC11423201 DOI: 10.3389/fphar.2024.1473019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background White matter injury is a predominant form of brain injury in preterm infants. However, effective drugs for its treatment are currently lacking. Previous studies have shown the neuroprotective effects of Isoliquiritigenin (ISL), but its impact on white matter injury in preterm infants remains poorly understood. Aims This study aimed to investigate the protective effects of ISL against white matter injury caused by infection in preterm infants using a mouse model of lipopolysaccharide-induced white matter injury, integrating network pharmacology as well as in vivo and in vitro experiments. Methods This study explores the potential mechanisms of ISL on white matter injury by integrating network pharmacology. Core pathways and biological processes affected by ISL were verified through experiments, and motor coordination, anxiety-like, and depression-like behaviors of mice were evaluated using behavioral experiments. White matter injury was observed using hematoxylin-eosin staining, Luxol Fast Blue staining, and electron microscopy. The development of oligodendrocytes and the activation of microglia in mice were assessed by immunofluorescence. The expression of related proteins was detected by Western blot. Results We constructed a drug-target network, including 336 targets associated with ISL treatment of white matter injury. The biological process of ISL treatment of white matter injury mainly involves microglial inflammation regulation and myelination. Our findings revealed that ISL reduced early nerve reflex barriers and white matter manifestations in mice, leading to decreased activation of microglia and release of proinflammatory cytokines. Additionally, ISL demonstrated the ability to mitigate impairment in oligodendrocyte development and myelination, ultimately improving behavior disorders in adult mice. Mechanistically, we observed that ISL downregulated HDAC3 expression, promoted histone acetylation, enhanced the expression of H3K27ac, and regulated oligodendrocyte pro-differentiation factors. Conclusion These findings suggest that ISL can have beneficial effects on white matter injury in preterm infants by alleviating inflammation and promoting oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Dong Wu
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Anna Li
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xinyue Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Aijun Hao
- Key Laboratory of Maternal and Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Zhang YL, Qu Y, Song HH, Cheng G, Lu F, Cui TT, Gong Y, Ding XL, Yang Y, Zhang Q, Yang LT, Yan YP. Isoliquiritigenin alleviates experimental autoimmune encephalomyelitis by modulating inflammatory and neuroprotective reactive astrocytes. Biomed Pharmacother 2024; 178:117188. [PMID: 39053427 DOI: 10.1016/j.biopha.2024.117188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated chronic inflammatory demyelinating disease of the central nervous system (CNS) that poses significant treatment challenges. Currently, it is believed that inflammatory and neuroprotective reactive astrocytes, along with other resident CNS cells and immune cells, contribute to the pathophysiology of MS. In our study, we found that isoliquiritigenin (ILG), a bioactive chalcone compound, significantly reduces the clinical scores of experimental autoimmune encephalomyelitis (EAE) by 44 % (P < 0.05). Additionally, ILG significantly decreases the pathological scores of spinal cord inflammation and demyelination by 61 % and 65 %, respectively (both P < 0.0001). Furthermore, ILG affects the populations of CD4, Th1, Th17, and Treg cells in vivo. More importantly, ILG significantly promotes the activation of astrocytes in EAE (P < 0.0001). Additionally, ILG treatment indirectly inhibits inflammatory reactive astrocytes and promotes neuroprotective reactive astrocytes. It reduces spleen levels of TNFα, IL1α, C1qa, IL1β, and IL17A by 95 % (P < 0.001), 98 % (P < 0.01), 46 % (P < 0.05), 97 % (P < 0.001), and 60 % (P < 0.001), respectively. It also decreases CNS levels of TNFα, IL1α, C1qa, IL1β, and IL17A by 53 % (P < 0.05), 88 % (P < 0.05), 64 % (P < 0.01), 57 % (P < 0.05), and 60 % (P < 0.001), respectively. These results indicate that ILG exerts an immunoregulatory effect by inhibiting the secretion of pro-inflammatory cytokines. Consequently, ILG inhibits inflammatory reactive astrocytes, promotes neuroprotective reactive astrocytes, alleviates inflammation and improves EAE. These findings provide a theoretical basis and support for the application of ILG in the prevention and treatment of MS.
Collapse
Affiliation(s)
- Ya-Ling Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yuan Qu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Huan-Huan Song
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Guo Cheng
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fen Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ting-Ting Cui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ye Gong
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiao-Li Ding
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yang Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qian Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lu-Ting Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ya-Ping Yan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Xi'an, Shaanxi 710119, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, Shaanxi 710119, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
6
|
Blanco Carcache PJ, Clinton SK, Kinghorn AD. Discovery of Natural Products for Cancer Prevention. Cancer J 2024; 30:313-319. [PMID: 39312451 PMCID: PMC11424022 DOI: 10.1097/ppo.0000000000000745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT "Cancer chemoprevention" is a term referring to the slowing or reversal of this disease, using nontoxic natural or synthetic compounds. For about 50 years, there has been a strong scientific interest in discovering plant-derived compounds to prevent cancer, and strategies for this purpose using a concerted series of in vitro, ex vivo, and in vivo laboratory bioassays have been developed. Five examples of the more thoroughly investigated agents of this type are described herein, which are each supported by detailed literature reports, inclusive of ellagic acid, isoliquiritigenin, lycopene, trans-resveratrol, and sulforaphane. In addition, extracts of the plants avocado (Persea americana), noni (Morinda citrifolia), açai (Euterpe oleracea), and mangosteen (Garcinia mangostana) have all shown inhibitory activity in an in vivo or ex vivo bioassay using a carcinogen and germane to cancer chemoprevention, and selected in vitro-active constituents are described for each of these 4 species.
Collapse
Affiliation(s)
- Peter J Blanco Carcache
- From the College of Pharmacy and the College of Medicine, The Ohio State University, Columbus, OH
| | | | | |
Collapse
|
7
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2024. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Guo L, Ma J, Xiao M, Liu J, Hu Z, Xia S, Li N, Yang Y, Gong H, Xi Y, Fu R, Jiang P, Xia C, Lauschke VM, Yan M. The involvement of the Stat1/Nrf2 pathway in exacerbating Crizotinib-induced liver injury: implications for ferroptosis. Cell Death Dis 2024; 15:600. [PMID: 39160159 PMCID: PMC11333746 DOI: 10.1038/s41419-024-06993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Crizotinib carries an FDA hepatotoxicity warning, yet analysis of the FAERS database suggests that the severity of its hepatotoxicity risks, including progression to hepatitis and liver failure, might be underreported. However, the underlying mechanism remains poorly understood, and effective intervention strategies are lacking. Here, mRNA-sequencing analysis, along with KEGG and GO analyses, revealed that DEGs linked to Crizotinib-induced hepatotoxicity predominantly associate with the ferroptosis pathway which was identified as the principal mechanism behind Crizotinib-induced hepatocyte death. Furthermore, we found that ferroptosis inhibitors, namely Ferrostatin-1 and Deferoxamine mesylate, significantly reduced Crizotinib-induced hepatotoxicity and ferroptosis in both in vivo and in vitro settings. We have also discovered that overexpression of AAV8-mediated Nrf2 could mitigate Crizotinib-induced hepatotoxicity and ferroptosis in vivo by restoring the imbalance in glutathione metabolism, iron homeostasis, and lipid peroxidation. Additionally, both Stat1 deficiency and the Stat1 inhibitor NSC118218 were found to reduce Crizotinib-induced ferroptosis. Mechanistically, Crizotinib induces the phosphorylation of Stat1 at Ser727 but not Tyr701, promoting the transcriptional inhibition of Nrf2 expression after its entry into the nucleus to promote ferroptosis. Meanwhile, we found that MgIG and GA protected against hepatotoxicity to counteract ferroptosis without affecting or compromising the anti-cancer activity of Crizotinib, with a mechanism potentially related to the Stat1/Nrf2 pathway. Overall, our findings identify that the phosphorylation activation of Stat1 Ser727, rather than Tyr701, promotes ferroptosis through transcriptional inhibition of Nrf2, and highlight MgIG and GA as potential therapeutic approaches to enhance the safety of Crizotinib-based cancer therapy.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaYi Liu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - ZhiYu Hu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Shuang Xia
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Department of Pharmacy, Wuzhou Gongren Hospital, Wuzhou, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yang Xi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Rao Fu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Pei Jiang
- Department of Pharmacy, Jining No 1 People's Hospital, Jining Medical University, Jining, China
| | - ChunGuang Xia
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd, Lianyungang, Jiangsu, China
| | - Volker M Lauschke
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
9
|
Wang Y, Yang J, Chang X, Xue Y, Liu G, Zhang T, Chen W, Fan W, Tian J, Ren X. Isoliquiritigenin Alleviates Diabetic Kidney Disease via Oxidative Stress and the TLR4/NF-κB/NLRP3 Inflammasome Pathway. Mol Nutr Food Res 2024; 68:e2400215. [PMID: 39082076 DOI: 10.1002/mnfr.202400215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Indexed: 08/29/2024]
Abstract
Diabetic kidney disease (DKD) is the primary factor that causes chronic kidney disease and causes increasing mortality and morbidity due to its severe consequences. Isoliquiritigenin (ISL) is the primary element of licorice root that is physiologically active and has antifree radical, antioxidation, and antiapoptotic properties. However, the effect of ISL on DKD is still unclear and needs to be further improved. This study aims to evaluate the renoprotective effects of ISL on diabetes-induced renal injury and explores the underlying mechanisms involved. Male C57BL/6 mice are fed a high-fat diet and then injected with streptozotocin for 2 consecutive days to establish a diabetic model, and high-glucose-treated NRK-52E cells are used to investigate the renoprotective effects of ISL in DKD. The results show that ISL significantly preserves renal function and architecture in DKD. ISL suppresses oxidative stress and reduces ROS levels, inhibiting the activation of the NF-κB and the NLRP3 inflammasome and the occurrence of pyroptosis. Moreover, the study finds that ISL can inhibit the mitochondrial apoptotic pathway. In addition, the study confirms the inhibitory effect of ISL on the TLR4/NF-κB/NLRP3 inflammasome pathway. These observations demonstrate that the natural flavonoid compound ISL can be a promising agent for the treatment of DKD.
Collapse
Affiliation(s)
- Yanhong Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jia Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xinyue Chang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yuan Xue
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Gaohong Liu
- Department of Nephrology, Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Tingting Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Weihao Chen
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Weiping Fan
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Jihua Tian
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xiaojun Ren
- Department of Nephrology, Third Hospital of Shanxi, Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, 030032, China
| |
Collapse
|
10
|
Lu Y, Hsin C, Kao S, Ho Y, Yeh F, Yang S, Lin C. Isoliquiritigenin diminishes invasiveness of human nasopharyngeal carcinoma cells associating with inhibition of MMP-2 expression and STAT3 signalling. J Cell Mol Med 2024; 28:e18586. [PMID: 39121240 PMCID: PMC11315095 DOI: 10.1111/jcmm.18586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/11/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in Asia and exhibits highly metastatic characteristics, leading to uncontrolled disease progression. Isoliquiritigenin (ISL) have attracted attention due to their diverse biological and pharmacological properties, including anticancer activities. However, the impact of ISL on the invasive and migratory ability of NPC remains poorly understood. Hence, this study aimed to investigate the in vitro anti-metastatic effects of ISL on NPC cells and elucidate the underlying signalling pathways. Human NPC cell NPC-39 and NPC-BM were utilized as cell models. Migratory and invasive capabilities were evaluated through wound healing and invasion assays, respectively. Gelatin zymography was employed to demonstrate matrix metalloproteinase-2 (MMP-2) activity, while western blotting was conducted to analyse protein expression levels and explore signalling cascades. Overexpression of signal transducer and activator of transcription 3 (STAT3) was carried out by transduction of STAT3-expressing vector. Our findings revealed that ISL effectively suppressed the migration and invasion of NPC cells. Gelatin zymography and Western blotting assays demonstrated that ISL treatment led to a reduction in MMP-2 enzyme activity and protein expression. Investigation of signalling cascades revealed that ISL treatment resulted in the inhibition of STAT3 phosphorylation. Moreover, overexpression of STAT3 restored the migratory ability of NPC cells in the presence of ISL. Collectively, these findings indicate that ISL inhibits the migration and invasion of NPC cells associating with MMP-2 downregulation through suppressing STAT3 activation. This suggests that ISL has an anti-metastatic effect on NPC cells and has potential therapeutic benefit for NPC treatment.
Collapse
Affiliation(s)
- Yen‐Ting Lu
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of OtolaryngologyChung Shan Medical University HospitalTaichungTaiwan
- Department of OtolaryngologySt. Martin De Porres HospitalChiayiTaiwan
| | - Chung‐Han Hsin
- School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of OtolaryngologyChung Shan Medical University HospitalTaichungTaiwan
| | - Shao‐Hsuan Kao
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Yu‐Ting Ho
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Fang‐Ling Yeh
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Shun‐Fa Yang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Chiao‐Wen Lin
- Institute of Oral SciencesChung Shan Medical UniversityTaichungTaiwan
- Department of DentistryChung Shan Medical University HospitalTaichungTaiwan
| |
Collapse
|
11
|
Zhang X, Zhao T, Su S, Li L, Zhang Y, Yan J, Cui X, Sun Y, Zhao J, Han X, Cao J. An explanation of the role of pyroptosis playing in epilepsy. Int Immunopharmacol 2024; 136:112386. [PMID: 38850794 DOI: 10.1016/j.intimp.2024.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Epilepsy is a severe central nervous system disorder characterized by an imbalance between neuronal excitation and inhibition, resulting in heightened neuronal excitability, particularly within the hippocampus. About one-third of individuals with epilepsy experience difficult-to-manage seizures, known as refractory epilepsy. Epilepsy is closely linked to inflammatory immune response, with elevated levels of inflammatory mediators observed in individuals with this condition. This inflammation of the brain can lead to seizures of various types and is further exacerbated by the release of inflammatory factors, which heighten the excitability of peripheral neurons and worsen the progression of epilepsy. Pyroptosis is an inflammatory programmed cell death which has been shown to be involved in the pathological process of epilepsy. Inflammatory factors released during pyroptosis increase neuronal excitability and promote abnormal discharge in epilepsy, increasing susceptibility to epilepsy. This article provides an overview of the current knowledge on cell pyroptosis and its potential mechanisms, including both canonical and noncanonical pathways. Additionally, we discuss the potential mechanisms of pyroptosis occurrence in epilepsy and the potential therapeutic drugs targeting pyroptosis as a treatment strategy. In summary, this review highlights the promising potential of pyroptosis as a target for developing innovative therapies for epilepsy.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Ting Zhao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Songxue Su
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lei Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yubing Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jiangyu Yan
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoxiao Cui
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Xiong Han
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jing Cao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
12
|
Zhang Y, Li S, Huang Y, Song C, Chen W, Yang Y. Therapeutic Effect of Liquiritin Carbomer Gel on Topical Glucocorticoid-Induced Skin Inflammation in Mice. Pharmaceutics 2024; 16:1001. [PMID: 39204346 PMCID: PMC11359290 DOI: 10.3390/pharmaceutics16081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Glucocorticoids are often used and highly effective anti-inflammatory medications, but prolonged topical application may alter the epidermis' normal structure and function, potentially resulting in a number of adverse effects. Topical glucocorticoid-induced skin inflammation is a dangerous condition that develops after topical glucocorticoid use. The patients become dependent on the medication and, even after the medication is stopped, the dermatitis symptoms recur, severely impairing their quality of life. Thus, the need to aggressively confront Topical glucocorticoid-induced skin inflammation is critical. Prior research has demonstrated that topical administration of licorice's flavonoid component liquiritin stimulates epidermal proliferation, which in turn enhances the creation of collagen and the healing of wounds. Therefore, the purpose of this work was to determine if topical use of liquiritin carbomer gel can treat glucocorticoid-induced changes in mice skin epidermal function, and the mechanisms involved. The findings demonstrated that, in the mice model of topical glucocorticoid-induced skin inflammation, liquiritin carbomer gel aided in the restoration of skin barrier function. These outcomes may have been caused by enhanced expression of the proteins Aquaporin 3, Keratin 10, and Claudin-1, as well as the restoration of epidermal hyaluronan content. In the meantime, liquiritin carbomer gel dramatically decreased the expression of TNF-α, IL-1β, IL-6, IFN-γ, and IgE in mice, according to ELISA tests. Furthermore, topical treatment of liquiritin carbomer gel boosted the expression of superoxide dismutase, catalase, and decreased malondialdehyde expression, potentially counteracting the detrimental effects of glucocorticoids on the epidermis. In summary, these findings imply that topical liquiritin carbomer gel can treat glucocorticoid-induced skin damage through various mechanisms of action.
Collapse
Affiliation(s)
- Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Congjing Song
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiqiang Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiling Yang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
13
|
Cebani L, Mvubu NE. Can We Exploit Inflammasomes for Host-Directed Therapy in the Fight against Mycobacterium tuberculosis Infection? Int J Mol Sci 2024; 25:8196. [PMID: 39125766 PMCID: PMC11311975 DOI: 10.3390/ijms25158196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a major global health issue, with around 10 million new cases annually. Advances in TB immunology have improved our understanding of host signaling pathways, leading to innovative therapeutic strategies. Inflammasomes, protein complexes organized by cytosolic pattern recognition receptors (PRRs), play a crucial role in the immune response to M. tb by activating caspase 1, which matures proinflammatory cytokines IL1β and IL18. While inflammation is necessary to fight infection, excessive or dysregulated inflammation can cause tissue damage, highlighting the need for precise inflammasome regulation. Drug-resistant TB strains have spurred research into adjunctive host-directed therapies (HDTs) that target inflammasome pathways to control inflammation. Canonical and non-canonical inflammasome pathways can trigger excessive inflammation, leading to immune system exhaustion and M. tb spread. Novel HDT interventions can leverage precision medicine by tailoring treatments to individual inflammasome responses. Studies show that medicinal plant derivatives like silybin, andrographolide, and micheliolide and small molecules such as OLT1177, INF39, CY-09, JJ002, Ac-YVAD-cmk, TAK-242, and MCC950 can modulate inflammasome activation. Molecular tools like gene silencing and knockouts may also be used for severe TB cases. This review explores these strategies as potential adjunctive HDTs in fighting TB.
Collapse
Affiliation(s)
| | - Nontobeko E. Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
14
|
Cao S, Gao S, Ni C, Xu Y, Pang B, Zhang J, Zhang Y, Wang Y, Geng Z, Li S, Zhao R, Han B, Cui X, Bao Y. Study on the therapeutic mechanism of HJ granules in a rat model of urinary tract infection caused by Escherichia coli. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118056. [PMID: 38490287 DOI: 10.1016/j.jep.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1β, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.
Collapse
Affiliation(s)
- Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Ni
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shurang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd., Harbin, 150000, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
15
|
Zhang JJ, Mao-Mao, Shao MM, Wang MC. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155535. [PMID: 38537442 DOI: 10.1016/j.phymed.2024.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Mao-Mao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Min-Min Shao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Meng-Chuan Wang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China.
| |
Collapse
|
16
|
Xu Y, Xin J, Sun Y, Wang X, Sun L, Zhao F, Niu C, Liu S. Mechanisms of Sepsis-Induced Acute Lung Injury and Advancements of Natural Small Molecules in Its Treatment. Pharmaceuticals (Basel) 2024; 17:472. [PMID: 38675431 PMCID: PMC11054595 DOI: 10.3390/ph17040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis-induced acute lung injury (ALI), characterized by widespread lung dysfunction, is associated with significant morbidity and mortality due to the lack of effective pharmacological treatments available clinically. Small-molecule compounds derived from natural products represent an innovative source and have demonstrated therapeutic potential against sepsis-induced ALI. These natural small molecules may provide a promising alternative treatment option for sepsis-induced ALI. This review aims to summarize the pathogenesis of sepsis and potential therapeutic targets. It assembles critical updates (from 2014 to 2024) on natural small molecules with therapeutic potential against sepsis-induced ALI, detailing their sources, structures, effects, and mechanisms of action.
Collapse
Affiliation(s)
- Yaxi Xu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Jianzeng Xin
- School of Life Sciences, Yantai University, Yantai 264005, China;
| | - Yupei Sun
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Xuyan Wang
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Lili Sun
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Feng Zhao
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| | - Changshan Niu
- College of Pharmacy, University of Utah, Salt Lake City, UT 84108, USA;
| | - Sheng Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (Y.X.); (Y.S.); (X.W.)
| |
Collapse
|
17
|
Huang Y, Li S, Pan J, Song C, Chen W, Zhang Y. Liquiritin Carbomer Gel Cold Paste Promotes Healing of Solar Dermatitis in Mice. Int J Mol Sci 2024; 25:3767. [PMID: 38612578 PMCID: PMC11011678 DOI: 10.3390/ijms25073767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 μg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1β, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.
Collapse
Affiliation(s)
- Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinghua Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Congjing Song
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiqiang Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
18
|
Zhao Y, Zhang X, Lang Z, Zhang C, Li L, He Y, Liu N, Zhu Y, Hong G. Comparison of Nutritional Diversity in Five Fresh Legumes Using Flavonoids Metabolomics and Postharvest Botrytis cinerea Defense Analysis of Peas Mediated by Sakuranetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6053-6063. [PMID: 38452150 DOI: 10.1021/acs.jafc.3c08968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Legumes possess several bioactive nutrients, including flavonoids, and the study of the flavonoid profile of legumes is of great significance to human health. Using widely targeted metabolomics, we revealed the flavonoid profiles of five popular fresh legumes: cowpea, soybean, pea, fava bean, and kidney bean. A total of 259 flavonoids were identified, and the flavonoid accumulation patterns of the five legumes were remarkably different. In addition to analyzing common and species-specific flavonoids in the five legumes, we also generalized representative flavonoids of various subclasses. We related these to the health-promoting effects of legumes. Furthermore, legumes' total flavonoid content and antioxidant system activity were also detected. Intriguingly, sakuranetin, the sole flavonoid phytoalexin that can be induced by UV radiation, was detected only in the peas by metabolomics. Meanwhile, we found that UV treatment could significantly increase the sakuranetin content and the postharvest Botrytis cinerea resistance of pea pods. This study provides clues for the target diet, industrial development of legumes, and a new idea for the postharvest preservation of peas.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhuoliang Lang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Tea Science and Tea Culture, Zhejiang A&F University, Hangzhou 311300, China
| | - Chi Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ministry of Agriculture and Rural Affairs Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ying Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
19
|
Zheng X, Chen X, Hu X, Chen L, Mi N, Zhong Q, Wang L, Lin C, Chen Y, Lai F, Hu X, Zhang Y. Downregulated BMP-Smad1/5/8 signaling causes emphysema via dysfunction of alveolar type II epithelial cells. J Pathol 2024; 262:320-333. [PMID: 38108121 DOI: 10.1002/path.6234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/28/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Bone morphogenetic protein (BMP)-Smad1/5/8 signaling plays a crucial regulatory role in lung development and adult lung homeostasis. However, it remains elusive whether BMP-Smad1/5/8 signaling is involved in the pathogenesis of emphysema. In this study, we downregulated BMP-Smad1/5/8 signaling by overexpressing its antagonist Noggin in adult mouse alveolar type II epithelial cells (AT2s), resulting in an emphysematous phenotype mimicking the typical pathological features of human emphysema, including distal airspace enlargement, pulmonary inflammation, extracellular matrix remodeling, and impaired lung function. Dysregulation of BMP-Smad1/5/8 signaling in AT2s leads to inflammatory destruction dominated by macrophage infiltration, associated with reduced secretion of surfactant proteins and inhibition of AT2 proliferation and differentiation. Reactivation of BMP-Smad1/5/8 signaling by genetics or chemotherapy significantly attenuated the morphology and pathophysiology of emphysema and improved the lung function in Noggin-overexpressing lungs. We also found that BMP-Smad1/5/8 signaling was downregulated in cigarette smoke-induced emphysema, and that enhancing its activity in AT2s prevented or even reversed emphysema in the mouse model. Our data suggest that BMP-Smad1/5/8 signaling, located at the top of the signaling cascade that regulates lung homeostasis, represents a key molecular regulator of alveolar stem cell secretory and regenerative function, and could serve as a potential target for future prevention and treatment of pulmonary emphysema. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, PR China
| | - Xiaoying Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Xiaoxiao Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Lidan Chen
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Nana Mi
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Qianqian Zhong
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Linfang Wang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Fancai Lai
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Yanding Zhang
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| |
Collapse
|
20
|
Sun Z, Jiao A, Zhao Y, Han T, Zhang H, Gao Q. Isoliquiritin can cause mitochondrial dysfunction and regulate Nrf2 to affect the development of mouse oocytes. Food Chem Toxicol 2024; 185:114445. [PMID: 38311047 DOI: 10.1016/j.fct.2024.114445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
IsoliQuirtigenin (ILG) has been widely studied in somatic cells and tissues, but less in reproductive development. It is a kind of widely used food additive. In this study, it was found that ILG could significantly increase the levels of ROS,GSH and MMP in mouse oocytes (P < 0.01). In order to explore the cause of this phenomenon, it was found that the abnormal distribution of mitochondria and ATP synthesis levels were significantly increased (P < 0.05). At this time, we made a reasonable hypothesis that ILG affected mitochondrial function. In subsequent studies, it was found that the endogenous ROS accumulation level in mitochondria was significantly increased. After continuous RT-PCR screening, it was found that the expression of Nrf2 was significantly inhibited (P < 0.01). Its upstream and downstream FOXO3 GPX1, CAT, SOD2, SIRT1 gene also appear different degree of significant change (P < 0.05), in which the lower expression of NADP + (P < 0.05) illustrates the mitochondrial ATP synthesis electronic chain were suppressed, it also has the reason, By inhibiting electron chain and ATP synthesis, ILG leads to oocyte apoptosis and initiation of autophagy, reducing oocyte and its subsequent developmental potential.
Collapse
Affiliation(s)
- Zhaoyang Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Anhui Jiao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Yuhan Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Tiancang Han
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Hongbo Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China
| | - Qingshan Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China; College of Agriculture, Yanbian University, Yanji, 133002, China; Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, Yanji, 133002, China.
| |
Collapse
|
21
|
Wenfei Z, Xiang T, Chen C, Yang T, Yun T, Zhibiao C, Ge Z. Isoliquiritigenin attenuates neuroinflammation after subarachnoid hemorrhage through inhibition of NF-κB-mediated NLRP3 inflammasome activation. Chem Biol Drug Des 2024; 103:e14436. [PMID: 38395608 DOI: 10.1111/cbdd.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 02/25/2024]
Abstract
Neuroinflammation contributes to neurological dysfunction in the patients who suffer from subarachnoid hemorrhage (SAH). Isoliquiritigenin (ISL) is a bioactive component extracted from Genus Glycyrrhiza. This work is to investigate whether ISL ameliorates neuroinflammation after SAH. In this study, intravascular perforation of male Sprague-Dawley rats was used to establish a SAH model. ISL was administered by intraperitoneal injection 6 h after SAH in rats. The mortality, SAH grade, neurological score, brain water content, and blood-brain barrier (BBB) permeability were examined at 24 h after the treatment. Expressions of tumor necrosis factor-α, interleukin-6, Iba-1, and MPO were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Besides, the expression levels of NF-κB p65 and NLRP3, ASC, caspase-1, IL-1β, and IL-18 were analyzed by western blot. The experimental data suggested that ISL treatment could ameliorate neurological impairment, attenuate brain edema, and ameliorate BBB injury after SAH in rats. ISL treatment repressed the expression of proinflammatory cytokines TNF-α and IL-6, and meanwhile inhibited the expression of Iba-1 and MPO. ISL also repressed NF-κB p65 expression as well as the transport from the cytoplasm to the nucleus. In addition, ISL significantly suppressed the expression levels of NLR family pyrin domain containing 3 (NLRP3), ASC, caspase-1, IL-1β, and IL-18. These findings suggest that ISL inactivates NLRP3 pathway by inhibiting NF-κB p65 translocation, thereby repressing the neuroinflammation after SAH, and it is a potential drug for the treatment of SAH.
Collapse
Affiliation(s)
- Zhang Wenfei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Xiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Orthodontics, Wuhan First Stomatological Hospital, Wuhan, China
| | - Tao Yang
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Yun
- Department of Stomatology, Wuhan Central Hospital, Wuhan, China
| | - Chen Zhibiao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhang Ge
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
23
|
Kostikova VA, Petrova NV, Chernonosov AA, Koval VV, Kovaleva ER, Wang W, Erst AS. Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae). Int J Mol Sci 2024; 25:989. [PMID: 38256067 PMCID: PMC10816090 DOI: 10.3390/ijms25020989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Anemonopsis Siebold et Zucc. is an unstudied single-species genus belonging to the tribe Cimicifugeae (Ranunculaceae). The only species of this genus-Anemonopsis macrophylla Siebold and Zucc.-is endemic to Japan. There are no data on its chemical composition. This work is the first to determine (with liquid chromatography-high-resolution mass spectrometry, LC-HRMS) the chemical composition of methanol extracts of leaves and flowers of A. macrophylla. More than 100 compounds were identified. In this plant, the classes of substances are coumarins (13 compounds), furocoumarins (3), furochromones (2), phenolic acids (21), flavonoids (27), and fatty acids and their derivatives (15 compounds). Isoferulic acid (detected in extracts from this plant) brings this species closer to plants of the genus Cimicifuga, one of the few genera containing this acid and ferulic acid at the same time. Isoferulic acid is regarded as a reference component of a quality indicator of Cimicifuga raw materials. The determined profiles of substances are identical between the leaf and flower methanol extracts. Differences in levels of some identified substances were revealed between the leaf and flower extracts of A. macrophylla; these differences may have a substantial impact on the manifestation of the biological and pharmacological effects of the extracts in question.
Collapse
Affiliation(s)
- Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| | - Natalia V. Petrova
- Komarov Botanical Institute of Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia; (A.A.C.); (V.V.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeniia R. Kovaleva
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Wei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrey S. Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia;
| |
Collapse
|
24
|
Zhang Z, Deng S, Shi Q. Isoliquiritigenin attenuates high glucose-induced proliferation, inflammation, and extracellular matrix deposition in glomerular mesangial cells by suppressing JAK2/STAT3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:123-131. [PMID: 37368032 DOI: 10.1007/s00210-023-02598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
To investigate the effect of isoliquiritigenin (ISL) on high glucose (HG)-induced glomerular mesangial cells (GMCs) proliferation, extracellular matrix (ECM) deposition and inflammation, and the underlying mechanisms. Mouse GMCs (SV40-MES-13) were cultured in HG medium, with or without ISL. The proliferation of GMCs was determined by MTT assay. The production of proinflammatory cytokines was detected by qRT-PCR and ELISA. The expression of connective tissue growth factor (CTGF), TGF-β1, collagen IV, and fibronectin was measured by qRT-PCR and western blot. The phosphorylation of JAK2 and STAT3 was examined by western blot. Next, JAK2 inhibitor AG490 was applied to HG-exposed GMCs. The levels of JAK2/STAT3 phosphorylation and pro-fibrotic markers were analyzed by western blot, and the secretion of TNF-α and IL-1β was evaluated by ELISA. GMCs were treated with HG, HG plus ISL or HG plus ISL, and recombinant IL-6 (rIL-6) which is a JAK2 activator. The levels of JAK2/STAT3 activation, ECM formation, and proinflammatory cytokines secretion were determined by western blot and ELISA, respectively. In mouse GMCs, ISL successfully repressed HG-induced hyperproliferation; production of TNF-α and IL-1β; expression of CTGF, TGF-β1, collagen IV, and fibronectin; and activation of JAK2/STAT3. Similar to ISL, AG490 was able to reverse the inflammation and ECM generation caused by HG. Moreover, rIL-6 impeded the amelioration of ISL on HG-induced adverse effects. Our study demonstrated that ISL displayed preventive effects on HG-exposed GMCs through inhibiting JAK2/STAT3 pathway and provided an insight into the application of ISL for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Tantra T, Singh Y, Patekar R, Kulkarni S, Kumar P, Thareja S. Phosphate Prodrugs: An Approach to Improve the Bioavailability of Clinically Approved Drugs. Curr Med Chem 2024; 31:336-357. [PMID: 36757029 DOI: 10.2174/0929867330666230209094738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 02/10/2023]
Abstract
The phosphate prodrug approach has emerged as a viable option for increasing the bioavailability of a drug candidate with low hydrophilicity and poor cell membrane permeability. When a phosphoric acid moiety is attached to the parent drug, it results in a several-fold elevation in aqueous solubility which helps to achieve desired bioavailability of the pharmaceutically active parental molecule. The neutral phosphate prodrugs have rapid diffusion ability through the plasma membrane as compared to their charged counterpart. The presence of phosphate mono ester breaking alkaline phosphatase (ALP) enzyme throughout the whole human body, is the main consideration behind the development of phosphate prodrug strategy. The popularity of this phosphate prodrug strategy is increasing nowadays due to the fulfillment of different desired pharmacokinetic characteristics required to get pharmaceutical and therapeutic responses without showing any serious adverse drug reactions (ADR). This review article mainly focuses on various phosphate prodrugs synthesized within the last decade to get an improved pharmacological response of the parent moiety along with various preclinical and clinical challenges associated with this approach. Emphasis is also given to the chemical mechanism to release the parent moiety from the prodrug.
Collapse
Affiliation(s)
- Tanmoy Tantra
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rohan Patekar
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, 151401, India
| |
Collapse
|
26
|
Yuan Hsieh DJ, Islam MN, Kuo WW, Shibu MA, Lai CH, Lin PY, Lin SZ, Chen MYC, Huang CY. A combination of isoliquiritigenin with Artemisia argyi and Ohwia caudata water extracts attenuates oxidative stress, inflammation, and apoptosis by modulating Nrf2/Ho-1 signaling pathways in SD rats with doxorubicin-induced acute cardiotoxicity. ENVIRONMENTAL TOXICOLOGY 2023; 38:3026-3042. [PMID: 37661764 DOI: 10.1002/tox.23936] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Ohwia caudata (Thunb.) H. Ohashi (Leguminosae) also called as "Evergreen shrub" and Artemisia argyi H.Lév. and Vaniot (Compositae) also named as "Chinese mugwort" those two-leaf extracts frequently used as herbal medicine, especially in south east Asia and eastern Asia. Anthracyclines such as doxorubicin (DOX) are commonly used as effective chemotherapeutic drugs in anticancer therapy around the world. However, chemotherapy-induced cardiotoxicity, dilated cardiomyopathy, and congestive heart failure are seen in patients who receive DOX therapy, with the mechanisms underlying DOX-induced cardiac toxicity remaining unclear. Mitochondrial dysfunction, oxidative stress, inflammatory response, and cardiomyocytes have been shown to play crucial roles in DOX-induced cardiotoxicity. Isoliquiritigenin (ISL, 10 mg/kg) is a bioactive flavonoid compound with protective effects against inflammation, neurodegeneration, cancer, and diabetes. Here, in this study, our aim is to find out the Artemisia argyi (AA) and Ohwia caudata (OC) leaf extract combination with Isoliquiritigenin in potentiating and complementing effect against chemo drug side effect to ameliorate cardiac damage and improve the cardiac function. In this study, we showed that a combination of low (AA 300 mg/kg; OC 100 mg/kg) and high-dose(AA 600 mg/kg; OC 300 mg/kg) AA and OC water extract with ISL activated the cell survival-related AKT/PI3K signaling pathway in DOX-treated cardiac tissue leading to the upregulation of the antioxidant markers SOD, HO-1, and Keap-1 and regulated mitochondrial dysfunction through the Nrf2 signaling pathway. Moreover, the water extract of AA and OC with ISL inhibited the inflammatory response genes IL-6 and IL-1β, possibly through the NFκB/AKT/PI3K/p38α/NRLP3 signaling pathways. The water extract of AA and OC with ISL could be a potential herbal drug treatment for cardiac hypertrophy, inflammatory disease, and apoptosis, which can lead to sudden heart failure.
Collapse
Affiliation(s)
- Dennis Jine Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Md Nazmul Islam
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | | | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung City, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | - Pi-Yu Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
| | - Shinn-Zong Lin
- Buddhist Compassion Relief Tzu Chi Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, Taiwan
| |
Collapse
|
27
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Ahn M, Park KI, Kim GS. Antioxidant effects of phenolic compounds in through the distillation of Lonicera japonica & Chenpi extract and anti-inflammation on skin keratinocyte. Sci Rep 2023; 13:20883. [PMID: 38016995 PMCID: PMC10684860 DOI: 10.1038/s41598-023-48170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
The phenolic compounds in Lonicera japonica & Chenpi distillation extract (LCDE) were thoroughly examined for their antioxidant and anti-inflammatory properties. Phenolic compounds in LCDE were analyzed for five peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS) and determined. Five phenolic compounds were identified from the samples and MS data. Ultrafiltration with LC analysis was used to investigate the ability of bioactive compounds to target DPPH. As a result, it was confirmed that the major compounds exhibited a high binding affinity to DPPH and could be regarded as antioxidant-active compounds. In addition, the anti-inflammatory effect of LCDE was confirmed in vitro, and signal inhibition of anti-inflammation cytokines, MAPK and NF-kB pathways was confirmed. Finally, Molecular docking analysis supplements the anti-inflammatory effect through the binding affinity of selected compounds and inflammatory factors. In conclusion, the phenolic compounds of the LCDE were identified and potential active compounds for antioxidant and anti-inflammatory activities were identified. Additionally, this study will be utilized to provide basic information for the application of LCDE in the pharmaceutical and pharmaceutical cosmetics industries along with information on efficient screening techniques for other medicinal plants.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju, 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, 26339, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
28
|
Maisto M, Marzocchi A, Keivani N, Piccolo V, Summa V, Tenore GC. Natural Chalcones for the Management of Obesity Disease. Int J Mol Sci 2023; 24:15929. [PMID: 37958912 PMCID: PMC10648025 DOI: 10.3390/ijms242115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
In the last decade, the incidence of obesity has increased dramatically worldwide, reaching a dangerous pandemic spread. This condition has serious public health implications as it significantly increases the risk of chronic diseases such as type 2 diabetes, fatty liver, hypertension, heart attack, and stroke. The treatment of obesity is therefore the greatest health challenge of our time. Conventional therapeutic treatment of obesity is based on the use of various synthetic molecules belonging to the class of appetite suppressants, lipase inhibitors, hormones, metabolic regulators, and inhibitors of intestinal peptide receptors. The long-term use of these molecules is generally limited by various side effects and tolerance. For this reason, the search for natural alternatives to treat obesity is a current research goal. This review therefore examined the anti-obesity potential of natural chalcones based on available evidence from in vitro and animal studies. In particular, the results of the main in vitro studies describing the principal molecular therapeutic targets and the mechanism of action of the different chalcones investigated were described. In addition, the results of the most relevant animal studies were reported. Undoubtedly, future clinical studies are urgently needed to confirm and validate the potential of natural chalcones in the clinical prophylaxis of obesity.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 59, 80131 Naples, Italy; (A.M.); (N.K.); (V.P.); (V.S.); (G.C.T.)
| | | | | | | | | | | |
Collapse
|
29
|
Chen X, Liu C, Zhao H, Zhong Y, Xu Y, Wang Y. Deep learning-assisted high-content screening identifies isoliquiritigenin as an inhibitor of DNA double-strand breaks for preventing doxorubicin-induced cardiotoxicity. Biol Direct 2023; 18:63. [PMID: 37807075 PMCID: PMC10561451 DOI: 10.1186/s13062-023-00412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Anthracyclines including doxorubicin are essential components of many cancer chemotherapy regimens, but their cardiotoxicity severely limits their use. New strategies for treating anthracycline-induced cardiotoxicity (AIC) are still needed. Anthracycline-induced DNA double-strand break (DSB) is the major cause of its cardiotoxicity. However, DSB-based drug screening for AIC has not been performed possibly due to the limited throughput of common assays for detecting DSB. To discover new therapeutic candidates for AIC, here we established a method to rapidly visualize and accurately evaluate the intranuclear anthracycline-induced DSB, and performed a screening for DSB inhibitors. RESULTS First, we constructed a cardiomyocyte cell line stably expressing EGFP-53BP1, in which the formation of EGFP-53BP1 foci faithfully marked the doxorubicin-induced DSB, providing a faster and visible approach to detecting DSB. To quantify the DSB, we used a deep learning-based image analysis method, which showed the better ability to distinguish different cell populations undergoing different treatments of doxorubicin or reference compounds, compared with the traditional threshold-based method. Subsequently, we applied the deep learning-assisted high-content screening method to 315 compounds and found three compounds (kaempferol, kaempferide, and isoliquiritigenin) that exert cardioprotective effects in vitro. Among them, the protective effect of isoliquiritigenin is accompanied by the up-regulation of HO-1, down-regulation of peroxynitrite and topo II, and the alleviation of doxorubicin-induced DSB and apoptosis. The results of animal experiments also showed that isoliquiritigenin maintained the myocardial tissue structure and cardiac function in vivo. Moreover, isoliquiritigenin did not affect the killing of HeLa and MDA-MB-436 cancer cells by doxorubicin and thus has the potential to be a lead compound to exert cardioprotective effects without affecting the antitumor effect of doxorubicin. CONCLUSIONS Our findings provided a new method for the drug discovery for AIC, which combines phenotypic screening with artificial intelligence. The results suggested that isoliquiritigenin as an inhibitor of DSB may be a promising drug candidate for AIC.
Collapse
Affiliation(s)
- Xuechun Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changtong Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310020, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| |
Collapse
|
30
|
Lu S, Sun X, Zhou Z, Tang H, Xiao R, Lv Q, Wang B, Qu J, Yu J, Sun F, Deng Z, Tian Y, Li C, Yang Z, Yang P, Rao B. Mechanism of Bazhen decoction in the treatment of colorectal cancer based on network pharmacology, molecular docking, and experimental validation. Front Immunol 2023; 14:1235575. [PMID: 37799727 PMCID: PMC10548240 DOI: 10.3389/fimmu.2023.1235575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Objective Bazhen Decoction (BZD) is a common adjuvant therapy drug for colorectal cancer (CRC), although its anti-tumor mechanism is unknown. This study aims to explore the core components, key targets, and potential mechanisms of BZD treatment for CRC. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was employed to acquire the BZD's active ingredient and targets. Meanwhile, the Drugbank, Therapeutic Target Database (TTD), DisGeNET, and GeneCards databases were used to retrieve pertinent targets for CRC. The Venn plot was used to obtain intersection targets. Cytoscape software was used to construct an "herb-ingredient-target" network and identify core targets. GO and KEGG pathway enrichment analyses were conducted using R language software. Molecular docking of key ingredients and core targets of drugs was accomplished using PyMol and Autodock Vina software. Cell and animal research confirmed Bazhen Decoction efficacy and mechanism in treating colorectal cancer. Results BZD comprises 173 effective active ingredients. Using four databases, 761 targets related to CRC were identified. The intersection of BZD and CRC yielded 98 targets, which were utilized to construct the "herb-ingredient-target" network. The four key effector components with the most targets were quercetin, kaempferol, licochalcone A, and naringenin. Protein-protein interaction (PPI) analysis revealed that the core targets of BZD in treating CRC were AKT1, MYC, CASP3, ESR1, EGFR, HIF-1A, VEGFR, JUN, INS, and STAT3. The findings from molecular docking suggest that the core ingredient exhibits favorable binding potential with the core target. Furthermore, the GO and KEGG enrichment analysis demonstrates that BZD can modulate multiple signaling pathways related to CRC, like the T cell receptor, PI3K-Akt, apoptosis, P53, and VEGF signaling pathway. In vitro, studies have shown that BZD dose-dependently inhibits colon cancer cell growth and invasion and promotes apoptosis. Animal experiments have shown that BZD treatment can reverse abnormal expression of PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53 genes. BZD also increases the ratio of CD4+ T cells to CD8+ T cells in the spleen and tumor tissues, boosting IFN-γ expression, essential for anti-tumor immunity. Furthermore, BZD has the potential to downregulate the PD-1 expression on T cell surfaces, indicating its ability to effectively restore T cell function by inhibiting immune checkpoints. The results of HE staining suggest that BZD exhibits favorable safety profiles. Conclusion BZD treats CRC through multiple components, targets, and metabolic pathways. BZD can reverse the abnormal expression of genes such as PI3K, AKT, MYC, EGFR, HIF-1A, VEGFR, JUN, STAT3, CASP3, and TP53, and suppresses the progression of colorectal cancer by regulating signaling pathways such as PI3K-AKT, P53, and VEGF. Furthermore, BZD can increase the number of T cells and promote T cell activation in tumor-bearing mice, enhancing the immune function against colorectal cancer. Among them, quercetin, kaempferol, licochalcone A, naringenin, and formaronetin are more highly predictive components related to the T cell activation in colorectal cancer mice. This study is of great significance for the development of novel anti-cancer drugs. It highlights the importance of network pharmacology-based approaches in studying complex traditional Chinese medicine formulations.
Collapse
Affiliation(s)
- Shuai Lu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Xibo Sun
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Shandong, China
| | - Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Huazhen Tang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Ruixue Xiao
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Qingchen Lv
- Medical Laboratory College, Hebei North University, Zhangjiakou, China
| | - Bing Wang
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxiu Qu
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| | - Jinxuan Yu
- First Clinical Medical College, Binzhou Medical University, Yantai, China
| | - Fang Sun
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhuoya Deng
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuying Tian
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Cong Li
- Key Laboratory of Molecular Pathology, Inner Mongolia Medical University, Hohhot, China
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Penghui Yang
- Institute of Hepatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Benqiang Rao
- Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Department of Gastrointestinal Surgery/Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing International Science and Technology Cooperation Base for Cancer Metabolism and Nutrition, Beijing, China
| |
Collapse
|
31
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
32
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
33
|
Zhan L, Su F, Li Q, Wen Y, Wei F, He Z, Chen X, Yin X, Wang J, Cai Y, Gong Y, Chen Y, Ma X, Zeng J. Phytochemicals targeting glycolysis in colorectal cancer therapy: effects and mechanisms of action. Front Pharmacol 2023; 14:1257450. [PMID: 37693915 PMCID: PMC10484417 DOI: 10.3389/fphar.2023.1257450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world, and it is prone to recurrence and metastasis during treatment. Aerobic glycolysis is one of the main characteristics of tumor cell metabolism in CRC. Tumor cells rely on glycolysis to rapidly consume glucose and to obtain more lactate and intermediate macromolecular products so as to maintain growth and proliferation. The regulation of the CRC glycolysis pathway is closely associated with several signal transduction pathways and transcription factors including phosphatidylinositol 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), hypoxia-inducible factor-1 (HIF-1), myc, and p53. Targeting the glycolytic pathway has become one of the key research aspects in CRC therapy. Many phytochemicals were shown to exert anti-CRC activity by targeting the glycolytic pathway. Here, we review the effects and mechanisms of phytochemicals on CRC glycolytic pathways, providing a new method of drug development.
Collapse
Affiliation(s)
- Lu Zhan
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangting Su
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhelin He
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiaoyan Chen
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Xiang Yin
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Jian Wang
- Guang’an Hospital of Traditional Chinese Medicine, Guang’an, China
| | - Yilin Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxia Gong
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
35
|
Choi NR, Kwon MJ, Choi WG, Kim SC, Park JW, Nam JH, Kim BJ. The traditional herbal medicines mixture, Banhasasim-tang, relieves the symptoms of irritable bowel syndrome via modulation of TRPA1, NaV1.5 and NaV1.7 channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116499. [PMID: 37059250 DOI: 10.1016/j.jep.2023.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cause of irritable bowel syndrome (IBS), a functional gastrointestinal (GI) disorder, remains unclear. Banhasasim-tang (BHSST), a traditional herbal medicines mixture, mainly used to treat GI-related diseases, may have a potential in IBS treatment. IBS is characterized by abdominal pain as the main clinical symptom, which seriously affects the quality of life. AIM OF THE STUDY We conducted a study to evaluate the effectiveness of BHSST and its mechanisms of action in treating IBS. MATERIALS AND METHODS We evaluated the efficacy of BHSST in a zymosan-induced diarrhea-predominant animal model of IBS. Electrophysiological methods were used to confirm modulation of transient receptor potential (TRP) and voltage-gated Na+ (NaV) ion channels, which are associated mechanisms of action. RESULTS Oral administration of BHSST decreased colon length, increased stool scores, and increased colon weight. Weight loss was also minimized without affecting food intake. In mice administered with BHSST, the mucosal thickness was suppressed, making it similar to that of normal mice, and the degree of tumor necrosis factor-α was severely reduced. These effects were similar to those of the anti-inflammatory drug-sulfasalazine-and antidepressant-amitriptyline. Moreover, pain-related behaviors were substantially reduced. Additionally, BHSST inhibited TRPA1, NaV1.5, and NaV1.7 ion channels associated with IBS-mediated visceral hypersensitivity. CONCLUSIONS In summary, the findings suggest that BHSST has potential beneficial effects on IBS and diarrhea through the modulation of ion channels.
Collapse
Affiliation(s)
- Na Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Min Ji Kwon
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Sang Chan Kim
- College of Oriental Medicine Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Kyungju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, 10326, Republic of Korea.
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
36
|
Michalkova R, Mirossay L, Kello M, Mojzisova G, Baloghova J, Podracka A, Mojzis J. Anticancer Potential of Natural Chalcones: In Vitro and In Vivo Evidence. Int J Mol Sci 2023; 24:10354. [PMID: 37373500 DOI: 10.3390/ijms241210354] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
There is no doubt that significant progress has been made in tumor therapy in the past decades. However, the discovery of new molecules with potential antitumor properties still remains one of the most significant challenges in the field of anticancer therapy. Nature, especially plants, is a rich source of phytochemicals with pleiotropic biological activities. Among a plethora of phytochemicals, chalcones, the bioprecursors of flavonoid and isoflavonoids synthesis in higher plants, have attracted attention due to the broad spectrum of biological activities with potential clinical applications. Regarding the antiproliferative and anticancer effects of chalcones, multiple mechanisms of action including cell cycle arrest, induction of different forms of cell death and modulation of various signaling pathways have been documented. This review summarizes current knowledge related to mechanisms of antiproliferative and anticancer effects of natural chalcones in different types of malignancies including breast cancers, cancers of the gastrointestinal tract, lung cancers, renal and bladder cancers, and melanoma.
Collapse
Affiliation(s)
- Radka Michalkova
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Gabriela Mojzisova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Janette Baloghova
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Anna Podracka
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia
| |
Collapse
|
37
|
Wang H, Jia X, Zhang M, Cheng C, Liang X, Wang X, Xie F, Wang J, Yu Y, He Y, Dong Q, Wang Y, Xu A. Isoliquiritigenin inhibits virus replication and virus-mediated inflammation via NRF2 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154786. [PMID: 37002973 DOI: 10.1016/j.phymed.2023.154786] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The transcription factor NRF2 is a master redox switch that regulates the cellular antioxidant response. However, recent advances have revealed new roles for NRF2, including the regulation of antiviral responses to various viruses, suggesting that pharmacological NRF2-activating agents may be a promising therapeutic drug for viral diseases. Isoliquiritigenin (ISL), a chalcone isolated from liquorice (Glycyrrhizae Radix) root, is reported to be a natural NRF2 agonist and has has antiviral activities against HCV (hepatitis C virus) and IAV (influenza A virus). However, the spectrum of antiviral activity and associated mechanism of ISL against other viruses are not well defined. PURPOSE This study investigated the antiviral activity and underlying mechanism of ISL against vesicular stomatitis virus (VSV), influenza A virus (H1N1), encephalomyocarditis virus (EMCV), herpes simplex virus type 1 (HSV-1). METHODS We evaluated the antiviral activity of ISL against VSV, H1N1, EMCV, and HSV-1 using flow cytometry and qRT-PCR analysis. RNA sequencing and bioinformatic analysis were performed to investigate the potential antiviral mechanism of ISL. NRF2 knockout cells were used to investigate whether NRF2 is required for the antiviral activity of ISL. The anti-apoptosis and anti-inflammatory activities of ISL were further measured by counting cell death ratio and assessing proinflammatory cytokines expression in virus-infected cells, respectively. In addition, we evaluated the antiviral effect of ISL in vivo by measuring the survival rate, body weights, histological analysis, viral load, and cytokine expression in VSV-infected mouse model. RESULTS Our data demonstrated that ISL effectively suppressed VSV, H1N1, HSV-1, and EMCV replication in vitro. The antiviral activity of ISL could be partially impaired in NRF2-deficient cells. Virus-induced cell death and proinflammatory cytokines were repressed by ISL. Finally, we showed that ISL treatment protected mice against VSV infection by reducing viral titers and suppressing the expression of inflammatory cytokines in vivo. CONCLUSION These findings suggest that ISL has antiviral and anti-inflammatory effects in virus infections, which are associated with its ability to activate NRF2 signaling, thus indicating that ISL has the potential to serve as an NRF2 agonist in the treatment of viral diseases.
Collapse
Affiliation(s)
- Haojia Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meiqi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cuiqin Cheng
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xuejiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Xie
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanli Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiutong Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
38
|
Ning X, Ni Y, Cao J, Zhang H. Liquiritigenin Attenuated Collagen-Induced Arthritis and Cardiac Complication <i>via</i> Inflammation and Fibrosis Inhibition in Mice. Chem Pharm Bull (Tokyo) 2023; 71:269-276. [PMID: 37005251 DOI: 10.1248/cpb.c22-00684] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease with increased cardiovascular disease risk. Liquiritigenin (LG) is a triterpene with anti-inflammatory properties. Our study aimed to explore the effect of LG on RA and the cardiac complication. Collagen-induced arthritis (CIA) mice with LG treatment exhibited obvious alleviation in histopathological changes, accompanied by the decreased expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-17A in synovium and serum. LG attenuated cartilage destruction by reducing matrix metalloproteinase (MMP)-3 and MMP-13 expression in the synovium of CIA mice. The echocardiography results proved the alleviation of cardiac dysfunction in CIA mice. The electrocardiogram, biochemical, and histochemical analysis proved the cardioprotection effect of LG against RA. The decreased expression of inflammatory factors (TNF-α, IL-1β, and IL-6) and fibrotic markers (fibronectin, Collagen I, and Collagen III) in cardiac tissues of CIA mice further corroborated the attenuation of myocardial inflammation and fibrosis by LG. Mechanistic studies showed that LG could inhibit transforming growth factor β-1 (TGF-β1) and phos-Smad2/3 expression in cardiac tissues of CIA mice. Our study suggested that LG could relieve RA and its cardiac complication probably by inhibiting the TGF-β1/Smad2/3 pathway. All these suggested that LG might be a potential candidate for RA and its cardiac complication therapy.
Collapse
Affiliation(s)
- Xiaoran Ning
- Department of Rheumatology and Immunology, Hebei General Hospital
| | - Yanhui Ni
- Department of Cardiology, Hebei General Hospital
| | - Jingjing Cao
- Department of Rheumatology and Immunology, Hebei General Hospital
| | | |
Collapse
|
39
|
Wang L, Mou L, Guan S, Wang C, Sik A, Stoika R, Liu K, Jin M. Isoliquiritigenin induces neurodevelopmental-toxicity and anxiety-like behavior in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109555. [PMID: 36717046 DOI: 10.1016/j.cbpc.2023.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/14/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Isoliquiritigenin, a flavonoid compound, exhibits a variety of pharmacological properties, including anti-inflammatory, anti-oxidative, anti-microbial, anti-viral, and anti-tumor effects. In the past few years, the consumption of isoliquiritigenin-containing dietary supplements has increased due to their health benefits. Although the neuroprotective effects of isoliquiritigenin have been well-investigated, these studies were performed in cells and adult animals. The potential effects of isoliquiritigenin on the development, especially the neurodevelopment, of certain populations, such as zebrafish larvae, have not been investigated. In this study, zebrafish larvae were employed as a model to investigate the effects of isoliquiritigenin on development and neurodevelopment. Zebrafish embryos treated with high concentrations of isoliquiritigenin (10 and 15 μM) exhibited high rates of mortality, hatching, and malformation, indicating that isoliquiritigenin can affect zebrafish development. In addition, isoliquiritigenin impeded the development of central nervous system regions and the length of dopaminergic neurons located in midbrains and thalami of transgenic zebrafish larvae. The locomotor ability of zebrafish larvae exposed to high concentrations of isoliquiritigenin was negatively affected. The total distance and the average velocity significantly decreased, and anxiety-related behaviors were observed under light-dark challenge. Furthermore, the levels of gap43, tuba1b, mbp, hcrt, vmat2, and pomc, which mediate neurodevelopment, neurotoxicity, and anxiety were significantly decreased in zebrafish larvae exposed to isoliquiritigenin. These results indicate that isoliquiritigenin can disrupt the development of dopaminergic neurons and the function of the central nervous system in zebrafish, causing anxiety-like symptoms.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Lei Mou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Shibing Guan
- Department of Hand and Foot Surgery, Provincial Hospital Affiliated to Shandong First Medical University, 9677 Jingshi Road, Ji'nan 250098, Shandong Province, People's Republic of China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China.
| |
Collapse
|
40
|
Babu V, Kapkoti DS, Binwal M, Bhakuni RS, Shanker K, Singh M, Tandon S, Mugale MN, Kumar N, Bawankule DU. Liquiritigenin, isoliquiritigenin rich extract of glycyrrhiza glabra roots attenuates inflammation in macrophages and collagen-induced arthritis in rats. Inflammopharmacology 2023; 31:983-996. [PMID: 36947299 DOI: 10.1007/s10787-023-01152-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Liquiritigenin (LTG) and its bioprecursor isoliquiritigenin(ISL), the main bioactives from roots of Glycyrrhiza genus are progressively documented as a potential pharmacological agent for the management of chronic diseases. The aim of this study was to evaluate the pharmacological potential of liquiritigenin, isoliquiritigenin rich extract of Glycyrrhiza glabra roots (IVT-21) against the production of pro-inflammatory cytokines from activated macrophages as well as further validated the efficacy in collagen-induced arthritis model in rats. We also performed the safety profile of IVT-21 using standard in-vitro and in-vivo assays. Results of this study revealed that the treatment of IVT-21 and its major bioactives (LTG, ISL) was able to reduce the production of pro-inflammatory cytokines (TNF-α, IL-6) in LPS-activated primary peritoneal macrophages in a dose-dependent manner compared with vehicle-alone treated cells without any cytotoxic effect on macrophages. In-vivo efficacy profile against collagen-induced arthritis in Rats revealed that oral administration of IVT-21 significantly reduced the arthritis index, arthritis score, inflammatory mediators level in serum. IVT-21 oral treatment is also able to reduce the NFкB-p65 expression as evidence of immunohistochemistry in knee joint tissue and mRNA level of pro-inflammatory cytokines in paw tissue in a dose-dependent manner when compared with vehicle treated rats. Acute oral toxicity profile of IVT-21 demonstrated that it is safe up to 2000 mg/kg body weight in experimental mice. This result suggests the suitability of IVT-21 for further study in the management of arthritis and related complications.
Collapse
Affiliation(s)
- Vineet Babu
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Post Office-CIMAP, Near Kukrail Picnic Spot, Lucknow, Uttar Pradesh, 226015, India
| | - Deepak Singh Kapkoti
- Phytochemistry Division, Central Institute of Medicinal and Aromatic Plants (CSIR), Lucknow, 226015, India
| | - Monika Binwal
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Post Office-CIMAP, Near Kukrail Picnic Spot, Lucknow, Uttar Pradesh, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Rajendra S Bhakuni
- Phytochemistry Division, Central Institute of Medicinal and Aromatic Plants (CSIR), Lucknow, 226015, India.
| | - Karuna Shanker
- Phytochemistry Division, Analytical Chemistry Lab, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Manju Singh
- Phytochemistry Division, Analytical Chemistry Lab, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Sudeep Tandon
- Process Chemistry and Chemical Engineering Department, Central Institute of Medicinal and Aromatic Plants (CIMAP), Council of Scientific and Industrial Research (CSIR), PO CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Madhav N Mugale
- Department of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute (CDRI), Lucknow, Uttar Pradesh, 226031, India
| | - Narendra Kumar
- Botany and Pharmacognosy, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, Uttar Pradesh, India
| | - Dnyaneshwar U Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Post Office-CIMAP, Near Kukrail Picnic Spot, Lucknow, Uttar Pradesh, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
41
|
Mirza Z, Karim S. Structure-Based Profiling of Potential Phytomolecules with AKT1 a Key Cancer Drug Target. Molecules 2023; 28:molecules28062597. [PMID: 36985568 PMCID: PMC10051420 DOI: 10.3390/molecules28062597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Identifying cancer biomarkers is imperative, as upregulated genes offer a better microenvironment for the tumor; hence, targeted inhibition is preferred. The theme of our study is to predict molecular interactions between cancer biomarker proteins and selected natural compounds. We identified an overexpressed potential molecular target (AKT1) and computationally evaluated its inhibition by four dietary ligands (isoliquiritigenin, shogaol, tehranolide, and theophylline). The three-dimensional structures of protein and phytochemicals were retrieved from the RCSB PDB database (4EKL) and NCBI’s PubChem, respectively. Rational structure-based docking studies were performed using AutoDock. Results were analyzed based primarily on the estimated free binding energy (kcal/mol), hydrogen bonds, and inhibition constant, Ki, to identify the most effective anti-cancer phytomolecule. Toxicity and drug-likeliness prediction were performed using OSIRIS and SwissADME. Amongst the four phytocompounds, tehranolide has better potential to suppress the expression of AKT1 and could be used for anti-cancer drug development, as inhibition of AKT1 is directly associated with the inhibition of growth, progression, and metastasis of the tumor. Docking analyses reveal that tehranolide has the most efficiency in inhibiting AKT1 and has the potential to be used for the therapeutic management of cancer. Natural compounds targeting cancer biomarkers offer less rejection, minimal toxicity, and fewer side effects.
Collapse
Affiliation(s)
- Zeenat Mirza
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or
| | - Sajjad Karim
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
42
|
Therapeutic Properties of Flavonoids in Treatment of Cancer through Autophagic Modulation: A Systematic Review. Chin J Integr Med 2023; 29:268-279. [PMID: 35809179 PMCID: PMC9282630 DOI: 10.1007/s11655-022-3674-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Cancers have high morbidity and mortality rates worldwide. Current anticancer therapies have demonstrated specific signaling pathways as a target in the involvement of carcinogenesis. Autophagy is a quality control system for proteins and plays a fundamental role in cancer carcinogenesis, exerting an anticarcinogenic role in normal cells and can inhibit the transformation of malignant cells. Therefore, drugs aimed at autophagy can function as antitumor agents. Flavonoids are a class of polyphenolic secondary metabolites commonly found in plants and, consequently, consumed in diets. In this review, the systematic search strategy was used, which included the search for descriptors "flavonoids" AND "mTOR pathway" AND "cancer" AND "autophagy", in the electronic databases of PubMed, Cochrane Library, Web of Science and Scopus, from January 2011 to January 2021. The current literature demonstrates that flavonoids have anticarcinogenic properties, including inhibition of cell proliferation, induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, impaired cell migration, invasion, tumor angiogenesis and reduced resistance to multiple drugs in tumor cells. We demonstrate the available evidence on the roles of flavonoids and autophagy in cancer progression and inhibition. (Registration No. CRD42021243071 at PROSPERO).
Collapse
|
43
|
Bai Y, Zhou J, Zhu H, Tao Y, Wang L, Yang L, Wu H, Huang F, Shi H, Wu X. Isoliquiritigenin inhibits microglia-mediated neuroinflammation in models of Parkinson's disease via JNK/AKT/NFκB signaling pathway. Phytother Res 2023; 37:848-859. [PMID: 36484427 DOI: 10.1002/ptr.7665] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/29/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Isoliquiritigenin (ISL) is a flavonoid with numerous pharmacological properties, including anti-inflammation, yet its role in Parkinson's disease (PD) with microglia-mediated neuroinflammation remains unknown. In this study, the effects of ISL on inhibiting microglia-mediated neuroinflammation in PD were evaluated in the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model of PD and in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our results showed that ISL prevented behavioral deficits and excessive microglial activation in MPTP-treated mice. Moreover, ISL was found to prevent the elevation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and mitigate the phosphorylation of c-Jun N-terminal protein kinase (JNK), protein kinase B (AKT), nuclear factor kappa light-chain enhancer of activated B cells (NFκB), and inhibitor of NFκB protein ɑ (IκBɑ) in the substantia nigra and striatum of MPTP-treated mice and LPS-stimulated BV-2 cells. Meanwhile, in LPS-stimulated BV-2 cells, ISL inhibited the production of inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α). In addition, the agonist of JNK partly abolished the inhibitory effects of ISL in LPS-treated BV-2 cells. Our results demonstrated that ISL inhibits microglia-mediated neuroinflammation in PD models probably through deactivating JNK/AKT/NFκB signaling pathways. The novel findings suggest the therapeutic potential of ISL for microglia-mediated neuroinflammation in PD.
Collapse
Affiliation(s)
- Yuyan Bai
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jin Zhou
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Han Zhu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
44
|
Su Y, Fang L, Zhong K, Wang T, Bao M, Zhou T, Zhu Y. Isoliquiritigenin induces oxidative stress and immune response in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2023; 38:654-665. [PMID: 36617718 DOI: 10.1002/tox.23715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Isoliquiritigenin (ISL) is used in many households' personal hygiene and medicinal products, and the average human daily ISL exposure is 1-2 mg/kg. However, the molecular mechanisms of ISL toxicity in zebrafish embryos have not been fully elucidated. We investigated whether exposure to ISL induces oxidative stress and inflammatory responses in zebrafish. And exposure to ISL significantly affects the expression of immune response-related genes in zebrafish embryos following oxidative stress and the release of pro-inflammatory mediators through Toll-like receptor signaling.
Collapse
Affiliation(s)
- Yufang Su
- The Affiliated Maternal and Child Healthcare Hospital of Nanchang University/Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, People's Republic of China
| | - Lei Fang
- Trauma Center, Affiliated Hospital of Jiujiang University, Jiujiang, People's Republic of China
| | - Kaili Zhong
- The Affiliated Maternal and Child Healthcare Hospital of Nanchang University/Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, People's Republic of China
| | - Ting Wang
- The Affiliated Maternal and Child Healthcare Hospital of Nanchang University/Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, People's Republic of China
| | - Mingjie Bao
- The Affiliated Maternal and Child Healthcare Hospital of Nanchang University/Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, People's Republic of China
| | - Ting Zhou
- Union Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuan Zhu
- The Affiliated Maternal and Child Healthcare Hospital of Nanchang University/Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, People's Republic of China
| |
Collapse
|
45
|
Han X, Akhov L, Ashe P, Lewis C, Deibert L, Irina Zaharia L, Forseille L, Xiang D, Datla R, Nosworthy M, Henry C, Zou J, Yu B, Patterson N. Comprehensive compositional assessment of bioactive compounds in diverse pea accessions. Food Res Int 2023; 165:112455. [PMID: 36869474 DOI: 10.1016/j.foodres.2022.112455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Pea (Pisum sativum L.) is an important legume crop providing a good source of protein, vitamins, minerals and bioactive compounds with health benefits for humans. In this study, an improved method for simultaneous analysis of multiple phytoestrogens among 100 pea accessions was developed. Ipriflavone, (a synthetic isoflavone), was used as an internal standard for the semiquantitative analysis of 17 phytoestrogens including isoflavone aglycones and conjugates, allowing direct analysis of isoflavones in their naturally occurring forms. This comprehensive dataset demonstrated that the isoflavones varied greatly and some accessions tended to have high levels of multiple phytoestrogens among the 100 accessions analyzed. Isoliquiritigenin followed by glycitein were the predominant compounds detected in the accessions and showed the highest correlation with the total phytoestrogens content. Secoisolariciresinol content was consistently higher in yellow cotyledon peas than in green cotyledon peas, whereas the contents of coumestrol, genestein and secoisolariciresinol were significantly correlated with seed coat color. The total phenolics and saponins showed a wide range of variability among the accessions with higher concentrations of total phenolics observed in seeds with pigmented seed coat or yellow cotyledon seeds, suggesting the synthesis of saponins and phenolics are significantly affected by metabolic pathway genes controlling cotyledon color or seed coat color. This study profiled the variability of bioactive compounds of pea seed quality traits in diverse pea accessions and provides an immense resource for continued research, breeding and selection of genotypes for a wide range of applications.
Collapse
Affiliation(s)
- Xiumei Han
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Leonid Akhov
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Paula Ashe
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Courteney Lewis
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada; Biological Engineering, University of Guelph, 50 Stone Road East, Guelph Ontario N1G 2W1, Canada
| | - Leah Deibert
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - L Irina Zaharia
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Lily Forseille
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Daoquan Xiang
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Raju Datla
- Global Institute for Food Security, 421 Downey Rd, Saskatoon, Saskatchewan S7N 4L8, Canada
| | - Matthew Nosworthy
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada; Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Carol Henry
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Jitao Zou
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Bianyun Yu
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Nii Patterson
- Aquatic and Crop Research Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| |
Collapse
|
46
|
Wu S, Wang J. Isoliquiritigenin regulates the circ_0002860/miR-431-5p/RAB9A axis to function as a tumor inhibitor in melanoma. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220019. [PMID: 37020694 PMCID: PMC10069640 DOI: 10.1590/1678-9199-jvatitd-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/12/2022] [Indexed: 04/05/2023] Open
Abstract
Background: Isoliquiritigenin (ISL) presents antitumor effects against melanoma cells. It is known that various circular RNAs (circRNAs) are involved in the development of melanoma. Therefore, the present study aims to investigate the molecular mechanisms of ISL and circ_0002860. Methods: Circ_0002860, microRNA-431-5p (miR-431-5p) and member RAS oncogene family (RAB9A) were detected through reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay. Cell viability was examined via cell counting kit-8 assay. The proliferation ability was assessed using colony formation assay. Cell apoptosis and cell cycle were determined by flow cytometry. Transwell assay was used for detection of migration and invasion. Western blot was conducted for protein analysis. Target binding was confirmed via dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. In vivo research was performed through xenograft tumor assay. Results: Circ_0002860 was downregulated by ISL in melanoma cells. ISL-induced inhibitory effects on cell proliferation, cell cycle progression, migration and invasion were alleviated by circ_0002860 overexpression. MiR-431-5p was a target of circ_0002860. Circ_0002860 eliminated the ISL-induced tumor inhibition via sponging miR-431-5p in melanoma cells. Circ_0002860 elevated the RAB9A level by targeting miR-431-5p. The function of ISL was related to miR-431-5p/RAB9A axis in melanoma progression. Tumor growth was reduced by ISL in vivo through downregulating circ_0002860 to regulate miR-431-5p and RAB9A levels. Conclusion: The current data indicates that ISL suppressed cell malignant progression of melanoma via targeting the circ_0002860/miR-431-5p/RAB9A pathway.
Collapse
Affiliation(s)
- Songjiang Wu
- Department of Dermatology, the First Affiliated Hospital of Hengyang Medical College, University of South China, Hengyang, China
| | - Jian Wang
- Department of Emergency, the First Affiliated Hospital of Hengyang Medical College, University of South China, Hengyang, China
- Correspondence:
| |
Collapse
|
47
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
48
|
Zulfugarova P, Zivari-Ghader T, Maharramova S, Ahmadian E, Eftekhari A, Khalilov R, Turksoy VA, Rosić G, Selakovic D. A mechanistic review of pharmacological activities of homeopathic medicine licorice against neural diseases. Front Neurosci 2023; 17:1148258. [PMID: 36950127 PMCID: PMC10025333 DOI: 10.3389/fnins.2023.1148258] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
The use of medicinal plants has grown in popularity in recent decades because, as natural ingredients, they have fewer adverse effects and are more effective than synthetic alternatives. As a small perennial herb, Glycyrrhiza glabra L. (Licorice) has been investigated for its therapeutic efficacy against neural disorders mainly ischemic stroke as well as the neurodegenerative diseases such as dementia and Alzheimer's disease, and Parkinson's disease which has been attributed to its HMGB inhibitory function, reactive oxygen scavenging and anti-inflammatory activity. The objective of current review is to review the evidence for the pharmacological effects of licorice and its vital active components on neurological disorders and the underlying signaling networks. We reviewed Papers published from 2000.1.1 up to 2 January 2023 in web of science, Google Scholar and PubMed data bases using key words including "Licorice," "Glycyrrhiza glabra L.," "Glycyrrhizic acid," "brain," "neurodegenerative disease," "Alzheimer's," and "Parkinson" were used to search in title/abstracts. Licorice extract and/or its active components can be used safely in therapeutic doses for optimizing the management of a multiple neurodegenerative disorders, and hampering the extent of neural tissue injury and neurologic deficits subsequent to cerebrovascular accidents.
Collapse
Affiliation(s)
- Parvin Zulfugarova
- Department of Zoology and Physiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| | - Tayebeh Zivari-Ghader
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevinj Maharramova
- Department of Pharmaceutical Technology and Management, Azerbaijan Medical University, Baku, Azerbaijan
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, Turkey
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Aziz Eftekhari,
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Vugar Ali Turksoy
- Department of Public Health, Faculty of Medicine, Bozok University, Yozgat, Turkey
| | - Gvozden Rosić
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Gvozden Rosić,
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Dragica Selakovic,
| |
Collapse
|
49
|
Li BQ, Liu XY, Mao T, Zheng TH, Zhang P, Zhang Q, Zhang Y, Li XY. The research progress of anti-inflammatory and anti-fibrosis treatment of chronic pancreatitis. Front Oncol 2022; 12:1050274. [PMID: 36505827 PMCID: PMC9730810 DOI: 10.3389/fonc.2022.1050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic pancreatitis (CP) is a chronic progressive inflammatory disease of the pancreas, caused by multiple factors and accompanied by irreversible impairment of pancreatic internal and external secretory functions. Pathologically, atrophy of the pancreatic acini, tissue fibrosis or calcification, focal edema, inflammation, and necrosis are observed. Clinical manifestations include recurrent or persistent abdominal pain, diarrhea, emaciation, and diabetes. In addition, CP is prone to develop into pancreatic cancer(PC) due to persistent inflammation and fibrosis. The disease course is prolonged and the clinical prognosis is poor. Currently, clinical treatment of CP is still based on symptomatic treatment and there is a lack of effective etiological treatment. Encouragingly, experiments have shown that a variety of active substances have great potential in the etiological treatment of chronic pancreatitis. In this paper, we will review the pathogenesis of CP, as well as the research progress on anti-inflammatory and anti-fibrotic therapies, which will provide new ideas for the development of subsequent clinical studies and formulation of effective treatment programs, and help prevent CP from developing into pancreatic cancer and reduce the prevalence of PC as much as possible.
Collapse
|
50
|
Zeng J, Liu W, Liang B, Shi L, Yang S, Meng J, Chang J, Hu X, Zhang R, Xing D. Inhibitory Effect of Isoliquiritigenin in Niemann-Pick C1-Like 1-Mediated Cholesterol Uptake. Molecules 2022; 27:7494. [PMID: 36364321 PMCID: PMC9654431 DOI: 10.3390/molecules27217494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 07/21/2023] Open
Abstract
Isoliquiritigenin (ISL) is a flavonoid with a chalcone structure extracted from the natural herb Glycyrrhiza glabra. Its anti-inflammatory, antibacterial, antioxidant, and anticancer activities have been extensively studied. Moreover, ISL also possess hypolipidemic and atherosclerosis-reducing effects. However, its cholesterol-lowering mechanisms have not been reported yet. Niemann Pick C1 Like 1 (NPC1L1) is a specific transporter of cholesterol uptake. In this study, we found for the first time that ISL downregulates NPC1L1 expression and competitively inhibits cellular cholesterol uptake by binding to NPC1L1 in a concentration-dependent manner in vitro. This study provides a theoretical basis for further investigation of the molecular mechanisms of its cholesterol-lowering effect in vivo and inspired emerging drug research for cholesterol-lowering purposes through NPC1L1 inhibition.
Collapse
Affiliation(s)
- Jun Zeng
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266000, China
- Qingdao Cancer Institute, Qingdao 266000, China
| | - Wenjing Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266000, China
- Qingdao Cancer Institute, Qingdao 266000, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266000, China
- Qingdao Cancer Institute, Qingdao 266000, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266000, China
- Qingdao Cancer Institute, Qingdao 266000, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266000, China
- Qingdao Cancer Institute, Qingdao 266000, China
| | - Jingsen Meng
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266000, China
- Qingdao Cancer Institute, Qingdao 266000, China
| | - Jing Chang
- Cancer Institute, The Affiliated Hospital of Qingdao University, School of Basic Medicine of Qingdao University, Qingdao 266000, China
- Qingdao Cancer Institute, Qingdao 266000, China
| | - Xiaokun Hu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | | | - Dongming Xing
- Qingdao Cancer Institute, Qingdao 266000, China
- School of Life Sciences, Tsinghua University, Beijing 100010, China
| |
Collapse
|