1
|
Yan X, Zhao S, Feng X, Li X, Zhou Q, Chen Q. Effects of Crocus sativus on glycemic control and cardiometabolic parameters among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab (Lond) 2024; 21:28. [PMID: 38796446 PMCID: PMC11127410 DOI: 10.1186/s12986-024-00806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Metabolic syndrome (MetS) is a cluster of clinical syndromes that is closely associated with an elevated risk of developing atherosclerotic cardiovascular disease. In a series of animal experiments and clinical trials, crocus sativus and its component crocin have demonstrated promising hypoglycemic effects. However, there is currently insufficient evidence regarding their impact on cardiometabolic parameters. Our study aimed to assess the impact of Crocus sativus and crocin on glycemic control in individuals with metabolic syndrome and associated disorders, as well as their potential effects on improving cardiometabolic parameters. We searched Cochrane Library, PubMed, Embase, and Web of Science databases to ascertain the pertinent randomized controlled trials (RCTs) until December 30, 2023. Q-test and I2 statistics were utilized to evaluate heterogeneity among the included studies. Data were merged using a random-effects model and presented as (WMD) with a 95% confidence interval (CI). The current comprehensive review and meta-analysis, encompassing 13 RCTs involving a total of 840 patients diagnosed with metabolic syndrome and associated disorders, demonstrates that Crocus sativus was superior to placebo on Hemoglobin A1c(HbA1c) (WMD: -0.31;95% CI [-0.44,-0.19]. P = 0.002) and systolic blood pressure(SBP) (WMD:-7.49;95% CI [-11.67,-3.30]. P = 0.99) respectively. Moreover, Crocus sativus improved fasting blood glucose (FBG) (WMD:-7.25;95% CI [-11.82, -2.57]. P = 0.002) when used crocin and on other chronic diseases. Crocus sativus reduced the total cholesterol (TC) among the metabolic syndromepatients (WMD:-13.64;95%CI [-26.26, -1.03]. P = 0.03). We demonstrated that Crocus sativus exerts beneficial effects on glycemic control and cardiometabolic parameters in individuals with metabolic syndrome and related disorders.
Collapse
Affiliation(s)
- Xiaodan Yan
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Shuyuan Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Xue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Xinrui Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China.
| |
Collapse
|
2
|
Goyal A, Raza FA, Sulaiman SA, Shahzad A, Aaqil SI, Iqbal M, Javed B, Pokhrel P. Saffron extract as an emerging novel therapeutic option in reproduction and sexual health: recent advances and future prospectives. Ann Med Surg (Lond) 2024; 86:2856-2865. [PMID: 38694315 PMCID: PMC11060205 DOI: 10.1097/ms9.0000000000002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Saffron, derived from Crocus sativus, is gaining research attention for potential therapeutic applications. Its diverse clinical applications extend to cardiovascular health, diabetes management, sleep quality, psychiatric illnesses, and rheumatoid arthritis. Saffron's positive effects on blood pressure, glucose levels, cognitive function, and inflammatory markers contribute to its versatility. Additionally, carotenoids like crocin and crocetin suggest anti-cancer potential. In terms of reproductive health, saffron's impact on male reproductive health shows conflicting findings on semen parameters. However, in female reproductive health, saffron appears promising for managing dysmenorrhoea, reducing menstrual pain, regulating hormonal fluctuations, and improving overall menstrual health. Safety considerations highlight the importance of adhering to specified dosages, as excessive intake may lead to toxicity. Yet, within the therapeutic range, saffron is considered safe, relieving symptoms without serious side effects, according to clinical research. Future trials in 2023 will explore saffron's potential in cancer therapy, diabetes management, mental health, stress response, cardiovascular health, postmenopausal women's well-being, and chronic obstructive pulmonary disease (COPD). This ongoing research underscores saffron's adaptability and promise as a natural treatment across various medical applications, emphasizing its efficacy. The current review, therefore, aims to provide up-to-date insights on saffron's role particularly in the realm of reproductive health, contributing to a growing body of evidence supporting its diverse therapeutic benefits.
Collapse
Affiliation(s)
- Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai
| | - Fatima Ali Raza
- Department of Internal Medicine, Karachi Medical and Dental College
| | - Samia Aziz Sulaiman
- Department of Internal Medicine, School of Medicine, University of Jordan, Amman, Jordan
| | - Abeer Shahzad
- Department of Internal Medicine, Dow Medical College
| | - Syeda Ilsa Aaqil
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Mahrukh Iqbal
- Department of Internal Medicine, Karachi Medical and Dental College
| | - Binish Javed
- Department of Internal Medicine, Atal Bihari Vajpayee Institute of Medical Sciences & Dr. Ram Manohar LohiaHospital, New Delhi,India
| | - Prakriti Pokhrel
- Department of Internal Medicine, Kathmandu Medical College and Teaching Hospital, Sinamangal, Kathmandu Nepal
| |
Collapse
|
3
|
Liu J, Yang Y, Qi Y. Effect of saffron supplementation on the glycemic outcomes in diabetes: a systematic review and meta-analysis. Front Nutr 2024; 11:1349006. [PMID: 38559777 PMCID: PMC10978759 DOI: 10.3389/fnut.2024.1349006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Aim This meta-analysis was conducted to investigate the impact of saffron supplementation on the glycemic outcomes in patients with diabetes. Methods Eight electronic databases were systematically searched from inception to March 31, 2023. RCTs of patients with diabetes receiving saffron compared with placebo which reported glycemic control outcomes were identified. WMD and 95% CIs were pooled using fixed-effects or random-effects models, depending on the significance of heterogeneity. Results Out of the 837 citations screened, ten RCTs were included in the systematic review and meta-analysis. A total of 562 participants were enrolled, with 292 assigned to the intervention group and 270 to the control group. Saffron was administered at a dose of 5 mg/day to 1 g/day. Compared with placebo, saffron supplementation significantly reduced FPG (WMD = -8.42 mg/dL; 95% CI: -13.37, -3.47; p = 0.001) and HbA1c (WMD = -0.22%; 95% CI: -0.33, -0.10; p < 0.001). However, there was no significant effect on insulin levels, QUICKI and HOMA-IR. Conclusion Saffron is effective for patients with diabetes in terms of FPG and HbA1c, therefore, it appears to be a promising adjuvant for the glycemic control of DM. However, the overall methodological quality of the identified studies is heterogeneous, limiting the interpretation of the benefit of saffron in diabetes. More long-term follow-up, well-designed and large-scale clinical trials are warranted to draw definitive conclusions. Systematic review registration The protocol of review was registered in International Prospective Register of Systematic Reviews (PROSPERO) (ID: CRD42023426353).
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Endocrinology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yang Yang
- Department of Endocrinology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yun Qi
- Department of Endocrinology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Bhooma V, Vassou SL, Kaliappan I, Parani M. Identification of adulteration in the market samples of saffron using morphology, HPLC, HPTLC, and DNA barcoding methods. Genome 2024; 67:43-52. [PMID: 37922517 DOI: 10.1139/gen-2022-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Saffron, the stigma of Crocus sativus L., is the most expensive spice used for culinary, medicinal, dye, and cosmetics purposes. It is highly adulterated because of its limited production and high commercial value. In this study, 104 saffron market samples collected from 16 countries were tested using morphology, high-performance liquid chromatography (HPLC), high-performance thin-layer chromatography (HPTLC), and deoxyribonucleic acid (DNA) barcoding. Overall, 45 samples (43%) were adulterated. DNA barcoding identified the highest number of adulterated saffron (44 samples), followed by HPTLC (39 samples), HPLC (38 samples), and morphology (32 samples). Only DNA barcoding identified the adulterated samples containing saffron and other plants' parts as bulking agents. In addition, DNA barcoding identified 20 adulterant plant species, which will help develop quality control methods and market surveillance. Some of the adulterant plants are unsafe for human consumption. The HPLC method helped identify the saffron samples adulterated with synthetic safranal. HPLC and HPTLC methods will help identify the samples adulterated with other parts of the saffron plant (auto-adulteration).
Collapse
Affiliation(s)
- Varadharajan Bhooma
- Center for DNA Barcoding, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, , SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Sophie Lorraine Vassou
- Center for DNA Barcoding, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, , SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Ilango Kaliappan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| | - Madasamy Parani
- Center for DNA Barcoding, Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, , SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, TN, India
| |
Collapse
|
5
|
Amatto PDPG, Chaves L, Braga GG, Carmona F, Pereira AMS. Effect of Crocus sativus L. (saffron) and crocin in the treatment of patients with type-2 diabetes mellitus: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117255. [PMID: 37778521 DOI: 10.1016/j.jep.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Crocus sativus L. (saffron, Iridaceae) has been traditionally used for thousands of years as herbal medicine for many diseases, including type-2 diabetes mellitus (T2DM), especially in Sri Lanka. Systematic reviews and meta-analysis on C. sativus for T2DM value traditional knowledge about this species. AIM OF THE STUDY To assess the effectiveness of C. sativus powdered plant, hydroethanolic extract and crocin in reducing fasting blood sugar (FBG), glycated hemoglobin (HbA1c), blood pressure, and other metabolic parameters in patients with T2DM. MATERIAL AND METHODS Systematic review and meta-analysis based on searches in PubMed, Embase, and Cochrane, including all randomized clinical trials (RCTs) published before January 2, 2023. Two independent reviewers extracted the data and assessed the risks of bias. The effects of C. sativus and crocin were assessed on glycemic, metabolic, and blood pressure parameters. Weighted (WMD) or standardized (SMD) mean differences (before-after) and 95% confidence intervals (95%CI) of the outcomes were extracted or estimated and meta-analyses were conducted using RevMan 5.4 (Cochrane Collaboration). This protocol was registered in PROSPERO (#CRD42023390073). RESULTS Fifteen of 29 studies were included. Saffron powdered plant decreased AST (WMD -1.19, 95%CI -2.24, -0.13), but increased BMI (WMD 0.56, 95%CI 0.07, 1.05); saffron extract decreased HbA1c (WMD -0.35, 95%CI -0.65, -0.06), FBG (WMD -26.90, 95%CI -38.87, -14.93), creatinine (WMD -0.12, 95%CI -0.19, -0.05), and total cholesterol (WMD -9.29, 95%CI -18.25, -0.33); and crocin decreased HbA1c (WMD -0.43, 95%CI -0.66, -0.20), FBG (WMD -14.10, 95%CI -22.91, -5.30), and systolic blood pressure (WMD -8.18, 95%CI -12.75, -3.61), but increased creatinine levels (WMD 0.24, 95%CI 0.17, 0.32). Of the 15 included studies, 14 had a moderate risk of bias, and one study had a low risk of bias. CONCLUSION C. sativus (saffron) powdered plant, extract, and crocin have potential as an adjunct treatment for T2DM, improving control of metabolic and clinical parameters. However, C. sativus extract seems to be superior because it was effective in more parameters and did not induce adverse effects. Since many studies were at moderate risk of bias, further high-quality research is needed to firmly establish the clinical efficacy of this plant.
Collapse
Affiliation(s)
- Pedro de Padua G Amatto
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil.
| | - Lucas Chaves
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Giovana Graça Braga
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil; Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil.
| | - Fábio Carmona
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil.
| | - Ana Maria Soares Pereira
- Departamento de Biotecnologia em Plantas Medicinais, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil; Botanical Garden of Medicinal Plants Ordem e Progresso, 14690-000, Jardinopólis, Brazil.
| |
Collapse
|
6
|
Kotanidou EP, Tsinopoulou VR, Giza S, Ntouma S, Angeli C, Chatziandreou M, Tsopelas K, Tseti I, Galli-Tsinopoulou A. The Effect of Saffron Kozanis ( Crocus sativus L.) Supplementation on Weight Management, Glycemic Markers and Lipid Profile in Adolescents with Obesity: A Double-Blinded Randomized Placebo-Controlled Trial. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1814. [PMID: 38002905 PMCID: PMC10670718 DOI: 10.3390/children10111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Global rates of adolescent obesity have led the World Health Organization to consider the disease a pandemic that needs focus. In search of new anti-obesity agents, Crocus sativus, popularly known as saffron, is a nutraceutical agent, praised for its beneficial effects. The study aimed to investigate the possible effect of Kozanis saffron administration on weight management of obese prediabetic adolescents. Seventy-four obese prediabetic adolescents participated in a double-blind placebo-controlled trial of three arms, randomly assigned to receive either Kozanis saffron (n = 25, 60 mg/day), metformin (n = 25, 1000 mg/day) or a placebo (n = 24), for twelve weeks. Anthropometry, glycemic markers and lipid profiles were investigated at baseline and post-intervention. Saffron supplementation significantly reduced the weight z-score, BMI, BMI z-score and waist circumference (WC) of obese adolescents; however, this reduction was less significant compared to the effect of metformin. Metformin administration offered a significantly more profound improvement in anthropometry compared to saffron administration. Saffron administration also provided significant improvements in weight, weight z-scores, BMI values, BMI z-scores and WCs compared to the placebo. Saffron supplementation failed to change any glycemic marker, but provided a significant reduction in fasting triglyceride levels and also a significant increase in fasting HDL levels. Saffron Kozanis constitutes a promising nutraceutical option for adolescents and children with obesity and prediabetes in need of weight management.
Collapse
Affiliation(s)
- Eleni P. Kotanidou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Vasiliki Rengina Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Styliani Giza
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Stergianna Ntouma
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Chrysanthi Angeli
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Michail Chatziandreou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | - Konstantinos Tsopelas
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| | | | - Assimina Galli-Tsinopoulou
- 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University General Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece
| |
Collapse
|
7
|
Mobasheri L, Ahadi M, Beheshti Namdar A, Alavi MS, Bemidinezhad A, Moshirian Farahi SM, Esmaeilizadeh M, Nikpasand N, Einafshar E, Ghorbani A. Pathophysiology of diabetic hepatopathy and molecular mechanisms underlying the hepatoprotective effects of phytochemicals. Biomed Pharmacother 2023; 167:115502. [PMID: 37734266 DOI: 10.1016/j.biopha.2023.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Patients with diabetes are at risk for liver disorders including glycogen hepatopathy, non-alcoholic fatty liver disease, cirrhosis, and hepatic fibrosis. The pathophysiological mechanisms behind diabetic hepatopathy are complex, some of them include fatty acid accumulation, increased reactive oxygen species, increased advanced glycation end-products, hyperactivity of polyol pathways, increased apoptosis and necrosis, and promotion of fibrosis. A growing number of studies have shown that herbal extracts and their active phytochemicals have antihyperglycemic properties and beneficial effects on diabetic complications. The current review, for the first time, focused on herbal agents that showed beneficial effects on diabetic hepatopathy. For example, animal studies have shown that Moringa oleifera and Morus alba improve liver function in both type-1 and type-2 diabetes. Also, evidence from clinical trials suggests that Boswellia serrata, Juglans regia, Melissa officinalis, Portulaca oleracea, Silybum marianum, Talapotaka Churna, and Urtica dioica reduce serum liver enzymes in diabetic patients. The main active ingredient of these plants to protect the liver seems to be phenolic compounds such as niazirin, chlorogenic acid, resveratrol, etc. Mechanisms responsible for the hepatoprotective activity of herbal agents include improving glucose metabolism, restoring adipokines levels, antioxidant defense, and anti-inflammatory activity. Several signaling pathways are involved in hepatoprotective effects of herbal agents in diabetes, such as phosphoinositide 3-kinase, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, and c-Jun NH2-terminal kinase.
Collapse
Affiliation(s)
- Leila Mobasheri
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Ahadi
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahdi Esmaeilizadeh
- Innovative Medical Research Center, Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloofar Nikpasand
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Einafshar
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Ruggieri F, Maggi MA, Rossi M, Consonni R. Comprehensive Extraction and Chemical Characterization of Bioactive Compounds in Tepals of Crocus sativus L. Molecules 2023; 28:5976. [PMID: 37630227 PMCID: PMC10458886 DOI: 10.3390/molecules28165976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Crocus sativus L. is largely cultivated because it is the source of saffron, a well-appreciated and valued spice, not only for its culinary use but also because of its significant biological activities. Stigmas are the main product obtained from flowers, but in addition, tepals, largely considered a waste product, represent a big source of flavonoids and anthocyanins. This study aimed to delve into the phytochemical composition of saffron tepals and investigate whether the composition was influenced by the extraction technique while investigating the main analytical techniques most suitable for the characterization of tepal extracts. The research focuses on flavonoids, a class of secondary metabolites, and their health benefits, including antioxidant, anti-inflammatory, and anticancer properties. Flavonoids occur as aglycones and glycosides and are classified into various classes, such as flavones, flavonols, and flavanones. The most abundant flavonoids in tepals are kaempferol glycosides, followed by quercetin and isorhamnetin glycosides. Overall, this review provides valuable insights into the potential uses of tepals as a source of bioactive compounds and their applications in various fields, promoting a circular and sustainable economy in saffron cultivation and processing.
Collapse
Affiliation(s)
- Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (F.R.); (M.A.M.)
| | - Maria Anna Maggi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (F.R.); (M.A.M.)
| | - Michela Rossi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (F.R.); (M.A.M.)
| | - Roberto Consonni
- National Research Council, Institute of Chemical Sciences and Technologies “G. Natta” (SCITEC), Via Corti 12, 20133 Milan, Italy
| |
Collapse
|
9
|
Kumar S, Sharma SK, Mudgal SK, Gaur R, Agarwal R, Singh H, Kalra S. Comparative effectiveness of six herbs in the management of glycemic status of type 2 diabetes mellitus patients: A systematic review and network meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102826. [PMID: 37451111 DOI: 10.1016/j.dsx.2023.102826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND AIMS There are several herbal formulations for type 2 diabetes (T2D), but many of them have never been directly compared to establish the most effective methods. Therefore, the present systematic review and network meta-analysis aimed to compare and rank the effects of herbal formulations by combining direct and indirect evidence on the management of type 2 diabetes. METHODS From five electronic databases, relevant studies on the effectiveness of herbal formulations for glycemic status for people with type 2 diabetes were retrieved. Only randomized controlled trials that were published in English and looked at how herbal formulations affected adults' (>18-year-old) glycemic levels were included. A systematic review and network meta-analysis design with the random-effects model was used. RESULTS A total of 44 trials included 3130 participants on six herbs were included in the final analysis. Apple cider vinegar (ACV) (standardized mean difference (SMD) = -28.99), cinnamon (-9.73), curcumin (-13.15), and fenugreek (-19.64) significantly reduced fasting blood glucose (FBG) compared with placebo (all p < 0.05). Notably, only ACV (SMD = -2.10) and fenugreek seeds (0.84) were found significantly effective in reducing HbA1C. ACV was most effective herb to reduce FBG comparison with other herbs. CONCLUSIONS Several herbs could be considered as a valuable adjuvant therapy regarding glycemic control of type 2 diabetes patients. Health professionals should be encouraged to incorporate these herbs for the management of type 2 diabetes as part of their standard care.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| | - Suresh K Sharma
- College of Nursing, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | - Shiv Kumar Mudgal
- College of Nursing, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| | - Rakhi Gaur
- College of Nursing, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| | - Rajat Agarwal
- Department of Cardiothoracic Surgery, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| | - Harminder Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India.
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and BRIDE, Karnal, Haryana, India.
| |
Collapse
|
10
|
Anaeigoudari F, Anaeigoudari A, Kheirkhah‐Vakilabad A. A review of therapeutic impacts of saffron (Crocus sativus L.) and its constituents. Physiol Rep 2023; 11:e15785. [PMID: 37537722 PMCID: PMC10400758 DOI: 10.14814/phy2.15785] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
Application of herbal medicines in the treatment of diseases is in the center of attention of medical scientific societies. Saffron (Cricus sativus L.) is a medicinal plant belonging to the Iridaceae family with different therapeutic properties. The outcomes of human and animal experiments indicate that therapeutic impacts of saffron and its constituents, crocin, crocetin, and safranal, mainly are mediated via inhibiting the inflammatory reactions and scavenging free radicals. It has been suggested that saffron and crocin extracted from it also up-regulate the expression of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2), down-regulate nuclear factor kappa B (NF-κB) signaling pathway and untimely improve the body organs dysfunction. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 (COX2) also is attributed to crocin. The current review narrates the therapeutic effects of saffron and its constituents on various body systems through looking for the scientific databases including Web of Science, PubMed, Scopus, and Google Scholar from the beginning of 2010 until the end of 2022.
Collapse
Affiliation(s)
- Fatemeh Anaeigoudari
- Student Research Committee, Afzalipour Faculty of MedicineKerman University of Medical SciencesKermanIran
| | - Akbar Anaeigoudari
- Department of Physiology, School of MedicineJiroft University of Medical SciencesJiroftIran
| | | |
Collapse
|
11
|
Umar U, Ahmed S, Iftikhar A, Iftikhar M, Majeed W, Liaqat A, Shahzad S, Abbas M, Mehmood T, Anwar F. Phenolics Extracted from Jasminum sambac Mitigates Diabetic Cardiomyopathy by Modulating Oxidative Stress, Apoptotic Mediators and the Nfr-2/HO-1 Pathway in Alloxan-Induced Diabetic Rats. Molecules 2023; 28:5453. [PMID: 37513325 PMCID: PMC10383516 DOI: 10.3390/molecules28145453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.
Collapse
Affiliation(s)
- Urooj Umar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sibtain Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Maryam Iftikhar
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Wafa Majeed
- Department of Pharmacy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Atika Liaqat
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Shahzad
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Mateen Abbas
- Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Mehmood
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
12
|
Ying W. Phenomic Studies on Diseases: Potential and Challenges. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:285-299. [PMID: 36714223 PMCID: PMC9867904 DOI: 10.1007/s43657-022-00089-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 01/23/2023]
Abstract
The rapid development of such research field as multi-omics and artificial intelligence (AI) has made it possible to acquire and analyze the multi-dimensional big data of human phenomes. Increasing evidence has indicated that phenomics can provide a revolutionary strategy and approach for discovering new risk factors, diagnostic biomarkers and precision therapies of diseases, which holds profound advantages over conventional approaches for realizing precision medicine: first, the big data of patients' phenomes can provide remarkably richer information than that of the genomes; second, phenomic studies on diseases may expose the correlations among cross-scale and multi-dimensional phenomic parameters as well as the mechanisms underlying the correlations; and third, phenomics-based studies are big data-driven studies, which can significantly enhance the possibility and efficiency for generating novel discoveries. However, phenomic studies on human diseases are still in early developmental stage, which are facing multiple major challenges and tasks: first, there is significant deficiency in analytical and modeling approaches for analyzing the multi-dimensional data of human phenomes; second, it is crucial to establish universal standards for acquirement and management of phenomic data of patients; third, new methods and devices for acquirement of phenomic data of patients under clinical settings should be developed; fourth, it is of significance to establish the regulatory and ethical guidelines for phenomic studies on diseases; and fifth, it is important to develop effective international cooperation. It is expected that phenomic studies on diseases would profoundly and comprehensively enhance our capacity in prevention, diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Weihai Ying
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030 China
- Collaborative Innovation Center for Genetics and Development, Shanghai, 200043 China
| |
Collapse
|
13
|
Abedi A, Ghobadi H, Sharghi A, Iranpour S, Fazlzadeh M, Aslani MR. Effect of saffron supplementation on oxidative stress markers (MDA, TAC, TOS, GPx, SOD, and pro-oxidant/antioxidant balance): An updated systematic review and meta-analysis of randomized placebo-controlled trials. Front Med (Lausanne) 2023; 10:1071514. [PMID: 36817799 PMCID: PMC9928952 DOI: 10.3389/fmed.2023.1071514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction This study aimed to perform an updated systematic review and meta-analysis to evaluate the effectiveness of saffron supplementation on oxidative stress markers [malondialdehyde (MDA), total antioxidant capacity (TAC), total oxidant status (TOS), glutathione peroxidase (GPx), superoxide dismutase (SOD), and prooxidant/antioxidant balance (PAB)] in randomized controlled trials (RCTs). Methods We searched PubMed/Medline, Web of Science, Scopus, Cochrane CENTRAL, and Google Scholar until December 2022. Trial studies investigating the effects of oral saffron supplements on MDA, TAC, TOS, GPx, SOD, and PAB concentrations were included in the study. To analyze the results, mean differences (SMD) and 95% confidence intervals (CI) were pooled using a random effects model. Heterogeneity was assessed using the Cochrane Q and I 2 values. Sixteen cases were included in the meta-analysis (468 and 466 subjects in the saffron and control groups, respectively). Results It was found that saffron consumption caused a significant decrease in MDA (SMD: -0.322; 95% CI: -0.53, -0.16; I 2 = 32.58%) and TOS (SMD: -0.654; 95% CI: -1.08, -0.23; I 2 = 68%) levels as well as a significant increase in TAC (SMD: 0.302; 95% CI: 0.13, 0.47; I 2 = 10.12%) and GPx (SMD: 0.447; 95% CI: 0.10, 0.80; I 2 = 35%). Subgroup analysis demonstrated a significant reduction in MDA levels in studies with a saffron dosage of >30 mg/day, age of <50 years, and study duration of <12 weeks. Among the limitations of the study, we can point out that the studies were from Iran, the different nature of the diseases included, and were not considered of some potential confounders such as smoking, physical activity, and diet in the studies. Discussion In summary, the results showed that saffron has beneficial effects on oxidative stress markers.
Collapse
Affiliation(s)
- Ali Abedi
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hassan Ghobadi
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,Department of Internal Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Afshan Sharghi
- Department of Community Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sohrab Iranpour
- Department of Community Medicine, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Fazlzadeh
- Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,*Correspondence: Mohammad Reza Aslani, ,
| |
Collapse
|
14
|
Sanaie S, Nikanfar S, Kalekhane ZY, Azizi-Zeinalhajlou A, Sadigh-Eteghad S, Araj-Khodaei M, Ayati MH, Andalib S. Saffron as a promising therapy for diabetes and Alzheimer's disease: mechanistic insights. Metab Brain Dis 2023; 38:137-162. [PMID: 35986812 DOI: 10.1007/s11011-022-01059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
The prevalence of both Alzheimer's disease (AD) and diabetes mellitus is increasing with the societies' aging and has become an essential social concern worldwide. Accumulation of amyloid plaques and neurofibrillary tangles (NFTs) of tau proteins in the brain are hallmarks of AD. Diabetes is an underlying risk factor for AD. Insulin resistance has been proposed to be involved in amyloid-beta (Aβ) aggregation in the brain. It seems that diabetic conditions can result in AD pathology by setting off a cascade of processes, including inflammation, mitochondrial dysfunction, and ROS and advanced glycation end products (AGEs) synthesis. Due to the several side effects of chemical drugs and their high cost, using herbal medicine has recently attracted attention for the treatment of diabetes and AD. Saffron and its active ingredients have been used for its anti-inflammatory, anti-oxidant, anti-diabetic, and anti-AD properties. Therefore, in the present review paper, we take account of the clinical, in vivo and in vitro evidence regarding the anti-diabetic and anti-AD effects of saffron and discuss the preventive or postponing properties of saffron or its components on AD development via its anti-diabetic effects.
Collapse
Affiliation(s)
- Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Nikanfar
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Yousefi Kalekhane
- Research Center of Psychiatry and Behavioral Sciences, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Psychology, Faculty of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Akbar Azizi-Zeinalhajlou
- Student Research Committee, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hossein Ayati
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sasan Andalib
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, Odense University Hospital, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Cerdá-Bernad D, Costa L, Serra AT, Bronze MR, Valero-Cases E, Pérez-Llamas F, Candela ME, Arnao MB, Barberán FT, Villalba RG, García-Conesa MT, Frutos MJ. Saffron against Neuro-Cognitive Disorders: An Overview of Its Main Bioactive Compounds, Their Metabolic Fate and Potential Mechanisms of Neurological Protection. Nutrients 2022; 14:5368. [PMID: 36558528 PMCID: PMC9781906 DOI: 10.3390/nu14245368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saffron (Crocus sativus L.) is a spice used worldwide as a colouring and flavouring agent. Saffron is also a source of multiple bioactive constituents with potential health benefits. Notably, saffron displays consistent beneficial effects against a range of human neurological disorders (depression, anxiety, sleeping alterations). However, the specific compounds and biological mechanisms by which this protection may be achieved have not yet been elucidated. In this review, we have gathered the most updated evidence of the neurological benefits of saffron, as well as the current knowledge on the main saffron constituents, their bioavailability and the potential biological routes and postulated mechanisms by which the beneficial protective effect may occur. Our aim was to provide an overview of the neuroprotective effects attributed to this product and its main bioactive compounds and to highlight the main research gaps that need to be further pursued to achieve full evidence and understanding of the benefits of saffron. Overall, improved clinical trials and adequately designed pre-clinical studies are needed to support the evidence of saffron and of its main bioactive components (e.g., crocin, crocetin) as a therapeutic product to combat neurological disorders.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - Leonor Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- iMED, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | | | - María Emilia Candela
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Francisco Tomás Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Rocío García Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-José Frutos
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
16
|
Zamani M, Zarei M, Nikbaf-Shandiz M, Gholami F, Hosseini AM, Nadery M, Shiraseb F, Asbaghi O. The effects of saffron supplementation on cardiovascular risk factors in adults: A systematic review and dose-response meta-analysis. Front Nutr 2022; 9:1055517. [PMID: 36570145 PMCID: PMC9774508 DOI: 10.3389/fnut.2022.1055517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Cardiovascular disease (CVD) is one of the leading causes of death and disability in the world and is estimated to involve more people in the next years. It is said that alternative remedies such as herbs can be used to manage the complications of this disease. For this reason, we aimed to conduct this meta-analysis to systematically assess and summarize the effects of saffron supplementation as an important herb on cardiovascular risk factors in adults. Methods A systematic search was done in PubMed, Scopus, and Web of Science to find eligible articles up to September 2022. Randomized controlled trials (RCTs) that evaluated the effects of saffron on lipid profiles, glycemic control, blood pressure, anthropometric measures, and inflammatory markers were included. In the meta-analysis, 32 studies were taken into account (n = 1674). Results Consumption of saffron significantly decreased triglyceride (TG) (WMD = -8.81 mg/dl, 95%CI: -14.33, -3.28; P = 0.002), total cholesterol (TC) (WMD = -6.87 mg/dl, 95%CI: -11.19, -2.56; P = 0.002), low density lipoprotein (LDL) (WMD = -6.71 mg/dl, 95%CI: -10.51, -2.91; P = 0.001), (P = 0.660), fasting blood glucose (FBG) level (WMD = -7.59 mg/dl, 95%CI: -11.88, -3.30; P = 0.001), HbA1c (WMD = -0.18%, 95%CI: -0.21, -0.07; P < 0.001), homeostasis model assessment-insulin resistance (HOMA-IR) (WMD = -0.49, 95%CI: -0.89, -0.09; P = 0.016), systolic blood pressure (SBP) (WMD = -3.42 mmHg, 95%CI: -5.80, -1.04; P = 0.005), tumor necrosis factor α (TNF-α) (WMD = -2.54 pg/ml, 95%CI: -4.43, -0.65; P = 0.008), waist circumference (WC) (WMD = -1.50 cm; 95%CI: -2.83, -0.18; P = 0.026), malondialdehyde (MDA) (WMD = -1.50 uM/L, 95%CI: -2.42, -0.57; P = 0.001), and alanine transferase (ALT) (WMD = -2.16 U/L, 95%CI: -4.10, -0.23; P = 0.028). Also, we observed that saffron had an increasing effect on total antioxidant capacity (TAC) (WMD = 0.07 mM/L, 95%CI: 0.01, 0.13; P = 0.032). There was linear regression between FBG and the duration of saffron intake. Additionally, the non-linear dose-response analysis has shown a significant association of saffron intervention with HDL (P = 0.049), HOMA-IR (P = 0.002), weight (P = 0.036), ALP (P = 0.016), FBG (P = 0.011), HbA1c (P = 0.002), and TNF-α (P = 0.042). A non-linear association between the length of the intervention and the level of HDL and DBP was also found. Discussion That seems saffron could effectively improve TG, TC, LDL, FBG, HbA1c, HOMA-IR, SBP, CRP, TNF-α, WC, MDA, TAC, and ALT.
Collapse
Affiliation(s)
- Mohammad Zamani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Zarei
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Fatemeh Gholami
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Mehdi Hosseini
- Faculty of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Nadery
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran,*Correspondence: Farideh Shiraseb,
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Omid Asbaghi,
| |
Collapse
|
17
|
Zamzuri M‘AIA, Mansor J, Nurumal SR, Jamhari MN, Arifin MA, Nawi AM. HERBAL ANTIOXIDANTS AS TERTIARY PREVENTION AGAINST CARDIOVASCULAR COMPLICATIONS IN TYPE 2 DIABETES MELLITUS: A SYSTEMATIC REVIEW. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Norouzy A, Ghodrat S, Bahrami LS, Feizy Z, Arabi SM. The effects of saffron supplementation on the measures of renal function indicators: a systematic review and meta-analysis. Int Urol Nephrol 2022; 54:2215-2226. [PMID: 35103929 DOI: 10.1007/s11255-022-03127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
CONTEXT Saffron (Crocus sativus L.) has been proposed as a potential agent to improve renal function in animal studies. But, due to insufficient evidence in human research, further investigation is needed. OBJECTIVE To fill this knowledge gap, we conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the effect of saffron supplementation on the measures of renal function indicators in adults. Renal function was assessed based on serum urea, blood urea nitrogen, and creatinine levels. METHOD AND MATERIALS A systematic search in PubMed/Medline, Scopus, Web of Science, Embase, and Google Scholar databases was done until March 2021 using relevant keywords. A random-effects model was used to estimate the weighted mean difference (WMD) and 95% confidence (95% CI). Nine RCTs were included in the meta-analysis, and their quality was assessed using the Cochrane risk of bias tool. RESULTS The pooled analysis showed that saffron supplementation had no significant effect on serum urea concentrations (WMD: - 1.05 mg/dl; 95% CI - 5.1 to 3; P = 0.6, I2 = 93%, P < 0.001) and serum creatinine levels (WMD: - 0.006 mg/dl; 95% CI - 0.08 to 0.06; P = 0.8, I2 = 79%, P < 0.001) when compared to the placebo group. In the dose-response analysis, we observed a significant non-linear relationship between the duration of saffron supplementation and serum urea and creatinine levels. CONCLUSIONS Based on our findings, Saffron supplementation had no significant effect on renal function markers, including urea and creatinine. However, further trials are required to determine the actual effect and safety of saffron intervention in human studies. PROSPERO SUBMISSION ID 248081.
Collapse
Affiliation(s)
- Abdolreza Norouzy
- Department of Nutrition, School of Medicine, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Ghodrat
- Department of Nutrition, School of Medicine, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Sadat Bahrami
- Department of Nutrition, School of Medicine, Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Feizy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79414, USA
| | - Seyyed Mostafa Arabi
- Department of Basic Sciences, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
19
|
Sani A, Tajik A, Seiiedi SS, Khadem R, Tootooni H, Taherynejad M, Sabet Eqlidi N, Alavi dana SMM, Deravi N. A review of the anti-diabetic potential of saffron. Nutr Metab Insights 2022; 15:11786388221095223. [PMID: 35911474 PMCID: PMC9335478 DOI: 10.1177/11786388221095223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/30/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus is one of the most prevalent metabolic disorders that affect people of all genders, ages, and races. Medicinal herbs have gained attention from researchers and have been widely investigated for their antidiabetic potential. Saffron (Crocus sativus L.) and its main constituents, that is, crocin and crocetin, are natural carotenoid compounds, widely known to possess a wide spectrum of properties and induce pleiotropic anti-inflammatory, anti-oxidative, and neuro-protective effects. An increasing number of experimental, animal and human studies have investigated the effects and mechanism of action of these compounds and their potential therapeutic use in the treatment of diabetes. This narrative review presents the key findings of published clinical studies that examined the effects of saffron and/or its constituents in the context of diabetes mellitus. Moreover, an overview of the proposed underlying mechanisms mediating these effects, the medicinal applications of saffron, and the new findings regarding its effect on diabetes and various cellular and molecular mechanisms of action will be debated.
Collapse
Affiliation(s)
- Anis Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tajik
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seiied Sina Seiiedi
- Student Research Committee, Department of Medicine, Ardabil branch, Islamic Azad University, Ardabil, Iran
| | - Razieh Khadem
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haniye Tootooni
- Student Research Committee, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Nasim Sabet Eqlidi
- Student Research Committee, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Niloofar Deravi
- Student Research committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Niloofar Deravi, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran 19839-63113, Iran.
| |
Collapse
|
20
|
Makaritsis KP, Kotidis C, Papacharalampous K, Kouvaras E, Poulakida E, Tarantilis P, Asprodini E, Ntaios G, Koukoulis GΚ, Dalekos GΝ, Ioannou M. Mechanistic insights on the effect of crocin, an active ingredient of saffron, on atherosclerosis in apolipoprotein E knockout mice. Coron Artery Dis 2022; 33:394-402. [PMID: 35880561 DOI: 10.1097/mca.0000000000001142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND We investigated the effect of crocin treatment on atherosclerosis and serum lipids in apolipoprotein E knockout (ApoE-/-) mice, focusing on the expression of endothelial nitric oxide synthase (eNOS) and hypoxia-induced factor-1 alpha (HIF-1α). METHODS Sixty-two animals were divided into two groups and randomly allocated to crocin (100 mg/kg/day) in drinking water or no crocin. All mice were maintained on standard chow diet containing 5% fat. Crocin was initiated at the 16th week of age and continued for 16 additional weeks. At 32 weeks of age, after blood sampling for plasma lipid determination and euthanasia, proximal aorta was removed and 3 μm sections were used to measure the atherosclerotic area and determine the expression of eNOS and HIF-1α by immunohistochemistry. RESULTS Each group consisted of 31 animals (17 males and 14 females in each group). Crocin significantly reduced the atherosclerotic area (mm2 ± SEM) in treated mice compared to controls, both in males (0.0798 ± 0.017 vs. 0.1918 ± 0.028, P < 0.002, respectively) and females (0.0986 ± 0.023 vs. 0.1765 ± 0.025, P < 0.03, respectively). eNOS expression was significantly increased in crocin-treated mice compared to controls, both in males (2.77 ± 0.24 vs. 1.50 ± 0.34, P=0.004, respectively) and females (3.41 ± 0.37 vs. 1.16 ± 0.44, P=0.003, respectively). HIF-1α expression was significantly decreased in crocin-treated mice compared to controls, both in males (21.25 ± 2.14 vs. 156.5 ± 6.67, P < 0.001, respectively) and females (35.3 ± 7.20 vs. 113.3 ± 9.0, P < 0.01, respectively). No difference was noticed in total, low- and high-density lipoprotein cholesterol between treated and control mice. CONCLUSION Crocin reduces atherosclerosis possibly by modulation of eNOS and HIF-1α expression in ApoE-/- mice without affecting plasma cholesterol.
Collapse
Affiliation(s)
- Konstantinos P Makaritsis
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Charalampos Kotidis
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- East Midlands Congenital Heart Centre, University Hospitals of Leicester, Leicester, UK
| | | | - Evangelos Kouvaras
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| | - Eirini Poulakida
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Petros Tarantilis
- Laboratory of Chemistry, Department of Food Science & Human Nutrition, School of Food Biotechnology and Development, Agricultural University of Athens, Athens
| | - Eftichia Asprodini
- Laboratory of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George Ntaios
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - George Κ Koukoulis
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| | - George Ν Dalekos
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, University of Thessaly, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa
| |
Collapse
|
21
|
Tahmasbi F, Araj-Khodaei M, Mahmoodpoor A, Sanaie S. Effects of saffron (Crocus sativus L.) on anthropometric and cardiometabolic indices in overweight and obese patients: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2022; 36:3394-3414. [PMID: 35866520 DOI: 10.1002/ptr.7530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/08/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022]
Abstract
The worldwide prevalence of obesity is approximately tripled between 1975 and 2016 according to World Health Organization; therefore, obesity is now considered a global pandemic that needs academic and clinical focus. In search of antiobesity agents, Crocus sativus, known widely as saffron, has been praised for its beneficial effects. Several randomized controlled trials (RCTs) have been conducted to investigate the weight lowering effect of saffron. Following PRISMA guidelines, several medical databases were comprehensively searched for RCTs with a population consisting of obese individuals. A random-effects meta-analysis was used to pool estimates across studies, and standardized mean difference (SMD) was used to synthesize quantitative results. Twenty-five RCTs met the inclusion criteria. Meta-analysis showed a nonsignificant decrease for weight (-0.32 kg; CI: -3.15, 2.51; p = 0.82), BMI (-0.06 kg/m2 ;CI:-1.04,0.93; p = .91), waist circumference (-1.23 cm; CI: -4.14, 1.68; p = .41), and hip circumference (-0.38 cm; CI: -5.99, 5.23; p = .89) and a significant decrease of waist-to-hip ratio (SMD = -0.41; CI: -0.73, -0.09; p = .01; I2 = 0%). The mean difference in fasting blood sugar showed a significant reduction in patients with metabolic syndrome (SMD = -0.30; 95% CI: -0.63, 0.03; p = .07; I2 = 0.37%) but a nonsignificant change in the HbA1C level (WMD = 0.05; 95% CI: 0.32, 0.41; p = .79). Despite bearing several limitations, mainly as a result of heterogeneity among included studies, the available evidence indicates saffron supplementation shows promising effects on some cardiometabolic factors among overweight to obese patients; however, further investigations and high-quality evidence are required for more generalizable and comprehensive results.
Collapse
Affiliation(s)
- Fateme Tahmasbi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Persian Medicine, Faculty of Persian medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Anesthesiology and critical care department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Chattopadhyay K, Wang H, Kaur J, Nalbant G, Almaqhawi A, Kundakci B, Panniyammakal J, Heinrich M, Lewis SA, Greenfield SM, Tandon N, Biswas TK, Kinra S, Leonardi-Bee J. Effectiveness and Safety of Ayurvedic Medicines in Type 2 Diabetes Mellitus Management: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:821810. [PMID: 35754481 PMCID: PMC9213670 DOI: 10.3389/fphar.2022.821810] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction: Many Ayurvedic medicines have the potential for managing type 2 diabetes mellitus (T2DM), with previous systematic reviews demonstrating effectiveness and safety for specific Ayurvedic medicines. However, many of the reviews need updating and none provide a comprehensive summary of all the Ayurvedic medicines evaluated for managing T2DM. Objective: The objective of this systematic review was to evaluate and synthesize evidence on the effectiveness and safety of Ayurvedic medicines for managing T2DM. Inclusion criteria: Published and unpublished RCTs assessing the effectiveness and safety of Ayurvedic medicines for managing T2DM in adults. Methods: The JBI systematic review methodology was followed. A comprehensive search of sources (including 18 electronic databases) from inception to 16 January 2021 was made. No language restrictions were applied. Data synthesis was conducted using narrative synthesis and random effects meta-analyses, where appropriate. Pooled results are reported as mean differences (MD) with 95% confidence intervals (CI). Results: Out of 32,519 records identified from the searches, 219 articles were included in the systematic review representing 199 RCTs (21,191 participants) of 98 Ayurvedic medicines. Overall, in the studies reviewed the methodology was not adequately reported, resulting in poorer methodological quality scoring. Glycated hemoglobin (HbA1c) was reduced using Aegle marmelos (L.) Corrêa (MD -1.6%; 95% CI -3 to -0.3), Boswellia serrata Roxb. (-0.5; -0.7 to -0.4), Gynostemma pentaphyllum (Thunb.) Makino (-1; -1.5 to -0.6), Momordica charantia L. (-0.3; -0.4 to -0.1), Nigella sativa L. (-0.4; -0.6 to -0.1), Plantago ovata Forssk. (-0.9; -1.4 to -0.3), Tinospora cordifolia (Willd.) Hook.f. and Thomson (-0.5; -0.6 to -0.5), Trigonella foenum-graecum L. (-0.6; -0.9 to -0.4), and Urtica dioica L. (-1.3; -2.4 to -0.2) compared to control. Similarly, fasting blood glucose (FBG) was reduced by 4-56 mg/dl for a range of Ayurvedic medicines. Very few studies assessed health-related quality of life (HRQoL). Adverse events were not reported in many studies, and if reported, these were mostly none to mild and predominately related to the gastrointestinal tract. Conclusion: The current evidence suggests the benefit of a range of Ayurvedic medicines in improving glycemic control in T2DM patients. Given the limitations of the available evidence and to strengthen the evidence base, high-quality RCTs should be conducted and reported.
Collapse
Affiliation(s)
- Kaushik Chattopadhyay
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- The Nottingham Centre for Evidence-Based Healthcare: A JBI Centre of Excellence, Nottingham, United Kingdom
| | - Haiquan Wang
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jaspreet Kaur
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Gamze Nalbant
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Abdullah Almaqhawi
- Department of Family and Community Medicine, College of Medicine, King Faisal University, Alahsa, Saudi Arabia
| | - Burak Kundakci
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jeemon Panniyammakal
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Michael Heinrich
- Centre for Pharmacognosy and Phytotherapy, School of Pharmacy, University College London, London, United Kingdom
| | - Sarah Anne Lewis
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Nikhil Tandon
- Department of Endocrinology, Metabolism and Diabetes, All India Institute of Medical Sciences, New Delhi, India
| | - Tuhin Kanti Biswas
- Department of Kayachikitsa, J B Roy State Ayurvedic Medical College and Hospital, Kolkata, India
| | - Sanjay Kinra
- Department of Non-communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jo Leonardi-Bee
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- The Nottingham Centre for Evidence-Based Healthcare: A JBI Centre of Excellence, Nottingham, United Kingdom
| |
Collapse
|
23
|
Roshanravan B, Samarghandian S, Ashrafizadeh M, Amirabadizadeh A, Saeedi F, Farkhondeh T. Metabolic impact of saffron and crocin: an updated systematic and meta-analysis of randomised clinical trials. Arch Physiol Biochem 2022; 128:666-678. [PMID: 32013614 DOI: 10.1080/13813455.2020.1716020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present systematic and meta-analysis study was designed to show the protective impact of saffron and crocin supplementation on hyperlipidaemia and hyperglycaemia in randomised and clinical trials (RCTs). A pooled analysis using a model for random-effects showed that HDL-C levels were 0.21 fold higher in the saffron and 0.01 fold higher in the crocin group than placebo. LDL-C levels in the saffron group reduced by 0.51 and 0.04 fold in the crocin group versus the placebo. Moreover, TC levels in the saffron group were 0.19 lower and 0.11 fold lower in crocin group than in the placebo group. TG level in saffron group was 0.04 lower and 0.02 fold lower in crocin than the control group. The blood glucose levels did not significantly differ from the control group. This study suggests that saffron and crocin may modulate the serum lipid profile in patient with metabolic disorders.
Collapse
Affiliation(s)
- Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Alireza Amirabadizadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Farhad Saeedi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
24
|
El Midaoui A, Ghzaiel I, Vervandier-Fasseur D, Ksila M, Zarrouk A, Nury T, Khallouki F, El Hessni A, Ibrahimi SO, Latruffe N, Couture R, Kharoubi O, Brahmi F, Hammami S, Masmoudi-Kouki O, Hammami M, Ghrairi T, Vejux A, Lizard G. Saffron (Crocus sativus L.): A Source of Nutrients for Health and for the Treatment of Neuropsychiatric and Age-Related Diseases. Nutrients 2022; 14:nu14030597. [PMID: 35276955 PMCID: PMC8839854 DOI: 10.3390/nu14030597] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| | - Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Dominique Vervandier-Fasseur
- Team OCS, Institute of Molecular Chemistry (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comte, 21000 Dijon, France;
| | - Mohamed Ksila
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Amira Zarrouk
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
- Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse 4000, Tunisia
| | - Thomas Nury
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Farid Khallouki
- Department of Biology, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia 52000, Morocco;
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Salama Ouazzani Ibrahimi
- Laboratory of Genetics, Neuroendocrinology, and Biotechnology, Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra 14020, Morocco; (A.E.H.); (S.O.I.)
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Réjean Couture
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada;
| | - Omar Kharoubi
- Laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences, University Oran1 ABB, Oran 31000, Algeria;
| | - Fatiha Brahmi
- Laboratory Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Sonia Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Olfa Masmoudi-Kouki
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Mohamed Hammami
- Lab-NAFS ‘Nutritio—Functional Food & Vascular Health’, Faculty of Medicine, LR12ES05, University Monastir, Monastir 5000, Tunisia; (A.Z.); (S.H.); (M.H.)
| | - Taoufik Ghrairi
- Laboratory Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia; (O.M.-K.); (T.G.)
| | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’, University of Bourgogne Franche-Comte, 21000 Dijon, France; (I.G.); (M.K.); (T.N.); (N.L.); (A.V.)
- Correspondence: (A.E.M.); (G.L.); Tel.: +1-514-343-6111 (ext. 3320) (A.E.M.); +33-3-80-39-62-56 (G.L.)
| |
Collapse
|
25
|
Moghadam BH, Rashidlamir A, Hosseini SRA, Gaeini AA, Kaviani M. The Effects of Saffron (Crocus sativus L.) in conjunction with Concurrent Training on body composition, glycemic status, and inflammatory markers in obese men with type 2 diabetes mellitus: a randomized double-blind clinical trial. Br J Clin Pharmacol 2022; 88:3256-3271. [PMID: 35001410 DOI: 10.1111/bcp.15222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 11/29/2022] Open
Abstract
AIM Chronic inflammation is one of the major challenges in the management of obesity and type 2 diabetes mellitus (T2DM). Our primary aim was to assess the anti-inflammatory effects of Saffron (Crocus sativus L.) supplementation and concurrent training in obese men with T2DM. METHODS Sixty obese men with T2DM (age = 39 ± 5 years; body mass = 93.9 ± 6 kg) were randomly assigned to four groups; concurrent training + placebo (CT; n = 15), saffron supplementation (S; n = 15), concurrent training + saffron supplementation (CTS; n = 15), or control (CON; n = 15). The participants in the CT group performed concurrent training (resistance + aerobic) three times per week for 12 weeks and received daily one pill of placebo (maltodextrin); the participants in the S group supplemented with one pill of 100 mg of saffron daily, and the participants in the CTS group participated in both saffron and training intervention while CON group continued regular lifestyle (no training or no supplementation). Inflammatory markers, body composition (evaluated by a multi-frequency bioelectrical impedance device; Jawon X-Contact 356), and metabolic profile were evaluated before and after interventions. RESULTS All three interventions significantly (p<0.05) decreased TNF-α (CT = -4.22, S = -1.91, CTS = -9.69 pg/mL), hs-CRP (CT = -0.13, S = -0.1, CTS = -0.32 ng/mL), IL-6 (CT = -6.84, S = -6.36, CTS = -13.55 pg/mL), IL-1β (CT = -8.85, S = -6.46, CTS = -19.8 pg/mL), FBG (CT = -6.97, S = -2.45, CTS = -13.86 mg/dL), insulin (CT = -0.13, S = -0.03, CTS = -0.21 mU/L), HOMA-IR (CT = -0.12, S = -0.04, CTS = -0.21), HbA1c (CT = -0.17, S = -0.11, CTS = -0.26 %), and increased IL-10 (CT = 1.09, S= 0.53, CTS = 2.27 pg/mL) concentrations. There was a positive correlation between changes in BFP with hs-CRP, IL-6, IL-1β, and TNF-α, and IL-10 concentrations across the intervention groups. Additionally, significant differences were observed between the changes for all variables in the CTS group compared to CT, S, and CON groups (p<0.05) CONCLUSION: It seems that an interactive of saffron supplementation and concurrent training has more efficient effects on the anti-inflammatory status compared to the saffron supplementation or concurrent training alone.
Collapse
Affiliation(s)
| | - Amir Rashidlamir
- Department of Exercise Physiology, Ferdowsi university of Mashhad, Mashhad, Iran
| | | | - Abbas Ali Gaeini
- Department of Exercise Physiology, University of Tehran, Tehran, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
26
|
Karimi E, Shahdadian F, Hadi A, Tarrahi MA, Tarrahi MJ. The Effect of Saffron (Crocus sativus L.) Supplementation on Renal Function: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Int J Clin Pract 2022; 2022:9622546. [PMID: 36105788 PMCID: PMC9444416 DOI: 10.1155/2022/9622546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present systematic review and meta-analysis of randomized controlled trials (RCTs) aimed at determining the effect of saffron supplementation on renal function. METHODS Electronic databases were searched up to February 2021. The risk of bias in individual studies was assessed using the Cochrane Collaboration tool. The overall weighted mean difference (WMD) and their 95% confidence intervals (CIs) were calculated using random-effect models. P < 0.05 was considered statistically significant. RESULTS A total of 11 trials were included in this study. Saffron had beneficial effect on BUN (WMD = -0.69 mg/dl; 95% CI, -1.36 to -0.01; P=0.046) compared to placebo, with significant heterogeneity (I 2 = 49.6%, P=0.037). However, it had no significant effect on serum Cr (WMD = 0.04 mg/dl; 95% CI: -0.01 to 0.09; P=0.127). CONCLUSION It seems that saffron supplementation had no significant effect on Cr as a renal function factor. However, BUN reduction was significant in the saffron group compared to placebo.
Collapse
Affiliation(s)
- Elham Karimi
- Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hadi
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad-Aref Tarrahi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javad Tarrahi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Jomehpour H, Aghayan S, Khosravi A, Afzaljavan F. The Effect of Krocina™ on Decreasing Substance User Withdrawal Syndrome, Craving, Depression and Stress: A Double-Blind Randomized Parallel Clinical Trial. Subst Use Misuse 2022; 57:613-620. [PMID: 35068330 DOI: 10.1080/10826084.2022.2026968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Due to the association between substance use abstinence with some psychological syndromes, the use of herbal medicines such as Crocus sativus L. have been considered as a proper approach to controlling withdrawal syndrome. The present study aimed to identify the effect of Krocina™ in reducing withdrawal symptoms, craving, depression, stress, anxiety and durability of treatment in the detoxification period and abstinence phase. METHODS In a double-blind randomized parallel clinical trial, 72 opioid users passing the detoxification period who were referred to the Soroush Center during 2020, randomly categorized into the two groups. Motivational interviewing sessions and 15 mg of Krocina™ twice a day were provided for six weeks for the cases. The placebo group received pills with the same coating and motivational interviewing. Withdrawal symptoms, craving, depression, stress and anxiety were assessed at the start of the study and then weekly using the Clinical Opiate Withdrawal Scale, Obsessive-Compulsive Drug Use Scale, and the Depression Anxiety Stress Scales-21, respectively. SPSS-v16 was used for statistical analyses. RESULTS Drug withdrawal symptoms and craving did not indicate a significant difference by Krocina™ intervention during the time (p > 0.05). Furthermore, depression, stress and anxiety were statistically similar between Krocina™ and placebo groups (p > 0.05). Moreover, we found similar findings between the two groups when analyzing only patients with negative urinary test (F = 0.03;p = 0.86). CONCLUSION Our finding rejected the effectiveness of 30 mg/day of Krocina™ for six weeks as an effective substance for decreasing withdrawal symptoms, craving, depression, anxiety and stress at the detoxification period and abstinence phase.
Collapse
Affiliation(s)
- Hamid Jomehpour
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Shahrokh Aghayan
- Sexual Health and Fertility Research center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Khosravi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran; Ophthalmic Epidemiology Research Centre, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fahimeh Afzaljavan
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Hasani M, Malekahmadi M, Rezamand G, Estêvão MD, Pizarro AB, Heydari H, Hoong WC, Arafah OA, Barakeh ARR, Rahman A, Alrashidi MSK, Abu-Zaid A. Effect of saffron supplementation on liver enzymes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2021; 15:102311. [PMID: 34678576 DOI: 10.1016/j.dsx.2021.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS Possible protective effects of saffron (Crocus sativus L) have been reported in several randomized clinical trials (RCTs). Current systematic review was performed to summarize the efficacy of saffron intake on liver enzymes. METHODS An electronic database search was conducted on PubMed/Medline, Scopus, Web of Science, and Cochrane for RCTs comparing effect of saffron and placebo on liver enzymes from inception to July 2021. There was no restriction in language of included studies and we calculated the standardized mean difference (SMD) and 95% Confidence Intervals (CI) for each variable. Random-effect model was used to calculate effect size. RESULTS Eight studies (n = 463 participants) were included in the systematic review. The saffron intake was associated with a statistically significant decrease in aspartate aminotransferase (AST) (SMD: -0.18; 95% CI: -0.34, -0.02; I2 = 0%) in comparison to placebo intake. Our results also indicated that saffron consumption did not have a significant effect on alanine aminotransferase (ALT) (SMD: -0.14; 95% CI: -0.36, 0.09; I2 = 47.0%) and alkaline phosphatase (ALP) levels (SMD: 0.14; 95% CI: -0.18, 0.46; I2 = 42.9%) compared to placebo. CONCLUSIONS Saffron intake showed beneficial impacts on circulating AST levels. However, larger well-designed RCTs are still needed to clarify the effect of saffron intake on these and other liver enzymes.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Rezamand
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - M Dulce Estêvão
- Universidade do Algarve, Escola Superior de Saúde, Campus de Gambelas, Faro, Portugal.
| | | | - Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Wong Chun Hoong
- Department of Pharmacy, Sultanah Aminah Hospital, Johor Bahru, Johor, Malaysia.
| | | | | | - Areej Rahman
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | | | - Ahmed Abu-Zaid
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Department of Pharmacology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
29
|
Bioactive Foods and Medicinal Plants for Cardiovascular Complications of Type II Diabetes: Current Clinical Evidence and Future Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6681540. [PMID: 34567218 PMCID: PMC8460387 DOI: 10.1155/2021/6681540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases (CVDs) are the main cause of mortality in type 2 diabetes mellitus (T2DM); however, not all patients are fully satisfied with the current available treatments. Medicinal plants have been globally investigated regarding their effect in CVD, yet the field is far from getting exhausted. The current paper aims to provide an evidence-based review on the clinically evaluated medicinal plants and their main therapeutic targets for the management of CVD in T2DM. Electronic databases including PubMed, Cochrane, Embase, Scopus, and Web of Science were searched from 2000 until November 2019, and related clinical studies were included. Lipid metabolism, glycemic status, systemic inflammation, blood pressure, endothelial function, oxidative stress, and anthropometric parameters are the key points regulated by medicinal plants in T2DM. Anti-inflammatory and antioxidant properties are the two most important mechanisms since inflammation and oxidative stress are the first steps triggering a domino of molecular pathological pathways leading to T2DM and, subsequently, CVD. Polyphenols with potent antioxidant and anti-inflammatory effects, essential oil-derived compounds with vasorelaxant properties, and fibers with demonstrated effects on obesity are the main categories of phytochemicals beneficial for CVD of T2DM. Some medicinal plants such as garlic (Allium sativum) and milk thistle (Silybum marianum) have strong evidences regarding their beneficial effects; however, others have low level of evidence which reveals the need for further clinical studies with larger sample sizes and longer follow-up periods to confirm the safety and efficacy of medicinal plants for the management of CVD in T2DM.
Collapse
|
30
|
Roshanravan N, Ghaffari S. The therapeutic potential of Crocus sativus Linn.: A comprehensive narrative review of clinical trials. Phytother Res 2021; 36:98-111. [PMID: 34532906 DOI: 10.1002/ptr.7286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022]
Abstract
Crocus sativus Linn. (Saffron) is valued worldwide for its potential use in the management of various degenerative disorders, including cardiovascular diseases (CVDs), diabetes, cancer, metabolic syndrome (MetS), neurodegenerative diseases, immune disorders, and sexual dysfunction. Previous reports, based on clinical trials, suggest that crocetin, crocin, picrocrocin, and safranal are the main bioactive components of saffron with antioxidant, anti-inflammatory, and anti-apoptotic effects. In this comprehensive narrative review, we studied the recent clinical trials, investigating the medicinal applications of saffron and/or its components. The present results can provide important insights into the potential of saffron in preventing and treating different disorders, with a special focus on the underlying cellular and molecular mechanisms. However, further high-quality studies are needed to firmly establish the clinical efficacy of saffron in treating some degenerative diseases.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Rahaman A, Kumari A, Farooq MA, Zeng XA, Hassan S, Khalifa I, Aadil RM, Jahangir Chughtai MF, Khaliq A, Ahmad N, Wajid MA. Novel Extraction Techniques: An Effective Way to Retrieve the Bioactive Compounds from Saffron (Crocus Sativus). FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Ankita Kumari
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Muhammad Adil Farooq
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Sadia Hassan
- Department of Nutritional Sciences, Faculty of Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Egypt
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Farhan Jahangir Chughtai
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Adnan Khaliq
- Department of Food Science and Technology, Faculty of Engineering and Technology, Khwaja Fareed University Engineering and Information Technology, Rahimyar, Pakistan
| | - Nabeel Ahmad
- School of Biotechnology, Iftm University, Moradabad, India
| | - Mohd Anas Wajid
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
32
|
Kadoglou NPE, Christodoulou E, Kostomitsopoulos N, Valsami G. The cardiovascular-protective properties of saffron and its potential pharmaceutical applications: A critical appraisal of the literature. Phytother Res 2021; 35:6735-6753. [PMID: 34448254 DOI: 10.1002/ptr.7260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Saffron, the dried stigma of Crocus sativus L., is used in traditional medicine for its healing properties and the treatment of various pathological conditions. The present literature review aimed to summarize and evaluate the preclinical and clinical data regarding the protective effects and mechanisms of saffron and its main components (crocin, crocetin, safranal) on cardiovascular risk factors and diseases. Many in vitro and animal studies have been conducted implicating antioxidant, hypolipidemic, anti-diabetic, and antiinflammatory impact of saffron and its constituents. Notably, there is evidence of direct atherosclerosis regression and stabilization in valid atherosclerosis-prone animal models. However, current clinical trials have shown mostly weak effects of saffron and its constituents on cardiovascular risk factors: (a) Modest lowering of fasting blood glucose, without significant reduction of HbA1c in type 2 diabetic patients, (b) moderate/controversial hypolipidemic effects, (c) negligible hypotensive effect, and (d) inconsistent modification of metabolic syndrome parameters. There are important drawbacks in clinical trial design, including the absence of pharmacokinetic/pharmacodynamic tests, the wide variance of doses and cohorts' characteristics, the small number of patients, the short duration. Therefore, large, properly designed, high-quality clinical trials, focusing on specific conditions are required to evaluate the biological/pharmacological activities and firmly establish the clinical efficacy of saffron and its possible therapeutic uses in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
33
|
Fang QW, Fu WW, Yang JL, Lu Y, Chen JC, Wu PY, Zhang X, Xu HX. New monoterpenoids from the stigmas of Crocus sativus. J Nat Med 2021; 76:102-109. [PMID: 34417964 DOI: 10.1007/s11418-021-01559-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/10/2021] [Indexed: 01/30/2023]
Abstract
One new compound, crocusatin M (1), and three new glycosidic compounds, crocusatins N-P (2-4), along with nine known compounds were isolated from the dried stigmas of Crocus sativus. The structures of new compounds were elucidated on the basis of spectroscopic analysis, and the absolute configurations of 1, 2, and 3 were unambiguously assigned by the comparison of experimental and calculated ECD data. This is the first report of the isolation of 4 with the HMG moiety from the genus Crocus. Compounds 1 and 4 exhibited weak anti-inflammatory activities on inhibiting lipopolysaccharide (LPS)-induced NO production.
Collapse
Affiliation(s)
- Qing-Wei Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai, 201203, People's Republic of China
| | - Wen-Wei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai, 201203, People's Republic of China.
| | - Jin-Ling Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai, 201203, People's Republic of China
| | - Yue Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai, 201203, People's Republic of China
| | - Jiang-Cheng Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai, 201203, People's Republic of China
| | - Pei-Ying Wu
- Saffron Div. of Shanghai Traditional Chinese Medicine Co., Ltd, Shanghai, 200002, People's Republic of China
| | - Xue Zhang
- Saffron Div. of Shanghai Traditional Chinese Medicine Co., Ltd, Shanghai, 200002, People's Republic of China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Cai Lun Lu 1200, Shanghai, 201203, People's Republic of China. .,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200002, People's Republic of China.
| |
Collapse
|
34
|
Karimi E, Farrokhzad A, Darand M, Arab A. The Effect of Saffron Consumption on Liver Function: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Complement Med Res 2021; 28:453-462. [PMID: 33735877 DOI: 10.1159/000515003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS The present systematic review and meta-analysis of randomized controlled trials aimed to determine the effects of saffron supplementation on liver function tests among adults. METHODS Electronic databases including PubMed, ISI Web of Science, and Scopus were searched up to January 2021. The risk of bias in individual studies was assessed using the Cochrane Collaboration tool. The overall estimates and their 95% CIs were calculated using random-effects models. Egger's test and Begg's rank-correlation were run to assess the presence of publication bias. p < 0.05 was considered statistically significant. RESULTS A total of 12 trials involving 608 participants were included in this systematic review and meta-analysis. Saffron supplementation had no significant effect on liver function tests including aspartate transaminase (AST) (weighted mean difference [WMD] = 0.23 U/L; 95% CI -2.22 to 2.69; p = 0.851; I2 = 74.0%), alanine aminotransferase (ALT) (WMD = -1.49 U/L; 95% CI -3.84 to 0.86; p = 0.213; I2 = 60.2%), and alkaline phosphatase (ALP) (WMD = -0.70 U/L; 95% CI -11.35 to 9.95; p = 0.898; I2 = 40.8%) compared to placebo. CONCLUSION Based on what was discussed, it seems that saffron supplementation could not improve liver function tests including AST, ALT, and ALP among the adult population. Further clinical trials with larger sample size, longer duration, and higher doses of saffron should be conducted exclusively among patients with liver dysfunction to elucidate the beneficial role of saffron consumption on liver function.
Collapse
Affiliation(s)
- Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Research Development Center, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mina Darand
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,
| |
Collapse
|
35
|
Mousavi SM, Mokhtari P, Asbaghi O, Rigi S, Persad E, Jayedi A, Rezvani H, Mahamat-Saleh Y, Sadeghi O. Does saffron supplementation have favorable effects on liver function indicators? A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2021; 62:6315-6327. [PMID: 33724127 DOI: 10.1080/10408398.2021.1900059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several pharmaceutical and non-pharmaceutical approaches have been suggested to improve liver health. There is a large discrepancy in the effects of saffron supplementation on liver function in adults. To fill this knowledge gap, this systematic review and meta-analysis of randomized controlled trials (RCTs) assess the effects of saffron supplementation on liver enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). A systematic search current to August 2020 was performed in PubMed/Medline, Scopus, Web of Science, and Google Scholar using relevant keywords to detect eligible articles. A random-effects model was used to estimate the weighted mean difference (WMD) and 95% confidence (95% CI). Nine eligible trials were included in the final analysis. The pooled analysis revealed that serum ALT concentrations were significantly reduced using saffron compared to placebo (WMD: -2.39 U/L; 95% CI: -4.57 to -0.22; P = 0.03, I2= 87.9%, P < 0.001). However, saffron supplementation did not affect levels of serum AST (WMD: 1.12 U/L; 95% CI: -1.42 to 3.65; P = 0.39) or ALP (WMD: 4.32 U/L; 95% CI: -6.91 to 15.54; P = 0.78). In the dose-response analysis, we did not find a significant dose-response relationship between dosage and duration of saffron supplementation on serum levels of ALT, AST, and ALP. We found that saffron supplementation can reduce ALT serum concentrations without significant effects on other liver function indicators, including AST and ALP. Nevertheless, future large RCTs on diverse populations are needed to understand better the effects of saffron and its constituents on these enzymes.
Collapse
Affiliation(s)
- Seyed Mohammad Mousavi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Pari Mokhtari
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah, USA
| | - Omid Asbaghi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Somaye Rigi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Emma Persad
- Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Ahmad Jayedi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Rezvani
- Department of Medical Oncology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yahya Mahamat-Saleh
- CESP, Fac. de médecine - Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris Saclay, Villejuif, France
| | - Omid Sadeghi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Gerash Research Center, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
36
|
Crocins from Crocus sativus L. in the Management of Hyperglycemia. In Vivo Evidence from Zebrafish. Molecules 2020; 25:molecules25225223. [PMID: 33182581 PMCID: PMC7696463 DOI: 10.3390/molecules25225223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a disease characterized by persistent high blood glucose levels and accompanied by impaired metabolic pathways. In this study, we used zebrafish to investigate the effect of crocins isolated from Crocus sativus L., on the control of glucose levels and pancreatic β-cells. Embryos were exposed to an aqueous solution of crocins and whole embryo glucose levels were measured at 48 h post-treatment. We showed that the application of crocins reduces zebrafish embryo glucose levels and enhances insulin expression. We also examined whether crocins are implicated in the metabolic pathway of gluconeogenesis. We showed that following a single application of crocins and glucose level reduction, the expression of phosphoenolpyruvate carboxykinase1 (pck1), a key gene involved in glucose metabolism, is increased. We propose a putative role for the crocins in glucose metabolism and insulin management.
Collapse
|
37
|
Zeka K, Marrazzo P, Micucci M, Ruparelia KC, Arroo RRJ, Macchiarelli G, Annarita Nottola S, Continenza MA, Chiarini A, Angeloni C, Hrelia S, Budriesi R. Activity of Antioxidants from Crocus sativus L. Petals: Potential Preventive Effects towards Cardiovascular System. Antioxidants (Basel) 2020; 9:antiox9111102. [PMID: 33182461 PMCID: PMC7697793 DOI: 10.3390/antiox9111102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The petals of the saffron crocus (Crocus sativus L.) are considered a waste material in saffron production, but may be a sustainable source of natural biologically active substances of nutraceutical interest. The aim of this work was to study the cardiovascular effects of kaempferol and crocin extracted from saffron petals. The antiarrhythmic, inotropic, and chronotropic effects of saffron petal extract (SPE), kaempferol, and crocin were evaluated through in vitro biological assays. The antioxidant activity of kaempferol and crocin was investigated through the 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) assay using rat cardiomyoblast cell line H9c2. The MTT assay was applied to assess the effects of kaempferol and crocin on cell viability. SPE showed weak negative inotropic and chronotropic intrinsic activities but a significant intrinsic activity on smooth muscle with a potency on the ileum greater than on the aorta: EC50 = 0.66 mg/mL versus EC50 = 1.45 mg/mL. Kaempferol and crocin showed a selective negative inotropic activity. In addition, kaempferol decreased the contraction induced by KCl (80 mM) in guinea pig aortic and ileal strips, while crocin had no effect. Furthermore, following oxidative stress, both crocin and kaempferol decreased intracellular ROS formation and increased cell viability in a concentration-dependent manner. The results indicate that SPE, a by-product of saffron cultivation, may represent a good source of phytochemicals with a potential application in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Keti Zeka
- Department of Haematology, Cambridge Biomedical Campus, University of Cambridge, Long Road, Cambridge CB2 0PT, UK;
| | - Pasquale Marrazzo
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (P.M.); (S.H.)
| | - Matteo Micucci
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
- Correspondence:
| | - Ketan C. Ruparelia
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (R.R.J.A.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK; (K.C.R.); (R.R.J.A.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (G.M.); (M.A.C.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy;
| | - Maria Adelaide Continenza
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy; (G.M.); (M.A.C.)
| | - Alberto Chiarini
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino (MC), Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (P.M.); (S.H.)
| | - Roberta Budriesi
- Nutraceutical Lab, Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (A.C.); (R.B.)
| |
Collapse
|
38
|
Sohaei S, Hadi A, Karimi E, Arab A. Saffron supplementation effects on glycemic indices: a systematic review and meta-analysis of randomized controlled clinical trials. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1807567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Sohaei
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Research Development Center, Arash Women’s Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
39
|
Behrouz V, Dastkhosh A, Hedayati M, Sedaghat M, Sharafkhah M, Sohrab G. The effect of crocin supplementation on glycemic control, insulin resistance and active AMPK levels in patients with type 2 diabetes: a pilot study. Diabetol Metab Syndr 2020; 12:59. [PMID: 32670418 PMCID: PMC7346493 DOI: 10.1186/s13098-020-00568-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Crocin as a carotenoid exerts anti-oxidant, anti-inflammatory, anti-cancer, neuroprotective and cardioprotective effects. Besides, the increasing prevalence of diabetes mellitus and its allied complications, and also patients' desire to use natural products for treating their diseases, led to the design of this study to evaluate the efficacy of crocin on glycemic control, insulin resistance and active adenosine monophosphate-activated protein kinase (AMPK) levels in patients with type-2 diabetes (T2D). METHODS In this clinical trial with a parallel-group design, 50 patients with T2D received either 15-mg crocin or placebo, twice daily, for 12 weeks. Anthropometric measurements, dietary intake, physical activity, blood pressure, glucose homeostasis parameters, active form of AMPK were assessed at the beginning and at the end of the study. RESULTS Compared with the placebo group, crocin improved fasting glucose level (P = 0.015), hemoglobin A1c (P = 0.045), plasma insulin level (P = 0.046), insulin resistance (P = 0.001), and insulin sensitivity (P = 0.001). Based on the within group analysis, crocin led to significant improvement in plasma levels of glucose, insulin, hemoglobin A1c, systolic blood pressure, insulin resistance and insulin sensitivity. The active form of AMPK did not change within and between groups after intervention. CONCLUSIONS The findings indicate that crocin supplementation can improve glycemic control and insulin resistance in patients with T2D. Further studies are needed to confirm these findings.Trial Registration This study has been registered at Clinicaltrial.gov with registration number NCT04163757.
Collapse
Affiliation(s)
- Vahideh Behrouz
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, West Arghavan Street, Farahzadi Blvd., P.O. Box:19395-4741, Tehran, Iran
| | - Ali Dastkhosh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, West Arghavan Street, Farahzadi Blvd., P.O. Box:19395-4741, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meghdad Sedaghat
- Department of Internal Medicine, Imam-Hossein General Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, West Arghavan Street, Farahzadi Blvd., P.O. Box:19395-4741, Tehran, Iran
| |
Collapse
|
40
|
Haidari F, Zakerkish M, Borazjani F, Ahmadi Angali K, Amoochi Foroushani G. The effects of Anethum graveolens (dill) powder supplementation on clinical and metabolic status in patients with type 2 diabetes. Trials 2020; 21:483. [PMID: 32503652 PMCID: PMC7275438 DOI: 10.1186/s13063-020-04401-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background The objective of this study was to investigate the effects of Anethum graveolens (dill) powder supplementation on glycemic control, lipid profile, some antioxidants and inflammatory markers, and gastrointestinal symptoms in patients with type 2 diabetes. Materials and methods In this study, 42 patients with type 2 diabetes were randomly allocated to intervention and control groups and received either 3 g/day dill powder or placebo (3 capsules/day, 1 g each). Fasting blood sugar, insulin, homeostatic model assessment of insulin resistance, lipid profile, high-sensitivity C-reactive protein, total antioxidant capacity, malondialdehyde and gastrointestinal symptoms were measured in all of the subjects at baseline and postintervention. Results The dill powder supplementation significantly decreased the mean serum levels of insulin, homeostatic model assessment of insulin resistance, low-density lipoprotein cholesterol, total cholesterol and malondialdehyde in the intervention group in comparison with the baseline measurements (P < 0.05). Furthermore, the mean serum levels of high-density lipoprotein and total antioxidant capacity were significantly increased in the intervention group in comparison with the baseline measurement (P < 0.05). Colonic motility disorder was the only gastrointestinal symptom whose frequency was significantly reduced by supplementation (P = 0.01). The mean changes in insulin, low-density lipoprotein cholesterol, total cholesterol and malondialdehyde were significantly lower in the intervention group than in the control group (P < 0.05). In addition, the mean changes in high-density lipoprotein were significantly higher in the intervention group than in the control group (P < 0.05). Conclusion Dill powder supplementation can be effective in controlling the glycemic, lipid, stress oxidative and gastrointestinal symptoms in patients with type 2 diabetes. Trial registration Iran Clinical Trials Registry: IRCT20120704010181N12. Registered on 12 May 2018.
Collapse
Affiliation(s)
- Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrnoosh Zakerkish
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Borazjani
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi Angali
- Department of Biostatistic, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Golnaz Amoochi Foroushani
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
41
|
Giannoulaki P, Kotzakioulafi E, Chourdakis M, Hatzitolios A, Didangelos T. Impact of Crocus Sativus L. on Metabolic Profile in Patients with Diabetes Mellitus or Metabolic Syndrome: A Systematic Review. Nutrients 2020; 12:nu12051424. [PMID: 32423173 PMCID: PMC7284534 DOI: 10.3390/nu12051424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Experimental studies demonstrated a positive effect of administration of Crocus sativus L. (saffron) and its bioactive ingredients on metabolic profile through their antioxidant capacity. Purpose: To determine if the use of saffron in humans is beneficial to patients with diabetes mellitus (DM) or metabolic syndrome (MS). Methods: This systematic review includes 14 randomized control trials that investigated the impact of saffron administration and its bioactive ingredient crocin on the metabolic profile of patients with DM, MS, prediabetes, and coronary artery disease. We documented the following clinical outcomes: fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, systolic, and diastolic blood pressure. Results: Eight studies examined the efficacy of saffron in patients with DM, four with the metabolic syndrome, one with prediabetes and one with coronary artery disease. A favorable effect on FBG was observed. The results regarding blood lipids and blood pressure were inconclusive in the current review. Conclusions: According to the available limited evidence, saffron may have a favorable effect on FBG. Many of the studies in the reviewed literature are of poor quality, and more research is needed in this direction to confirm and establish the above findings.
Collapse
Affiliation(s)
- Parthena Giannoulaki
- Department of Nutrition and Dietetics, University General Hospital of Thessaloniki AHEPA, 54621 Thessaloniki, Greece;
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propeudetic Department of Internal Medicine, School of Health Sciences, Medical School, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (A.H.)
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Apostolos Hatzitolios
- Diabetes Center, 1st Propeudetic Department of Internal Medicine, School of Health Sciences, Medical School, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (A.H.)
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propeudetic Department of Internal Medicine, School of Health Sciences, Medical School, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (E.K.); (A.H.)
- Correspondence: ; Tel.: +30-694-486-3803
| |
Collapse
|
42
|
Qiu Y, Jiang X, Liu D, Deng Z, Hu W, Li Z, Li Y. The Hypoglycemic and Renal Protection Properties of Crocin via Oxidative Stress-Regulated NF-κB Signaling in db/db Mice. Front Pharmacol 2020; 11:541. [PMID: 32425787 PMCID: PMC7212392 DOI: 10.3389/fphar.2020.00541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background As the main ingredient of Crocus sativus L. (Iridaceae) extract, crocin- I (CR) has been reported to show various pharmacological activities. The aim of this study was to investigate the hypoglycemic and renal protection properties of CR in db/db mice. Methods Eight-week-old db/db mice were treated with metformin (Met) (100 mg/kg) and CR (50 mg/kg) for eight weeks. Results CR treatment showed hypoglycemic functions indicated by reduced bodyweight, food and water intake, plasma glucose, and serum levels of glycated hemoglobin A1c. Additionally, the CR group showed increased serum levels of insulin and pyruvate kinase, hypolipidemic functions indicated by the suppressed levels of total cholesterol and triglyceride, and enhanced levels of high-density lipoprotein cholesterol, which are also indicators of hypoglycemic functions. The renal protection function of CR was demonstrated by its protection of renal structures and its regulation of potential indicators of nephropathy. The anti-oxidation and anti-inflammation effects of CR were verified by enzyme-linked immunosorbent assay. In the kidneys of db/db mice, CR decreased the expression of phospho-IκBα and phospho-nuclear factor-κB (NF-κB), whereas it enhanced the expression of nuclear respiratory factor 2, manganese superoxide dismutase 1, heme oxygenase-1, and catalase. Conclusions The anti-diabetic and anti-diabetic nephritic effects of CR were related to its modulation of oxidative stress-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Ye Qiu
- National Engineering Lab for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xue Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Danping Liu
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Zichun Deng
- School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Hu
- School of Life Sciences, Jilin University, Changchun, China
| | - Zhiping Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yuxin Li
- National Engineering Lab for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
43
|
Effect of Saffron Extract and Crocin in Serum Metabolites of Induced Obesity Rats. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/1247946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of saffron extract (Crocus sativus L.) and its primary compound crocin was studied on an induced obesity rat model. Our study is aimed at investigating and comparing the metabolite changes in obese and obese treated with saffron extract and crocin and at improving the understanding of the therapeutic effect of saffron extract and crocin. Two different doses of saffron extracts and crocin (40 and 80 mg/kg) were incorporated in a high-fat diet (HFD) and were given for eight weeks to the obese rats. The changes in metabolite profiles of the serum were determined using proton nuclear magnetic resonance (1H-NMR). Pattern recognition by multivariate data analysis (MVDA) showed that saffron extract and crocin at 80 mg/kg was the best dosage compared to 40 mg/kg. It also showed that both treatments work in different pathways, especially concerning glucose, lipid, and creatinine metabolism. In conclusion, although the pure compound, crocin, is superior to the saffron crude extract, this finding suggested that the saffron extract can be considered as an alternative aside from crocin in treating obesity.
Collapse
|
44
|
Mottaghipisheh J, Mahmoodi Sourestani M, Kiss T, Horváth A, Tóth B, Ayanmanesh M, Khamushi A, Csupor D. Comprehensive chemotaxonomic analysis of saffron crocus tepal and stamen samples, as raw materials with potential antidepressant activity. J Pharm Biomed Anal 2020; 184:113183. [PMID: 32105944 DOI: 10.1016/j.jpba.2020.113183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/22/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Saffron crocus (Crocus sativus L.) has been widely grown in Iran. Its stigma is considered as the most valuable spice for which several pharmacological activities have been reported in preclinical and clinical studies, the antidepressant effect being the most thoroughly studied and confirmed. This plant part contains several characteristic secondary metabolites, including the carotenoids crocetin and crocin, and the monoterpenoid glucoside picrocrocin, and safranal. Since only the stigma is utilized industrially, huge amount of saffron crocus by-product remains unused. Recently, the number of papers dealing with the chemical and pharmacological analysis of saffron is increasing; however, there are no systematic studies on the chemical variability of the major by-products. In the present study, we harvested saffron crocus flowers from 40 different locations of Iran. The tepals and stamens were separated and subjected to qualitative and quantitative analysis by HPLC-DAD. The presence and amount of seven marker compounds, including crocin, crocetin, picrocrocin, safranal, kaempferol-3-O-sophoroside, kaempferol-3-O-glucoside, and quercetin-3-O-sophoroside were determined. The analytical method was validated for filter compatibility, stability, suitability, accuracy, precision, intermediate precision, and repeatability. Tepal and stamen samples contained three flavonol glycosides. The main constituent of the tepals was kaempferol-3-O-sophoroside (62.19-99.48 mg/g). In the stamen, the amount of flavonoids was lower than in the tepal. The amount of kaempferol-3-O-glucoside, as the most abundant compound, ranged between 1.72-7.44 mg/g. Crocin, crocetin, picrocrocin, and safranal were not detected in any of the analysed samples. Our results point out that saffron crocus by-products, particularly tepals might be considered as rich sources of flavonol glucosides. The data presented here can be useful in setting quality standards for plant parts of C. sativus that are currently considered as by-products of saffron production.
Collapse
Affiliation(s)
- Javad Mottaghipisheh
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Mohammad Mahmoodi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, 61357-43311, Iran
| | - Tivadar Kiss
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Attila Horváth
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Barbara Tóth
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary
| | - Mehdi Ayanmanesh
- Department of Horticultural Science, Islamic Azad University, Estahban Branch No. 69, Niroo Av., Satarkhan Str., 14536-33143, Tehran, Iran
| | - Amin Khamushi
- Department of Horticultural Science, Faculty of Agriculture, University of Mashhad, Mashhad, Iran
| | - Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720, Szeged, Hungary.
| |
Collapse
|
45
|
Dragoș D, Manea MM, Timofte D, Ionescu D. Mechanisms of Herbal Nephroprotection in diabetes mellitus. J Diabetes Res 2020; 2020:5710513. [PMID: 32695828 PMCID: PMC7362309 DOI: 10.1155/2020/5710513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/24/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of kidney morbidity. Despite the multilayered complexity of the mechanisms involved in the pathogenesis of DN, the conventional treatment is limited to just a few drug classes fraught with the risk of adverse events, including the progression of renal dysfunction. Phytoceuticals offer a promising alternative as they act on the many-sidedness of DN pathophysiology, multitargeting its intricacies. This paper offers a review of the mechanisms underlying the protective action of these phytoagents, including boosting the antioxidant capabilities, suppression of inflammation, averting the proliferative and sclerosing/fibrosing events. The pathogenesis of DN is viewed as a continuum going from the original offense, high glucose, through the noxious products it generates (advanced glycation end-products, products of oxidative and nitrosative stress) and the signaling chains consequently brought into action, to the harmful mediators of inflammation, sclerosis, and proliferation that eventually lead to DN, despite the countervailing attempts of the protective mechanisms. Special attention was given to the various pathways involved, pointing out the ability of the phytoagents to hinder the deleterious ones (especially those leading to, driven by, or associated with TGF-β activation, SREBP, Smad, MAPK, PKC, NF-κB, NLRP3 inflammasome, and caspase), to promote the protective ones (PPAR-α, PPAR-γ, EP4/Gs/AC/cAMP, Nrf2, AMPK, and SIRT1), and to favorably modulate those with potentially dual effect (PI3K/Akt). Many phytomedicines have emerged as potentially useful out of in vitro and in vivo studies, but the scarcity of human trials seriously undermines their usage in the current clinical practice-an issue that stringently needs to be addressed.
Collapse
Affiliation(s)
- Dorin Dragoș
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- Nephrology Clinic of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| | - Maria Mirabela Manea
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- National Institute of Neurology and Cerebrovascular Diseases, Şos. Berceni, Nr. 10-12, Sector 4, Bucharest 041914, Romania
| | - Delia Timofte
- Dialysis Department of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| | - Dorin Ionescu
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- Nephrology Clinic of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| |
Collapse
|
46
|
Asbaghi O, Soltani S, Norouzi N, Milajerdi A, Choobkar S, Asemi Z. The effect of saffron supplementation on blood glucose and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2019; 47:102158. [DOI: 10.1016/j.ctim.2019.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022] Open
|
47
|
Liu X, Zhang J, Li Y, Sun L, Xiao Y, Gao W, Zhang Z. Mogroside derivatives exert hypoglycemics effects by decreasing blood glucose level in HepG2 cells and alleviates insulin resistance in T2DM rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Ghaderi A, Rasouli‐Azad M, Vahed N, Banafshe HR, Soleimani A, Omidi A, Ghoreishi FS, Asemi Z. Clinical and metabolic responses to crocin in patients under methadone maintenance treatment: A randomized clinical trial. Phytother Res 2019; 33:2714-2725. [DOI: 10.1002/ptr.6445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Amir Ghaderi
- Department of Addiction Studies, School of MedicineKashan University of Medical Sciences Kashan Iran
- Clinical Research Development Unit – Matini/Kargarnejad HospitalKashan University of Medical Sciences Kashan Iran
| | - Morad Rasouli‐Azad
- Education and Psychology Department, College of EducationUniversity of Raparin Kurdistan Region Iraq
| | - Neda Vahed
- Addiction Department, School of Behavioral Sciences and Mental Health (Tehran Institute of Psychiatry)Iran University of Medical Sciences Tehran Iran
| | - Hamid Reza Banafshe
- Department of Addiction Studies, School of MedicineKashan University of Medical Sciences Kashan Iran
- Physiology Research CenterKashan University of Medical Sciences Kashan Iran
| | - Anvar Soleimani
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Abdollah Omidi
- Department of Clinical Psychology, School of MedicineKashan University of Medical Science Kashan Iran
| | - Fatemeh Sadat Ghoreishi
- Clinical Research Development Unit – Matini/Kargarnejad HospitalKashan University of Medical Sciences Kashan Iran
- Department of Psychiatry, School of MedicineKashan University of Medical Science Kashan Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical Sciences Kashan Iran
| |
Collapse
|