1
|
Zia T, Liaqat I, Shahzad KA, Lashari MH, Fouad D, Ataya FS, Alam S, Saeed A. Ameliorative effect of Fagonia indica-coated chitosan nanoparticles on the ovulatory pattern in PCOS rat model. J Ovarian Res 2025; 18:44. [PMID: 40050951 PMCID: PMC11887359 DOI: 10.1186/s13048-025-01635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Polycystic ovarian syndrome (PCOS) with wide-range prevalence, affecting 5-18% of females of reproductive age, and its substantive role as a primary etiological factor in anovulatory infertility, with up to 80% of such cases attributed to this syndrome having particular significance. OBJECTIVES The current research delineates the outcomes of a meticulous inquiry into the efficacy of Fagonia indica-coated chitosan nanoparticles (FICNPs) in ameliorating the prevalent and clinically consequential PCOS in female Wistar rats. METHODOLOGY FICNPs were synthesized by using a methanolic extract of F. indica and chitosan via the ion gelatin method. The nuanced interplay of hormonal profiles, ovarian histology, and miRNA expression in response to FICNPs intervention was investigated. Notable findings include an obvious decrease in luteinizing (LH) and testosterone hormone levels with high-dose FICNPs-treated subjects (100 mg/kg) compared to their untreated counterparts. RESULTS Follicle-stimulating hormone (FSH) and prolactin levels were markedly decreased in the untreated PCOS rat models, whereas, histopathological examination revealed augmented oocyte diameters in FICNP-treated rats, suggesting pronounced improvements in ovarian morphogenesis and follicular maturation. Additionally, real-time quantitative PCR analysis revealed disparate miRNA expression profiles, prominently implicating rno-miR-30c-2-3p, rno-miR-146b-5p, rno-miR-486, and rno-miR-3586-3p in the therapeutic efficacy of FICNPs. Notably, the progeny of FICNPs-treated subjects (F1 generation) showed normalized ovulatory activity, substantiating the sustained therapeutic potential of FICNPs. CONCLUSION Collectively, these findings underscore the auspicious promise of FICNPs as a paradigm-shifting therapeutic modality for mitigating the complex pathophysiology of PCOS, thereby addressing its formidable prevalence and clinical import, with the potential to surpass conventional pharmacotherapy modalities.
Collapse
Affiliation(s)
- Threem Zia
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Irfana Liaqat
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| | - Khawar Ali Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, School of Medicine, Tongji University, Shanghai, China
| | | | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saman Alam
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Areeba Saeed
- Physiology and Toxicology Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Xi C, Li W, Xu Z, Xie J, Gao X, Feng D, Tian Y, Song S. Effects of Heat Treatment on Physicochemical Properties of Moringa oleifera Lam. Leaf Protein. Int J Mol Sci 2025; 26:1647. [PMID: 40004111 PMCID: PMC11855925 DOI: 10.3390/ijms26041647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
M. oleifera leaves represent a novel and nutritious food. Prior research has demonstrated that M. oleifera leaves can elicit allergic responses in BALB/c mice. Based on these findings, further studies were conducted to investigate the effects of heat treatment on the allergenicity, particle size, zeta potential, total sulfhydryl (TSH) content, hydrophilicity and hydrophobicity, ultraviolet spectrum, and intrinsic fluorescence spectrum of M. oleifera leaf protein. Additionally, in vitro digestion experiments were carried out to gain further insights into the protein's behavior under these conditions. The experiment simulated the alterations in M. oleifera leaf protein during the processes of cooking and digestion. The findings of this experiment can provide certain guidance for the processing of M. oleifera leaf products. The hydrophilicity, hydrophobicity, transmembrane region, antigen index, calcium binding site, spatial structure, and homology of M. oleifera leaf fructose 1,6 bisphosphate aldolase (FBA) were simulated and calculated based on the amino acid sequence of the 36 kDa allergen. These parameters collectively serve to indicate the allergenic activity of the peptide. The findings of the analysis align with the outcomes of the sensitization experiments, suggesting that the FBA of M. oleifera leaves is indeed consistent. In conjunction with the heat treatment experiments, this research can inform the preparation of M. oleifera leaf foods and provide a foundation for further investigation into M. oleifera leaf allergens.
Collapse
Affiliation(s)
- Chuyu Xi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Wenjie Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Zhiguo Xu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoyu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Dan Feng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shuang Song
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.X.); (W.L.); (Z.X.); (J.X.); (X.G.); (D.F.)
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Miller G, Grundmann O. A Narrative Review of Moringa oleifera Lam., Moringaceae, Swietenia mahagoni L. Jacq., Meliaceae, and Momordica charantia L., Cucurbitaceae Plants Found in The Bahamas as Antidiabetes Phytomedicine. J Med Food 2025; 28:119-126. [PMID: 39660368 DOI: 10.1089/jmf.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Moringa (Moringa oleifera Lam., Moringaceae), West Indian mahogany (Swietenia mahagoni [L.] Jacq., Meliaceae), and Cerasee (Momordica charantia L., Cucurbitaceae) are plants that are used for medicinal purposes in The Bahamas. They have various medicinal uses, including treating diabetes, anemia, inflammation, dermatological issues, backaches, cold, flu, and gastrointestinal problems. This review aims to summarize the current knowledge about natural products found in The Bahamas that can be used to treat diabetes mellitus. The search terms "Moringa oleifera Lam.," "Swietenia mahagoni (L.)," "Momordica charantia L.," "Tecoma stans," "Persea americana," "Psidium guajava," "Hamelia patens," and "Carica papaya L." in combination with "diabetes" were utilized to obtain pertinent data by searching PubMed and Google Scholar. Moringa oleifera Lam. significantly decreased fasting glucose levels in rodents after 3 months of consumption. The ethanolic extract of S. mahagoni seeds and the methanol extract of its bark can decrease blood glucose levels. Momordica charantia L. and H. patens Jacq. produce the same hypoglycemic effects as metformin. The plant extracts and compounds of T. stans (L.) Juss. ex Kunth, P. americana Mill., P. guajava L., and C. papaya L. showed diverse pharmacological activities such as reducing fasting glucose, lowering blood pressure and blood sugar, decreasing total triglycerides and total cholesterol, and improving structural damage of cardiac muscles caused by diabetes. Literature analysis reveals that the diverse pharmacological activities of various plants native to The Bahamas show promise as a medicinal food in the treatment of diabetes.
Collapse
Affiliation(s)
- Gloria Miller
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Gul P, Khan J, Li Q, Liu K. Moringa oleifera in a modern time: A comprehensive review of its nutritional and bioactive composition as a natural solution for managing diabetes mellitus by reducing oxidative stress and inflammation. Food Res Int 2025; 201:115671. [PMID: 39849793 DOI: 10.1016/j.foodres.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications. MO is a multi-purpose plant that has an impressive range of nutritional components including proteins, amino acids (Essential and non-essential amino acids), carbs, fats, fiber, vitamins, and phenolic compounds. In the modern era, scientists have paid close attention to the anti-diabetic, anti-oxidative and anti-inflammatory attributes and other medicinal properties, of MO leaves and seeds. MO leaves and seeds have modulatory effects on DM that are likely influenced by multiple mechanisms. Some of these mechanisms include direct effects, but other mechanisms involve inhibition the production of inflammatory markers, modulation of the gut microbiome, reduction of OS, enhancement of glucose metabolism through hexokinase and glucose 6-phosphate dehydrogenase, improve insulin sensitivity and glucose uptake in the liver and muscles. Overall, these findings suggest that MO may play a role in lowering the risk of DM and its related outcomes. The purpose of this review is to provide a comprehensive overview of the nutritional and bioactive profiles of MO leaves and seeds, as well as to investigate their possible anti-diabetic effects by modulating oxidative stress and inflammation. Our results indicate that MO may be a beneficial natural resource for management of DM and related issues by lowering oxidative stress and inflammation. Furthermore, studies on MO has yielded promising findings in diabetic animal models, indicating antioxidant and anti-inflammatory properties. However, human trials have shown less solid results, most likely due to a lack of studies, different techniques, and dosages. More clinical research is needed to fully understand MO's anti-diabetic potential, notably in lowering oxidative stress and inflammation, both of which are critical in controlling diabetes complications.
Collapse
Affiliation(s)
- Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001 China.
| |
Collapse
|
5
|
Mohamad EA, Ahmed SM, Masoud MA, Mohamed FA, Mohammed HS. Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats. Curr Pharm Biotechnol 2025; 26:289-301. [PMID: 38918977 DOI: 10.2174/0113892010303097240605105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases. METHOD The current study is intended to explore the cardioprotective effect of ethanolic Moringa Oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart. RESULTS It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status. CONCLUSION Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samya Mahmoud Ahmed
- Biochemistry Departement, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Fatma Adel Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Boudjema K, Chouala K, Khelef Y, Chenna H, Badraoui R, Boumendjel M, Boumendjel A, Messarah M. Antioxidant Effects of Moringa oleifera Against Abamectin-Induced Oxidative Stress in the Brain and Erythrocytes of Rats. Chem Biodivers 2024:e202402709. [PMID: 39724495 DOI: 10.1002/cbdv.202402709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
The current study was conducted to explore the phytochemical composition and in vitro antioxidant activity of Moringa oleifera leaves aqueous extract (MOLE), as well as its in vivo modulatory effects on abamectin (ABM)-induced oxidative stress in rat erythrocytes and brain tissue. Following extraction, the total phenolic, flavonoid, condensed tannin and ortho-diphenolic contents of MOLE were determined. High-performance liquid chromatography (HPLC) analysis allowed the identification and the quantification of 12 bioactive compounds: gallic acid, chlorogenic acid, caffeic acid, vanillic acid, quercetin, ferulic acid, ascorbic acid, alizarin, hesperidin, neohesperidin, resveratrol, and naringin. In vitro study: the assessment of the antioxidant activity of MOLE on the 2,2-diphenyl-1-picrylhydrazyl radical DPPH and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS), its ferric reducing power and its antioxidant effect on the β-carotene bleaching indicated that MOLE exhibited potent antioxidant activity, with an IC50 of 0.125 mg/mL against DPPH radical, and an IC50 of 0.06 mg/mL against ABTS radical. It also demonstrated notable ferric-reducing ability, with an EC50 of 1.4 mg/mL and a strong inhibition of β-carotene bleaching with an IC50 of 1.36 mg/mL. In vivo study: Twenty rats were equally divided into four groups. The first group served as a control and received distilled water by gavage. The second group (negative control) received ABM in drinking water at a dose of 1 mg/kg body weight. The third group received MOLE at a dose of 200 mg/kg of body weight by gavage. The fourth group received a combination of ABM and MOLE in the same manner and doses as described, for 3 weeks. Body weight, brain relative and absolute weights, and nitric oxide levels were not affected by ABM. However, ABM significantly inhibited acetylcholinesterase (AChE) activity (p < 0.001), decreased the activities of antioxidant enzymes, specifically superoxide dismutase (SOD) and glutathione S-transferase (GST) in cerebral tissue, and catalase (CAT) in erythrocytes (p < 0.001). ABM also decreased reduced glutathione (GSH) levels in both the brain (p < 0.001) and erythrocytes (p < 0.05). In addition, malondialdehyde (MDA) levels significantly increased in the brains of ABM-intoxicated rats (p < 0.01) compared to the control group. These results were accompanied by histopathological changes, notably the remarkable vacuolization of neuropil in brain tissue. Supplementation with MOLE in ABM-treated rats significantly ameliorated brain AChE (p < 0.05) and GST activities, decreased MDA content, and improved GSH levels in both brain and erythrocyte homogenates (p < 0.01). MOLE also restored the histopathological alterations observed in the ABM group. Computational modeling revealed that some of the tested molecules, including some present in the studied extract, bound human peroxiredoxin 5, CAT, and glutathione peroxidase with acceptable affinities, which, together with the established molecular interactions and tight embedding satisfactory support the in vivo results. Thus, it may be concluded that ABM impairs brain and erythrocyte function through oxidative damage, and these effects could be prevented by MOLE, likely due to its antioxidant activity.
Collapse
Affiliation(s)
- Kahina Boudjema
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria
| | - Khadidja Chouala
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria
| | - Yahia Khelef
- Department of Cellular and Molecular Biology, Faculty of Natural Science and Life, El Oued University, El-Oued, Algeria
| | - Houssem Chenna
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria
| | - Riadh Badraoui
- Laboratory of General Biology, Department of Biology, University of Ha'il, Ha'il, Saudi Arabia
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis, Tunisia
| | - Mahieddine Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria
| | - Amel Boumendjel
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria
| | - Mahfoud Messarah
- Laboratory of Biochemistry and Environmental Toxicology, Faculty of Sciences, University of Badji Mokhtar, Annaba, Algeria
| |
Collapse
|
7
|
El-Sherbiny GM, Alluqmani AJ, Elsehemy IA, Kalaba MH. Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves. Sci Rep 2024; 14:30485. [PMID: 39681592 DOI: 10.1038/s41598-024-80700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Bacterial resistance to antibiotics remains a significant clinical challenge, contributing to persistently high rates of morbidity and mortality. Achieving treatment success is increasingly difficult, necessitating the evaluation of new antibiotics and complementary approaches, including source control and alternative therapies. This study aimed to investigate the antibacterial, antioxidant, cytotoxic, and phytochemical properties of Moringa oleifera leaf extract using high-performance liquid chromatography (HPLC), and to evaluate the pharmacokinetic properties of its major compound. The extract demonstrated strong antibacterial activity against standard strains and foodborne bacterial species. It also showed significant antioxidant potential, supported by the presence of high concentrations of phenolic and flavonoid compounds. HPLC analysis identified multiple bioactive compounds, with quercetin as the predominant component. The cytotoxicity study confirmed the safety of the extract at low and moderate concentrations, and ADMET analysis indicated favorable pharmacokinetic characteristics of quercetin. In conclusion, Moringa oleifera exhibits promising potential for medical and food industry applications due to its significant antibacterial and antioxidant activities, combined with a strong safety profile and rich phytochemical content.
Collapse
Affiliation(s)
- Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Amira J Alluqmani
- Biology Department, Umm Al-Qura University, 21421, Makkah, Saudi Arabia
| | - Islam A Elsehemy
- Chemistry of Natural and Microbial Products, National Research Centre, Giza, Egypt
| | - Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
8
|
Bibi N, Rahman N, Ali MQ, Ahmad N, Sarwar F. Nutritional value and therapeutic potential of Moringa oleifera: a short overview of current research. Nat Prod Res 2024; 38:4261-4279. [PMID: 38043118 DOI: 10.1080/14786419.2023.2284862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023]
Abstract
A member of the Moringaceae family, Moringa Oleifera Lam is a perennial deciduous tropical tree known as the 'Miracle Tree' for its medicinal and nutritional benefits. Food and nutrition are crucial aspects of the development and maintenance of healthy health. Moringa oleifera is a multi-purpose herbal bush that is used as both human food and a medical alternative all over the world. Various parts of the tree are used to treat chronic diseases such as hypertension, heart disease, inflammation, oxidative stress, diabetes, and cancer. Moringa is an excellent source of essential nutrients and has been found to have a significant impact on improving nutritional deficiencies in populations with limited access to food. Moringa oleifera contains essential amino acids, carotenoids, minerals, fats, carbohydrates, proteins, phytochemicals, vitamins, and fibre. Moringa offers nutritional and economic advantages, medicinal and therapeutic uses, and future biological potential for human well-being.
Collapse
Affiliation(s)
- Nabila Bibi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Nadia Rahman
- Department of Zoology, Virtual University of Pakistan, Islamabad, Pakistan
| | - Muhammad Qasim Ali
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Noormazlinah Ahmad
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Farzana Sarwar
- Faculty of food Science & Nutrition, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
9
|
Wei S, Chen R, Liu X, Ma H, Peng Y, Wu X, An Y, Wang X, Luo P. Aromatherapy was used to explore the sedative and hypnotic effects of Moringa seed essential oil on insomnia rats. Food Sci Nutr 2024; 12:10463-10476. [PMID: 39723058 PMCID: PMC11666963 DOI: 10.1002/fsn3.4484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 12/28/2024] Open
Abstract
Moringa is a type of plant that is used both for medicinal and food. Moringa seed (MS) are rich in volatile oil and have initially been employed to treat diseases of the nervous system. Insomnia, a prevalent neurological disorder, has led to this study's aim: to extract the essential oil from MS and analyze its potential to improve sleep. This study utilized petroleum ether for the thermal extraction of the essential oil from MS, which was then subjected to compositional analysis using Gas Chromatograph Mass Spectrometer (GC-MS). P-chlorophenyl alanine (PCPA) was used to induce an insomnia model in Sprague-Dawley (SD) rats. Following the successful establishment of the model, the MS essential oil was administered at concentrations of 10%, 5%, and 2.5% to investigate its sedative and hypnotic effects. The efficacy of the MS essential oil was assessed by observing the general condition of rats in each group, conducting an open field test, a pentobarbital sodium righting test, and measuring the serum 5-HT (5-hydroxytryptamine) levels and hypothalamic GABA (γ-aminobutyric acid) content. GC-MS analysis of the MS essential oil revealed a rich composition, including oleic acid, palmitoleic acid, stigmasterol, and γ-stigmasterol, among other substances. Through the assessment of the rats' general condition, behavioral tests, and blood biochemical assays, it was inferred that MS essential oil aromatherapy can reduce the rat's locomotor activity, increase their interest in activity and exploration, enhance the serum 5-HT levels, and elevate hypothalamic GABA content. Consequently, it can be concluded that MS essential oil has a sedative and hypnotic effect.
Collapse
Affiliation(s)
- Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Ruijie Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Haoran Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Xiefei Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Yong An
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Xinru Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry, School of Public HealthGuizhou Medical UniversityGuiyangGuian New AreaChina
| |
Collapse
|
10
|
Elmalawany AM, Osman GY, Mohamed AH, Khalaf FM, Yassien RI. Schistosomicidal Effects of Moringa oleifera Seed Oil Extract on Schistosoma mansoni-Infected Mice. Parasite Immunol 2024; 46:e13070. [PMID: 39494757 DOI: 10.1111/pim.13070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024]
Abstract
Schistosomiasis causes severe hepatic fibrosis, making it a global health issue. Moringa oleifera seed oil extract, which had antiparasitic, anti-inflammatory and antioxidant effects, was investigated as an alternative treatment. The 50 mice were divided into control, infected, praziquantel-treated, M. oleifera seed oil extract-treated and combined treatment groups. These treatments were examined for their effects on egg granulomas, hepatic enzymes, total protein, albumin, antioxidant enzymes and pro-inflammatory cytokines. M. oleifera seed oil and/or PZQ significantly reduced egg numbers, granuloma size and liver histopathology. M. oleifera seed oil reduced hepatic enzyme activity, increased total protein and albumin, and increased antioxidant enzyme activity while decreasing malondialdehyde. M. oleifera seed oil reduced the levels of pro-inflammatory cytokines. M. oleifera seed oil may treat schistosomiasis instead of PZQ due to its antifibrotic, immunomodulatory and schistosomicidal properties.
Collapse
Affiliation(s)
- Alshimaa M Elmalawany
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shibin Elkom, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Fatema M Khalaf
- Zoology Department, Faculty of Science, Menoufia University, Shibin Elkom, Egypt
| | - Rania I Yassien
- Histology Department, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| |
Collapse
|
11
|
Elik G, Oktay S, Turkyilmaz IB, Alev-Tuzuner B, Magaji UF, Sacan O, Yanardag R, Yarat A. Dermatoprotective effect of Moringa oleifera leaf extract on sodium valproate-induced skin damage in rats. Drug Chem Toxicol 2024; 47:1257-1266. [PMID: 38984369 DOI: 10.1080/01480545.2024.2369586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Valproic acid is an antiepileptic drug associated with skin-related issues like excessive hair growth, hair loss, and skin rashes. In contrast, Moringa oleifera, rich in nutrients and antioxidants, is gaining popularity worldwide for its medicinal properties. The protective properties of M. oleifera extract against skin-related side effects caused by valproic acid were investigated. Female rats were divided into control groups and experimental groups such as moringa, sodium valproate, and sodium valproate + moringa groups. A 70% ethanolic extract of moringa (0.3 g/kg/day) was given to moringa groups, and a single dose of sodium valproate (0.5 g/kg/day) was given to valproate groups for 15 days. In the skin samples, antioxidant parameters (such as glutathione, glutathione-S-transferase, superoxide dismutase, catalase, and total antioxidant capacity), as well as oxidant parameters representing oxidative stress (i.e. lipid peroxidation, sialic acid, nitric oxide, reactive oxygen species, and total oxidant capacity), were examined. Additionally, boron, hydroxyproline, sodium-potassium ATPase, and tissue factor values were determined. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was also carried out for protein analysis in the skin samples. The results showed that moringa could increase glutathione, total antioxidant capacity, sodium-potassium ATPase, and boron levels, while decreasing lipid peroxidation, sialic acid, nitric oxide, total oxidant capacity, reactive oxygen species, hydroxyproline, and tissue factor levels. These findings imply that moringa possesses the potential to mitigate dermatological side effects.
Collapse
Affiliation(s)
- Gülsüm Elik
- State Hospital, Diyarbakir, Türkiye
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| | - Sehkar Oktay
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| | - Ismet Burcu Turkyilmaz
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Burcin Alev-Tuzuner
- Faculty of Dentistry, Biochemistry Department, Istanbul Gelisim University, Istanbul, Türkiye
| | - Umar Faruk Magaji
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi, Nigeria
| | - Ozlem Sacan
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpaşa, Istanbul, Türkiye
| | - Aysen Yarat
- Faculty of Dentistry, Basic Medical Sciences, Biochemistry, Marmara University, Istanbul, Türkiye
| |
Collapse
|
12
|
Bian X, Wang L, Ma Y, Yu Y, Guo C, Gao W. A Flavonoid Concentrate from Moringa Oleifera Lam. Leaves Extends Exhaustive Swimming Time by Improving Energy Metabolism and Antioxidant Capacity in Mice. J Med Food 2024; 27:887-894. [PMID: 39052664 DOI: 10.1089/jmf.2023.k.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Moringa oleifera Lam. leaves contain various nutrients and bioactive compounds. The present study aimed to assess the anti-fatigue capacity of a flavonoids concentrate purified from M. oleifera Lam. leaves. The total flavonoids in the purified extract were analyzed by ultra-performance liquid chromatography electrospray ionization tandem mass spectrometry (UPLC-MS/MS). The mice were supplemented with purified M. oleifera Lam. leaf flavonoid-rich extract (MLFE) for 14 days. The weight-loaded forced swimming test was used for evaluating exercise endurance. The 90-min non-weight-bearing swimming test was carried out to assess biochemical biomarkers correlated to fatigue and energy metabolism. UPLC-MS/MS analysis identified 83 flavonoids from MLFE. MLFE significantly increased the swimming time by 60%. Serum lactate (9.9 ± 0.9 vs. 8.9 ± 0.7), blood urea nitrogen (BUN) (8.8 ± 0.8 vs. 7.2 ± 0.5), and nonesterified fatty acid (NEFA) (2.4 ± 0.2 vs. 1.7 ± 0.3) were significantly elevated; phosphoenolpyruvate carboxykinase (PEPCK), glucokinase (GCK), and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression were significantly downregulated; and heme oxygenase 1 mRNA expression was significantly upregulated in muscle after swimming. MLFE supplement significantly decreased serum lactate (8.0 ± 1.0 vs. 9.9 ± 0.9), BUN (8.6 ± 0.4 vs. 8.9 ± 0.8), and NEFA (2.3 ± 0.4 vs. 2.4 ± 0.2) and increased the protein and mRNA expression of GCK, PEPCK, and Nrf2. The enhancement of glucose metabolism and antioxidant function by MLFE contributes partly to its anti-fatigue action.
Collapse
Affiliation(s)
- Xiangyu Bian
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lingling Wang
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yuying Ma
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yijing Yu
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Changjiang Guo
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Weina Gao
- Department of Nutrition and Food Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
13
|
Fahmy NM, Fayez S, Mohamed RW, Elissawy AM, Eldahshan OA, Zengin G, Singab ANB. Moringa oleifera flowers: insights into their aroma chemistry, anti-inflammatory, antioxidant, and enzyme inhibitory properties. BMC Complement Med Ther 2024; 24:286. [PMID: 39061039 PMCID: PMC11282830 DOI: 10.1186/s12906-024-04579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Moringa oleifera is a highly nutritious plant widely used in traditional medicine. RESULTS The aroma constituents present in the fresh flowers of M. oleifera versus the hydrodistilled oil and hexane extract were studied using GC-MS. Aldehydes were the major class detected in the fresh flowers (64.75%) with E-2-hexenal being the predominant component constituting > 50%. Alkane hydrocarbons, monoterpenes, and aldehydes constituted > 50% of the hydrodistilled oil, while alkane hydrocarbons exclusively constitute up to 65.48% of the hexane extract with heptacosane being the major component (46.2%). The cytotoxicity of the hexane extract was assessed on RAW 264.7 macrophages using the MTT assay which revealed no significant cytotoxicity at concentrations of 1 µg/mL and displayed IC50 value at 398.53 µg/mL as compared to celecoxib (anti-inflammatory drug) with IC50 value at 274.55 µg/ml. The hexane extract of Moringa flowers displayed good anti-inflammatory activity through suppression of NO, IL-6, and TNF-α in lipopolysaccharide-induced RAW 264.7 macrophages. The total phenolic and flavonoid content in the hexane extract was found to be 12.51 ± 0.28 mg GAE/g extract and 0.16 ± 0.01 mg RuE/g extract, respectively. It displayed moderate antioxidant activity as indicated by the in vitro DPPH, ABTS, CUPRAC, FRAP, and phosphomolybdenum (PBA) assays. No metal chelating properties were observed for the extract. The enzyme inhibitory potential of the hexane extract was evaluated on acetyl- and butyrylcholinesterases (for neuroprotective assessment), α-amylase and α-glucosidase (for antihyperglycemic assessment), and tyrosinase (for dermoprotective assessment) revealing promising results on cholinesterases, tyrosinase, and α-glucosidase. CONCLUSION Our findings suggested that M. oleifera leaves can be considered as a multidirectional ingredient for preparing functional applications.
Collapse
Affiliation(s)
- Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Radwa Wahid Mohamed
- Department of Biochemistry and Nutrition, Women's College for Arts Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Türkiye
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
14
|
Srisaisap M, Boonserm P. Anticancer efficacy of biosynthesized silver nanoparticles loaded with recombinant truncated parasporin-2 protein. Sci Rep 2024; 14:15544. [PMID: 38969695 PMCID: PMC11226667 DOI: 10.1038/s41598-024-66650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024] Open
Abstract
Bacterial toxins have received a great deal of attention in the development of cancer treatments. Parasporin-2 (PS2Aa1 or Mpp46Aa1) is a Bacillus thuringiensis parasporal protein that preferentially destroys human cancer cells while not harming normal cells, making it a promising anticancer treatment. With the efficient development and sustainable silver nanoparticles (AgNPs) synthesis technology, the biomedical use of AgNPs has expanded. This study presents the development of a novel nanotoxin composed of biosynthesized silver nanoparticles loaded with the N-terminal truncated PS2Aa1 toxin. MOEAgNPs were synthesized using a biological method, with Moringa oleifera leaf extract and maltose serving as reducing and capping agents. The phytochemicals present in M. oleifera leaf extract were identified by GC-MS analysis. MOEAgNPs were loaded with N-terminal truncated PS2Aa1 fused with maltose-binding protein (MBP-tPS2) to formulate PS2-MOEAgNPs. The PS2-MOEAgNPs were evaluated for size, stability, toxin loading efficacy, and cytotoxicity. PS2-MOEAgNPs demonstrated dose-dependent cytotoxicity against the T-cell leukemia MOLT-4 and Jurkat cell lines but had little effect on the Hs68 fibroblast or normal cell line. Altogether, the current study provides robust evidence that PS2-MOEAgNPs can efficiently inhibit the proliferation of T-cell leukemia cells, thereby suggesting their potential as an alternative to traditional anticancer treatments.
Collapse
Affiliation(s)
- Monrudee Srisaisap
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom, 73170, Thailand
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University, Phuttamonthon, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
15
|
Garg P, Pundir S, Ali A, Panja S, Chellappan DK, Dua K, Kulshrestha S, Negi P. Exploring the potential of Moringa oleifera Lam in skin disorders and cosmetics: nutritional analysis, phytochemistry, geographical distribution, ethnomedicinal uses, dermatological studies and cosmetic formulations. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3635-3662. [PMID: 38055069 DOI: 10.1007/s00210-023-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Moringa oleifera Lam. is a pan-tropical plant well known to the ancient world for its extensive therapeutic benefits in the Ayurvedic and Unani medical systems. The ancient world was familiar with this tree, but it has only lately been rediscovered as a multifunctional species with a huge range of possible therapeutic applications. It is a folk remedy for skin diseases, edema, sore gums, etc. This review comprises the history, ethnomedicinal applications, botanical characteristics, geographic distribution, propagation, nutritional and phytochemical profile, dermatological effects, and commercially available cosmeceuticals of Moringa oleifera Lam.Compilation of all the presented data has been done by employing various search engines like Science Direct, Google, PubMed, Research Gate, EBSCO, SciVal, SCOPUS, and Google Scholar.Studies on phytochemistry claim the presence of a variety of substances, including fatty acids, phenolic acids, sterols, oxalates, tocopherols, carotenoids, flavonoids, flavonols glycosides, tannins, terpenoids, terpene, saponins, phylates, alkaloids, glucosinolates, glycosides, and isothiocyanate. The pharmacological studies have shown the efficacy of Moringa oleifera Lam. as an antibacterial, antifungal, anti-inflammatory, antioxidant, anti-atopic dermatitis, antipsoriatic, promoter of wound healing, effective in treating herpes simplex virus, photoprotective, and UV protective. As a moisturizer, conditioner, hair growth promoter, cleanser, antiwrinkle, anti-aging, anti-acne, scar removal, pigmentation, and control for skin infection, sores, as well as sweating, it has also been utilized in a range of cosmeceuticals.he Moringa oleifera Lam. due to its broad range of phytochemicals can be proven boon for the treatment of dermatological disorders.
Collapse
Affiliation(s)
- Prakrati Garg
- School of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
- Center for Omics and Biodiversity Research, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Aaliya Ali
- School of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
- Center for Omics and Biodiversity Research, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Sebika Panja
- School of Bioengineering and Food Technology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Saurabh Kulshrestha
- School of Applied Sciences and Biotechnology, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India.
- Center for Omics and Biodiversity Research, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India.
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
16
|
Mishra AK, S L N, Jain A, Jagtap CY, Dane G, Paroha S, Sahoo PK. Effectiveness of Semecarpus anacardium Linn. fruits in cancer and inflammatory diseases: A mini review. Fitoterapia 2024; 175:105978. [PMID: 38685508 DOI: 10.1016/j.fitote.2024.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Semecarpus anacardium Linn. (SCA) fruits are found in India's sub-Himalayan, tropical, and central regions and have been utilized for centuries in traditional Indian medicine to treat various ailments. In recent times, a growing body of research has emerged indicating that the extracts and active components found in SCA fruits possess qualities that can potentially inhibit the development of cancer and inflammatory markers. PURPOSE This study aims to provide a comprehensive review of the existing literature on the pharmacological mechanisms underlying the effects of extracts and phytochemicals of SCA fruits in cellular, animal models, and clinical trials of cancer and inflammatory diseases. METHODS A comprehensive literature search was conducted utilizing several databases, including PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews using the keywords "Semecarpus anacardium", "Anti-inflammatory," and "cancer". The collection of articles started with establishing the database and continued until April 2024. RESULTS Out of 1130 retrieved database records, 316 pertained to systematic reviews. The remaining 814 records focused on examining the anticancer and anti-inflammatory properties of SCA fruits. In the course of these investigations, the four primary cancer types linked to SCA fruits are identified as lung cancer, hepatocellular carcinoma, breast cancer, and blood cancer. CONCLUSION The findings will provide more support for investigating SCA fruits in cancer treatment and will furnish thorough reference data and recommendations for future studies on this botanical medication.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Neha S L
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333001, India
| | | | - Ganesh Dane
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Shweta Paroha
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
17
|
Agba TD, Yahaya-Akor NO, Kaur A, Ledbetter M, Templeman J, Wilkin JD, Onarinde BA, Oyeyinka SA. Flour Functionality, Nutritional Composition, and In Vitro Protein Digestibility of Wheat Cookies Enriched with Decolourised Moringa oleifera Leaf Powder. Foods 2024; 13:1654. [PMID: 38890885 PMCID: PMC11171687 DOI: 10.3390/foods13111654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
This study investigated the potential of decolourised Moringa oleifera leaf powder (D-MOLP) in cookies to meet consumer demand for healthier food options, addressing the issue of low acceptability due to its green colour. D-MOLP and its non-decolourised counterpart (ND-MOLP) were incorporated into wheat flour to produce cookies. The results showed that neither decolourisation nor addition level (2.5 or 7.5%) significantly affected water activity or flour functionality, though slight differences in cookie colour were observed. The Moringa-enriched cookies exhibited an improved spread ratio as well as higher protein, phenolic content, antioxidant activity, and in vitro protein digestibility compared to control cookies. The detected phenolic acids included chlorogenic, ferulic, and fumaric acids, with the D-MOLP cookies showing superior nutritional properties, likely due to nutrient concentration and reduced antinutrients. Notably, glutamic acid was the major amino acid in all the cookies, but only lysine significantly increased across the cookie types. This suggests D-MOLP could be a promising alternative for food enrichment. Future research should address the consumer acceptability, volatile components, and shelf-life of D-MOLP-enriched cookies.
Collapse
Affiliation(s)
- Temitayo D. Agba
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK; (T.D.A.); (N.O.Y.-A.); (A.K.); (B.A.O.)
| | - Nurat O. Yahaya-Akor
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK; (T.D.A.); (N.O.Y.-A.); (A.K.); (B.A.O.)
| | - Amarjit Kaur
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK; (T.D.A.); (N.O.Y.-A.); (A.K.); (B.A.O.)
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK; (M.L.); (J.T.); (J.D.W.)
| | - James Templeman
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK; (M.L.); (J.T.); (J.D.W.)
| | - Jonathan D. Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK; (M.L.); (J.T.); (J.D.W.)
| | - Bukola A. Onarinde
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK; (T.D.A.); (N.O.Y.-A.); (A.K.); (B.A.O.)
| | - Samson A. Oyeyinka
- Centre of Excellence in Agri-Food Technologies, National Centre for Food Manufacturing, University of Lincoln, Holbeach PE12 7PT, UK; (T.D.A.); (N.O.Y.-A.); (A.K.); (B.A.O.)
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, Gauteng, South Africa
| |
Collapse
|
18
|
El-Beltagi HS, Rageb M, El-Saber MM, El-Masry RA, Ramadan KM, Kandeel M, Alhajri AS, Osman A. Green synthesis, characterization, and hepatoprotective effect of zinc oxide nanoparticles from Moringa oleifera leaves in CCl 4-treated albino rats. Heliyon 2024; 10:e30627. [PMID: 38765133 PMCID: PMC11101797 DOI: 10.1016/j.heliyon.2024.e30627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Hepatotoxin carbon tetrachloride (CCl4) causes liver injury. This research aims to create ZnO-NPs using green synthesis from Moringa oleifera (MO) leaves aqueous extract, and chemically prepared and confirming the synthesis by specialized equipment analysis. The sizes formed of ZnO-NPs were 80 and 55 nm for chemical and green methods, respectively. In addition, to study their ability to protect Wistar Albino male rats against oxidative stress exposed to carbon tetrachloride. MO leaf aqueous extract, green synthesized ZnO-NPs, and ZnO-NPs prepared chemically at 100 and 200 mg/kg BW per day were investigated for their hepatoprotective effects on liver enzyme biomarkers, renal biomarkers, antioxidant enzymes, lipid peroxidation, hematological parameters, and histopathological changes. Compared to the control group, all liver and kidney indicators were considerably elevated after the CCl4 injection. However, the activity of antioxidant enzymes in the liver was significantly reduced after the CCl4 injection. These outcomes indicate that MO leaf aqueous extract, greenly synthesized ZnO-NPs, and ZnO-NPs chemically prepared can restore normal liver and kidney function and activity, as well as hematological and antioxidant enzymes. The highest impact on enhancing the hepatoprotective effect was recorded for rats that received green synthesized ZnO-NPs. The increased drug delivery mechanism of green synthesized ZnO-NPs resulted in a higher protective effect than that of MO leaf aqueous extract.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Biochemistry Department, Cairo University, Giza, 12613, Egypt
| | - Marwa Rageb
- Biochemistry Department, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud M. El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, 11753, Egypt
| | | | - Khaled M.A. Ramadan
- Central Laboratories, Department of Chemistry, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Agricultural Biochemistry, Ain Shams University, P.O. Box 68, Hadayek Shobra, Cairo, 11241, Egypt
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Pharmacology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ahlam Saleh Alhajri
- Food Science and Nutrition Department, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Ali Osman
- Biochemistry Department, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
19
|
Cergel E, Tuzuner BA, Turkyilmaz IB, Oktay S, Magaji UF, Sacan O, Yanardag R, Yarat A. Reversal of Valproate-Induced Major Salivary Gland Changes By Moringa Oleifera Extract in Rats. Chem Biodivers 2024; 21:e202301959. [PMID: 38469951 DOI: 10.1002/cbdv.202301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.
Collapse
Affiliation(s)
- Eda Cergel
- Biochemistry Master of Science Student, Health Sciences Institute, Marmara University, Maltepe, Istanbul, Turkiye
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Halic University, Eyupsultan, Istanbul, Turkiye
| | - Burcin Alev Tuzuner
- Department of Biochemistry, Faculty of Dentistry, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
- Life Sciences and Biomedical Engineering Application and Research Centre, Istanbul Gelisim University, Avcilar, Istanbul, Turkiye
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Sehkar Oktay
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| | - Umar Faruk Magaji
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
- Department of Biochemistry and Molecular Biology, Federal University Birnin Kebbi, Birnin Kebbi, Kebbi State, Nigeria
| | - Ozlem Sacan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkiye
| | - Aysen Yarat
- Department of Basic Medical Sciences, Biochemistry, Faculty of Dentistry, Marmara University, Maltepe, Istanbul, Turkiye
| |
Collapse
|
20
|
Klimek-Szczykutowicz M, Gaweł-Bęben K, Rutka A, Blicharska E, Tatarczak-Michalewska M, Kulik-Siarek K, Kukula-Koch W, Malinowska MA, Szopa A. Moringa oleifera (drumstick tree)-nutraceutical, cosmetological and medicinal importance: a review. Front Pharmacol 2024; 15:1288382. [PMID: 38370483 PMCID: PMC10869624 DOI: 10.3389/fphar.2024.1288382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024] Open
Abstract
Moringa oleifera Lam. (Moringaceae) is a species of tree with an increasing utility, occurring naturally mainly in Pakistan and northern India. M. oleifera is currently cultivated in Africa, South America, Asia and the Middle East. The usage of its leaves, seed oil, bark, fruits, flowers and roots has positive opinions of FDA (American Food and Drug Administration), EFSA (European Food Safety Authority) and CosIng (Cosmetic Ingredients database). The chemical composition of M. oleifera is dominated by: proteins (consisting mainly of amino acids such as arginine or serine), fatty acids (omega-3 and omega-6), vitamins (vitamin A, B and C and tocopherols), mineral salts (including several bioelements, such as calcium, magnesium, sodium, and potassium), valuable polyphenolic compounds from the group of phenolic acids (e.g., gallic acid, ferulic acid) and flavonoids (e.g., myricetin, rutoside, and kaempferol). The raw materials show antioxidant, hepatoprotective, anti-inflammatory and antimicrobial properties. Dietary supplements and alimentary products containing M. oleifera are recommended as health-promoting and "novel food" preparations. The main purpose of this work was a review of the latest scientific literature on M. oleifera, with particular emphasis on the studies focusing on its chemical composition, biological activity and safety. Moreover, the review tends to discuss the results of biotechnological studies using this material and the agronomical significance.
Collapse
Affiliation(s)
| | - Katarzyna Gaweł-Bęben
- Department of Cosmetology, University of Information Technology and Management in Rzeszów, Rzeszów, Poland
| | - Angelika Rutka
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Cracow, Poland
| | - Eliza Blicharska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Tatarczak-Michalewska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Kulik-Siarek
- Department of Pharmaceutical Sciences, Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Magdalena Anna Malinowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Faculty of Pharmacy, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
21
|
Alhaithloul HAS, Mohamed ZA, Saber AA, Alsudays IM, Abdein MA, Alqahtani MM, AbuSetta NG, Elkelish A, Pérez LM, Albalwe FM, Bakr AA. Performance evaluation of Moringa oleifera seeds aqueous extract for removing Microcystis aeruginosa and microcystins from municipal treated-water. Front Bioeng Biotechnol 2024; 11:1329431. [PMID: 38362588 PMCID: PMC10868579 DOI: 10.3389/fbioe.2023.1329431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024] Open
Abstract
Introduction: Toxic microcystins (MCs) produced by cyanoprokaryotes -particularly by the cosmopolitan cyanobacterium Microcystis aeruginosa- pose adverse effects on aquatic organisms and their ecosystem and may also cause serious impacts on human health. These harmful monocyclic heptapeptides are the most prevalent cyanotoxins reported in freshwaters and must be eliminated for avoiding MCs release in receiving water bodies. Hence, this work aimed to test the efficacy of Moringa oleifera seeds water-based extract (MO) as a natural coagulant for removing cyanobacteria (especially M. aeruginosa), microalgae, and its associated MCs from pre-treated municipal wastewaters. Methodology: Four different MO coagulant doses (25, 50, 75 and 100 mg L-1) were investigated for cyanobacteria and microalgae removal by conventional coagulation assays and morphology-based taxonomy studies. Additionally, water turbidity and chlorophyll a (Chl a) content were also determined. Further, the presence and concentration of MCs soluble in water, remaining in the particulate fraction, and flocculated within the residual sludge were assessed using high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Results: The treatment with MO at 100 mg L-1 substantially reduced the number of cyanobacterial and microalgal species in the treated samples (average removal rate of 93.8% and 86.9%, respectively). These results agreed with a ∼44% concomitant reduction in Chl a and ∼97% reduction in water turbidity (a surrogate marker for suspended solids content). Notably, MCs concentrations in the treated water were significantly lowered to 0.6 ± 0.1 µg L-1 after addition of 100 mg L-1 MO. This value is below the WHO recommended limits for MCs presence in drinking water (<1.0 µg L-1). Discussion: The present study provides promising insights into the applicability of MO as a cost-effective, reliable, and sustainable natural coagulant, particularly for using in developing countries, to eliminate harmful cyanobacteria and cyanotoxins in municipal water treatment facilities.
Collapse
Affiliation(s)
| | - Zakaria A. Mohamed
- Microbiology and Botany Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Abdullah A. Saber
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Mohamed A. Abdein
- Seeds Development Department, El-Nada Misr Scientific Research and Development Projects, Mansoura, Egypt
| | - Mesfer M. Alqahtani
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Shaqraa, Saudi Arabia
| | - Noha G. AbuSetta
- Microbiology and Botany Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Leonardo Martín Pérez
- Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Rosario, Argentina
- Laboratory of Environmental and Sanitary Microbiology (MSMLab-UPC), Universitat Politècnica de Catalunya-BarcelonaTech, Terrassa, Spain
| | | | - Asmaa A. Bakr
- Microbiology and Botany Department, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
22
|
Salazar-Campos J, Salazar-Campos O, Gálvez-Ruiz O, Gavidia-Chávez H, Gavidia-Chávez M, Irigoin-Guevara L, Obregón-Domínguez J. Functional Properties and Acceptability of Potentially Medicinal Tea Infusions Based on Equisetum arvense, Desmodium molliculum, and Mentha piperita. Prev Nutr Food Sci 2023; 28:444-452. [PMID: 38188091 PMCID: PMC10764227 DOI: 10.3746/pnf.2023.28.4.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 01/09/2024] Open
Abstract
Natural herbal teas are one of the three most consumed beverages in the world, and despite their frequent use in the cosmetic, food, and pharmaceutical industries, there is still much to about them. This study aimed to determine the functional properties of tea infusions made from dried Equisetum arvense (EA), Desmodium molliculum (DM), and Mentha piperita (M) grown in the Peruvian Andes. Next, using a simplex design with unrestricted centroid amplified centroid, 12 combinations were obtained for the combination of dried leaves with EA: 0∼100%, DM: 0∼100%, and M: 0∼100% optimal combination of EA: 6.59%, DM: 84.62%, and M: 8.79% maximizes functional components for total polyphenols (2,831.18 mg EAG/100 g), flavonoids (37.73 mg CAT/g), and antioxidant capacity (145.99 μmol Trolox/g). It can be confirmed that dried mixtures of these plants made into tea are a significant source of bioactive molecules, have a tolerable flavor, and can be used for therapeutic purposes when consumed.
Collapse
Affiliation(s)
- Johonathan Salazar-Campos
- Centro de Experimentación e Investigación, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Orlando Salazar-Campos
- Escuela de Ingeniería de Software, Facultad de Ingeniería, Universidad San Ignacio de Loyola, Lima 15024, Perú
| | - Osmar Gálvez-Ruiz
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Herlita Gavidia-Chávez
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Mery Gavidia-Chávez
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Lorena Irigoin-Guevara
- Dirección de Incubadora de Empresas, Universidad Nacional Autónoma de Chota, Cajamarca 06121, Perú
| | - Jesús Obregón-Domínguez
- Departamento de Procesamiento de la Información, Data Engineering Perú, Trujillo 13009, Perú
| |
Collapse
|
23
|
Waruguru P, Mulwa DW, Okoth M, Bor W. Moringa oleifera regulates the health of people living with HIV in developing countries: a systematic review. AFRICAN JOURNAL OF AIDS RESEARCH : AJAR 2023; 22:247-252. [PMID: 38015892 DOI: 10.2989/16085906.2023.2277894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/01/2023] [Indexed: 11/30/2023]
Abstract
If left untreated, HIV has the potential to increase morbidity and mortality rates to 14 times higher than that of HIV and AIDS-free persons of the same sex and age group. Currently, treatment of HIV is by use of ART, which has proved to prolong the lives of people living with HIV (PLWHIV). In addition to ART, HIV patients opt to also use traditional medicines. Moringa oleifera is one of the traditional herbs that is used by HIV patients in developing countries. However, its use is only recommended by non-professionals due to a lack of consensus on the impact of moringa on the health of PLWHIV. Therefore, the goal of this review is to investigate the impact of moringa oleifera on health-related quality of life of PLWHIV. Three scientific databases were accessed from 1 July to 31 August 2022 using as key words "moringa oleifera", "health outcomes", herbal supplementation" and "traditional medicines". Articles published in peer-reviewed journals were selected. 20 articles were retrieved, and 11 articles were excluded since they either did not use a randomised control study design, or were a review. The articles reviewed indicated that moringa supplementation resulted to increases in CD4 cell count and body mass index, improvements in psychological well-being, in management of depression and anxiety and the function of vital body organs and control of cholesterol levels. In conclusion, use of moringa oleifera supplementation improves the health of PLWHIV. It is therefore recommended that health personnel should consider the use of moringa oleifera alongside ART to ensure optimal treatment outcomes.
Collapse
Affiliation(s)
- Phyllis Waruguru
- Food Science, Nutrition and Technology, University of Nairobi, Kenya
| | | | - Michael Okoth
- Food Science, Nutrition and Technology, University of Nairobi, Kenya
| | - Wesley Bor
- Human Nutrition and Dietetics, Kabarak University, Nakuru, Kenya
| |
Collapse
|
24
|
Li LZ, Chen L, Tu YL, Dai XJ, Xiao SJ, Shi JS, Li YJ, Yang XS. Six New Phenolic Glycosides from the Seeds of Moringa oleifera Lam. and Their α-Glucosidase Inhibitory Activity. Molecules 2023; 28:6426. [PMID: 37687255 PMCID: PMC10489651 DOI: 10.3390/molecules28176426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Plant-derived phytochemicals have recently drawn interest in the prevention and treatment of diabetes mellitus (DM). The seeds of Moringa oleifera Lam. are widely used in food and herbal medicine for their health-promoting properties against various diseases, including DM, but many of their effective constituents are still unknown. In this study, 6 new phenolic glycosides, moringaside B-G (1-6), together with 10 known phenolic glycosides (7-16) were isolated from M. oleifera seeds. The structures were elucidated by 1D and 2D NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) data analysis. The absolute configurations of compounds 2 and 3 were determined by electronic circular dichroism (ECD) calculations. Compounds 2 and 3 especially are combined with a 1,3-dioxocyclopentane moiety at the rhamnose group, which are rarely reported in phenolic glycoside backbones. A biosynthetic pathway of 2 and 3 was assumed. Moreover, all the isolated compounds were evaluated for their inhibitory activities against α-glucosidase. Compounds 4 and 16 exhibited marked activities with IC50 values of 382.8 ± 1.42 and 301.4 ± 6.22 μM, and the acarbose was the positive control with an IC50 value of 324.1 ± 4.99 μM. Compound 16 revealed better activity than acarbose.
Collapse
Affiliation(s)
- Lin-Zhen Li
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China;
| | - Liang Chen
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Yang-Li Tu
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiang-Jie Dai
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Sheng-Jia Xiao
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China; (L.-Z.L.); (L.C.); (Y.-L.T.); (X.-J.D.); (S.-J.X.)
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiao-Sheng Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, China;
| |
Collapse
|
25
|
Mohd Sahardi NFN, Makpol S. Suppression of Inflamm-Aging by Moringa oleifera and Zingiber officinale Roscoe in the Prevention of Degenerative Diseases: A Review of Current Evidence. Molecules 2023; 28:5867. [PMID: 37570837 PMCID: PMC10421196 DOI: 10.3390/molecules28155867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation or inflamm-aging is a chronic low-grade inflammation that contributes to numerous types of degenerative diseases among the elderly and might be impeded by introducing an anti-inflammatory agent like Moringa oleifera Lam (moringa) and Zingiber officinale Roscoe (ginger). Therefore, this paper aims to review the role of moringa and ginger in suppressing inflamm-aging to prevent degenerative diseases. Various peer-reviewed publications were searched and downloaded using the reputed search engine "Pubmed" and "Google Scholar". These materials were reviewed and tabulated. A comparison between these previous findings was made based on the mechanism of action of moringa and ginger against degenerative diseases, focusing on their anti-inflammatory properties. Many studies have reported the efficacy of moringa and ginger in type 2 diabetes mellitus, neurodegenerative disease, cardiovascular disease, cancer, and kidney disease by reducing inflammatory cytokines activities, mainly of TNF-α and IL-6. They also enhanced the activity of antioxidant enzymes, including catalase, glutathione, and superoxide dismutase. The anti-inflammatory activities can be seen by inhibiting NF-κβ activity. Thus, the anti-inflammatory potential of moringa and ginger in various types of degenerative diseases due to inflamm-aging has been shown in many recent types of research.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
26
|
Xie J, Yang MR, Hu X, Hong ZS, Bai YY, Sheng J, Tian Y, Shi CY. Moringa oleifera Lam. Isothiocyanate Quinazolinone Derivatives Inhibit U251 Glioma Cell Proliferation through Cell Cycle Regulation and Apoptosis Induction. Int J Mol Sci 2023; 24:11376. [PMID: 37511135 PMCID: PMC10379366 DOI: 10.3390/ijms241411376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
A major active constituent of Moringa oleifera Lam. is 4-[(α-L-rhamnose oxy) benzyl] isothiocyanate (MITC). To broaden MITC's application and improve its biological activity, we synthesized a series of MITC quinazolinone derivatives and evaluated their anticancer activity. The anticancer effects and mechanisms of the compound with the most potent anticancer activity were investigated further. Among 16 MITC quinazolinone derivatives which were analyzed, MITC-12 significantly inhibited the growth of U251, A375, A431, HCT-116, HeLa, and MDA-MB-231 cells. MITC-12 significantly inhibited U251 cell proliferation in a time- and dose-dependent manner and decreased the number of EdU-positive cells, but was not toxic to normal human gastric mucosal cells (GES-1). Further, MITC-12 induced apoptosis of U251 cells, and increased caspase-3 expression levels and the Bax:Bcl-2 ratio. In addition, MITC-12 significantly decreased the proportion of U251 cells in the G1 phase and increased it in S and G2 phases. Transcriptome sequencing showed that MITC-12 had a significant regulatory effect on pathways regulating the cell cycle. Further, MITC-12 significantly decreased the expression levels of the cell cycle-related proteins CDK2, cyclinD1, and cyclinE, and increased those of cyclinA2, as well as the p-JNK:JNK ratio. These results indicate that MITC-12 inhibits U251 cell proliferation by inducing apoptosis and cell cycle arrest, activating JNK, and regulating cell cycle-associated proteins. MITC-12 has potential for use in the prevention and treatment of glioma.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ming-Rong Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Rural Science and Technology Service Center, Kunming 650021, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chong-Ying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
27
|
Gheorghita R, Filip R, Lupaescu AV, Iavorschi M, Anchidin-Norocel L, Gutt G. Innovative Materials with Possible Applications in the Wound Dressings Field: Alginate-Based Films with Moringa oleifera Extract. Gels 2023; 9:560. [PMID: 37504439 PMCID: PMC10379161 DOI: 10.3390/gels9070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
For a long time, biopolymers have proven their effectiveness in the development of materials with various applications, lately those intended for the biomedical and pharmaceutical industries, due to their high biocompatibility and non-toxic, non-allergenic, and non-immunogenic nature. The ability to incorporate various active substances in this matrix has yielded materials with characteristics that are far superior to those of classic, conventional ones. The beneficial effects of consuming Moringa oleifera have promoted the use of this plant, from Ayurvedic to classical medicine. The addition of such compounds in the materials intended for the treatment of surface wounds may represent the future of the development of innovative dressings. This study followed the development of materials based on sodium alginate and moringa powder or essential oil for use as dressings, pads, or sheets. Thus, three materials with the addition of 10-30% moringa powder and three materials with the addition of 10-30% essential oil were obtained. The data were compared with those of the control sample, with sodium alginate and plasticizer. The microtopography indicated that the materials have a homogeneous matrix that allows them to incorporate and maintain natural compounds with prolonged release. For example, the sample with 30% moringa essential oil kept its initial shape and did not disintegrate, although the swelling ratio value reached 4800% after 20 min. After testing the mechanical properties, the same sample had the best tensile strength (TS = 0.248 MPa) and elongation (31.41%), which is important for the flexibility of the dressing. The same sample exhibited a very high antioxidant capacity (60.78% inhibition). The materials obtained with moringa powder added presented good values of physical and mechanical properties, which supports their use as wound dressings for short-term application and the release of embedded compounds. According to the obtained results, all the biopolymeric materials with moringa added can be used as dressings for different wound types.
Collapse
Affiliation(s)
- Roxana Gheorghita
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Roxana Filip
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
- Suceava Emergency County Hospital, 720224 Suceava, Romania
| | - Ancuta-Veronica Lupaescu
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Monica Iavorschi
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Liliana Anchidin-Norocel
- College of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Gheorghe Gutt
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
28
|
Aljazzaf B, Regeai S, Elghmasi S, Alghazir N, Balgasim A, Hdud Ismail IM, Eskandrani AA, Shamlan G, Alansari WS, AL-Farga A, Alghazeer R. Evaluation of Antidiabetic Effect of Combined Leaf and Seed Extracts of Moringa oleifera ( Moringaceae) on Alloxan-Induced Diabetes in Mice: A Biochemical and Histological Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9136217. [PMID: 37215365 PMCID: PMC10198764 DOI: 10.1155/2023/9136217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 05/24/2023]
Abstract
Moringa oleifera (Moringaceae) is a medicinal plant rich in biologically active compounds. The aim of the present study was to screen M. oleifera methanolic leaf (L) extract, seed (S) extract, and a combined leaf/seed extract (2L : 1S ratio) for antidiabetic and antioxidant activities in mice following administration at a dose level of 500 mg/kg of body weight/day. Diabetes was induced by alloxan administration. Mice were treated with the extracts for 1 and 3 months and compared with the appropriate control. At the end of the study period, the mice were euthanized and pancreas, liver, kidney, and blood samples were collected for the analysis of biochemical parameters and histopathology. The oral administration of the combined L/S extract significantly reduced fasting blood glucose to normal levels compared with L or S extracts individually; moreover, a significant decrease in cholesterol, triglycerides, creatinine, liver enzymes, and oxidant markers was observed, with a concomitant increase in antioxidant biomarkers. Thus, the combined extract has stronger antihyperlipidemic and antioxidant properties than the individual extracts. The histopathological results also support the biochemical parameters, showing recovery of the pancreas, liver, and kidney tissue. The effects of the combined L/S extracts persisted throughout the study period tested. To the best of our knowledge, this is the first study to report on the antidiabetic, antioxidant, and antihyperlipidemic effects of a combined L/S extract of M. oleifera in an alloxan-induced diabetic model in mice. Our results suggest the potential for developing a natural potent antidiabetic drug from M. oleifera; however, clinical studies are required.
Collapse
Affiliation(s)
- Badriyah Aljazzaf
- Department of Food Sciences and Nutrition, College of Health Sciences, The Public Authority for Applied Education and Training, Kuwait
| | - Sassia Regeai
- Department of Life Sciences, School of Basic Science, Libyan Academy of Postgraduate Studies, Janzour, Libya
- Histology and Genetics Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Sana Elghmasi
- Department of Biochemistry, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Nadia Alghazir
- Department of Pediatrics, Tripoli University Hospital, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Amal Balgasim
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud Ismail
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Rabia Alghazeer
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
29
|
Xu Y, Chen G, Muema FW, Xiao J, Guo M. Most Recent Research Progress in Moringa oleifera: Bioactive Phytochemicals and Their Correlated Health Promoting Effects. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2195189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
30
|
Du H, Li T, Xue Q, Tian Y, Hu Y. Optimization and validation of folate extraction from Moringa oleifera leaves powder. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
31
|
Extraction and Quantification of Moringa oleifera Leaf Powder Extracts by HPLC and FTIR. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02470-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
32
|
Gomes SM, Leitão A, Alves A, Santos L. Incorporation of Moringa oleifera Leaf Extract in Yoghurts to Mitigate Children's Malnutrition in Developing Countries. Molecules 2023; 28:2526. [PMID: 36985498 PMCID: PMC10058877 DOI: 10.3390/molecules28062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Moringa oleifera, which is rich in bioactive compounds, has numerous biological activities and is a powerful source of antioxidants and nutrients. Therefore, M. oleifera can be incorporated into food to mitigate children's malnutrition. In this work, the bioactive compounds were extracted from M. oleifera leaf powder by ultrasound-assisted solid-liquid extraction. The antioxidant and antimicrobial activities and the phenolic composition of the extract were evaluated. The extract presented a total phenolic content of 54.5 ± 16.8 mg gallic acid equivalents/g and IC50 values of 133.4 ± 12.3 mg/L for DPPH and 60.0 ± 9.9 mg/L for ABTS. Catechin, chlorogenic acid, and epicatechin were the main phenolics identified by HPLC-DAD. The obtained extract and M. oleifera leaf powder were incorporated into yoghurts and their physicochemical and biological properties were studied. The incorporation of M. oleifera did not impair the yoghurts' stability over eight weeks when compared to both negative and positive controls. The extract presented higher stability regarding syneresis but lower stability regarding TPC compared to the powder. Also, the fortified yoghurts presented higher antioxidant properties than the negative control. These findings highlight the potential use of M. oleifera powder and extract as natural additives to produce fortified foods that can be used in the mitigation of malnutrition.
Collapse
Affiliation(s)
- Sandra M. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Leitão
- LESRA—Laboratory for Separation Engineering, Chemical Reaction and Environment, Faculty of Engineering, University of Agostinho Neto, Edificio CNIC, Avenida Ho Chi Min 201, Luanda P.O. Box 815, Angola
| | - Arminda Alves
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
33
|
Proximate Analysis of Moringa oleifera Leaves and the Antimicrobial Activities of Successive Leaf Ethanolic and Aqueous Extracts Compared with Green Chemically Synthesized Ag-NPs and Crude Aqueous Extract against Some Pathogens. Int J Mol Sci 2023; 24:ijms24043529. [PMID: 36834941 PMCID: PMC9960608 DOI: 10.3390/ijms24043529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Research on the use of different parts of the Moringa oleifera plant as a nutritional and pharmaceutical resource for human and animals has increased in recent years. This study aimed to investigate the chemical composition and the TPCs and TFCs of Moringa leaves, the antimicrobial activities of Moringa successive ethanolic, aqueous, crude aqueous extracts, and green-chemically synthesized characterized Ag-NPs. The results indicated that the ethanolic extract recorded the highest activity against E. coli. On the other side, the aqueous extract showed higher activity, and its effects ranged from 0.03 to 0.33 mg/mL against different strains. The MIC values of Moringa Ag-NPs against different pathogenic bacteria ranged from 0.05 mg/mL to 0.13 mg/mL, and the activity of the crude aqueous extract ranged from 0.15 to 0.83 mg/mL. For the antifungal activity, the ethanolic extract recorded the highest activity at 0.04 mg/mL, and the lowest activity was recorded at 0.42 mg/mL. However, the aqueous extract showed effects ranging from 0.42 to 1.17 mg/mL. Moringa Ag-NPs showed higher activity against the different fungal strains than the crude aqueous extract, and they ranged from 0.25 to 0.83 mg/mL. The MIC values of the Moringa crude aqueous extract ranged from 0.74 to 3.33 mg/mL. Moringa Ag-NPs and their crude aqueous extract may be utilized to boost antimicrobial attributes.
Collapse
|
34
|
Wei P, Zhang Y, Wang YY, Dong JF, Liao BN, Su ZC, Li W, Xu JC, Lou WY, Su HH, Peng C. Efficient extraction, excellent activity, and microencapsulation of flavonoids from Moringa oleifera leaves extracted by deep eutectic solvent. BIOMASS CONVERSION AND BIOREFINERY 2023; 13:1-15. [PMID: 36785542 PMCID: PMC9907881 DOI: 10.1007/s13399-023-03877-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
A deep eutectic solvent (choline chloride (ChCl)-urea) was chosen to extract flavonoids from Moringa oleifera leaves (FMOL), the condition of extraction was tailor-made, under the optimal extraction conditions (material-to-liquid ratio of 1:60 g/mL, extraction time of 80 min, extraction temperature of 80 °C), the highest extraction efficiency reached 63.2 ± 0.3 mg R/g DW, and nine flavonoids were identified. Then, the biological activities including antioxidant activities, antibacterial activities, and anti-tumor activities were systematically studied. FMOL was superior to positive drugs in terms of antioxidant activity. As to DPPH investigation, the IC50 of FMOL and Vc were 64.1 ± 0.7 and 176.1 ± 2.0 µg/mL; for the ABTS, the IC50 of FMOL and Vc were 9.5 ± 0.3 and 38.2 ± 1.2 µg/mL, the FRAP value of FMOL and Vc were 15.5 ± 0.6 and 10.2 ± 0.4 mg TE/g, and ORAC value of FMOL and Vc were 4687.2 ± 102.8 and 3881.6 ± 98.6 µmol TE/g. The bacteriostatic (MICs were ≤ 1.25 mg/mL) activities of FMOL were much better than propyl p-hydroxybenzoate. Meanwhile, FMOL had comparable inhibitory activity with genistein on tumor cells, IC50 was 307.8 µg/mL, and could effectively induce apoptosis in HCT116. Microcapsules were prepared with xylose-modified soybean protein isolate and gelatin as wall materials; after that, the intestinal release of modified FMOL microcapsules was 86 times of free FMOL. Therefore, this study confirmed that FMOL extracted with ChCl/urea has rich bioactive components, and microencapsulated FMOL has potential application in food industry. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13399-023-03877-8.
Collapse
Affiliation(s)
- Ping Wei
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Yue Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Yao-Ying Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Jin-Feng Dong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Bi-Ni Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Zhi-Cheng Su
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Wu Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Ju-Cai Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 Guangdong China
| | - Hui-Hui Su
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316 Guangdong China
| | - Chao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020 Guangdong China
| |
Collapse
|
35
|
Polo-Castellano C, Mateos RM, Visiedo F, Palma M, Barbero GF, Ferreiro-González M. Optimizing an Enzymatic Extraction Method for the Flavonoids in Moringa ( Moringa oleifera Lam.) Leaves Based on Experimental Designs Methodologies. Antioxidants (Basel) 2023; 12:antiox12020369. [PMID: 36829929 PMCID: PMC9952375 DOI: 10.3390/antiox12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Moringa oleifera Lam. is known to have significant antioxidant properties. Because of this, the development of an optimal extraction method is crucial to obtain pharmacological products based on the bioactive compounds produced by this tree. Through a Plackett-Burman and a Box-Behnken design, enzymatic extraction conditions (temperature, agitation, solvent pH and composition, sample-to-solvent ratio, enzyme-to-sample ratio and extraction time) have been optimized using normalized areas (UA/g) as response variable and relative mass (mg/g) as quantification variable. Extractions were performed in an incubator, where all the extraction conditions could be digitally controlled. Thus, 58.9 °C, 50 rpm, 4.0 pH, 32.5% EtOH, 0.2 g sample in 15 mL solvent and 106 U/g were established as the optimal extraction conditions for the extraction with a mix of pectinases coming from Aspergillus niger. Under these optimal conditions, two-minute extractions were performed and evaluated through a single factor design. The enzymatic extraction method demonstrated its suitability to produce extracts with good antioxidant power (antioxidant activity 4.664 ± 0.059 mg trolox equivalent/g sample and total phenolic compounds 6.245 ± 0.101 mg gallic acid equivalent/g sample). The method was also confirmed to have good repeatability (1.39%) and intermediate precision (2.37%) levels.
Collapse
Affiliation(s)
- Curro Polo-Castellano
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Rosa María Mateos
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Area of Biochemistry and Molecular Biology, Department of Biomedicine, Biotechnology and Public Health, University of Cadiz, 11519 Cadiz, Spain
| | - Francisco Visiedo
- Research Unit, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
| | - Marta Ferreiro-González
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Food Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain
- Correspondence: (M.P.); (M.F.-G.); Tel.: +34-956-016-355 (M.P. & M.F.-G)
| |
Collapse
|
36
|
Liang J, Wu T, Wang T, Ma Y, Li Y, Zhao S, Guo Y, Liu B. Moringa oleifera leaf ethanolic extract benefits cashmere goat semen quality via improving rumen microbiota and metabolome. Front Vet Sci 2023; 10:1049093. [PMID: 36777668 PMCID: PMC9911920 DOI: 10.3389/fvets.2023.1049093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Background Artificial insemination (AI) is an effective reproductive technique to improve the performance of cashmere goats and prevent the spread of diseases, and the quality of the semen determines the success of AI. The potential of Moringa oleifera leaf powder (MOLP) and Moringa oleifera leaf ethanolic extract (MOLE) to improve semen quality has been reported, but the underlying mechanisms remain unclear. For the purpose, 18 mature male cashmere goats were randomly assigned into three groups: the control (CON), MOLP, and MOLE groups. The CON group received distilled water orally; the MOLP group was orally treated with 200 mg/kg body weight (BW) MOLP; and the MOLE group was orally treated with 40 mg/kg BW MOLE. Results Results showed that MOLE contained long-chain fatty acids and flavonoids. Treatment with MOLP and MOLE increased the activities of the serum catalase, superoxide dismutase, and glutathione peroxidase (P < 0.05), enhanced the total antioxidant capacity (P < 0.05), and reduced the serum malondialdehyde level (P < 0.05). At the same time, MOLE increased the contents of serum gonadotropin releasing hormone and testosterone (P < 0.05). Moreover, MOLE significantly increased sperm concentration, motility, and viability (P < 0.05). Meanwhile, MOLE raised the Chao1 index (P < 0.05) and altered the composition of the rumen microbiota; it also raised the relative abundance of Treponema (P < 0.05) and Fibrobacter (P < 0.05) and reduced the relative abundance of Prevotella (P < 0.1). Correlation analysis revealed the genus Prevotella was significantly negatively correlated with sperm concentration, as well as sperm motility and viability. Furthermore, MOLE significantly increased the rumen levels of the steroid hormones testosterone and dehydroepiandrosterone (P < 0.05), as well as the polyunsaturated fatty acids (PUFAs) alpha-Linolenic acid, gamma-Linolenic acid, docosapentaenoic acid, and 9-S-Hydroperoxylinoleicacid (P < 0.05). Conclusions Oral MOLE supplementation can improve semen quality by increasing the antioxidant capacity and altering the rumen microbiota and metabolites of cashmere goats. Moreover, the MOLP supplementation could enhance the antioxidant capacity of cashmere goats.
Collapse
Affiliation(s)
- Jianyong Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Tiecheng Wu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China,Engineering Laboratory of Genetic Resources Evaluation and Breeding Technology of Mutton Sheep in Inner Mongolia Autonomous Region, Hohhot, China
| | - Tao Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China,Alxa White Cashmere Goat Breeding Farm, Alxa League, China
| | - Yuejun Ma
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Yurong Li
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China,*Correspondence: Yanli Guo ✉
| | - Bin Liu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China,Bin Liu ✉
| |
Collapse
|
37
|
Immune System and Epidemics: The Role of African Indigenous Bioactive Substances. Nutrients 2023; 15:nu15020273. [PMID: 36678143 PMCID: PMC9864875 DOI: 10.3390/nu15020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
With over 6 million coronavirus pandemic deaths, the African continent reported the lowest death rate despite having a high disease burden. The African community's resilience to the pandemic has been attributed to climate and weather conditions, herd immunity, repeated exposure to infectious organisms that help stimulate the immune system, and a disproportionately large youth population. In addition, functional foods, herbal remedies, and dietary supplements contain micronutrients and bioactive compounds that can help boost the immune system. This review identified significant traditional fermented foods and herbal remedies available within the African continent with the potential to boost the immune system in epidemics and pandemics. Methodology: Databases, such as PubMed, the Web of Science, and Scopus, were searched using relevant search terms to identify traditional African fermented foods and medicinal plants with immune-boosting or antiviral capabilities. Cereal-based fermented foods, meat-, and fish-based fermented foods, and dairy-based fermented foods containing antioxidants, immunomodulatory effects, probiotics, vitamins, and peptides were identified and discussed. In addition, nine herbal remedies and spices belonging to eight plant families have antioxidant, immunomodulatory, anti-inflammatory, neuroprotective, hepatoprotective, cardioprotective, and antiviral properties. Peptides, flavonoids, alkaloids, sterols, ascorbic acid, minerals, vitamins, and saponins are some of the bioactive compounds in the remedies. Bioactive compounds in food and plants significantly support the immune system and help increase resistance against infectious diseases. The variety of food and medicinal plants found on the African continent could play an essential role in providing community resilience against infectious diseases during epidemics and pandemics. The African continent should investigate nutritional, herbal, and environmental factors that support healthy living and longevity.
Collapse
|
38
|
Imran M, Hussain G, Hameed A, Iftikhar I, Ibrahim M, Asghar R, Nisar I, Farooq T, Khalid T, Rehman K, Assiri MA. Metabolites of Moringa oleifera Activate Physio-Biochemical Pathways for an Accelerated Functional Recovery after Sciatic Nerve Crush Injury in Mice. Metabolites 2022; 12:1242. [PMID: 36557280 PMCID: PMC9788086 DOI: 10.3390/metabo12121242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
In this study, the functional metabolites of Moringa oleifera (MO) were screened to evaluate their possible role in accelerated functional retrieval after peripheral nerve injury (PNI). MO leaves were used for extract preparation using solvents of different polarities. Each dry extract was uniformly mixed in rodents' chow and supplemented daily at a dose rate of 2 g/kg body weight from the day of nerve crush until the completion of the trial. The sciatic functional index (SFI) and muscle grip strength were performed to assess the recovery of motor functions, whereas the hotplate test was performed to measure the regain of sensory functions. An optimal level of oxidative stress and a controlled glycemic level mediates a number of physio-biochemical pathways for the smooth progression of the regeneration process. Therefore, total oxidant status (TOS), total antioxidant capacity (TAC) and glycemic levels were analyzed in metabolite-enriched extract-treated groups compared to the control. The supplementation of polar extracts demonstrated a significantly high potential to induce the retrieval of sensory and motor functions. Further, they were highly effective in controlling oxidative stress, facilitating accelerated nerve generation. This study has highlighted MO as a sustainable source of nutritive metabolites and a valuable target for drug development.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Reseach Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Arruje Hameed
- Department of Biochemistry, Faculty of life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Iftikhar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Rahat Asghar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Izzat Nisar
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Tanzila Khalid
- Department of Applied Chemistry, Faculty of Physical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Reseach Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, Saudi Arabia
| |
Collapse
|
39
|
Tao L, Gu F, Liu Y, Yang M, Wu XZ, Sheng J, Tian Y. Preparation of antioxidant peptides from Moringa oleifera leaves and their protection against oxidative damage in HepG2 cells. Front Nutr 2022; 9:1062671. [PMID: 36532523 PMCID: PMC9751868 DOI: 10.3389/fnut.2022.1062671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 10/20/2023] Open
Abstract
Moringa oleifera leaves are a kind of new food raw materials, rich in functional factors, M. oleifera leaves aqueous extract have antioxidant activity and M. oleifera leave protein is an important active ingredient in the aqueous extract. Numerous studies have shown that peptides have strong antioxidant activity. To reveal the antioxidant effects of M. oleifera (MO) leaves peptides, MO leave antioxidant peptides were isolated and prepared to clarify their antioxidant activity. MLPH1 (<1 kDa), MLPH3 (1~3 kDa), MLPH5 (3~5 kDa), and MLPH10 (5~10 kDa) fractions were obtained by the membrane ultrafiltration classification of MO leaves proteolytic hydrolysate (MLPH). MLPH1 was further separated by centrifugal filters, and the fraction separated by <1 kDa (MLPH1-1) was identified and analyzed by LC-MS/MS. The purpose of this study was to investigate the effect of MO leaves antioxidant peptide pretreatment on H2O2-treated HepG2 cells and to refine the antioxidant activity. The results showed that MLPH1 had the strongest antioxidant activity, and three MO leaves antioxidant peptides (LALPVYN, LHIAALVFQ, and FHEEDDAKLF) were obtained. The peptide with the sequence LALPVYN and a molecular weight of 788.44 Da had the strongest antioxidant activity. After 24 h of LALPVYN pretreatment, the cell viability and the CAT, GSH-Px, and SOD enzyme activity were significantly increased, and the MDA, ROS, and apoptosis rates were significantly decreased. These results provide a theoretical basis for further research on the antioxidant mechanism of MO leaves peptides.
Collapse
Affiliation(s)
- Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Fan Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Yan Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
| | - Xing-Zhong Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
40
|
Mundkar M, Bijalwan A, Soni D, Kumar P. Neuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review. J Food Biochem 2022; 46:e14451. [PMID: 36206551 DOI: 10.1111/jfbc.14451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
Moringa oleifera is a traditional Indian herb belonging to the Moringaceae family, it is commonly known as the horse-radish tree, drumstick, or sahajna. In developing countries, Moringa is used as feed for both humans and animals due to its well-known antioxidant, anti-inflammatory, and anti-apoptotic properties owing to its several phytoconstituents including β-carotene, quercetin, kaempferol, ascorbic acid, flavonoids, phenolic acid, rhamnose, glycosylates, glucomoringin, and isothiocyanates. These constituents help to maintain the brain antioxidant enzyme levels, mitochondrial functions, and neurogenesis, showing neuroprotective effects in several neurodegenerative disorders including Parkinson's Disease, Alzheimer's Disease, Huntington's Disease, and Amyotrophic lateral sclerosis. This review discusses various phytoconstituent of moringa and their therapeutic potential in various neurological disorders. Additionally, we also concise the safety and toxicity profile, of different molecular pathways involved in the neuroprotective effect of M. oleifera including M. oleifera nanoparticles for better therapeutic value. PRACTICAL APPLICATIONS: Several clinical and preclinical studies on Moringa oleifera have been conducted, and the outcomes indicate moringa could be used in the treatment of brain disorders. As a result, we conclude that moringa and its nanoformulations could be employed to treat neurological problems. In the future, M. oleifera phytoconstituents could be evaluated against specific signaling pathways, which could aid researchers in discovering their mechanism of action. Furthermore, the use of moringa as a nutraceutical owing to its myriad pharmacological potential will go a long way in boosting the economy of countries that grow moringa on a large scale.
Collapse
Affiliation(s)
- Maroti Mundkar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Anjali Bijalwan
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Divya Soni
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| |
Collapse
|
41
|
Mahaman YAR, Feng J, Huang F, Salissou MTM, Wang J, Liu R, Zhang B, Li H, Zhu F, Wang X. Moringa Oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022; 14:nu14204284. [PMID: 36296969 PMCID: PMC9609596 DOI: 10.3390/nu14204284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer's disease is a global public health problem and the most common form of dementia. Due to the failure of many single therapies targeting the two hallmarks, Aβ and Tau, and the multifactorial etiology of AD, there is now more and more interest in nutraceutical agents with multiple effects such as Moringa oleifera (MO) that have strong anti-oxidative, anti-inflammatory, anticholinesterase, and neuroprotective virtues. In this study, we treated APP/PS1 mice with a methanolic extract of MO for four months and evaluated its effect on AD-related pathology in these mice using a multitude of behavioral, biochemical, and histochemical tests. Our data revealed that MO improved behavioral deficits such as anxiety-like behavior and hyperactivity and cognitive, learning, and memory impairments. MO treatment abrogated the Aβ burden to wild-type control mice levels via decreasing BACE1 and AEP and upregulating IDE, NEP, and LRP1 protein levels. Moreover, MO improved synaptic plasticity by improving the decreased GluN2B phosphorylation, the synapse-related proteins PSD95 and synapsin1 levels, the quantity and quality of dendritic spines, and neurodegeneration in the treated mice. MO is a nutraceutical agent with promising therapeutic potential that can be used in the management of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Yacoubou Abdoul Razak Mahaman
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Feng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Maibouge Tanko Mahamane Salissou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- College of Health, Natural and Agriculture Sciences Africa University, Mutare P.O. Box 1320, Zimbabwe
| | - Jianzhi Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University, 47 Youyi Rd., Shenzhen 518001, China
- Correspondence: (F.Z.); (X.W.)
| | - Xiaochuan Wang
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry and Huibei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
- Shenzhen Research Institute, Huazhong University of Science and Technology, Shenzhen 518000, China
- Correspondence: (F.Z.); (X.W.)
| |
Collapse
|
42
|
Gambo A, Gqaleni N. Does <em>Moringa oleifera</em> Lam. leaves supplementation have an impact on the weight and bone mass index of people living with HIV that are on antiretroviral therapy? A double-blind randomized control trial. J Public Health Afr 2022; 13:2126. [PMID: 36277954 PMCID: PMC9585613 DOI: 10.4081/jphia.2022.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Background HIV-related weight loss and wasting were the most common malnutrition and AIDS-defining conditions before HAART. HAART has led to more obese PLHIV. HIV-positive patients should eat micro- and macronutrient-rich foods to maintain optimal nutrition. This study examined whether Moringa oleifera Lam. leaf supplementation affects PLHIV receiving ART. Methods A randomized, double-blind, controlled trial was conducted. Two hundred patients with informed consent were randomly assigned to either the Moringa oleifera Lam. (MOG) group or the control group (COG). From baseline to six months of Moringa oleifera Lam. leaf supplementation, anthropometric parameters [weight; BMI] of the participants were assessed. Results One hundred seventy-seven patients completed the 6-month follow-up (89 MOG vs. 88 COG). During the study period, the MOG and COG had similar weights and BMIs (p>0.05). At baseline and six months, most participants in both study groups had a healthy BMI (18.5-24.9). Many participants were overweight; few were underweight ((BMI <18.5). MOG and COG BMI differences at baseline and six months were not significant (p> 0.05). All experiments were 95CI. Conclusions Moringa oleifera Lam. leaf powder had no effect on HIV-positive adults receiving antiretroviral therapy, in accordance with this study.
Collapse
|
43
|
Anti-hepatitis B virus activity of food nutrients and potential mechanisms of action. Ann Hepatol 2022:100766. [PMID: 36179798 DOI: 10.1016/j.aohep.2022.100766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
Hepatitis B virus (HBV) is endemic in many parts of the world and is a significant cause of chronic liver damage and hepatocellular carcinoma. HBV therapeutics vary according to the disease stage. The best therapeutic option for patients with end-stage liver disease is liver transplantation, while for chronic patients, HBV infection is commonly managed using antivirals (nucleos(t)ides analogs or interferons). However, due to the accessibility issues and the high cost of antivirals, most HBV patients do not have access to treatment. These complications have led researchers to reconsider treatment approaches, such as nutritional therapy. This review summarizes the nutrients reported to have antiviral activity against HBV and their possible mechanism of action. Recent studies suggest resveratrol, vitamin E, lactoferrin, selenium, curcumin, luteolin-7-O-glucoside, moringa extracts, chlorogenic acid, and epigallocatechin-3-gallate may be beneficial for patients with hepatitis B. The anti-HBV effect of most of these nutrients has been analyzed in vitro and in animal models. Different antiviral and hepatoprotective mechanisms have been proposed for these nutrients, such as the activation of antioxidant and anti-inflammatory pathways, regulation of metabolic homeostasis, epigenetic control, activation of the p53 gene, inhibition of oncogenes, inhibition of virus entry, and induction of autophagosomes. In conclusion, scientific evidence indicates that HBV replication, transcription, and expression of viral antigens can be affected directly by nutrients. In the future, these nutrients may be considered to develop appropriate nutritional management for patients with hepatitis B.
Collapse
|
44
|
Ndlovu SS, Ghazi T, Chuturgoon AA. The Potential of Moringa oleifera to Ameliorate HAART-Induced Pathophysiological Complications. Cells 2022; 11:2981. [PMID: 36230942 PMCID: PMC9563018 DOI: 10.3390/cells11192981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 12/06/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) comprises a combination of two or three antiretroviral (ARV) drugs that are administered together in a single tablet. These drugs target different steps within the human immunodeficiency virus (HIV) life cycle, providing either a synergistic or additive antiviral effect; this enhances the efficiency in which viral replication is suppressed. HIV cannot be completely eliminated, making HAART a lifetime treatment. With long-term HAART usage, an increasing number of patients experience a broadening array of complications, and this significantly affects their quality of life, despite cautious use. The mechanism through which ARV drugs induce toxicity is associated with metabolic complications such as mitochondrial dysfunction, oxidative stress, and inflammation. To address this, it is necessary to improve ARV drug formulation without compromising its efficacy; alternatively, safe supplementary medicine may be a suitable solution. The medicinal plant Moringa oleifera (MO) is considered one of the most important sources of novel nutritionally and pharmacologically active compounds that have been shown to prevent and treat various diseases. MO leaves are rich in polyphenols, vitamins, minerals, and tannins; studies have confirmed the therapeutic properties of MO. MO leaves provide powerful antioxidants, scavenge free radicals, promote carbohydrate metabolism, and repair DNA. MO also induces anti-inflammatory, hepatoprotective, anti-proliferative, and anti-mutagenic effects. Therefore, MO can be a source of affordable and safe supplement therapy for HAART-induced toxicity. This review highlights the potential of MO leaves to protect against HAART-induced toxicity in HIV patients.
Collapse
Affiliation(s)
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
45
|
Shady NH, Mostafa NM, Fayez S, Abdel-Rahman IM, Maher SA, Zayed A, Saber EA, Khowdiary MM, Elrehany MA, Alzubaidi MA, Altemani FH, Shawky AM, Abdelmohsen UR. Mechanistic Wound Healing and Antioxidant Potential of Moringa oleifera Seeds Extract Supported by Metabolic Profiling, In Silico Network Design, Molecular Docking, and In Vivo Studies. Antioxidants (Basel) 2022; 11:antiox11091743. [PMID: 36139817 PMCID: PMC9495458 DOI: 10.3390/antiox11091743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Moringa oleifera Lam. (Moringaceae) is an adaptable plant with promising phytoconstituents, interesting medicinal uses, and nutritional importance. Chemical profiling of M. oleifera seeds assisted by LC-HRMS (HPLC system coupled to a high resolution mass detector) led to the dereplication of 19 metabolites. Additionally, the wound healing potential of M. oleifera seed extract was investigated in male New Zealand Dutch strain albino rabbits and supported by histopathological examinations. Moreover, the molecular mechanisms were investigated via different in vitro investigations and through analyzing the relative gene and protein expression patterns. When compared to the untreated and MEBO®-treated groups, topical administration of M. oleifera extract on excision wounds resulted in a substantial increase in wound healing rate (p < 0.001), elevating TGF-β1, VEGF, Type I collagen relative expression, and reducing inflammatory markers such as IL-1β and TNF-α. In vitro antioxidant assays showed that the extract displayed strong scavenging effects to peroxides and superoxide free radicals. In silico studies using a molecular docking approach against TNF-α, TGFBR1, and IL-1β showed that some metabolites in M. oleifera seed extract can bind to the active sites of three wound-healing related proteins. Protein−protein interaction (PPI) and compound−protein interaction (CPI) networks were constructed as well. Quercetin, caffeic acid, and kaempferol showed the highest connectivity with the putative proteins. In silico drug likeness studies revealed that almost all compounds comply with both Lipinski’s and Veber’s rule. According to the previous findings, an in vitro study was carried out on the pure compounds, including quercetin, kaempferol, and caffeic acid (identified from M. oleifera) to validate the proposed approach and to verify their potential effectiveness. Their inhibitory potential was evaluated against the pro-inflammatory cytokine IL-6 and against the endopeptidase MMPs (matrix metalloproteinases) subtype I and II, with highest activity being observed for kaempferol. Hence, M. oleifera seeds could be a promising source of bioactive compounds with potential antioxidant and wound healing capabilities.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt
- Correspondence: (N.H.S.); (N.M.M.); (U.R.A.); Tel.: +20-1025666872 (N.M.M.); +20-01005867510 or +20-1111595772 (U.R.A.)
| | - Nada M. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Correspondence: (N.H.S.); (N.M.M.); (U.R.A.); Tel.: +20-1025666872 (N.M.M.); +20-01005867510 or +20-1111595772 (U.R.A.)
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Islam M. Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt
| | - Sherif A. Maher
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta 31527, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straβe 49, 67663 Kaiserslautern, Germany
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia 61519, Egypt, Delegated to Deraya University, Universities Zone, New Minia City 61111, Egypt
| | - Manal M. Khowdiary
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Al-Lith Branch, Makkah 24211, Saudi Arabia
| | - Mahmoud A. Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Mubarak A. Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal H. Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence: (N.H.S.); (N.M.M.); (U.R.A.); Tel.: +20-1025666872 (N.M.M.); +20-01005867510 or +20-1111595772 (U.R.A.)
| |
Collapse
|
46
|
Patil SV, Mohite BV, Marathe KR, Salunkhe NS, Marathe V, Patil VS. Moringa Tree, Gift of Nature: a Review on Nutritional and Industrial Potential. CURRENT PHARMACOLOGY REPORTS 2022; 8:262-280. [PMID: 35600137 PMCID: PMC9108141 DOI: 10.1007/s40495-022-00288-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Satish V. Patil
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | - Bhavana V. Mohite
- Department of Microbiology, Bajaj College of Science, Wardha, MH India
| | - Kiran R. Marathe
- School of Life Sciences, KBC North Maharashtra University, Jalgaon, MH India
| | | | | | - Vikas S. Patil
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, MH India
| |
Collapse
|
47
|
Karthiga D, Chozhavendhan S, Gandhiraj V, Aniskumar M. The effects of Moringa oleifera leaf extract as an organic bio-stimulant for the growth of various plants: Review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Optimization, identification and bioactivity of flavonoids extracted from Moringa oleifera leaves by deep eutectic solvent. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Xu Y, Chen G, Guo M. Potential Anti-aging Components From Moringa oleifera Leaves Explored by Affinity Ultrafiltration With Multiple Drug Targets. Front Nutr 2022; 9:854882. [PMID: 35619958 PMCID: PMC9127542 DOI: 10.3389/fnut.2022.854882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/27/2022] Open
Abstract
Moringa oleifera (M. oleifera), widely used in tropical and subtropical regions, has been reported to possess good anti-aging benefits on skincare. However, the potential bioactive components responsible for its anti-aging effects, including anti-collagenase, anti-elastase, and anti-hyaluronidase activities, have not been clarified so far. In this study, M. oleifera leaf extracts were first conducted for anti-elastase and anti-collagenase activities in vitro by spectrophotometric and fluorometric assays, and the results revealed that they possessed good activities against skin aging-related enzymes. Then, multi-target bio-affinity ultrafiltration coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS) was applied to quickly screen anti-elastase, anti-collagenase, and anti-hyaluronidase ligands in M. oleifera leaf extracts. Meanwhile, 10, 8, and 14 phytochemicals were screened out as the potential anti-elastase, anti-collagenase, and anti-hyaluronidase ligands, respectively. Further confirmation of these potential bioactive components with anti-aging target enzymes was also implemented by molecule docking analysis. In conclusion, these results suggest that the M. oleifera leaves might be a very promising natural source of anti-aging agent for skincare, which can be further explored in the cosmetics and cosmeceutical industries combating aging and skin wrinkling.
Collapse
Affiliation(s)
- Yongbing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.,Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
50
|
Odukoya JO, Odukoya JO, Mmutlane EM, Ndinteh DT. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors in sub-Saharan Africa. PLANTS (BASEL, SWITZERLAND) 2022; 11:1387. [PMID: 35631812 PMCID: PMC9143319 DOI: 10.3390/plants11101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of global mortality, including deaths arising from non-communicable diseases in sub-Saharan Africa (SSA). Consequently, this study aimed to provide details of medicinal plants (MPs) employed in SSA for the treatment of CVDs and their related risk factors to open new avenues for the discovery of novel drugs. The extensive ethnopharmacological literature survey of these MPs in 41 SSA countries was based on studies from 1982 to 2021. It revealed 1,085 MPs belonging to 218 botanical families, with Fabaceae (9.61%), Asteraceae (6.77%), Apocynaceae (3.93%), Lamiaceae (3.75%), and Rubiaceae (3.66%) being the most represented. Meanwhile, Allium sativum L., Persea americana Mill., Moringa oleifera Lam., Mangifera indica L., and Allium cepa L. are the five most utilised plant species. The preferred plant parts include the leaves (36%), roots (21%), barks (14%), fruits (7%), and seeds (5%), which are mostly prepared by decoction. Benin, Mauritius, Nigeria, South Africa, and Togo had the highest reported use while most of the investigations were on diabetes and hypertension. Despite the nutraceutical advantages of some of these MPs, their general toxicity potential calls for caution in their human long-term use. Overall, the study established the need for governments of SSA countries to validate the efficacy/safety of these MPs as well as provide affordable, accessible, and improved modern healthcare services.
Collapse
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Chemistry, The Federal University of Technology, Akure PMB 704, Ondo State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
- Department of Food Science and Technology, Kwara State University, Malete, Ilorin PMB 1530, Kwara State, Nigeria
| | - Edwin Mpho Mmutlane
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| | - Derek Tantoh Ndinteh
- Centre for Natural Products Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa;
| |
Collapse
|