1
|
Zhou J, Feng Z, Yue M, Chang Z, Chen J, Wang M, Liu F, Gu C. Innovative enhancement of flavor profiles and functional metabolites composition in Pandanus amaryllifolius through lactic acid bacteria fermentation. Food Chem X 2024; 24:101964. [PMID: 39582657 PMCID: PMC11582449 DOI: 10.1016/j.fochx.2024.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Pandanus amaryllifolius, known as Pandan, serves as a coloring agent and spice in food. The effects of lactic acid bacteria (LAB) on Pandan are underexplored. This study aimed to investigate changes in physicochemical properties, antioxidant activity, volatile compounds and metabolites of Pandan fermented with Lactobacillus acidophilus, Levilactobacillus brevis and Lacticaseibacillus rhamnosus. Fermented Pandan showed increased total phenol (13 %-21 %) and flavonoid (33 %-53 %) content. Pandan fermented with L. rhamnosus exhibited significantly higher antioxidant activity, followed by those fermented with L. brevis and L. acidophilus. Key components like naringenin and volatile compounds such as α-ionone significantly increased after fermentation, with the production of new compounds, including damascenone and linalool. These compounds enhance the flavor and functional properties of fermented Pandan. This research lays a foundation for developing novel LAB-fermented Pandan products.
Collapse
Affiliation(s)
- Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zhen Feng
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, 571533, Hainan, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China
- Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, 571533, Hainan, China
| |
Collapse
|
2
|
Abdelmawgood IA, Kotb MA, Hassan HS, Mahana NA, Rochdi AM, Sayed NH, Elsafoury RH, Saber AM, Youssef MN, Waheeb NG, Al-Rifai MWA, Badr AM, Abdelkader AE. Gentisic acid attenuates ovalbumin-induced airway inflammation, oxidative stress, and ferroptosis through the modulation of Nrf2/HO-1 and NF-κB signaling pathways. Int Immunopharmacol 2024; 146:113764. [PMID: 39689597 DOI: 10.1016/j.intimp.2024.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Asthma, a lung disorder that causes impaired respiratory function, is characterized by an apparent infiltration of inflammatory cells. Gentisic acid (GA), a phenolic acid common in food ingredients, has antioxidant, antibacterial, and anti-inflammatory properties. Its potential application in mitigating asthma, however, remains unexplored. The current investigation studies GA's therapeutic potential for allergic asthma. BALB/c mice were challenged and sensitized to ovalbumin (OVA) to establish the animal model. We investigated how GA affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. ELISA and immunohistochemistry (IHC) techniques were employed to measure Nrf2, HO-1, and NF-κB's expression. To investigate the protein-ligand interaction between GA and Keap1, molecular docking analysis was utilized. The GA treatment significantly reduced nasal scratching, oxidative stress in the lungs, the infiltration of inflammatory cells, IgE content, iron accumulation, and NF-κB activation. It also upregulated Nrf2 and HO-1. Additionally, in silico studies revealed GA and Keap1 binding to activate Nrf2 by disrupting the Keap1-Nrf2 interaction. The study at hand is the first to investigate and report on the immunomodulatory impacts of GA on induced asthma in BALB/c mice. Our findings reveal that GA can be utilized as an anti-asthmatic agent via Nrf2/HO-1 and NF-κB pathway regulation.
Collapse
Affiliation(s)
| | - Mohamed A Kotb
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Noha A Mahana
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed M Rochdi
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Nader Hassan Sayed
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Reem H Elsafoury
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Amal M Saber
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Nancy George Waheeb
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Mohamed W A Al-Rifai
- Al-Makassed Islamic Charitable, East Jerusalem, Biet Jala Hospital, Biet Jala, Palestine
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| | | |
Collapse
|
3
|
Kutraite I, Augustiniene E, Malys N. Maleylpyruvic Acid-Inducible Gene Expression System and Its Application for the Development of Gentisic Acid Biosensors. Anal Chem 2024; 96:18727-18735. [PMID: 39548649 PMCID: PMC11603403 DOI: 10.1021/acs.analchem.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Gentisic acid is a secondary plant metabolite, known for its health benefits, not only widely used as a supplement but also implicated as a potential biomarker for cancer-associated metabolism alterations. To advance bioproduction and detection of this compound or its derivatives, cell-based approaches have become of interest in recent years. However, the lack of tools for high-throughput gentisic acid monitoring and compound-metabolizing organism screening limits the progress in this area. Here, we analyzed the gene cluster responsible for gentisic acid metabolism in Cupriavidus necator H16. The transcriptional regulator GtdR-based inducible gene expression system CnGtdR/PgtdA was elucidated, showing that it was activated when C. necator cells were subjected to gentisic acid. Subsequently, a 3-maleylpyruvic acid was identified as a primary inducer for this inducible system. Furthermore, genes gtdA and gtdT, encoding for gentisate 1,2-dioxygenase and MFS transporter, were shown to be essential for inducible system activation in the presence of gentisic acid with GtdA enabling conversion of this phenolic acid into the inducer. The CnGtdRAT/PgtdA-based inducible system was employed to develop a whole-cell biosensor for the intracellular and extracellular detection of gentisic acid. The potential of the 3-maleylpyruvic acid-inducible system was demonstrated by its application in metabolic pathway research, detection of highly unstable 3-maleylpyruvic acid, and development of biosensors for the intracellular or extracellular determination of gentisic acid. In addition, the utility of the biosensor was emphasized by its application for detection of gentisic acid as a potential biomarker for cancer in urine samples.
Collapse
Affiliation(s)
- Ingrida Kutraite
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| | - Ernesta Augustiniene
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| | - Naglis Malys
- Bioprocess
Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
- Department
of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų Street 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
4
|
Dilkalal A, Annapurna AS, Umesh TG. In vitro antioxidant, anticancer and in silico studies of polyphenol enriched leaf extract of Asystasia gangetica. Sci Rep 2024; 14:28374. [PMID: 39551894 PMCID: PMC11570673 DOI: 10.1038/s41598-024-79996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024] Open
Abstract
Polyphenols are natural biomolecules known for circumventing several diseases including cancer with little adverse effects. This study aimed to investigate the polyphenol enriched fractions from the leaf extract of Asystasia gangetica for their composition, biological activities such as antioxidant activity, haemolytic effects, and in vitro cytotoxicity against cancer cell lines. LC-MS/MS analysis of the enriched fractions identified a total of 35 distinct polyphenols with caffeic acid, luteolin, apigenin, and protocatechuic acid at higher concentrations. Fractions AG-3 and AG-4 exhibited the highest total antioxidant activity with higher concentration of phenolics and flavonoids. The AG-4 fraction had the highest levels of DPPH radical scavenging (IC50 = 32.74 µg mL-1) and ABTS radical scavenging (IC50 = 29.45 µg mL-1) activity, in addition to a modest iron chelating activity and reducing power. The fractions exhibited the least haemolytic activity. The cytotoxic potential of enriched fractions against the HCT-116, HeLa, PC-3, and HDF cell lines was further examined. While the extract showed no inhibitory effect on normal HDF cells, the cytotoxic activity of fractions on cell lines varied, with HCT-116 cells having the strongest anticancer activity with an IC50 of 43.82 µg mL-1. Additionally, fractions induced apoptotic activity in HCT-116 cells, resulting in cell cycle arrest at the G2M phase and an increase in sub-G0/G1 cells, with an IC50 of 13.54 µg mL-1 after 48 h of incubation. The in silico molecular docking of the active compounds against the TNIK receptor protein and ADMET (Absorption-Distribution-Metabolism-Excretion-Toxicity) characteristics are described. Overall, the study highlights the enhanced biological and antiproliferative activities of polyphenols in Asystasia gangetica leaf extract, which could be further utilized as a potential cancer treatment strategy.
Collapse
Affiliation(s)
- Abhirami Dilkalal
- Department of Botany, Bangalore University, Jnanabharathi, Bengaluru, 560056, India
| | - A S Annapurna
- Department of Botany, Bangalore University, Jnanabharathi, Bengaluru, 560056, India
| | - T G Umesh
- Department of Botany, Bangalore University, Jnanabharathi, Bengaluru, 560056, India.
| |
Collapse
|
5
|
Nong X, Zhong S, Huang L, Xiao J, Hu Y, Xie Y. Nontargeted metabonomics analysis of Scorias spongiosa fruiting bodies at different growth stages. Front Microbiol 2024; 15:1478887. [PMID: 39539701 PMCID: PMC11557477 DOI: 10.3389/fmicb.2024.1478887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Scorias spongiosa is an edible fungus. Methods In this study, a nontargeted metabonomic analysis was conducted on the fruiting bodies of this fungus at five growth stages, and the differences in metabolites and the related metabolic pathways during growth and development were analysed. Results This study revealed that the five growth stages of S. spongiosa fruiting bodies were associated with 15 pathways. These 15 metabolic pathways are speculated to play important roles in the growth of S. spongiosa fruiting bodies. Eleven bioactive substances were identified among the differentially expressed compounds. The content of six bioactive substances was highest at the S1 growth stage among all the growth stages. The metabolites related to sugar metabolism were enriched in three main pathways: pentose and gluconate interconversions, the pentose phosphate pathway, and the citrate cycle (TCA cycle). Discussion These results suggested that the S1 growth stage can be selected as the harvest period of S. spongiosa in fruiting bodies to retain most of the bioactive substances. Pentose and gluconate interconversions, the pentose phosphate pathway, and the TCA cycle are related to changes in polysaccharide content during the growth of S. spongiosa fruiting bodies.
Collapse
Affiliation(s)
- Xiang Nong
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Shengnan Zhong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanying Huang
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Jie Xiao
- School of Life Science, Leshan Normal University, Leshan, China
| | - Ye Hu
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Hosseinzadeh Y, Ghasemzadeh Rahbardar M, Mehri S, Razavi BM, Hosseinzadeh H. Protective effect of aspirin and gentisic acid, a plant-derived phenolic acid, on acrylamide-induced neurotoxicity by inhibiting apoptosis and autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03498-6. [PMID: 39367985 DOI: 10.1007/s00210-024-03498-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Acrylamide (ACR) is a toxic agent for humans and animals. Gentisic acid, an aspirin metabolite, has antioxidant activity. Therefore, the present study investigated the probable protective effects of aspirin and gentisic acid on ACR-induced neurotoxicity in PC12 cells and rats. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess the effects of aspirin and gentisic acid (1.25, 2.5, 5 µM) on ACR (5 mM) toxicity. Male Wistar rats were randomly divided into 13 groups: (1) Control group, (2) ACR (50 mg/kg, 11 days, i.p.), (3-5) ACR + aspirin (25, 50, 75 mg/kg, 11 days, p.o.), (6-8) ACR + gentisic acid (25, 50, 75 mg/kg, 11 days, p.o.), (9) ACR + vitamin E (200 mg/kg, every other day, i.p.), (10, 11) Aspirin (75, 100 mg/kg, 11 days, p.o.), (12, 13) Gentisic acid (75, 100 mg/kg, 11 days, p.o.). Behavioral tests were assessed on the final day of the study. In the cerebral cortex, malondialdehyde (MDA), glutathione (GSH), cleaved-caspase-3, and microtubule-associated protein 1A/1B-light chain 3 (LC3) protein levels were evaluated. When compared with the ACR group, aspirin (2.5, 5 µM) and gentisic acid (2.5 µM) significantly enhanced cell viability. In comparison to the control group, ACR induced severe motor impairment, elevated MDA, cleaved-caspase-3, LC3 II/I ratio, and decreased GSH levels in the cerebral cortex of rats. ACR-induced changes were significantly reversed by aspirin and gentisic acid (25 mg/kg). Oxidative stress, apoptosis, and autophagy play important roles in the neurotoxicity of ACR. Aspirin and gentisic acid significantly reduced ACR-induced toxicity by inhibiting the mentioned mechanisms.
Collapse
Affiliation(s)
| | | | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
8
|
Peng Y, Du Y, Zhang Y, Wang Z, Hu T, Mai Y, Song H, Pan W, Cai Q, Ge F, Fan Y, Kim HY, Liu D, Guan X. Gegen Qinlian decoction alleviates depression-like behavior by modulating the gut microenvironment in CUMS rats. BMC Complement Med Ther 2024; 24:339. [PMID: 39304871 DOI: 10.1186/s12906-024-04638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Gegen Qinlian Decoction (GQD) is a classical traditional Chinese medicine (TCM) formula primarily utilized for treating gut disorders. GQD showed therapeutic effects on several diseases in clinical and animal studies by targeting gut microbes. Our recent studies also found that GQD efficiently alleviated anxiety in methamphetamine-withdrawn mice via regulating gut microbiome and metabolism. Given that various studies have indicated the link between the gut microbiome and the development of depression, here we endeavor to explore whether GQD can manage depression disorders by targeting the gut microbiome. METHODS AND MATERIALS The depression-like model was induced in rats through chronic unpredictable mild stress (CUMS) and the depression levels were determined using the sucrose preference test (SPT). To address the depression-like behavior in rats, oral administration of GQD was employed. The colon microbiome and metabolite patterns were determined by 16s rRNA sequencing and untargeted metabolomics, respectively. RESULTS We found 6 weeks of CUMS can induce depression-like behavior in rats and 4 weeks of GQD treatment can significantly alleviate the depression-like behavior. GQD treatment can also ameliorate the histological lesions in the colon of CUMS rats. Then, CUMS increased the abundance of gut microbes, while GQD treatment can restore it to a lower level. We further discovered that the abundances of 19 bacteria at the genus level were changed with CUMS treatment, among which the abundances of Ruminococcus, Lachnoclostridium, Pygmaiobacter, Bacteroides, Pseudomonas, and Pseudomonas Family_XIII_AD3011_group were stored by GQD treatment. Besides, we identified the levels of 36 colon metabolites were changed with CUMS treatment, among which the levels of Fasciculic acid B, Spermine, Fludrocortisone acetate, alpha-Ketoglutaric acid, 2-Oxoglutaric acid, N'-(benzoyloxy)-2-(2,2-dichlorocyclopropyl) ethanimidamide, N6-Succinyl Adenosine Oleanolic acid, KQH, Ergosta-5,7,9(11),22-Tetraen-3-beta-Ol, Gentisic acid, 4-Hydroxyretinoic Acid, FAHFA (3:0/16:0), Leucine-enkephalin and N-lactoyl-phenylalanine can be restored by GQD treatment. CONCLUSION Our findings provide evidence supporting the therapeutic efficacy of GQD in alleviating depression-like behavior in CUMS rats, potentially being targeted on colon bacteria (especially the abundance of Ruminococcus and Bacteroides) and metabolites (especially the level of Oleanolic acid).
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuning Mai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongxiu Song
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
9
|
Mall Bishen S, Adhikari M, Pokharia S, Mishra H. The effect of polarity and hydrogen bonding on the electronic and vibrational structure of the salicylate anion in acetonitrile and water: implicit and explicit solvation approaches. RSC Adv 2024; 14:29569-29587. [PMID: 39297029 PMCID: PMC11409446 DOI: 10.1039/d4ra04606d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
This study investigates the fluorescence quenching of the salicylate anion in water compared to acetonitrile (ACN) and the stability of its keto structure in ACN using DFT and TD-DFT methods at the 6-311++G(d,p) basis set. Computational simulations in implicit and explicit environments of ACN and water reveal the effects of solvent polarity and hydrogen bonding on enol [Od-H⋯Oa] and keto [Od⋯H-Oa] tautomerization, fluorescence quenching, and the spectral profile of the salicylate anion. Implicit solvation models show a barrier height of approximately 1.9 kcal mol-1 in ACN and 3.6 kcal mol-1 in water for enol-keto tautomerization in the ground state, with no barrier in the excited state, leading to an ESIPT reaction in both solvents, but only ground state proton transfer in ACN. Simulated absorption spectra for both enol and keto forms are similar in both solvents, while the emission spectrum is red-shifted in water. Explicit solvation studies indicate greater stabilization of the salicylate anion in water than in ACN, with a blue shift in absorption and emission spectra and varying oscillator strengths. Solvent molecule positioning affects enol-keto stabilization in the ground state, but only the keto structure is stabilized in the excited state. Simulated IR spectra in water show a blue shift in Od-H stretching frequency and increased water molecule vibrational frequencies, suggesting non-radiative excitation energy transfer from salicylate ions to water molecules via n → σ* intermolecular hydrogen bonding interactions. This mechanism explains the fluorescence quenching observed in water and results align with experimental data, indicating hydrogen-bonded keto form stabilization both in water and ACN.
Collapse
Affiliation(s)
- Siddharth Mall Bishen
- Department of Physics, Institute of Science, Banaras Hindu University Varanasi 221005 India
- Physics Section, MMV, Department of Physics, Banaras Hindu University Varanasi 221005 India +919454161037
| | - Meena Adhikari
- Physics Section, MMV, Department of Physics, Banaras Hindu University Varanasi 221005 India +919454161037
| | - Sandeep Pokharia
- Chemistry Section, MMV, Banaras Hindu University Varanasi 221005 India
| | - Hirdyesh Mishra
- Physics Section, MMV, Department of Physics, Banaras Hindu University Varanasi 221005 India +919454161037
| |
Collapse
|
10
|
Mentese A, Demir S, Yulug E, Kucuk H, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid attenuates 5-fluorouracil-induced ovotoxicity in rats via modulating Nrf2 signalling: An experimental approach. Reprod Toxicol 2024; 128:108661. [PMID: 38986848 DOI: 10.1016/j.reprotox.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/25/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
5-Fluorouracil (5-FU) is the third most used chemotherapeutic in the world with its anticancer effect resulting from its potential to block DNA replication. Like other cytotoxic agents, 5-FU has side effects on healthy tissues, and the reproductive system is among the tissues most affected by these undesirable effects. Gentisic acid (GEA) is a secondary metabolite that is abundant in fruits, vegetables and spices and has antioxidant activity. This study was conducted to investigate the toxicity of 5-FU in rat ovarian tissue and to determine the therapeutic activity of GEA on ovotoxicity caused by 5-FU. The results showed that 5-FU caused histopathological findings by suppressing Nrf2 pathway and accordingly increasing oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis. However, GEA treatments after 5-FU application ameliorated 5-FU-induced ovotoxicity dose-dependently through activation of Nrf2 pathway. All these findings provided strong evidence supporting the hypothesis that GEA treatment may have therapeutic effects against 5-FU-induced ovarian damage. However, the beneficial effect of GEA use in eliminating ovarian damage in women after 5-FU chemotherapy should continue to be investigated with more detailed molecular studies.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Services and Techniques, Vocational School of Health Services, Karadeniz Technical University, Trabzon 61080, Turkiye
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye.
| | - Esin Yulug
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Hatice Kucuk
- Department of Pathology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon 61250, Turkiye
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon 61080, Turkiye; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, Rize 53100, Turkiye
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, Trabzon 61750, Turkiye
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
11
|
McHugh O, Ayilaran E, DeBastiani A, Jung Y. Physicochemical and Functional Properties of Black Walnut and Sycamore Syrups. Foods 2024; 13:2780. [PMID: 39272545 PMCID: PMC11395506 DOI: 10.3390/foods13172780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Historically, tree sap has been used globally for medicinal purposes, in fermented beverages, and for syrup production. Maple tree sap is notably concentrated into syrup and is valued as a natural sweetener rich in phenolic compounds and minerals compared to refined sugar. Recently, syrups from other trees like black walnut (Juglans nigra) and sycamore (Platanus occidentalis) have gained popularity, yet their properties are not well understood scientifically. To address this gap, we collected sycamore, black walnut, and maple syrup samples and analyzed their physicochemical and functional properties. Our findings showed significant differences among the syrups in pH, browning intensity, and water activity (p < 0.05). Sycamore syrup had the highest total phenolic content, followed by black walnut and maple syrups. Both black walnut and sycamore syrups exhibited similar antioxidant activity, significantly higher than maple syrup (p < 0.05). High-resolution mass spectrometry identified 54 phenolic acids and 22 flavonoids in these syrups, including Acetylsalicylic acid, 3,5-Dihydroxybenzoic acid, and syringic acid, known for their antioxidant and anti-inflammatory properties. Additionally, sycamore syrups and most black walnut syrups displayed varying degrees of antimicrobial activity against Gram-positive and/or Gram-negative microorganisms. This study offers insights into the properties and potential health benefits of these specialty tree syrups.
Collapse
Affiliation(s)
- Olivia McHugh
- Agricultural & Environmental Research Station, West Virginia State University, Institute, WV 25112, USA
| | - Elijah Ayilaran
- Department of Biology, West Virginia State University, Institute, WV 25112, USA
| | - Anthony DeBastiani
- Shared Research Facilities, West Virginia University, Morgantown, WV 26505, USA
| | - Yangjin Jung
- Agricultural & Environmental Research Station, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
12
|
Cunha LB, Lepore ED, Medeiros CCB, Sorrechia R, Pietro RCLR, Corrêa MA. Can Gentisic Acid Serve as a High-Performance Antioxidant with Lower Toxicity for a Promising New Topical Application? Life (Basel) 2024; 14:1022. [PMID: 39202764 PMCID: PMC11355177 DOI: 10.3390/life14081022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Gentisic acid (2,5-dihydroxybenzoic acid) is primarily found naturally in plants and has demonstrated a significant range of biological activities; however, its efficacy and safety as a topical application ingredient are not yet well established. Thus, the compound's potential antioxidant and antimicrobial properties were evaluated for efficacy, while the cytotoxicity was evaluated for safety. The antioxidant activity, measured by the DPPH kinetic method, showed an Efficiency Concentration (EC50) of 0.09 with an antioxidant reducing power (ARP) of 11.1. The minimum inhibitory concentration (MIC) against Staphylococcus aureus was 4.15 mg/mL, Escherichia coli was 4.00 mg/mL, Candida albicans was 3.00 mg/mL, and Cutibacterium acnes was 3.60 mg/mL, and the MIC for C. acnes has remained unpublished until now. The substance showed low cytotoxicity by the neutral red uptake (NRU) methodology against HaCat, HDFa, and HepG2 cells at concentrations of up to 10.0, 7.3, and 4.0 mM, respectively, also representing unpublished data. This evidence demonstrates gentisic acid as a promising active substance for skin topical application in the cosmetic or pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcos A. Corrêa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.B.C.); (E.D.L.); (C.C.B.M.)
| |
Collapse
|
13
|
Mendieta-Brito S, Sayed M, Son E, Kim DS, Dávila M, Pyo SH. Identification, Characterization, and Antibacterial Evaluation of Five Endophytic Fungi from Psychotria poeppigiana Müll. Arg., an Amazon Plant. Microorganisms 2024; 12:1590. [PMID: 39203432 PMCID: PMC11356722 DOI: 10.3390/microorganisms12081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Endophytic fungi, residing within plants without causing disease, are known for their ability to produce bioactive metabolites with diverse properties such as antibacterial, antioxidant, and antifungal activities, while also influencing plant defense mechanisms. In this study, five novel endophytic fungi species were isolated from the leaves of Psychotria poeppigiana Müll. Arg., a plant from the Rubiaceae family, collected in the tropical Amazon region of Bolivia. The endophytic fungi were identified as a Neopestalotiopsis sp., three Penicillium sp., and an Aspergillus sp. through 18S ribosomal RNA sequencing and NCBI-BLAST analysis. Chemical profiling revealed that their extracts obtained by ethyl acetate contained terpenes, flavonoids, and phenolic compounds. In a bioautography study, the terpenes showed high antimicrobial activity against Escherichia coli. Notably, extracts from the three Penicillium species exhibited potent antibacterial activity, with minimum inhibitory concentration (MIC) values ranging from 62.5 to 2000 µg/mL against all three pathogens: Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis (both Gram-positive and Gram-negative bacteria). These findings highlight the potential of these endophytic fungi, especially Penicillium species as valuable sources of secondary metabolites with significant antibacterial activities, suggesting promising applications in medicine, pharmaceuticals, agriculture, and environmental technologies.
Collapse
Affiliation(s)
- Sonia Mendieta-Brito
- Centro de Tecnología Agroindustrial, Universidad Mayor de San Simón, Cochabamba 00591, Bolivia
- Division of Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100 Lund, Sweden
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100 Lund, Sweden
- Department of Botany and Microbiology, South Valley University, Qena 83523, Egypt
| | - Eunjung Son
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-Daero, Yuseong-Gu, Daejeon 34054, Republic of Korea
| | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-Daero, Yuseong-Gu, Daejeon 34054, Republic of Korea
| | - Marcelo Dávila
- Centro de Tecnología Agroindustrial, Universidad Mayor de San Simón, Cochabamba 00591, Bolivia
| | - Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Faculty of Engineering, Lund University, SE-22100 Lund, Sweden
| |
Collapse
|
14
|
Cansız D, Ünal İ, Gani Sürmen M, Sürmen S, Sezer Z, Beler M, Güzel E, Alturfan AA, Emekli-Alturfan E. Gentisic acid exerts neuroprotective effects in neurotoxin-induced Parkinson's disease model in zebrafish: Cross-talk between pathways related with neurodegeneration in the gut-brain axis. Brain Res 2024; 1836:148952. [PMID: 38643930 DOI: 10.1016/j.brainres.2024.148952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Given that global prevalence of Parkinson's disease (PD) is expected to rise over the next few decades, understanding the mechanisms and causes of PD is critical. With emphasis on gut-brain axis, we sought to assess the impact of gentisic acid (GA), a diphenolic compound generated from benzoic acid, in rotenone (Rot) induced PD model in zebrafish. For thirty days, adult zebrafish were exposed to GA and rotenone. Tox-Track program was used to analyze locomotor behaviors in the control, GA, Rot, and Rot + GA groups. LC-MS/MS was performed in brain and intestinal tissues. Proteome Discoverer 2.4 was used to analyze raw files, peptide lists were searched against Danio rerio proteins. Protein interactions or annotations were obtained from STRING database. Tyrosine hydroxylase (Th) staining was performed immunohistochemically in the brain. PD-related gene expressions were determined by RT-PCR. Lipid peroxidation, nitric oxide, superoxide dismutase, glutathione S-transferase, and acetylcholinesterase were measured spectrophotometrically. Improved locomotor behaviors were observed by GA treatment in Rot group as evidenced by increased average speed, exploration rate, and total distance. 5214 proteins were identified in intestinal tissues, 4114 proteins were identified in brain by LC-MS/MS. Rotenone exposure altered protein expressions related to oxidative phosphorylation in brain and intestines. Protein expressions involved in ferroptis and actin cytoskeleton changed in brain and intestines. Altered protein expressions were improved by GA. GA ameliorated Th-immunoreactivity in brain, improved park2, park7, pink1, and lrrk2 expressions. Our results show that GA may be a candidate agent to be evaluated for its potential protective effect for PD.
Collapse
Affiliation(s)
- Derya Cansız
- Department Medipol University, Faculty of Medicine, Medical Biochemistry, Istanbul, Turkey
| | - İsmail Ünal
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Mustafa Gani Sürmen
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Medicine, Istanbul, Turkey
| | - Saime Sürmen
- University of Health Sciences, Hamidiye Institute of Health Sciences, Department of Molecular Medicine, Istanbul, Turkey
| | - Zehra Sezer
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - Merih Beler
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Elif Güzel
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - A Ata Alturfan
- Istanbul University-Cerrahpaşa, Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Marmara University, Faculty of Dentistry, Department of Basic Medical Sciences, Istanbul, Turkey.
| |
Collapse
|
15
|
Liu Y, Yang L, Ma Y, Zhou Y, Zhang S, Liu Q, Ma F, Liu C. The HD-Zip I transcription factor MdHB-7 negatively regulates resistance to Glomerella leaf spot in apple. JOURNAL OF PLANT PHYSIOLOGY 2024; 299:154277. [PMID: 38843655 DOI: 10.1016/j.jplph.2024.154277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
Glomerella leaf spot (GLS), caused by Colletotrichum fructicola (Cf), has been one of the main fungal diseases afflicting apple-producing areas across the world for many years, and it has led to substantial reductions in apple output and quality. HD-Zip transcription factors have been identified in several species, and they are involved in the immune response of plants to various types of biotic stress. In this study, inoculation of MdHB-7 overexpressing (MdHB-7-OE) and interference (MdHB-7-RNAi) transgenic plants with Cf revealed that MdHB-7, which encodes an HD-Zip transcription factor, adversely affects GLS resistance. The SA content and the expression of SA pathway-related genes were lower in MdHB-7-OE plants than in 'GL-3' plants; the content of ABA and the expression of ABA biosynthesis genes were higher in MdHB-7-OE plants than in 'GL-3' plants. Further analysis indicated that the content of phenolics and chitinase and β-1, 3 glucanase activities were lower and H2O2 accumulation was higher in MdHB-7-OE plants than in 'GL-3' plants. The opposite patterns were observed in MdHB-7-RNAi apple plants. Overall, our results indicate that MdHB-7 plays a negative role in regulating defense against GLS in apple, which is likely achieved by altering the content of SA, ABA, polyphenols, the activities of defense-related enzymes, and the content of H2O2.
Collapse
Affiliation(s)
- Yuerong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lulu Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yongxin Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yufei Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Changhai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Feng G, Zhang L, Bao W, Ni J, Wang Y, Huang Y, Lyv J, Cao X, Chen T, You K, Khan H, Shen X. Gentisic acid prevents colorectal cancer metastasis via blocking GPR81-mediated DEPDC5 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155615. [PMID: 38615493 DOI: 10.1016/j.phymed.2024.155615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Metastasis driven by epithelial-mesenchymal transition (EMT) remains a significant contributor to the poor prognosis of colorectal cancer (CRC), and requires more effective interventions. GPR81 signaling has been linked to tumor metastasis, while lacks an efficient specific inhibitor. PURPOSE Our study aimed to investigate the effect and mechanism of Gentisic acid on colorectal cancer (CRC) metastasis. STUDY DESIGN A lung metastasis mouse model induced by tail vein injection and a subcutaneous graft tumor model were used. Gentisic acid (GA) was administered by an intraperitoneal injection. HCT116 was treated with lactate to establish an in vitro model. METHODS MC38 cells with mCherry fluorescent protein were injected into tail vein to investigate lung metastasis ability in vivo. GA was administered by intraperitoneal injection for 3 weeks. The therapeutic effect was evaluated by survival rates, histochemical analysis, RT-qPCR and live imaging. The mechanism was explored using small interfering RNA (siRNA), Western blotting, RT-qPCR and immunofluorescence. RESULTS GA had a therapeutic effect on CRC metastasis and improved survival rates and pathological changes in dose-dependent manner. GA emerged as an GPR81 inhibitor, effectively suppressed EMT and mTOR signaling in CRC induced by lactate both in vivo and in vitro. Mechanistically, GA halted lactate-induce degradation of DEPDC5 through impeding the activation of Chaperone-mediated autophagy (CMA). CONCLUSION CMA-mediated DEPDC5 degradation is crucial for lactate/GPR81-induced CRC metastasis, and GA may be a promising candidate for metastasis by inhibiting GPR81 signaling.
Collapse
Affiliation(s)
- Guize Feng
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Lijie Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiahui Ni
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yirui Wang
- Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China
| | - Yuran Huang
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiaren Lyv
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xinyue Cao
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Tongqing Chen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Keyuan You
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - Xiaoyan Shen
- Department of Pharmacology & the Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China; Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Artificial Intelligence Innovation and Incubation (AI³) Institute, Fudan University, Shanghai, China; MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Elhady SS, Goda MS, Mehanna ET, El-Sayed NM, Hazem RM, Elfaky MA, Almalki AJ, Mohamed MS, Abdelhameed RFA. Ziziphus spina-christi L. extract attenuates bleomycin-induced lung fibrosis in mice via regulating TGF-β1/SMAD pathway: LC-MS/MS Metabolic profiling, chemical composition, and histology studies. Biomed Pharmacother 2024; 176:116823. [PMID: 38834008 DOI: 10.1016/j.biopha.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-β1/SMAD pathway.
Collapse
Affiliation(s)
- Sameh S Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Marwa S Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Reem M Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud A Elfaky
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Khartoum University, Khartoum 11111, Sudan
| | - Reda F A Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| |
Collapse
|
18
|
Wei X, Liang J, Liu J, Dai Y, Leng X, Cheng Y, Chi L. Anchang Yuyang Decoction inhibits experimental colitis-related carcinogenesis by regulating PPAR signaling pathway and affecting metabolic homeostasis of host and microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117995. [PMID: 38428656 DOI: 10.1016/j.jep.2024.117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) presents a risk of carcinogenesis, which escalates with the duration of IBD. Persistent histological inflammation is considered to be the driving factor of colitis carcinogenesis. Effective control of inflammation is helpful to prevent and treat colitis-related colorectal cancer (CAC). Anchang Yuyang Decoction (AYD), a traditional Chinese medicine (TCM) formula, is originated from the ancient prescription of TCM for treating colitis and colorectal cancer. AYD has demonstrated efficacy in treating IBD and potential anti-carcinogenic properties. AIM OF THE STUDY This research aims to assess the therapeutic efficacy of AYD in ameliorating experimental colitis-related carcinogenesis induced by AOM/DSS. It further seeks to elucidate its potential mechanisms by integrating multiple omics sequencing approaches. MATERIALS AND METHODS A rat model for colitis-related carcinogenesis was developed using azoxymethane (AOM)/dextran sulfate sodium (DSS). UPLC-MS identified AYD's chemical constituents. Rats were administered varying doses of AYD (18.37, 9.19 and 4.59 g/kg) orally for 53 days, with mesalazine as a positive control. The study evaluated anti-carcinogenic effects by examining adenoma number, adenoma load, abnormal crypt foci (ACF), histopathological damage, and tumor-related protein expression. Anti-inflammatory and reparative effects were assessed through body weight, disease activity index (DAI), colon length, spleen index, inflammatory cytokine levels, and tight junction protein expression. The effects on intestinal microbiota and host metabolism were explored through 16S rRNA sequencing, targeted short-chain fatty acid (SCFA) metabonomics, and non-targeted colon metabolomics. Potential AYD targets were identified through transcriptomic sequencing and validated by qRT-PCR and western blotting. RESULTS AYD significantly reduced adenoma number, adenoma load, neoplasm-associated lesions, ACF, and tumor-related protein expression (e.g., p53, PCNA) in AOM/DSS-induced rats, thus impeding colitis-related carcinogenesis progression. AYD also alleviated histopathological damage and inflammation, promoting intestinal mucosal barrier repair. Furthermore, AYD modulated intestinal flora structure, enhanced SCFA production, and regulated colon metabolites. Transcriptomic sequencing revealed a significant impact on the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Subsequent qRT-PCR and western blotting experiments indicated AYD's influence in up-regulating PPAR-γ and down-regulating PPAR-α, PPAR-β/δ, and related proteins (thrombomodulin [Thbd], fatty acid binding protein 5 [Fabp5], stearoyl-CoA desaturase 2 [Scd2], phospholipid transfer protein [Pltp]). CONCLUSIONS This study demonstrates AYD's ability to inhibit experimental colitis-related carcinogenesis induced by AOM/DSS. Its mechanism likely involves modulation of the PPAR signaling pathway, impacting intestinal microbiota and host metabolic equilibrium.
Collapse
Affiliation(s)
- Xiunan Wei
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Junwei Liang
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Jiahui Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Yonggang Dai
- Department of Clinical Laboratory Medicine, Shandong Provincial Third Hospital, Jinan, 250014, China.
| | - Xiaohui Leng
- Department of Cardiovascular Medicine, Weifang Traditional Chinese Hospital, Weifang, 261000, China.
| | - Yan Cheng
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Lili Chi
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
19
|
Kontoghiorghes GJ. The Puzzle of Aspirin and Iron Deficiency: The Vital Missing Link of the Iron-Chelating Metabolites. Int J Mol Sci 2024; 25:5150. [PMID: 38791185 PMCID: PMC11121054 DOI: 10.3390/ijms25105150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylsalicylic acid or aspirin is the most commonly used drug in the world and is taken daily by millions of people. There is increasing evidence that chronic administration of low-dose aspirin of about 75-100 mg/day can cause iron deficiency anaemia (IDA) in the absence of major gastric bleeding; this is found in a large number of about 20% otherwise healthy elderly (>65 years) individuals. The mechanisms of the cause of IDA in this category of individuals are still largely unknown. Evidence is presented suggesting that a likely cause of IDA in this category of aspirin users is the chelation activity and increased excretion of iron caused by aspirin chelating metabolites (ACMs). It is estimated that 90% of oral aspirin is metabolized into about 70% of the ACMs salicyluric acid, salicylic acid, 2,5-dihydroxybenzoic acid, and 2,3-dihydroxybenzoic acid. All ACMs have a high affinity for binding iron and ability to mobilize iron from different iron pools, causing an overall net increase in iron excretion and altering iron balance. Interestingly, 2,3-dihydroxybenzoic acid has been previously tested in iron-loaded thalassaemia patients, leading to substantial increases in iron excretion. The daily administration of low-dose aspirin for long-term periods is likely to enhance the overall iron excretion in small increments each time due to the combined iron mobilization effect of the ACM. In particular, IDA is likely to occur mainly in populations such as elderly vegetarian adults with meals low in iron content. Furthermore, IDA may be exacerbated by the combinations of ACM with other dietary components, which can prevent iron absorption and enhance iron excretion. Overall, aspirin is acting as a chelating pro-drug similar to dexrazoxane, and the ACM as combination chelation therapy. Iron balance, pharmacological, and other studies on the interaction of iron and aspirin, as well as ACM, are likely to shed more light on the mechanism of IDA. Similar mechanisms of iron chelation through ACM may also be implicated in patient improvements observed in cancer, neurodegenerative, and other disease categories when treated long-term with daily aspirin. In particular, the role of aspirin and ACM in iron metabolism and free radical pathology includes ferroptosis, and may identify other missing links in the therapeutic effects of aspirin in many more diseases. It is suggested that aspirin is the first non-chelating drug described to cause IDA through its ACM metabolites. The therapeutic, pharmacological, toxicological and other implications of aspirin are incomplete without taking into consideration the iron binding and other effects of the ACM.
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol 3021, Cyprus
| |
Collapse
|
20
|
Geng H, Li R, Teng L, Yu C, Wang W, Gao K, Li A, Liu S, Xing R, Yu H, Li P. Exploring the Efficacy of Hydroxybenzoic Acid Derivatives in Mitigating Jellyfish Toxin-Induced Skin Damage: Insights into Protective and Reparative Mechanisms. Mar Drugs 2024; 22:205. [PMID: 38786596 PMCID: PMC11122885 DOI: 10.3390/md22050205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.
Collapse
Affiliation(s)
- Hao Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Lichao Teng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Wenjie Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Aoyu Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (H.G.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
21
|
Chen XJ, Liu SY, Li SM, Feng JK, Hu Y, Cheng XZ, Hou CZ, Xu Y, Hu M, Feng L, Xiao L. The recent advance and prospect of natural source compounds for the treatment of heart failure. Heliyon 2024; 10:e27110. [PMID: 38444481 PMCID: PMC10912389 DOI: 10.1016/j.heliyon.2024.e27110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024] Open
Abstract
Heart failure is a continuously developing syndrome of cardiac insufficiency caused by diseases, which becomes a major disease endangering human health as well as one of the main causes of death in patients with cardiovascular diseases. The occurrence of heart failure is related to hemodynamic abnormalities, neuroendocrine hormones, myocardial damage, myocardial remodeling etc, lead to the clinical manifestations including dyspnea, fatigue and fluid retention with complex pathophysiological mechanisms. Currently available drugs such as cardiac glycoside, diuretic, angiotensin-converting enzyme inhibitor, vasodilator and β receptor blocker etc are widely used for the treatment of heart failure. In particular, natural products and related active ingredients have the characteristics of mild efficacy, low toxicity, multi-target comprehensive efficacy, and have obvious advantages in restoring cardiac function, reducing energy disorder and improving quality of life. In this review, we mainly focus on the recent advance including mechanisms and active ingredients of natural products for the treatment of heart failure, which will provide the inspiration for the development of more potent clinical drugs against heart failure.
Collapse
Affiliation(s)
- Xing-Juan Chen
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Si-Yuan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Si-Ming Li
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | | | - Ying Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiao-Zhen Cheng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Cheng-Zhi Hou
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Yun Xu
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- Peking University International Hospital, Beijing, 102206, China
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| | - Lu Xiao
- China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, 100053, China
| |
Collapse
|
22
|
Liu S, Wang B, Lin L, Xu W, Gong ZH, Xiao WJ. L-Theanine alleviates heat stress through modulation of gut microbiota and immunity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2059-2072. [PMID: 37917744 DOI: 10.1002/jsfa.13095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Heat stress (HS) damages the intestines, disrupting gut microbiota and immune balance. l-Theanine (LTA), found in tea, alleviates oxidative stress and cell apoptosis under HS; however, its effects on gut microbiota and immunity under HS remain unclear. To investigate this, we administered LTA doses of 100, 200, and 400 mg·kg-1 ·d-1 to C57BL/6J mice. On day 44, the model group and LTA intervention group were subjected to continuous 7-day HS treatment for 2 h per day. RESULTS The results demonstrated that LTA intervention improved food intake, body weight, and intestinal epithelium, and reduced the water intake of heat-stressed mice. It increased the abundance of Turicibacter, Faecalibaculum, Bifidobacterium, and norank_f_Muribaculaceae, while reducing that of Lachnoclostridium and Desulfovibrio. LTA intervention also increased the concentrations of amino acid and lipid metabolites, regulated macrophage differentiation stimulated by gut microbiota and metabolites, reduced the antigen presentation by macrophages to the specific immune system, promoted B-cell differentiation and sIgA secretion, inhibited pro-inflammatory factors, and enhanced intestinal defense. Mechanistically, LTA downregulated heat shock protein 70 expression and the TLR4/NF-κB/p38 MAPK signaling pathway, restoring gut microbiota and immune balance. CONCLUSION We suggest that LTA can alleviate HS by modulating gut microbiota, metabolites, and immunity, indicating its potential as a natural active ingredient for anti-HS food products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Liu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Bin Wang
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Ling Lin
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wei Xu
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Zhi-Hua Gong
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| | - Wen-Jun Xiao
- Key Lab of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Sino-Kenya Joint Laboratory of Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
23
|
Wu K, Gong W, Lin S, Huang S, Mu H, Wang M, Sheng J, Zhao C. Regulation of Sacha Inchi protein on fecal metabolism and intestinal microorganisms in mice. Front Nutr 2024; 11:1354486. [PMID: 38524850 PMCID: PMC10959099 DOI: 10.3389/fnut.2024.1354486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.
Collapse
Affiliation(s)
- Kuan Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | | | - Shiyang Lin
- Pu'er Agricultural Science Research Institute, Pu-er, China
| | - Si Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongyu Mu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mingming Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming, Yunnan, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- Yunnan Province Characteristic Resource Food Biological Manufacturing Engineering Research Center, Kunming, Yunnan, China
| |
Collapse
|
24
|
Oh GW, Kim SC, Cho KJ, Ko SC, Lee JM, Yim MJ, Kim KW, Kim HS, Kim JY, Lee DS, Heo SY, Kim YM, Jung WK. Poly(vinyl alcohol)/chitosan hydrogel incorporating chitooligosaccharide-gentisic acid conjugate with antioxidant and antibacterial properties as a potential wound dressing. Int J Biol Macromol 2024; 255:128047. [PMID: 37956810 DOI: 10.1016/j.ijbiomac.2023.128047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
The design and development of wound dressing with antioxidant and antibacterial properties to accelerate wound healing remain challenging. In this study, we synthesize a chitooligosaccharide-gentisic acid (COS-GSA) conjugate using the free-radical grafting method, and fabricate a poly(vinyl alcohol) (PVA)/chitosan (CH)/COS-GSA (PVA/CH/CG) hydrogel using a freeze-thaw method. We characterize the synthesized COS-GSA conjugates using through polyphenol assay, absorbance, and 1H NMR spectroscopy and evaluate their antioxidant properties. The COS-GSA conjugates are successfully synthesized and exhibit better antioxidant properties than pristine COSs. Subsequently, the fabricated hydrogel is characterized based on its morphological analysis, rheological properties, water contact angle, swelling, degradation, water retention properties, and COS-GSA release profiles. Finally, the biocompatibility of the fabricated hydrogel is evaluated on HDF and HaCaT cells through indirect and direct cytotoxicity. The PVA/CH/CG hydrogel exhibited significantly higher antioxidant properties (DPPH, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and hydrogen peroxide (H2O2) scavenging activities) and antibacterial activities (Staphylococcus aureus and Pseudomonas aeruginosa) compared to other fabricated hydrogels such as PVA, PVA/CH, and PVA/CH/COS (PVA/CH/C). These results provide evidence that PVA/CH/CG hydrogels with antioxidant, antibacterial, and non-cytotoxic properties have great potential for wound-dressing applications.
Collapse
Affiliation(s)
- Gun-Woo Oh
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Se-Chang Kim
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Seok-Chun Ko
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Jeong Min Lee
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Mi-Jin Yim
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Kyung Woo Kim
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Hyun-Soo Kim
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 2-9, Tongyeonghaean-ro, Tongyeong-si, Gyeongsangnam-do, 53064, Republic of Korea
| | - Ji-Yul Kim
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Dae-Sung Lee
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do 33662, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Won-Kyo Jung
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
25
|
Zheng Z, Wei L, Zhu M, Qian Z, Liu J, Zhang L, Xu Y. Effect of lactic acid bacteria co-fermentation on antioxidant activity and metabolomic profiles of a juice made from wolfberry and longan. Food Res Int 2023; 174:113547. [PMID: 37986427 DOI: 10.1016/j.foodres.2023.113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 11/22/2023]
Abstract
Lactic acid bacteria (LAB) fermentation is frequently employed to improve the nutritional, functional, and sensory characteristics of foods. Our study explored the effects of co-fermentation with Lacticaseibacillus paracasei ZH8 and Lactococcus lactis subsp. lactis YM313 on the physicochemical properties, antioxidant activity, and metabolomic profiles of wolfberry-longan juice (WLJ). Fermentation was carried out at 35 °C for 15 h. The results suggest that WLJ is a favorable substrate for LAB growth, reaching a total viable count exceeding 8 log CFU/mL after fermentation. LAB fermentation increased acidity, reduced the sugar content, and significantly impacted the juice color. The total phenolic and flavonoid contents of the WLJ and the antioxidant capacities based on 2,2-diphenyl-1-picrylhydrazyl (DPPH), ABTS radical scavenging abilities and FRAP were significantly improved by LAB fermentation. Nontargeted metabolomics analysis suggested that the contents of small molecule substances in WLJ were considerably affected by LAB fermentation. A total of 374 differential metabolites were identified in the juice before and after fermentation, with 193 significantly upregulated metabolites and 181 siginificantly downregulated metabolites. The regulation of metabolites is important for improving the flavor and functions of juices, such as L-eucylproline, Isovitexin, Netivudine, 3-Phenyllactic acid, vanillin, and ethyl maltol, ect. This study provides a theoretical foundation for developing plant-based foods fermented with LAB.
Collapse
Affiliation(s)
- Zhenjie Zheng
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Linya Wei
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Manli Zhu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Zhenning Qian
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Jiao Liu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Lili Zhang
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yunhe Xu
- College of Food and Health, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
26
|
Mentese A, Demir S, Mungan SA, Alemdar NT, Demir EA, Aliyazicioglu Y. Gentisic acid ameliorates cisplatin-induced reprotoxicity through suppressing endoplasmic reticulum stress and upregulating Nrf2 pathway. Tissue Cell 2023; 85:102256. [PMID: 37918215 DOI: 10.1016/j.tice.2023.102256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Reproductive toxicity is a serious side effect of cisplatin (CP) chemotherapy. Gentisic acid (GTA) is a phenolic acid with strong antioxidant properties. Here, we aimed to determine therapeutic effect of GTA against CP-induced testicular toxicity in rats for the first time. Male Sprague-Dawley rats received a single dose of CP (5 mg/kg; intraperitoneal) and treated with GTA (1.5 and 3 mg/kg; intraperitoneal; 3 consecutive days). The levels of oxidative stress (OS), inflammation, endoplasmic reticulum stress (ERS) and apoptosis biomarkers were assessed in the testicular tissue of rats. In addition, how CP affects the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and the effect of GTA on this situation were also addressed in the testicular tissue. CP administration induced histopathological changes in testicular tissue of rats with a significant increase in OS, inflammation, ERS and apoptosis biomarkers and a decrease in antioxidant capacity and Nrf2 expression levels. Administrations of GTA resulted in an amelioration of these altered parameters. These data suggest that GTA may be a potential therapeutic agent against CP-induced testicular toxicity. Activation of the Nrf2 pathway plays a key role of this therapeutic effect of GTA.
Collapse
Affiliation(s)
- Ahmet Mentese
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Selim Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Sevdegul Aydin Mungan
- Department of Medical Pathology, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Nihal Turkmen Alemdar
- Department of Medical Biochemistry, Graduate School of Health Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Medical Services and Techniques, Vocational School of Health Services, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Elif Ayazoglu Demir
- Department of Chemistry and Chemical Processing Technologies, Macka Vocational School, Karadeniz Technical University, 61750 Trabzon, Turkey
| | - Yuksel Aliyazicioglu
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey
| |
Collapse
|
27
|
Roney M, Issahaku AR, Huq AM, Soliman MES, Tajuddin SN, Aluwi MFFM. Exploring the potential of biologically active phenolic acids from marine natural products as anticancer agents targeting the epidermal growth factor receptor. J Biomol Struct Dyn 2023; 42:13564-13587. [PMID: 37909584 DOI: 10.1080/07391102.2023.2276879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
The epidermal growth factor receptor (EGFR) dimerizes upon ligand bindings to the extracellular domain that initiates the downstream signaling cascades and activates intracellular kinase domain. Thus, activation of autophosphorylation through kinase domain results in metastasis, cell proliferation, and angiogenesis. The main objective of this research is to discover more promising anti-cancer lead compound against EGRF from the phenolic acids of marine natural products using in-silico approaches. Phenolic compounds reported from marine sources are reviewed from previous literatures. Furthermore, molecular docking was carried out using the online tool CB-Dock. The molecules with good docking and binding energies scores were subjected to ADME, toxicity and drug-likeness analysis. Subsequently, molecules from the docking experiments were also evaluated using the acute toxicity and MD simulation studies. Fourteen phenolic compounds from the reported literatures were reviewed based on the findings, isolation, characterized and applications. Molecular docking studies proved that the phenolic acids have good binding fitting by forming hydrogen bonds with amino acid residues at the binding site of EGFR. Chlorogenic acid, Chicoric acid and Rosmarinic acid showed the best binding energies score and forming hydrogen bonds with amino acid residues compare to the reference drug Erlotinib. Among these compounds, Rosmarinic acid showed the good pharmacokinetics profiles as well as acute toxicity profile. The MD simulation study further revealed that the lead complex is stable and could be future drug to treat the cancer disease. Furthermore, in a wet lab environment, both in-vitro and in-vivo testing will be employed to validate the existing computational results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Abdul Rashid Issahaku
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Akm Moyeenul Huq
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- School of Medicine, Department of Pharmacy, University of Asia Pacific, Bangladesh
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Saiful Nizam Tajuddin
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
- Centre for Bio-aromatic Research, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
28
|
Alsuhaymi S, Singh U, Al-Younis I, Kharbatia NM, Haneef A, Chandra K, Dhahri M, Assiri MA, Emwas AH, Jaremko M. Untargeted metabolomics analysis of four date palm (Phoenix dactylifera L.) cultivars using MS and NMR. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:44. [PMID: 37870666 PMCID: PMC10593664 DOI: 10.1007/s13659-023-00406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Since ancient times, the inhabitants of dry areas have depended on the date palm (Phoenix dactylifera L.) as a staple food and means of economic security. For example, dates have been a staple diet for the inhabitants of the Arabian Peninsula and Sahara Desert in North Africa for millennia and the local culture is rich in knowledge and experience with the benefits of dates, suggesting that dates contain many substances essential for the human body. Madinah dates are considered one of the most important types of dates in the Arabian Peninsula, with Ajwa being one of the most famous types and grown only in Madinah, Saudi Arabia. Date seeds are traditionally used for animal feed, seed oil production, cosmetics, and as a coffee substitute. Phytochemical compounds that have been detected in date fruits and date seeds include phenolic acids, carotenoids, and flavonoids. Phenolic acids are the most prevalent bioactive constituents that contribute to the antioxidant activity of date fruits. The bioactive properties of these phytochemicals are believed to promote human health by reducing the risk of diseases such as chronic inflammation. Ajwa dates especially are thought to have superior bioactivity properties. To investigate these claims, in this study, we compare the metabolic profiles of Ajwa with different types of dates collected from Saudi Arabia and Tunisia. We show by UHPLC-MS that date seeds contain several classes of flavonoids, phenolic acids, and amino acid derivatives, including citric acid, malic acid, lactic acid, and hydroxyadipic acid. Additionally, GC-MS profiling showed that date seeds are richer in metabolite classes, such as hydrocinnamic acids (caffeic, ferulic and sinapic acids), than flesh samples. Deglet N fruit extract (minimum inhibitory concentration: 27 MIC/μM) and Sukkari fruit extract (IC50: 479 ± 0.58μg /mL) have higher levels of antibacterial and antioxidative activity than Ajwa fruits. However, the seed analysis showed that seed extracts have better bioactivity effects than fruit extracts. Specifically, Ajwa extract showed the best MIC and strongest ABTS radical-scavenging activity among examined seed extracts (minimum inhibitory concentration: 20 μM; IC50: 54 ± 3.61μg /mL). Our assays are a starting point for more advanced in vitro antibacterial models and investigation into the specific molecules that are responsible for the antioxidative and anti-bacterial activities of dates.
Collapse
Affiliation(s)
- Shuruq Alsuhaymi
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Upendra Singh
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Inas Al-Younis
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Najeh M Kharbatia
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Ali Haneef
- King Abdullah International Medical Research Center (KAIMRC), King Abdullah Int Medical Research Center, NGHA, Jeddah, Kingdom of Saudi Arabia
| | - Kousik Chandra
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, 46423, Yanbu Branch, Yanbu, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, P.O. Box 4700, 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
29
|
Luo S, Chen Y, Zhao R, Ma D, Zhao Y, Zhang Y, Jiang J, Yu W. Application of omics technology to investigate the mechanism underlying the role of San Hua Tang in regulating microglia polarization and blood-brain barrier protection following ischemic stroke. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116640. [PMID: 37196812 DOI: 10.1016/j.jep.2023.116640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE San Hua Tang (SHT) was first mentioned in the book "The Collection of Plain Questions about Pathogenesis, Qi, and Life." SHT has the effect of dispelling wind and dredging collaterals, dredging viscera, and guiding stagnation, and is used in the treatment of ischemic stroke (IS). SHT is composed of Rheum palmatum L., Magnolia officinalis Rehder & E.H.Wilson, Citrus assamensis S.Dutta & S.C.Bhattacharya, and Notopterygium tenuifolium M.L.Sheh & F.T.Pu, which is the traditional prescription of the Tongxia method for the treatment of stroke. Tongxia is one of the "eight methods" used in traditional Chinese medicine, which plays a role in treating diseases by promoting gastrointestinal peristalsis and defecation. Studies have demonstrated a close relationship between gut microbiota metabolism and cerebral stroke; however, the role of SHT in IS treatment through gut microbiota or intestinal metabolites is unclear. AIM OF THE STUDY To explore the connotation of the Xuanfu theory and clarify the mechanism underlying SHT-mediated opening Xuanfu methods. Through metabolomics, 16S rRNA gene sequencing, and molecular biology techniques, research on the changes in the gut microbiota and blood-brain barrier (BBB) will highlight greater strategies for the treatment of stroke. MATERIALS AND METHODS We used pseudo-germ-free (PGF) rats combined with an ischemia/reperfusion (I/R) rat model for the follow-up experimental research. PGF rats were prepared by the intragastric administration of an antibiotic cocktail for 6 days, following which SHT was administered for 5 consecutive days. The I/R model was performed 1 day following the concluding administration of SHT. We detected the neurological deficit score, cerebral infarct volume, serum inflammatory factor levels (interleukin IL-6, IL-10, IL-17, and tumor necrosis factor alpha), tight junction-related proteins (Zonula occludens-1, Occludin, and Claudin-5), and small glue plasma cell-associated proteins (Cluster of Differentiation 16/Cluster of Differentiation 206, Matrix metalloproteinase, ionized calcium-binding adapter molecule 1, and C-X3-C Motif Chemokine Ligand 1) 24 h following I/R. Using 16S rRNA gene sequencing and non-targeted metabolomics analysis, we explored the relationship between fecal microecology and serum metabolites. Eventually, we analyzed the correlation between the gut microbiota and plasma metabolic profile as well as the mechanism underlying the SHT-mediated regulation of gut microbiota to protect the BBB following stroke. RESULTS In IS treatment, SHT is principally involved in reducing neurological injury and the volume of cerebral infarction; protecting the intestinal mucosal barrier; increasing the levels of acetic acid, butyric acid, and propionic acid; promoting the transformation of microglia to the M2 state; reducing inflammatory reactions; and enhancing tight junctions. These therapeutic effects were not observed in the group treated with antibiotics alone or that treated with SHT in combination with antibiotics, thereby indicating SHT plays a therapeutic role through the gut microbiota. CONCLUSION SHT regulates the gut microbiota, inhibits pro-inflammatory factors in rats with IS, alleviates an inflammatory injury of the BBB, and plays a protective role in the brain.
Collapse
Affiliation(s)
- Shan Luo
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China; Hebei Province Hospital of Chinese Medicine, Shijiazhuang, 050011, China.
| | - Yuanchun Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| | - Ruoxi Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050000, China.
| | - Donglai Ma
- College of Pharmacy, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Yanmeng Zhao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China.
| | - Ying Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China; The Basic Medicine College, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Jianming Jiang
- College of Pharmacy, Hebei University of Chinese Medicine, 050200, Shijiazhuang, Hebei, China.
| | - Wentao Yu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Diseases, Shijiazhuang, 050000, China; College of Acupuncture and Massage, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China; Hebei International Joint Research Centre for Acupuncture and Moxibustion of Traditional Chinese Medicine, Shijiazhuang, 050020, China.
| |
Collapse
|
30
|
Wang B, Liu H, Zhang S, Cheng A, Yan C, Xu B, Gao Y. Aspirin microcrystals deposited on high-density microneedle tips for the preparation of soluble polymer microneedles. Drug Deliv Transl Res 2023; 13:2639-2652. [PMID: 37040032 DOI: 10.1007/s13346-023-01343-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2023] [Indexed: 04/12/2023]
Abstract
To reduce mucosal damage in the gastrointestinal tract caused by aspirin, aspirin microcrystals were loaded in soluble polymeric microneedle (MN) tips. Aspirin was prepared into aspirin microcrystals by jet milling. Aspirin microcrystals with particle sizes of 0.5-5 μm were loaded on MN tips with a height of 250 µm or 300 µm. The aspirin microcrystals suspended in a polymer solution were concentrated in the MN tips under negative pressure. The aspirin microcrystals had high stability in the MNs since they were not dissolved in solution during the fabrication process. The MN patch packaged in an aluminum-plastic bag containing silica gel desiccant can be stored at 4 °C. The MN tips implanted in the skin of Institute of Cancer Research (ICR) mice dissolved within 30 min. Isolated porcine ear skin was punctured by MNs with heights of 300 μm and 250 μm to depths of 130 μm and 90 μm, respectively. The fluorescent red (FR) release from MNs reached 98.59% within 24 h. The MNs delivered aspirin microcrystals to the epidermis and dermis, providing a smooth plasma concentration in rats. The MNs loaded with aspirin microcrystals did not evoke primary irritation on the dorsal skin of Japanese white rabbits. In summary, MNs loaded with aspirin microcrystals provide a new approach to improve the stability of aspirin in MN patches.
Collapse
Affiliation(s)
- Baorui Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- Beijing CAS Microneedle Technology Ltd, Beijing, 102609, China
| | - Aguo Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
| | - Bo Xu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing CAS Microneedle Technology Ltd, Beijing, 102609, China.
| |
Collapse
|
31
|
Ahmad FM, Zafar A, Ahmed M, Akhtar N, Hasan MMU, Abdel-Maksoude MA, Aufy M. Quercus floribunda Lindl. Ex A. Camus; a tremendous remedy against inflammation and associated symptoms. Fitoterapia 2023; 170:105628. [PMID: 37517557 DOI: 10.1016/j.fitote.2023.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Crude extracts prepared from aerial parts and nut galls of Quercus floribunda Lindl. Ex. A. Camus were evaluated for phytochemical screening, in vitro antioxidant, and in vivo analgesic, anti-inflammatory and antipyretic activities. Various solvents including methanol (M), acetone (A), distilled water (DW), distilled water + methanol (DWM) were used for extraction. Highest total phenolic (66.9 ± 0.05 μg GAE/mgE) and flavonoid content (38.4 ± 0.72 μg QE/mgE) were measured in QFAA extract by colorimetric methods. Cumulative maximum concentrations of polyphenols were quantified in QFMG, QFAA, and QFMA extracts i.e. 19.036, 15. 574 and 11.647 μg/mg of extract by RP-HPLC analysis. From aerial parts extracts, apentacyclic tritepenoid, glutinol was isolated using column chromatography techniques and structure was elucidated using spectroscopic techniques. QFDWMA (205.5 ± 0.56 μg AAE/mg of extract) showed highest total reducing power while highest total antioxidant capacity (207.1 ± 0.49 AAE/mg of extract) and free radical scavenging potential (96.1 ± 0.42%) were observed in QFAA extract. QFAA extract showed significant (p ≤ 0.001) analgesic potential in different pain models i.e. hot plate method, cold plate method, Haffner's tail clip method and acetic acid induced writhing assay having 50.20%, 62.07%, 57.26% and 70.49% analgesia respectively at 300 mg/kg. QFAA extract showed maximum anti-inflammatory activity in croton oil induced edema (68.83%) and in carrageenan induced paw edema models (72.32%) at 300 mg/kg concentration. QFAA extract markedly reduced the rectal temperature at 300 mg/kg concentration, in brewer's yeast induced pyrexia model. Detailed investigations can be executed in future to determine the molecular mechanisms of these pharmacological attributes.
Collapse
Affiliation(s)
- Fazilat Mehboob Ahmad
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Aroosa Zafar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Nosheen Akhtar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Mohtasheem Ul Hasan
- Department of Pharmacognosy, Faculty of Pharmacy & Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan.
| | - Mostafa A Abdel-Maksoude
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Pereira CG, Neng NR, Custódio L. From Threat to Opportunity: Harnessing the Invasive Carpobrotus edulis (L.) N.E.Br for Nutritional and Phytotherapeutic Valorization Amid Seasonal and Spatial Variability. Mar Drugs 2023; 21:436. [PMID: 37623717 PMCID: PMC10456270 DOI: 10.3390/md21080436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Carpobrotus edulis (L.) N.E.Br. (Hottentot-fig) is a problematic invasive species found in coastal areas worldwide. Mechanical removal is a common control method, leaving the removed biomass available as a possible source of natural phytochemicals with prospective commercial applications. While the Hottentot-fig's vegetative organs have been studied previously, this work establishes for the first time a seasonal and spatial comparative analysis of its nutritional, chemical, and bioactivity profiles (in three locations over four seasons). Proximate and mineral contents were assessed, along with its phenolic composition and in vitro antioxidant and anti-inflammatory properties. Hottentot-fig's biomass offered a good supply of nutrients, mainly carbohydrates, proteins, and minerals, with a tendency for higher concentrations of the most relevant minerals and proteins in autumn and winter, and in plants from sites A (Ria de Alvor lagoon) and B (Ancão beach). The extracts were rich in polyphenolics, with higher levels in spring and summer, especially for luteolin-7-O-glucoside and salicylic and coumaric acids. The extracts were also effective antioxidants, with stronger radical scavenging activities in spring and summer, along with anti-inflammatory properties. Our results suggest that the usually discarded plant material of this invasive halophyte could be valuable as a source of natural products with potential biotechnological applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| | - Nuno R. Neng
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Molecular Pathology and Forensic Biochemistry Laboratory, Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz School of Health and Science, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal;
| |
Collapse
|
33
|
Nutricati E, De Pascali M, Negro C, Bianco PA, Quaglino F, Passera A, Pierro R, Marcone C, Panattoni A, Sabella E, De Bellis L, Luvisi A. Signaling Cross-Talk between Salicylic and Gentisic Acid in the ' Candidatus Phytoplasma Solani' Interaction with Sangiovese Vines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2695. [PMID: 37514309 PMCID: PMC10383235 DOI: 10.3390/plants12142695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
"Bois noir" disease associated with 'Candidatus Phytoplasma solani' seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma-grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of 'Ca. P. solani'-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in 'Ca. P. solani-positive plants compared to -negative ones during the observed period.
Collapse
Affiliation(s)
- Eliana Nutricati
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Piero Attilio Bianco
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Alessandro Passera
- Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy (DiSAA), University of Milan, Via Celoria 2, 20133 Milano, Italy
| | - Roberto Pierro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carmine Marcone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Alessandra Panattoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
34
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
35
|
Chan LC, Park M, Lee HK, Chaili S, Xiong YQ, Bayer AS, Proctor RA, Yeaman MR. Diflunisal Attenuates Virulence Factor Gene Regulation and Phenotypes in Staphylococcus aureus. Antibiotics (Basel) 2023; 12:902. [PMID: 37237805 PMCID: PMC10215304 DOI: 10.3390/antibiotics12050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Virulence factor expression is integral to pathogenicity of Staphylococcus aureus. We previously demonstrated that aspirin, through its major metabolite, salicylic acid (SAL), modulates S. aureus virulence phenotypes in vitro and in vivo. We compared salicylate metabolites and a structural analogue for their ability to modulate S. aureus virulence factor expression and phenotypes: (i) acetylsalicylic acid (ASA, aspirin); (ii) ASA metabolites, salicylic acid (SAL), gentisic acid (GTA) and salicyluric acid (SUA); or (iii) diflunisal (DIF), a SAL structural analogue. None of these compounds altered the growth rate of any strain tested. ASA and its metabolites SAL, GTA and SUA moderately impaired hemolysis and proteolysis phenotypes in multiple S. aureus strain backgrounds and their respective deletion mutants. Only DIF significantly inhibited these virulence phenotypes in all strains. The kinetic profiles of ASA, SAL or DIF on expression of hla (alpha hemolysin), sspA (V8 protease) and their regulators (sigB, sarA, agr (RNAIII)) were assessed in two prototypic strain backgrounds: SH1000 (methicillin-sensitive S. aureus; MSSA) and LAC-USA300 (methicillin-resistant S. aureus; MRSA). DIF induced sigB expression which is coincident with the significant inhibition of RNAIII expression in both strains and precedes significant reductions in hla and sspA expression. The inhibited expression of these genes within 2 h resulted in the durable suppression of hemolysis and proteolysis phenotypes. These results indicate that DIF modulates the expression of key virulence factors in S. aureus via a coordinated impact on their relevant regulons and target effector genes. This strategy may hold opportunities to develop novel antivirulence strategies to address the ongoing challenge of antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Liana C. Chan
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (L.C.C.); (H.K.L.)
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (Y.Q.X.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Mihyun Park
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (L.C.C.); (H.K.L.)
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Hong K. Lee
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (L.C.C.); (H.K.L.)
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Siyang Chaili
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, 2311 Pierce Ave., Nashville, TN 37232, USA
| | - Yan Q. Xiong
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (Y.Q.X.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Arnold S. Bayer
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (Y.Q.X.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Michael R. Yeaman
- Division of Molecular Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (L.C.C.); (H.K.L.)
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA 90502, USA; (Y.Q.X.)
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
- Institute for Infection and Immunity, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
36
|
Nga Wong S, Low KH, Lam Poon Y, Zhang X, Wan Chan H, Fung Chow S. Synthesis of the first remdesivir cocrystal: design, characterization, and therapeutic potential for pulmonary delivery. Int J Pharm 2023; 640:122983. [PMID: 37121494 DOI: 10.1016/j.ijpharm.2023.122983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
While cocrystal engineering is an emerging formulation strategy to overcome drug delivery challenges, its therapeutic potential in non-oral applications remains not thoroughly explored. We herein report for the first time the successful synthesis of a cocrystal for remdesivir (RDV), an antiviral drug with broad-spectrum activities against RNA viruses. The RDV cocrystal was prepared with salicylic acid (SA) via combined liquid-assisted grinding (LAG) and thermal annealing. Formation of RDV-SA was found to be a thermally activated process, where annealing at high temperature after grinding was a prerequisite to facilitate the cocrystal growth from an amorphous intermediate, rendering it elusive under ambient preparing conditions. Through powder X-ray analysis with Rietveld refinement, the three-dimensional molecular structure of RDV-SA was resolved. The thermally annealed RDV-SA produced by LAG crystalized in a non-centrosymmetric monoclinic space group P21 with a unit cell volume of 1826.53(17) Å3, accommodating one pair of RDV and SA molecules in the asymmetric unit. The cocrystal formation was also characterized by differential scanning calorimetry, solid-state nuclear magnetic resonance, and Fourier-transform infrared spectroscopy. RDV-SA was further developed as inhaled dry powders by spray drying for potential COVID-19 therapy. The optimized RDV-SA dry powders exhibited a mass median aerodynamic diameter of 4.33 ± 0.2 μm and fine particle fraction of 41.39 ± 4.25 %, indicating the suitability for pulmonary delivery. Compared with the raw RDV, RDV-SA displayed a 15.43-fold higher fraction of release in simulated lung fluid at 120 min (p =0.0003). RDV-SA was safe in A549 cells without any in vitro cytotoxicity observed in the RDV concentration from 0.05 to 10 µM.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kam-Hung Low
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yi Lam Poon
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China.
| |
Collapse
|
37
|
Yatung T, Bhargav V, Shivashankara K, Geetha G, Lokesha A. Biochemical profiling of ‘toko’ (Livistona jenkinsiana griff.): An endangered underutilized fruit of north east India. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
38
|
Xing L, Zhang M, Liu L, Hu X, Liu J, Zhou X, Chai Z, Yin H. Multiomics provides insights into the succession of microbiota and metabolite during plant leaf fermentation. ENVIRONMENTAL RESEARCH 2023; 221:115304. [PMID: 36649845 DOI: 10.1016/j.envres.2023.115304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The quality of fermented plant products is closely related to microbial metabolism. Here, the associations of bacterial communities, metabolites, and functional genes were explored using multi-omics techniques based on plant leaf fermentation systems. The results showed significant changes in the structure of the microbial community, with a significant decrease in Firmicutes and a significant increase in Proteobacteria. In addition, the concentration of metabolites with antibacterial, antioxidant and aroma properties increased significantly, enhancing the quality of the fermented plant leaves. Integrated macrogenomic and metabolomic analyses indicated that amino acid metabolism could be key metabolic pathway affecting fermentation quality. Actinobacteria, Proteobacteria, Firmicutes were actively involved in tyrosine metabolism (ko00350) and phenylalanine metabolism (ko00360), and are presumed to be the major groups responsible for synthesizing growth and flavor compounds. This study emphasized the important role of microorganisms in the changes of metabolites during the fermentation of plant leaves.
Collapse
Affiliation(s)
- Lei Xing
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Lulu Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Xi Hu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Jie Liu
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Xiangping Zhou
- Yongzhou Tobacco Company of Hunan Province, Yongzhou, 425000, China
| | - Zhishun Chai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610100, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
39
|
Colom J, Freitas D, Simon A, Khokhlova E, Mazhar S, Buckley M, Phipps C, Deaton J, Brodkorb A, Rea K. Acute physiological effects following Bacillus subtilis DE111 oral ingestion - a randomised, double blinded, placebo-controlled study. Benef Microbes 2023; 14:31-44. [PMID: 36790091 DOI: 10.3920/bm2022.0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Previous studies using ileostomy samples from study participants demonstrated that the spore-forming probiotic Bacillus subtilis DE111® can germinate in the small intestine as early as 4 hours after ingestion. Metabolomics, proteomics and sequencing technologies, enabled further analysis of these samples for the presence of hypoglycaemic, hypolipidemic, antioxidant, anti-inflammatory and antihypertensive molecules. In the DE111 treatment group, the polyphenols trigonelline and 2,5-dihydroxybenzoic acid, orotic acid, the non-essential amino acid cystine and the lipokine 12,13-diHome were increased. DE111 also reduced acetylcholine levels in the ileostomy samples, and increased the expression of leucocyte recruiting proteins, antimicrobial peptides and intestinal alkaline phosphatases of the brush border in the small intestine. The combination of B. subtilis DE111 and the diet administered during the study increased the expression of the proteins phosphodiesterase ENPP7, ceramidase ASAH2 and the adipokine Zn-alpha-2-glycoprotein that are involved in fatty acid and lipid metabolism. Acute B. subtilis DE111 ingestion had limited detectable effect on the microbiome, with the main change being its increased presence. These findings support previous data suggesting a beneficial role of DE111 in digestion, metabolism, and immune health that appears to begin within hours of consumption.
Collapse
Affiliation(s)
- J Colom
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - D Freitas
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - A Simon
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - E Khokhlova
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - S Mazhar
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| | - M Buckley
- Mercy University Hospital, Grenville PI, Cork, Ireland
| | - C Phipps
- Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard Kennesaw, GA, USA 30152, USA
| | - J Deaton
- Deerland Probiotics and Enzymes, 3800 Cobb International Boulevard Kennesaw, GA, USA 30152, USA
| | - A Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - K Rea
- Deerland Probiotics and Enzymes, Food Science Building, University College Cork, Cork, Ireland
| |
Collapse
|
40
|
Bendjedou H, Benamar H, Bennaceur M, Rodrigues MJ, Pereira CG, Trentin R, Custódio L. New Insights into the Phytochemical Profile and Biological Properties of Lycium intricatum Bois. (Solanaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:996. [PMID: 36903857 PMCID: PMC10004830 DOI: 10.3390/plants12050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to boost the valorisation of Lycium intricatum Boiss. L. as a source of high added value bioproducts. For that purpose, leaves and root ethanol extracts and fractions (chloroform, ethyl acetate, n-butanol, and water) were prepared and evaluated for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, ferric reducing antioxidant power (FRAP), and metal chelating potential against copper and iron ions. Extracts were also appraised for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), type-2 diabetes mellitus (T2DM, α-glucosidase), obesity/acne (lipase), and skin hyperpigmentation/food oxidation (tyrosinase). The total content of phenolics (TPC), flavonoids (TFC), and hydrolysable tannins (THTC) was evaluated by colorimetric methods, while the phenolic profile was determined by high-performance liquid chromatography, coupled to a diode-array ultraviolet detector (HPLC-UV-DAD). Extracts had significant RSA and FRAP, and moderate copper chelation, but no iron chelating capacity. Samples had a higher activity towards α-glucosidase and tyrosinase, especially those from roots, a low capacity to inhibit AChE, and no activity towards BuChE and lipase. The ethyl acetate fraction of roots had the highest TPC and THTC, whereas the ethyl acetate fraction of leaves had the highest flavonoid levels. Gallic, gentisic, ferulic, and trans-cinnamic acids were identified in both organs. The results suggest that L. intricatum is a promising source of bioactive compounds with food, pharmaceutical, and biomedical applications.
Collapse
Affiliation(s)
- Houaria Bendjedou
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Houari Benamar
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Malika Bennaceur
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Riccardo Trentin
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Biology, University of Padova, Via U. Bassi, 58/B 35131 Padova, Italy
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
41
|
Cruz-Pereira JS, Moloney GM, Bastiaanssen TFS, Boscaini S, Fitzgerald P, Clarke G, Cryan JF. Age-associated deficits in social behaviour are microbiota-dependent. Brain Behav Immun 2023; 110:119-124. [PMID: 36791892 DOI: 10.1016/j.bbi.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is associated with remodelling of immune and central nervous system responses resulting in behavioural impairments including social deficits. Growing evidence suggests that the gut microbiome is also impacted by aging, and we propose that strategies to reshape the aged gut microbiome may ameliorate some age-related effects on host physiology. Thus, we assessed the impact of gut microbiota depletion, using an antibiotic cocktail, on aging and its impact on social behavior and the immune system. Indeed, microbiota depletion in aged mice eliminated the age-dependent deficits in social recognition. We further demonstrate that although age and gut microbiota depletion differently shape the peripheral immune response, aging induces an accumulation of T cells in the choroid plexus, that is partially blunted following microbiota depletion. Moreover, an untargeted metabolomic analysis revealed age-dependent alterations of cecal metabolites that are reshaped by gut microbiota depletion. Together, our results suggest that the aged gut microbiota can be specifically targeted to affect social deficits. These studies propel the need for future investigations of other non-antibiotic microbiota targeted interventions on age-related social deficits both in animal models and humans.
Collapse
Affiliation(s)
- Joana S Cruz-Pereira
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Serena Boscaini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick Fitzgerald
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
42
|
Darwesh OM, Eweys AS, Zhao YS, Matter IA. Application of environmental-safe fermentation with Saccharomyces cerevisiae for increasing the cinnamon biological activities. BIORESOUR BIOPROCESS 2023; 10:12. [PMID: 38647584 PMCID: PMC10992612 DOI: 10.1186/s40643-023-00632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
The effect of fermentation by Saccharomyces cerevisiae on biological properties of cinnamon (Cinnamomum cassia) was investigated. The study demonstrated that the extract of S. cerevisiae-fermented cinnamon (S.C.FC) has antioxidants higher than non-fermented one. The optimum results for antioxidant yield were noted with 107 CFU S. cerevisiae/10 g cinnamon and 70 mL of dH2O at pH 6 and incubated for 3 d at 35 °C. Under optimum conditions, ABTS, DPPH, and H2O2 radical-scavenging activity increased by 43.8, 61.5, and 71.9%, respectively. Additionally, the total phenols and flavonoids in S.C.FC were increased by 81.3 and 415% compared by non-fermented one. The fermented cinnamon had antimicrobial activity against L. monocytogenes, S. aureus, E. coli, S. typhi, and C. albicans. Also, the anti-inflammatory properties were increased from 89 to 92% after fermentation. The lyophilized extract of S.C.FC showed positive effect against Huh7 cancer cells which decreased by 31% at the concentration of 700 µg/mL. According to HPLC analysis, p-hydroxybenzoic acid, gentisic acid, catechin, chlorogenic acid, caffeic acid, and syringic acid were increased by 116, 33.2, 59.6, 50.6, 1.6, and 16.9%, respectively. Our findings suggest the applicability of cinnamon fermentation using S. cerevisiae as a useful tool for processing functional foods to increase their antioxidant and anti-inflammatory content.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Cairo, 12622, Egypt.
| | - Aya S Eweys
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yan-Sheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, Cairo, 12622, Egypt
| |
Collapse
|
43
|
Arruda HS, Araújo MVL, Marostica Junior MR. Underexploited Brazilian Cerrado fruits as sources of phenolic compounds for diseases management: A review. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100148. [PMID: 36439937 PMCID: PMC9694390 DOI: 10.1016/j.fochms.2022.100148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/04/2022] [Accepted: 11/19/2022] [Indexed: 04/18/2023]
Abstract
The Brazilian Cerrado is home to a large number of native and endemic species of enormous potential, among which we can highlight the cagaita, gabiroba, jatobá-do-cerrado, lobeira, and mangaba. In this review, we report the nutritional and phenolic composition, as well as bioactivities of these five Brazilian Cerrado fruits. The compiled data indicated that these fruits have high nutritional, functional, and economic potential and contribute to the daily intake of macro- and micronutrients, energy, and phenolic compounds by inhabitants of the Cerrado region. Phenolic-rich extracts obtained from these fruits have shown several bioactivities, including antioxidant, anti-inflammatory, antidyslipidemic, antidiabetic, analgesic, anticarcinogenic, hepatoprotective, gastrointestinal protective, and antimicrobial properties. Therefore, these fruits can be explored by the food industry as a raw material to develop food products of high value-added, such as functional foods, and can also be employed as plant sources to obtain bioactive compounds for food, cosmetic, and pharmaceutical purposes.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Maria Vitória Lopes Araújo
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| | - Mario Roberto Marostica Junior
- Nutrition and Metabolism Laboratory, Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
44
|
Haas EA, Saad MJA, Santos A, Vitulo N, Lemos WJF, Martins AMA, Picossi CRC, Favarato D, Gaspar RS, Magro DO, Libby P, Laurindo FRM, Da Luz PL. A red wine intervention does not modify plasma trimethylamine N-oxide but is associated with broad shifts in the plasma metabolome and gut microbiota composition. Am J Clin Nutr 2022; 116:1515-1529. [PMID: 36205549 PMCID: PMC9761755 DOI: 10.1093/ajcn/nqac286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/16/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Gut microbiota profiles are closely related to cardiovascular diseases through mechanisms that include the reported deleterious effects of metabolites, such as trimethylamine N-oxide (TMAO), which have been studied as diagnostic and therapeutic targets. Moderate red wine (RW) consumption is reportedly cardioprotective, possibly by affecting the gut microbiota. OBJECTIVES To investigate the effects of RW consumption on the gut microbiota, plasma TMAO, and the plasma metabolome in men with documented coronary artery disease (CAD) using a multiomics assessment in a crossover trial. METHODS We conducted a randomized, crossover, controlled trial involving 42 men (average age, 60 y) with documented CAD comparing 3-wk RW consumption (250 mL/d, 5 d/wk) with an equal period of alcohol abstention, both preceded by a 2-wk washout period. The gut microbiota was analyzed via 16S rRNA high-throughput sequencing. Plasma TMAO was evaluated by LC-MS/MS. The plasma metabolome of 20 randomly selected participants was evaluated by ultra-high-performance LC-MS/MS. The effect of RW consumption was assessed by individual comparisons using paired tests during the abstention and RW periods. RESULTS Plasma TMAO did not differ between RW intervention and alcohol abstention, and TMAO concentrations showed low intraindividual concordance over time, with an intraclass correlation coefficient of 0.049 during the control period. After RW consumption, there was significant remodeling of the gut microbiota, with a difference in β diversity and predominance of Parasutterella, Ruminococcaceae, several Bacteroides species, and Prevotella. Plasma metabolomic analysis revealed significant changes in metabolites after RW consumption, consistent with improved redox homeostasis. CONCLUSIONS Modulation of the gut microbiota may contribute to the putative cardiovascular benefits of moderate RW consumption. The low intraindividual concordance of TMAO presents challenges regarding its role as a cardiovascular risk biomarker at the individual level. This study was registered at clinical trials.gov as NCT03232099.
Collapse
Affiliation(s)
- Elisa A Haas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mario J A Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nicola Vitulo
- Department of Biotechnology, Verona University, Verona, Italy
| | - Wilson J F Lemos
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Aline M A Martins
- Department of Medical Science, University of Brasília (UnB), Brasília, Brazil
| | | | - Desidério Favarato
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato S Gaspar
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniéla O Magro
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco R M Laurindo
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Protasio L Da Luz
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
45
|
Sarker U, Ercisli S. Salt Eustress Induction in Red Amaranth ( Amaranthus gangeticus) Augments Nutritional, Phenolic Acids and Antiradical Potential of Leaves. Antioxidants (Basel) 2022; 11:antiox11122434. [PMID: 36552642 PMCID: PMC9774578 DOI: 10.3390/antiox11122434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Earlier researchers have highlighted the utilization of salt eustress for boosting the nutritional and phenolic acid (PA) profiles and antiradical potential (ARP) of vegetables, which eventually boost food values for nourishing human diets. Amaranth is a rapidly grown, diversely acclimated C4 leafy vegetable with climate resilience and salinity resistance. The application of salinity eustress in amaranth has a great scope to augment the nutritional and PA profiles and ARP. Therefore, the A. gangeticus genotype was evaluated in response to salt eustress for nutrients, PA profile, and ARP. Antioxidant potential and high-yielding genotype (LS1) were grown under four salt eustresses (control, 25 mM, 50 mM, 100 mM NaCl) in a randomized completely block design (RCBD) in four replicates. Salt stress remarkably augmented microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP of A. gangeticus leaves in this order: control < low sodium chloride stress (LSCS) < moderate sodium chloride stress (MSCS) < severe sodium chloride stress (SSCS). A large quantity of 16 PAs, including seven cinnamic acids (CAs) and nine benzoic acids (BAs) were detected in A. gangeticus genotypes. All the microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP of A. gangeticus under MSCS, and SSCS levels were much higher in comparison with the control. It can be utilized as preferential food for our daily diets as these antiradical compounds have strong antioxidants. Salt-treated A. gangeticus contributed to excellent quality in the end product in terms of microelements, proximate, macro-elements, phytochemicals, PA profiles, and ARP. A. gangeticus can be cultivated as an encouraging substitute crop in salt-affected areas of the world.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
- Correspondence:
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
46
|
Snoussi M, Ahmad I, Aljohani AMA, Patel H, Abdulhakeem MA, Alhazmi YS, Tepe B, Adnan M, Siddiqui AJ, Sarikurkcu C, Riadh B, De Feo V, Alreshidi M, Noumi E. Phytochemical Analysis, Antioxidant, and Antimicrobial Activities of Ducrosia flabellifolia: A Combined Experimental and Computational Approaches. Antioxidants (Basel) 2022; 11:2174. [PMID: 36358545 PMCID: PMC9686979 DOI: 10.3390/antiox11112174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/02/2023] Open
Abstract
Ducrosia flabellifolia Boiss. is a rare desert plant known to be a promising source of bioactive compounds. In this paper, we report for the first time the phytochemical composition and biological activities of D. flabellifolia hydroalcoholic extract by using liquid chromatography-electrospray tandem mass spectrometry (ESI-MS/MS) technique. The results obtained showed the richness of the tested extract in phenols, tannins, and flavonoids. Twenty-three phytoconstituents were identified, represented mainly by chlorogenic acid, followed by ferulic acid, caffeic acid, and sinapic acid. The tested hydroalcoholic extract was able to inhibit the growth of all tested bacteria and yeast on agar Petri dishes at 3 mg/disc with mean growth inhibition zone ranging from 8.00 ± 0.00 mm for Enterococcus cloacae (E. cloacae) to 36.33 ± 0.58 mm for Staphylococcus epidermidis. Minimal inhibitory concentration ranged from 12.5 mg/mL to 200 mg/mL and the hydroalcoholic extract from D. flabellifolia exhibited a bacteriostatic and fungistatic character. In addition, D. flabellifolia hydroalcoholic extract possessed a good ability to scavenge different free radicals as compared to standard molecules. Molecular docking studies on the identified phyto-compounds in bacterial, fungal, and human peroxiredoxin 5 receptors were performed to corroborate the in vitro results, which revealed good binding profiles on the examined protein targets. A standard atomistic 100 ns dynamic simulation investigation was used to further evaluate the interaction stability of the promising phytocompounds, and the results showed conformational stability in the binding cavity. The obtained results highlighted the medicinal use of D. flabellifolia as source of bioactive compounds, as antioxidant, antibacterial, and antifungal agent.
Collapse
Affiliation(s)
- Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | | | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India
| | | | - Yasser S. Alhazmi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Bektas Tepe
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, TR-79000 Kilis, Turkey
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Arif J. Siddiqui
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| | - Cengiz Sarikurkcu
- Faculty of Pharmacy, Afyonkarahisar Health Sciences University, TR-03100 Afyonkarahisar, Turkey
| | - Badraoui Riadh
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Section of Histology Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Road Djebal Lakhdhar, Tunis 1007, Tunisia
- Department of HistoEmbryology and Cytogenetics, Medicine Faculty of Sfax, University of Sfax, Road of Majida Boulia, Sfax 3029, Tunisia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, 84084 Salerno, Italy
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Ha’il 2440, Saudi Arabia
| | - Emira Noumi
- Department of Biology, College of Science, University of Hail, Ha’il 2440, Saudi Arabia
| |
Collapse
|
47
|
Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life (Basel) 2022; 12:life12101639. [PMID: 36295074 PMCID: PMC9604961 DOI: 10.3390/life12101639] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.
Collapse
|
48
|
Paśko P, Zagrodzki P, Okoń K, Prochownik E, Krośniak M, Galanty A. Broccoli Sprouts and Their Influence on Thyroid Function in Different In Vitro and In Vivo Models. PLANTS (BASEL, SWITZERLAND) 2022; 11:2750. [PMID: 36297774 PMCID: PMC9610815 DOI: 10.3390/plants11202750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Broccoli sprouts are a super vegetable; however, they have possible negative effects on thyroid function, which is especially important for patients with hypothyroidism. As the data on this issue are scarce, this study aimed to determine the safety and possible beneficial effect of broccoli sprouts both in vitro and in vivo. The in vitro model comprised the evaluation of the impact of broccoli sprouts on normal and neoplastic thyroid cells and the determination of their anti-inflammatory and antioxidant (IL-6, TNF-alpha, NO, and SOD) potential in macrophages. The in vivo model concerned the histopathological analysis of thyroid glands in healthy rats and rats with hypothyroidism (induced by iodine deficiency or sulfadimethoxine ingestion) fed with broccoli sprouts. The results of our study indicated that broccoli sprouts decreased the viability of thyroid cancer cells and prevented inflammation. The results also confirmed the satisfactory safety profile of the sprouts, both in vitro and in vivo; however, a further in-depth evaluation of this problem is still needed. Information on the influence of brassica vegetables on thyroid function is of great importance in terms of public health, particularly when taking into account that the risk of iodine deficiency, hypothyroidism, and thyroid cancer in the global population is still increasing.
Collapse
Affiliation(s)
- Paweł Paśko
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Krzysztof Okoń
- Department of Pathomorphology, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków, Poland
| | - Ewelina Prochownik
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
49
|
Angevine DJ, Camacho KJ, Rzayev J, Benedict JB. Enhancing the Photo and Thermal Stability of Nicotine through Crystal Engineering with Gentisic Acid. Molecules 2022; 27:molecules27206853. [PMID: 36296448 PMCID: PMC9611154 DOI: 10.3390/molecules27206853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
The use of crystal engineering to convert liquids into crystalline solids remains a powerful method for inhibiting undesired degradation pathways. When nicotine, a liquid sensitive to both light and air, is combined with the GRAS-listed compound, gentisic acid, the resulting crystalline solid, exhibits enhanced photo and thermal stability. Despite a modest ΔTm of 42.7 °C, the melting point of 155.9 °C for the nicotinium gentisate salt is the highest reported for nicotine-containing crystalline solids. An analysis of the crystal packing and thermodynamic properties provides context for the observed properties.
Collapse
Affiliation(s)
- Devin J. Angevine
- Department of Chemistry, University at Buffalo 730 Natural Sciences Complex, Buffalo, NY 14260-3000, USA
| | - Kristine Joy Camacho
- Department of Chemistry, University at Buffalo 838 Natural Sciences Complex, Buffalo, NY 14260-3000, USA
| | - Javid Rzayev
- Department of Chemistry, University at Buffalo 826 Natural Sciences Complex, Buffalo, NY 14260-3000, USA
| | - Jason B. Benedict
- Department of Chemistry, University at Buffalo 771 Natural Sciences Complex, Buffalo, NY 14260-3000, USA
- Correspondence:
| |
Collapse
|
50
|
Proteometabolomic Analysis Reveals Molecular Features Associated with Grain Size and Antioxidant Properties amongst Chickpea (Cicer arietinum L.) Seeds Genotypes. Antioxidants (Basel) 2022; 11:antiox11101850. [DOI: 10.3390/antiox11101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Legumes are an essential source of nutrients that complement energy and protein requirements in the human diet. They also contribute to the intake of bioactive compounds such as polyphenols, whose content can vary depending on cultivars and genotypes. We conducted a comparative proteomics and metabolomics study to determine if there were significant variations in relevant nutraceutical compounds in the five genotypes of Kabuli-type chickpea grains. We performed an isobaric tandem mass tag (TMT) couple to synchronous precursor selection (SPS)-MS3 method along with a targeted and untargeted metabolomics approach based on accurate mass spectrometry. We observed an association between the overproduction of proteins involved in starch, lipid, and amino acid metabolism with gibberellin accumulation in large grains. In contrast, we visualized the over-accumulation of proteins associated with water deprivation in small grains. It was possible to visualize in small grains the over-accumulation of some phenolics such as vanillin, salicylic acid, protocatechuic acid, 4-coumaric acid, 4-hydroxybenzoic acid, vanillic acid, ferulic acid, and kaempferol 3-O-glucoside as well as the amino acid l-phenylalanine. The activated phenolic pathway was associated with the higher antioxidant capacity of small grains. Small grains consumption could be advantageous due to their nutraceutical properties.
Collapse
|