1
|
Perini M, Bontempo L. Liquid Chromatography coupled to Isotope Ratio Mass Spectrometry (LC-IRMS): A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Köster D, Sanchez Villalobos IM, Jochmann MA, Brand WA, Schmidt TC. New Concepts for the Determination of Oxidation Efficiencies in Liquid Chromatography-Isotope Ratio Mass Spectrometry. Anal Chem 2019; 91:5067-5073. [PMID: 30892863 DOI: 10.1021/acs.analchem.8b05315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In liquid chromatography coupled to isotope ratio mass spectrometry (LC-IRMS), analytes are separated on an LC system and consecutively oxidized to CO2, which is required for the determination of compound-specific carbon isotope ratios. Oxidation is performed in an online reactor by sulfate radicals. Reaction conditions in the interface depend on the flow conditions determined by the LC method and the flow rates and concentrations of oxidation agent and phosphoric acid added in the interface. To determine accurate isotope ratios, a quantitative conversion of the carbon contained in the analyte to the CO2 measurement gas is a prerequisite. Oxidation efficiencies are not commonly evaluated during method development, although certain analytes are known to be difficult to be oxidized by sulfate radicals. For the assessment of the oxidation efficiency of the LC-IRMS system, three different approaches were evaluated. (1) Residual organic carbon in the eluent stream of the interface was determined to calculate oxidation yields depending on the initial analyte concentration. (2) The IRMS response was calibrated to an inorganic carbon reference material to determine oxidation efficiencies with the help of the IRMS as a detector. (3) The oxidation temperature was deliberately reduced while monitoring the δ13C and signal intensity. The common assumption that a linear relation of IRMS signal to analyte concentration is an indicator for complete oxidation in LC-IRMS could be disproved. All three approaches can be applied for future method development in LC-IRMS, monitoring of existing flow injection applications, as well as for verification of complete oxidation in established LC-IRMS methods.
Collapse
Affiliation(s)
| | | | | | - Willi A Brand
- Max Planck Institute for Biogeochemistry , Hans-Knöll-Strasse 10 , 07745 Jena , Germany
| | | |
Collapse
|
3
|
Ding B, Zeng G, Wang Z, Xie J, Wang L, Chen W. Authenticity determination of tea drinks in the Chinese market by liquid chromatography coupled to isotope ratio mass spectrometry. Microchem J 2019. [DOI: 10.1016/j.microc.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Kawashima H, Suto M, Suto N. Determination of carbon isotope ratios for honey samples by means of a liquid chromatography/isotope ratio mass spectrometry system coupled with a post-column pump. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1271-1279. [PMID: 29781254 DOI: 10.1002/rcm.8170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been used to authenticate and trace products such as honey, wine, and lemon juice, and compounds such as caffeine and pesticides. However, LC/IRMS has several disadvantages, including the high cost of the CO2 membrane and blocking by solidified sodium persulfate. Here, we developed an improved system for determining carbon isotope ratios using LC/IRMS. METHODS The main improvement was the use of a post-column pump. Using the improved system, we determined δ13 C values for glucose with high accuracy and precision (0.1‰ and 0.1‰, respectively; n = 3). The glucose, fructose, disaccharide, trisaccharide, and organic acid constituents of honey samples were analyzed using LC/IRMS. RESULTS The δ13 C values for glucose, fructose, disaccharides, trisaccharides, and organic acids ranged from -27.0 to -24.2‰, -26.8 to -24.0‰, -28.8 to -24.0‰, -27.8 to -22.8‰, and - 30.6 to -27.4‰, respectively. The analysis time was a third to a half of that required for analysis by previously reported methods. CONCLUSIONS The column flow rate could be arbitrarily adjusted with the post-column pump. We applied the improved method to 26 commercial honey samples. Our results can be expected to be useful for other researchers who use LC/IRMS.
Collapse
Affiliation(s)
- Hiroto Kawashima
- Akita Prefectural University, Department of Management Science and Engineering, Faculty of Systems Science and Technology, 84-4, Ebinokuchi, Tuchiya, Yuri-Honjyo, Akita, 015-0055, Japan
| | - Momoka Suto
- Akita Prefectural University, Department of Management Science and Engineering, Faculty of Systems Science and Technology, 84-4, Ebinokuchi, Tuchiya, Yuri-Honjyo, Akita, 015-0055, Japan
| | - Nana Suto
- Akita Prefectural University, Department of Management Science and Engineering, Faculty of Systems Science and Technology, 84-4, Ebinokuchi, Tuchiya, Yuri-Honjyo, Akita, 015-0055, Japan
| |
Collapse
|
5
|
Köster D, Wolbert JB, Schulte MS, Jochmann MA, Schmidt TC. Origin of Xylitol in Chewing Gum: A Compound-Specific Isotope Technique for the Differentiation of Corn- and Wood-Based Xylitol by LC-IRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2015-2020. [PMID: 29419293 DOI: 10.1021/acs.jafc.7b05212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The sugar replacement compound xylitol has gained increasing attention because of its use in many commercial food products, dental-hygiene articles, and pharmaceuticals. It can be classified by the origin of the raw material used for its production. The traditional "birch xylitol" is considered a premium product, in contrast to xylitol produced from agriculture byproducts such as corn husks or sugar-cane straw. Bulk stable-isotope analysis (BSIA) and compound-specific stable-isotope analysis (CSIA) by liquid-chromatography isotope-ratio mass spectrometry (LC-IRMS) of chewing-gum extracts were used to determine the δ13C isotope signatures for xylitol. These were applied to elucidate the original plant type the xylitol was produced from on the basis of differences in isotope-fractionation processes of photosynthetic CO2 fixation. For the LC-IRMS analysis, an organic-solvent-free extraction protocol and HPLC method for the separation of xylitol from different artificial sweeteners and sugar-replacement compounds was successfully developed and applied to the analysis of 21 samples of chewing gum, from which 18 could be clearly related to the raw-material plant class.
Collapse
Affiliation(s)
- Daniel Köster
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| | - Jens-Benjamin Wolbert
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| | - Marcel S Schulte
- Biofilm Centre, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen , Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
6
|
Wilkinson DJ. Historical and contemporary stable isotope tracer approaches to studying mammalian protein metabolism. MASS SPECTROMETRY REVIEWS 2018; 37:57-80. [PMID: 27182900 PMCID: PMC5763415 DOI: 10.1002/mas.21507] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Over a century ago, Frederick Soddy provided the first evidence for the existence of isotopes; elements that occupy the same position in the periodic table are essentially chemically identical but differ in mass due to a different number of neutrons within the atomic nucleus. Allied to the discovery of isotopes was the development of some of the first forms of mass spectrometers, driven forward by the Nobel laureates JJ Thomson and FW Aston, enabling the accurate separation, identification, and quantification of the relative abundance of these isotopes. As a result, within a few years, the number of known isotopes both stable and radioactive had greatly increased and there are now over 300 stable or radioisotopes presently known. Unknown at the time, however, was the potential utility of these isotopes within biological disciplines, it was soon discovered that these stable isotopes, particularly those of carbon (13 C), nitrogen (15 N), oxygen (18 O), and hydrogen (2 H) could be chemically introduced into organic compounds, such as fatty acids, amino acids, and sugars, and used to "trace" the metabolic fate of these compounds within biological systems. From this important breakthrough, the age of the isotope tracer was born. Over the following 80 yrs, stable isotopes would become a vital tool in not only the biological sciences, but also areas as diverse as forensics, geology, and art. This progress has been almost exclusively driven through the development of new and innovative mass spectrometry equipment from IRMS to GC-MS to LC-MS, which has allowed for the accurate quantitation of isotopic abundance within samples of complex matrices. This historical review details the development of stable isotope tracers as metabolic tools, with particular reference to their use in monitoring protein metabolism, highlighting the unique array of tools that are now available for the investigation of protein metabolism in vivo at a whole body down to a single protein level. Importantly, it will detail how this development has been closely aligned to the technological development within the area of mass spectrometry. Without the dedicated development provided by these mass spectrometrists over the past century, the use of stable isotope tracers within the field of protein metabolism would not be as widely applied as it is today, this relationship will no doubt continue to flourish in the future and stable isotope tracers will maintain their importance as a tool within the biological sciences for many years to come. © 2016 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Daniel James Wilkinson
- MRC‐ARUK Centre for Musculoskeletal Ageing Research, Clinical, Metabolic and Molecular PhysiologyUniversity of Nottingham, Royal Derby Hospital CentreDerbyUnited Kingdom
| |
Collapse
|
7
|
Jackson GP, An Y, Konstantynova KI, Rashaid AH. Biometrics from the carbon isotope ratio analysis of amino acids in human hair. Sci Justice 2015; 55:43-50. [DOI: 10.1016/j.scijus.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/30/2014] [Accepted: 07/28/2014] [Indexed: 11/29/2022]
|
8
|
Gilevska T, Gehre M, Richnow HH. Performance of the wet oxidation unit of the HPLC isotope ratio mass spectrometry system for halogenated compounds. Anal Chem 2014; 86:7252-7. [PMID: 24975492 DOI: 10.1021/ac501174d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The performance of liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) for polar halogenated compounds was evaluated. Oxidation capacity of the system was tested with halogenated acetic acids and halogenated aromatic compounds. Acetic acid (AA) was selected as a reference compound for complete oxidation and compared on the molar basis to the oxidation of other analytes. The isotope values were proofed with calibrated δ(13)C values obtained with an elemental analyzer (EA). Correct isotope values were obtained for mono- and dichlorinated, fluorinated, and tribrominated acetic acids and also for aniline, phenol, benzene, bromobenzene, chlorobenzene, 1,2-dichlorobenzene, 2,4,6-trichlorophenol, pentafluorophenol, and nitrobenzene. Incomplete oxidation of trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) resulted in lower recovery compared to AA (37% and 24%, respectively) and in isotopic shift compared to values obtained with EA (TCA Δδ(13)C(EA/LC-IRMS) = 8.8‰, TFA Δδ(13)C(EA/LC-IRMS) = 6.0‰). Improvement of oxidation by longer reaction time in the reactor and increase in the concentration of sulfate radicals did not lead to complete combustion of TCA and TFA needed for δ(13)C analysis. To the best of our knowledge, this is the first time such highly chlorinated compounds were studied with the LC-IRMS system. This work provides information for method development of LC-IRMS methods for halogenated contaminants that are known as potential threats to public health and the environment.
Collapse
Affiliation(s)
- Tetyana Gilevska
- Helmholtz-Centre for Environmental Research - UFZ , Department for Isotope Biogeochemistry, Permoserstrasse 15, Leipzig 04318, Germany
| | | | | |
Collapse
|
9
|
Moerdijk-Poortvliet TCW, Brasser J, de Ruiter G, Houtekamer M, Bolhuis H, Stal LJ, Boschker HTS. A versatile method for simultaneous stable carbon isotope analysis of DNA and RNA nucleotides by liquid chromatography/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1401-1411. [PMID: 24797952 DOI: 10.1002/rcm.6919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/06/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) is currently the most accurate and precise technique for the measurement of compound-specific stable carbon isotope ratios ((13)C/(12)C) in biological metabolites, at their natural abundance. However, until now this technique could not be applied for the analysis of nucleic acids, the building blocks of the carriers of genetic information in living cells and viruses, DNA and RNA. METHODS Mixed-mode chromatography (MMC) was applied to obtain the complete separation of nine nucleotides (eight originating from DNA/RNA and one nucleotide (inosine monophosphate) that may serve as an internal standard) in a single run using LC/IRMS. We also developed and validated a method for DNA and RNA extraction and an enzymatic hydrolysis protocol for natural samples, which is compatible with LC/IRMS analysis as it minimizes the carbon blank. The method was used to measure the concentration and stable carbon isotope ratio of DNA and RNA nucleotides in marine sediment and in the common marine macro alga (Ulva sp.) at natural abundance levels as well as for (13)C-enriched samples. RESULTS The detection limit of the LC/IRMS method varied between 1.0 nmol for most nucleotides and 2.0 nmol for late-eluting compounds. The intraday and interday reproducibility of nucleotide concentration measurements was better than, respectively, 4.1% and 8.9% and for δ(13)C measurements better than, respectively, 0.3‰ and 0.5‰. The obtained nucleic acid concentrations and nucleic acid synthesis rates were in good agreement with values reported in the literature. CONCLUSIONS This new method gives reproducible results for the concentration and δ(13)C values of nine nucleotides. This solvent-free chromatographic method may also be used for other purposes, such as for instance to determine nucleotide concentrations using spectrophotometric detection. This sensitive method offers a new avenue for the study of DNA and RNA biosynthesis that can be applied in various fields of research.
Collapse
|
10
|
Malik A, Scheibe A, LokaBharathi PA, Gleixner G. Online stable isotope analysis of dissolved organic carbon size classes using size exclusion chromatography coupled to an isotope ratio mass spectrometer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:10123-10129. [PMID: 22861907 DOI: 10.1021/es302467y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Stable isotopic content of dissolved organic carbon (δ(13)C-DOC) provides valuable information on its origin and fate. In an attempt to get additional insights into DOC cycling, we developed a method for δ(13)C measurement of DOC size classes by coupling high-performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) to online isotope ratio mass spectrometry (IRMS). This represents a significant methodological contribution to DOC research. The interface was evaluated using various organic compounds, thoroughly tested with soil-water from a C3-C4 vegetation change experiment, and also applied to riverine and marine DOC. δ(13)C analysis of standard compounds resulted in excellent analytical precision (≤0.3‰). Chromatography resolved soil DOC into 3 fractions: high molecular weight (HMW; 0.4-10 kDa), low molecular weight (LMW; 50-400 Da), and retained (R) fraction. Sample reproducibility for measurement of δ(13)C-DOC size classes was ±0.25‰ for HMW fraction, ± 0.54‰ for LMW fraction, and ±1.3‰ for R fraction. The greater variance in δ(13)C values of the latter fractions was due to their lower concentrations. The limit of quantification (SD ≤0.6‰) for each size fraction measured as a peak is 200 ng C (2 mg C/L). δ(13)C-DOC values obtained in SEC mode correlated significantly with those obtained without column in the μEA mode (p < 0.001, intercept 0.17‰), which rules out SEC-associated isotopic effects or DOC loss. In the vegetation change experiment, fractions revealed a clear trend in plant contribution to DOC; those in deeper soils and smaller size fractions had less plant material. It was also demonstrated that the technique can be successfully applied to marine and riverine DOC without further sample pretreatment.
Collapse
Affiliation(s)
- Ashish Malik
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | | | | |
Collapse
|
11
|
van Eijk HM, Wijnands KA, Bessems BA, Olde Damink SW, Dejong CH, Poeze M. High sensitivity measurement of amino acid isotope enrichment using liquid chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 905:31-6. [DOI: 10.1016/j.jchromb.2012.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 11/26/2022]
|
12
|
Kujawinski DM, Zhang L, Schmidt TC, Jochmann MA. When Other Separation Techniques Fail: Compound-Specific Carbon Isotope Ratio Analysis of Sulfonamide Containing Pharmaceuticals by High-Temperature-Liquid Chromatography-Isotope Ratio Mass Spectrometry. Anal Chem 2012; 84:7656-63. [DOI: 10.1021/ac300116w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lijun Zhang
- Instrumental
Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Torsten C. Schmidt
- Instrumental
Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Maik A. Jochmann
- Instrumental
Analytical Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
13
|
Schierbeek H, van den Akker CHP, Fay LB, van Goudoever JB. High-precision mass spectrometric analysis using stable isotopes in studies of children. MASS SPECTROMETRY REVIEWS 2012; 31:312-330. [PMID: 21769910 DOI: 10.1002/mas.20344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
The use of stable isotopes combined with mass spectrometry (MS) provides insight into metabolic processes within the body. Herein, an overview on the relevance of stable isotope methodology in pediatric research is presented. Applications for the use of stable isotopes with MS cover carbohydrate, fat, and amino acid metabolism as well as body composition, energy expenditure, and the synthesis of specific peptides and proteins, such as glutathione and albumin. The main focus of these studies is on the interactions between nutrients and the endogenous metabolism within the body and how these factors affect the health of a growing infant. Considering that the early imprinting of metabolic processes hugely impacts metabolism (and thus functional outcome) later in life, research in this area is important and is advancing rapidly. The major fluxes on a metabolic level are the synthesis and breakdown rates. They can be quantified using kinetic tracer analysis and mathematical modeling. Organic MS and isotope ratio mass spectrometry (IRMS) are the two most mature techniques for the isotopic analysis of compounds. Introduction of the samples is usually done by coupling gas chromatography (GC) to either IRMS or MS because it is the most robust technique for specific isotopic analysis of volatile compounds. In addition, liquid chromatography (LC) is now being used more often as a tool for sample introduction of both volatile and non-volatile compounds into IRMS or MS for (13)C isotopic analyses at natural abundances and for (13)C-labeled enriched compounds. The availability of samples is often limited in pediatric patients. Therefore, sample size restriction is important when developing new methods. Also, the availability of stable isotope-labeled substrates is necessary for measurements of the kinetics and concentrations in metabolic studies, which can be a limiting factor. During the last decade, the availability of these substrates has increased. Furthermore, improvements in the accuracy, precision, and sensitivity of existing techniques (such as GC/IRMS) and the development of new techniques (such as LC/IRMS) have opened up new avenues for tackling these limitations.
Collapse
Affiliation(s)
- Henk Schierbeek
- Division of Neonatology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Albéric P. Liquid chromatography/mass spectrometry stable isotope analysis of dissolved organic carbon in stream and soil waters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3012-3018. [PMID: 21953955 DOI: 10.1002/rcm.5212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A commercial interface coupling liquid chromatography (LC) to a continuous-flow isotope ratio mass spectrometry (CF-IRMS) instrument was used to determine the δ(13) C of dissolved organic carbon (DOC) in natural waters. Stream and soil waters from a farmland plot in a hedgerow landscape were studied. Based on wet chemical oxidation of dissolved organics the LC/IRMS interface allows the on-line injection of small volumes of water samples, an oxidation reaction to produce CO(2) and gas transfer to the isotope ratio mass spectrometer. In flow injection analysis (FIA) mode, bulk DOC δ(13)C analysis was performed on aqueous samples of up to 100 μL in volume in the range of DOC concentration in fresh waters (1-10 mg C.L(-1)). Mapping the DOC δ(13)C spatial distribution at the plot scale was made possible by this fairly quick method (10 min for triplicate analyses) with little sample manipulation. The relative contributions of different plot sectors to the DOC pool in the stream draining the plot were tentatively inferred on the basis of δ(13)C differences between the hydrophilic and hydrophobic components.
Collapse
Affiliation(s)
- Patrick Albéric
- Université d'Orléans-CNRS/INSU UMR 6113, Institut des Sciences de la Terre d'Orléans (ISTO), Orléans, France.
| |
Collapse
|
15
|
Godin JP, Stellingwerff T, Actis-Goretta L, Mermoud AF, Kochhar S, Rezzi S. The role of liquid chromatography and flow injection analyses coupled to isotope ratio mass spectrometry for studying human in vivo glucose metabolism. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2989-2994. [PMID: 21953953 DOI: 10.1002/rcm.5179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Under most physiological conditions, glucose, or carbohydrate (CHO), homeostasis is tightly regulated. In order to mechanistically appraise the origin of circulating glucose (e.g. via either gluconeogenesis, glycogenolysis or oral glucose intake), and its regulation and oxidation, the use of stable isotope tracers is now a well-accepted analytical technique. Methodologically, liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) can replace gas chromatography coupled to combustion-isotope ratio mass spectrometry (GC/C/IRMS) for carrying out compound-specific (13)C isotopic analysis. The LC/IRMS approach is well suited for studying glucose metabolism, since the plasma glucose concentration is relatively high and the glucose can readily undergo chromatography in an aqueous mobile phase. Herewith, we report two main methodological approaches in a single instrument: (1) the ability to measure the isotopic enrichment of plasma glucose to assess the efficacy of CHO-based treatment (cocoa-enriched) during cycling exercise with healthy subjects, and (2) the capacity to carry out bulk isotopic analysis of labeled solutions, which is generally performed with an elemental analyzer coupled to IRMS. For plasma samples measured by LC/IRMS the data show a isotopic precision SD(δ(13)C) and SD(APE) of 0.7 ‰ and 0.001, respectively, with δ(13)C and APE values of -25.48 ‰ and 0.06, respectively, being generated before and after tracer administration. For bulk isotopic measurements, the data show that the presence of organic compounds in the blank slightly affects the δ(13)C values. Despite some analytical limitations, we clearly demonstrate the usefulness of the LC/IRMS especially when (13)C-glucose is required during whole-body human nutritional studies.
Collapse
|
16
|
Dunn PJH, Honch NV, Evershed RP. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2995-3011. [PMID: 21953954 DOI: 10.1002/rcm.5174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values.
Collapse
Affiliation(s)
- Philip J H Dunn
- Organic Geochemistry Unit, Bristol Biogeochemistry Research Center, School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK
| | | | | |
Collapse
|
17
|
Godin JP, McCullagh JSO. Review: Current applications and challenges for liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3019-3028. [PMID: 21953956 DOI: 10.1002/rcm.5167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
High-precision isotope analysis is recognized as an essential research tool in many fields of study. Until recently, continuous flow isotope ratio mass spectrometry (CF-IRMS) was available via an elemental analyzer or a gas chromatography inlet system for compound-specific analysis of light stable isotopes. In 2004, however, an interface that coupled liquid chromatography with IRMS (LC/IRMS) became commercially available for the first time. This brought the capability for new areas of application, in particular enabling compound-specific δ(13)C analysis of non-volatile, aqueous soluble, compounds from complex mixtures. The interface design brought with it several analytical constraints, however, in particular a lack of compatibility with certain types of chromatography as well as limited flow rates and mobile phase compositions. Routine LC/IRMS methods have, however, been established for measuring the δ(13)C isotopic ratios of underivatized individual compounds for application in archeology, nutrition and physiology, geochemistry, hydrology, soil science and food authenticity. Seven years after its introduction, we review the technical advances and constraints, methodological developments and new applications of liquid chromatography coupled to isotope ratio mass spectrometry.
Collapse
|
18
|
Zhang L, Kujawinski DM, Jochmann MA, Schmidt TC. High-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2971-2980. [PMID: 21953951 DOI: 10.1002/rcm.5069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Compound-specific isotope analysis (CSIA) by liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) has until now been based on ion-exchange separation. In this work, high-temperature reversed-phase liquid chromatography was coupled to, and for the first time carefully evaluated for, isotope ratio mass spectrometry (HT-LC/IRMS) with four different stationary phases. Under isothermal and temperature gradient conditions, the column bleed of XBridge C(18) (up to 180 °C), Acquity C(18) (up to 200 °C), Triart C(18) (up to 150 °C), and Zirchrom PBD (up to 150 °C) had no influence on the precision and accuracy of δ(13) C measurements, demonstrating the suitability of these columns for HT-LC/IRMS analysis. Increasing the temperature during the LC/IRMS analysis of caffeine on two C(18) columns was observed to result in shortened analysis time. The detection limit of HT-RPLC/IRMS obtained for caffeine was 30 mg L(-1) (corresponding to 12.4 nmol carbon on-column). Temperature-programmed LC/IRMS (i) accomplished complete separation of a mixture of caffeine derivatives and a mixture of phenols and (ii) did not affect the precision and accuracy of δ(13)C measurements compared with flow injection analysis without a column. With temperature-programmed LC/IRMS, some compounds that coelute at room temperature could be baseline resolved and analyzed for their individual δ(13)C values, leading to an important extension of the application range of CSIA.
Collapse
Affiliation(s)
- Lijun Zhang
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | | | | |
Collapse
|
19
|
Intrinsic ratios of glucose, fructose, glycerol and ethanol 13C/12C isotopic ratio determined by HPLC-co-IRMS: toward determining constants for wine authentication. Anal Bioanal Chem 2011; 401:1551-8. [PMID: 21544541 DOI: 10.1007/s00216-011-5012-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/04/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
High-performance liquid chromatography linked to isotope ratio mass spectrometry (HPLC-co-IRMS) via a Liquiface© interface has been used to simultaneously determine (13)C isotope ratios of glucose (G), fructose (F), glycerol (Gly) and ethanol (Eth) in sweet and semi-sweet wines. The data has been used the study of wine authenticity. For this purpose, 20 authentic wines from various French production areas and various vintages have been analyzed after dilution in pure water from 20 to 200 times according to sugar content. If the (13)C isotope ratios vary according to the production area and the vintage, it appears that internal ratios of (13)C isotope ratios (R((13)C)) of the four compounds studied can be considered as a constant. Thus, ratios of isotope ratios are found to be 1.00 ± 0.04 and 1.02 ± 0.08 for R((13)C(G/F)) and R((13)C(Gly/Eth)), respectively. Moreover, R((13)C(Eth/Sugar)) is found to be 1.15 ± 0.10 and 1.16 ± 0.08 for R((13)C(Gly/Sugar)). Additions of glucose, fructose and glycerol to a reference wine show a variation of the R((13)C) value for a single product addition as low as 2.5 g/L(-1). Eighteen commercial wines and 17 concentrated musts have been analyzed. Three wine samples are suspicious as the R((13)C) values are out of range indicating a sweetening treatment. Moreover, concentrated must analysis shows that (13)C isotope ratio can be also used directly to determine the authenticity of the matrix.
Collapse
|
20
|
Abaye DA, Morrison DJ, Preston T. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:429-435. [PMID: 21213362 DOI: 10.1002/rcm.4844] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.
Collapse
Affiliation(s)
- Daniel A Abaye
- Stable Isotope Biochemistry Laboratory, Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Glasgow G75 0QF, UK
| | | | | |
Collapse
|
21
|
Elsner M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. ACTA ACUST UNITED AC 2010; 12:2005-31. [PMID: 21038038 DOI: 10.1039/c0em00277a] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gas chromatography-isotope ratio mass spectrometry (GC-IRMS) has made it possible to analyze natural stable isotope ratios (e.g., (13)C/(12)C, (15)N/(14)N, (2)H/(1)H) of individual organic contaminants in environmental samples. They may be used as fingerprints to infer contamination sources, and may demonstrate, and even quantify, the occurrence of natural contaminant transformation by the enrichment of heavy isotopes that arises from degradation-induced isotope fractionation. This review highlights an additional powerful feature of stable isotope fractionation: the study of environmental transformation mechanisms. Isotope effects reflect the energy difference of isotopologues (i.e., molecules carrying a light versus a heavy isotope in a particular molecular position) when moving from reactant to transition state. Measuring isotope fractionation, therefore, essentially allows a glimpse at transition states! It is shown how such position-specific isotope effects are "diluted out" in the compound average measured by GC-IRMS, and how a careful evaluation in mechanistic scenarios and by dual isotope plots can recover the underlying mechanistic information. The mathematical framework for multistep isotope fractionation in environmental transformations is reviewed. Case studies demonstrate how isotope fractionation changes in the presence of mass transfer, enzymatic commitment to catalysis, multiple chemical reaction steps or limited bioavailability, and how this gives information about the individual process steps. Finally, it is discussed how isotope ratios of individual products evolve in sequential or parallel transformations, and what mechanistic insight they contain. A concluding session gives an outlook on current developments, future research directions and the potential for bridging the gap between laboratory and real world systems.
Collapse
Affiliation(s)
- Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|
22
|
Morrison DJ, Taylor K, Preston T. Strong anion-exchange liquid chromatography coupled with isotope ratio mass spectrometry using a Liquiface interface. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1755-1762. [PMID: 20499320 DOI: 10.1002/rcm.4572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The introduction of liquid chromatography coupled with isotope ratio mass spectrometry (LC/IRMS) as an analytical tool for the measurement of isotope ratios in non-volatile analytes has somewhat simplified the analytical cycle from sample collection to analysis mainly due to the avoidance of the extensive sample processing and derivatisation that were necessary for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Here we test the performance of coupling strong anion exchange to IRMS using only the second commercially available interface; the Liquiface. The system was modified from installation specification to improve peak resolution in the interface and maintain peak separation from the column to the mass spectrometer. The system performance was assessed by the determination of sensitivity, accuracy and precision attained from carbohydrate separations. The system performed satisfactorily after modifications, resulting in maintenance of peak resolution from column to mass spectrometer. The sensitivity achieved suggested that approximately 150 ng carbon could be analysed with acceptable precision (<0.3 per thousand). Accuracy was maintained in the interface as determined by correlation with offline techniques, resulting in regression coefficient of r(2) = 0.98 and a slope of 0.99. The average precision achieved for the separation of seven monosaccharides was 0.36 per thousand. The integration of a carbonate removal device limited the effect of background carbon perturbations in the mass spectrometer associated with eluent gradients, and the coupling of strong anion-exchange chromatography with IRMS was successfully achieved using the Liquiface.
Collapse
Affiliation(s)
- Douglas J Morrison
- Stable Isotope Biochemistry Laboratory, SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Glasgow G75 0QF, UK.
| | | | | |
Collapse
|
23
|
McCullagh JSO. Mixed-mode chromatography/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:483-494. [PMID: 20162548 DOI: 10.1002/rcm.4322] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liquid chromatography coupled to molecular mass spectrometry (LC/MS) has been a standard technique since the early 1970s but liquid chromatography coupled to high-precision isotope ratio mass spectrometry (LC/IRMS) has only been available commercially since 2004. This development has, for the first time, enabled natural abundance and low enrichment delta(13)C measurements to be applied to individual analytes in aqueous mixtures creating new opportunities for IRMS applications, particularly for the isotopic study of biological molecules. A growing number of applications have been published in a range of areas including amino acid metabolism, carbohydrates studies, quantification of cellular and plasma metabolites, dietary tracer and nucleic acid studies. There is strong potential to extend these to new compounds and complex matrices but several challenges face the development of LC/IRMS methods. To achieve accurate isotopic measurements, HPLC separations must provide baseline-resolution between analyte peaks; however, the design of current liquid interfaces places severe restrictions on compatible flow rates and in particular mobile phase compositions. These create a significant challenge on which reports associated with LC/IRMS have not previously focused. Accordingly, this paper will address aspects of chromatography in the context of LC/IRMS, in particular focusing on mixed-mode separations and their benefits in light of these restrictions. It aims to provide an overview of mixed-mode stationary phases and of ways to improve high aqueous separations through manipulation of parameters such as column length, temperature and mobile phase pH. The results of several practical experiments are given using proteogenic amino acids and nucleosides both of which are of noted importance in the LC/IRMS literature. This communication aims to demonstrate that mixed-mode stationary phases provide a flexible approach given the constraints of LC/IRMS interface design and acts as a practical guide for the development of new chromatographic methods compatible with LC/IRMS applications.
Collapse
Affiliation(s)
- James S O McCullagh
- Chemistry Research Laboratory, University of Oxford, Mansfield Rd, Oxford OX1 3TA, UK.
| |
Collapse
|
24
|
Reinnicke S, Bernstein A, Elsner M. Small and Reproducible Isotope Effects during Methylation with Trimethylsulfonium Hydroxide (TMSH): A Convenient Derivatization Method for Isotope Analysis of Negatively Charged Molecules. Anal Chem 2010; 82:2013-9. [DOI: 10.1021/ac902750s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandra Reinnicke
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Anat Bernstein
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
25
|
Schierbeek H, Moerdijk-Poortvliet TCW, van den Akker CHP, te Braake FWJ, Boschker HTS, van Goudoever JB. Analysis of [U-13C6]glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry compared with two other mass spectrometry techniques. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3824-3830. [PMID: 19902413 DOI: 10.1002/rcm.4293] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The use of stable isotope labelled glucose provides insight into glucose metabolism. The 13C-isotopic enrichment of glucose is usually measured by gas chromatography/mass spectrometry (GC/MS) or gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). However, in both techniques the samples must be derivatized prior to analysis, which makes sample preparation more labour-intensive and increases the uncertainty of the measured isotopic composition. A novel method for the determination of isotopic enrichment of glucose in human plasma using liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) has been developed. Using this technique, for which hardly any sample preparation is needed, we showed that both the enrichment and the concentration could be measured with very high precision using only 20 microL of plasma. In addition, a comparison with GC/MS and GC/IRMS showed that the best performance was achieved with the LC/IRMS method making it the method of choice for the measurement of 13C-isotopic enrichment in plasma samples.
Collapse
Affiliation(s)
- Henk Schierbeek
- Erasmus Medical Center-Sophia Children's Hospital, Department of Paediatrics, Division of Neonatology, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Jochmann MA, Steinmann D, Stephan M, Schmidt TC. Flow injection analysis-isotope ratio mass spectrometry for bulk carbon stable isotope analysis of alcoholic beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:10489-10496. [PMID: 19856915 DOI: 10.1021/jf900506t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new method for bulk carbon isotope ratio determination of water-soluble samples is presented that is based on flow injection analysis-isotope ratio mass spectrometry (FIA-IRMS) using an LC IsoLink interface. Advantages of the method are that (i) only very small amounts of sample are required (2-5 microL of the sample for up to 200 possible injections), (ii) it avoids complex sample preparation procedures such as needed for EA-IRMS analysis (only sample dilution and injection,) and (iii) high throughput due to short analysis times is possible (approximately 15 min for five replicates). The method was first tested and evaluated as a fast screening method with industrially produced ethanol samples, and additionally the applicability was tested by the measurement of 81 alcoholic beverages, for example, whiskey, brandy, vodka, tequila, and others. The minimal sample concentration required for precise and reproducible measurements was around 50 microL L(-1) ethanol/water (1.71 mM carbon). The limit of repeatability was determined to be r=0.49%. FIA-IRMS represents a fast screening method for beverage authenticity control. Due to this, samples can be prescreened as a decisive criterion for more detailed investigations by HPLC-IRMS or multielement GC-IRMS measurements for a verification of adulteration.
Collapse
Affiliation(s)
- Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg, Germany.
| | | | | | | |
Collapse
|
27
|
Teutenberg T, Wiese S, Wagner P, Gmehling J. High-temperature liquid chromatography. Part III: Determination of the static permittivities of pure solvents and binary solvent mixtures—Implications for liquid chromatographic separations. J Chromatogr A 2009; 1216:8480-7. [DOI: 10.1016/j.chroma.2009.09.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/01/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
|
28
|
Schierbeek H, Rook D, te Braake FWJ, Dorst KY, Voortman G, Godin JP, Fay LB, van Goudoever JB. Simultaneous analysis of (13)C-glutathione as its dimeric form GSSG and its precursor [1-(13)C]glycine using liquid chromatography/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:2897-2902. [PMID: 19670340 DOI: 10.1002/rcm.4200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Determination of glutathione kinetics using stable isotopes requires accurate measurement of the tracers and tracees. Previously, the precursor and synthesized product were measured with two separate techniques, liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). In order to reduce sample volume and minimize analytical effort we developed a method to simultaneously determine (13)C-glutathione as its dimeric form (GSSG) and its precursor [1-(13)C]glycine in a small volume of erythrocytes in one single analysis. After having transformed (13)C-glutathione into its dimeric form GSSG, we determined both the intra-erythrocytic concentrations and the (13)C-isotopic enrichment of GSSG and glycine in 150 microL of whole blood using liquid chromatography coupled to LC/IRMS. The results show that the concentration (range of micromol/mL) was reliably measured using cycloleucine as internal standard, i.e. with a precision better than 0.1 micromol/mL. The (13)C-isotopic enrichment of GSSG and glycine measured in the same run gave reliable values with excellent precision (standard deviation (sd) <0.3 per thousand) and accuracy (measured between 0 and 5 APE). This novel method opens up a variety of kinetic studies with relatively low dose administration of tracers, reducing the total cost of the study design. In addition, only a minimal sample volume is required, enabling studies even in very small subjects, such as preterm infants.
Collapse
Affiliation(s)
- Henk Schierbeek
- Erasmus Medical Center - Sophia Children's Hospital, Department of Paediatrics, Division of Neonatology, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Smith CI, Fuller BT, Choy K, Richards MP. A three-phase liquid chromatographic method for δ13C analysis of amino acids from biological protein hydrolysates using liquid chromatography–isotope ratio mass spectrometry. Anal Biochem 2009; 390:165-72. [DOI: 10.1016/j.ab.2009.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/09/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
|
30
|
Teutenberg T. Potential of high temperature liquid chromatography for the improvement of separation efficiency—A review. Anal Chim Acta 2009; 643:1-12. [DOI: 10.1016/j.aca.2009.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
|
31
|
Teutenberg T, Hollebekkers K, Wiese S, Boergers A. Temperature and pH-stability of commercial stationary phases. J Sep Sci 2009; 32:1262-74. [DOI: 10.1002/jssc.200800712] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Boschker HTS, Moerdijk-Poortvliet TCW, van Breugel P, Houtekamer M, Middelburg JJ. A versatile method for stable carbon isotope analysis of carbohydrates by high-performance liquid chromatography/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3902-3908. [PMID: 18980267 DOI: 10.1002/rcm.3804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We have developed a method to analyze stable carbon isotope ((13)C/(12)C) ratios in a variety of carbohydrates using high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS). The chromatography is based on strong anion-exchange columns with low strength NaOH eluents. An eluent concentration of 1 mM resulted in low background signals and good separation of most of the typical plant neutral carbohydrates. We also show that more strongly bound carbohydrates such as acidic carbohydrates can be separated by inclusion of NO(3) (-) as an inorganic pusher ion in the eluent. Analyses of neutral carbohydrate concentrations and their stable carbon isotope ratios are shown for plant materials and marine sediment samples both at natural abundance and for (13)C-enriched samples. The main advantage of HPLC/IRMS analysis over traditional gas chromatography based methods is that no derivatization is needed resulting in simple sample treatment and improved accuracy and reproducibility.
Collapse
Affiliation(s)
- H T S Boschker
- Netherlands Institute of Ecology, Centre for Estuarine and Marine Ecology, 4400 AC Yerseke, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Isotope Ratio Mass Spectrometry (IRMS) is a specialized technique used to provide information about the geographic, chemical, and biological origins of substances. The ability to determine the source of an organic substance stems from the relative isotopic abundances of the elements which comprise the material. Because the isotope ratios of elements such as carbon, hydrogen, oxygen, sulfur, and nitrogen can become locally enriched or depleted through a variety of kinetic and thermodynamic factors, measurement of the isotope ratios can be used to differentiate between samples which otherwise share identical chemical compositions. Several sample introduction methods are now available for commercial isotope ratio mass spectrometers. Combustion is most commonly used for bulk isotopic analysis, whereas gas and liquid chromatography are predominately used for the real-time isotopic analysis of specific compounds within a mixture. Here, highlights of advances in instrumentation and applications within the last three years are provided to illustrate the impact of this rapidly growing area of research. Some prominent new applications include authenticating organic food produce, ascertaining whether or not African elephants are guilty of night-time raids on farmers' crops, and linking forensic drug and soil samples from a crime scene to a suspected point of origin. For the sake of brevity, we focus this Minireview on the isotope ratio measurements of lighter-elements common to organic sources; we do not cover the equally important field of inorganic isotope ratio mass spectrometry.
Collapse
Affiliation(s)
- Zeland Muccio
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, 175 Clippinger Laboratories, Ohio University, Athens, OH 45701-2979, USA
| | | |
Collapse
|
34
|
Cabañero AI, Recio JL, Rupérez M. Isotope ratio mass spectrometry coupled to liquid and gas chromatography for wine ethanol characterization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:3111-3118. [PMID: 18798196 DOI: 10.1002/rcm.3711] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two new procedures for wine ethanol 13C/12C isotope ratio determination, using high-performance liquid chromatography and gas chromatography isotope ratio mass spectrometry (HPLC/IRMS and GC/IRMS), have been developed to improve isotopic methods dedicated to the study of wine authenticity. Parameters influencing separation of ethanol from wine matrix such as column, temperature, mobile phase, flow rates and injection mode were investigated. Twenty-three wine samples from various origins were analyzed for validation of the procedures. The analytical precision was better than 0.15 per thousand, and no significant isotopic fractionation was observed employing both separative techniques coupled to IRMS. No significant differences and a very strong correlation (r = 0.99) were observed between the 13C/12C ratios obtained by the official method (elemental analyzer/isotope ratio mass spectrometry) and the proposed new methodology. The potential advantages of the developed methods over the traditional one are speed (reducing time required from hours to minutes) and simplicity. In addition, these are the first isotopic methods that allow 13C/12C determination directly from a liquid sample with no previous ethanol isolation, overcoming technical difficulties associated with sample treatment.
Collapse
Affiliation(s)
- Ana I Cabañero
- Laboratorio Arbitral Agroalimentario, Ministerio de Medioambiente y Medio Rural y Marino, Ctra. Coruña Km 10,700, 28023 Madrid, Spain.
| | | | | |
Collapse
|
35
|
Godin JP, Breuillé D, Obled C, Papet I, Schierbeek H, Hopfgartner G, Fay LB. Liquid and gas chromatography coupled to isotope ratio mass spectrometry for the determination of 13C-valine isotopic ratios in complex biological samples. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1334-1343. [PMID: 18383273 DOI: 10.1002/jms.1406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
On-line gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) is commonly used to measure isotopic ratios at natural abundance as well as for tracer studies in nutritional and medical research. However, high-precision (13)C isotopic enrichment can also be measured by liquid chromatography-isotope ratio mass spectrometry (LC-IRMS). Indeed, LC-IRMS can be used, as shown by the new method reported here, to obtain a baseline separation and to measure (13)C isotopic enrichment of underivatised amino acids (Asp, Thr-Ser, Glu, Pro, Gly, Ala, Cys and Val). In case of Val, at natural abundance, the SD(delta(13)C) reported with this method was found to be below 1 per thousand . Another key feature of the new LC-IRMS method reported in this paper is the comparison of the LC-IRMS approach with the conventional GC-C-IRMS determination. To perform this comparative study, isotopic enrichments were measured from underivatised Val and its N(O, S)-ethoxycarbonyl ethyl ester derivative. Between 0.0 and 1.0 molar percent excess (MPE) (delta(13)C= -12.3 to 150.8 per thousand), the calculated root-mean-square (rms) of SD was 0.38 and 0.46 per thousand and the calculated rms of accuracy was 0.023 and 0.005 MPE, respectively, for GC-C-IRMS and LC-IRMS. Both systems measured accurately low isotopic enrichments (0.002 atom percent excess (APE)) with an SD (APE) of 0.0004. To correlate the relative (delta(13)C) and absolute (atom%, APE and MPE) isotopic enrichment of Val measured by the GC-C-IRMS and LC-IRMS devices, mathematical equations showing the slope and intercept of the curves were established and validated with experimental data between 0.0 to 2.3 MPE. Finally, both GC-C-IRMS and LC-IRMS instruments were also used to assess isotopic enrichment of protein-bound (13)C-Val in tibial epiphysis in a tracer study performed in rats. Isotopic enrichments measured by LC-IRMS and GC-C-IRMS were not statistically different (p>0.05). The results of this work indicate that the LC-IRMS was successful for high-precision (13)C isotopic measurements in tracer studies giving (13)C isotopic enrichment similar to the GC-C-IRMS but without the step of GC derivatisation. Therefore, for clinical studies requiring high-precision isotopic measurement, the LC-IRMS is the method of choice to measure the isotopic ratio.
Collapse
|
36
|
Godin JP, Hopfgartner G, Fay L. Temperature-Programmed High-Performance Liquid Chromatography Coupled to Isotope Ratio Mass Spectrometry. Anal Chem 2008; 80:7144-52. [DOI: 10.1021/ac8004204] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jean-Philippe Godin
- Nestle Research Center, Nestec Ltd., Department of Bioanalytical Science, P.O. Box 44, CH-1000 Lausanne 26, Switzerland, and Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 20 bd d’Yvoy, CH-1211 Geneva 4, Switzerland
| | - Gérard Hopfgartner
- Nestle Research Center, Nestec Ltd., Department of Bioanalytical Science, P.O. Box 44, CH-1000 Lausanne 26, Switzerland, and Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 20 bd d’Yvoy, CH-1211 Geneva 4, Switzerland
| | - Laurent Fay
- Nestle Research Center, Nestec Ltd., Department of Bioanalytical Science, P.O. Box 44, CH-1000 Lausanne 26, Switzerland, and Life Sciences Mass Spectrometry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 20 bd d’Yvoy, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
37
|
Penning H, Elsner M. Intramolecular Carbon and Nitrogen Isotope Analysis by Quantitative Dry Fragmentation of the Phenylurea Herbicide Isoproturon in a Combined Injector/Capillary Reactor Prior to GC Separation. Anal Chem 2007; 79:8399-405. [DOI: 10.1021/ac071420a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Godin JP, Fay LB, Hopfgartner G. Liquid chromatography combined with mass spectrometry for 13C isotopic analysis in life science research. MASS SPECTROMETRY REVIEWS 2007; 26:751-74. [PMID: 17853432 DOI: 10.1002/mas.20149] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Among the different disciplines covered by mass spectrometry, measurement of (13)C/(12)C isotopic ratio crosses a large section of disciplines from a tool revealing the origin of compounds to more recent approaches such as metabolomics and proteomics. Isotope ratio mass spectrometry (IRMS) and molecular mass spectrometry (MS) are the two most mature techniques for (13)C isotopic analysis of compounds, respectively, for high and low-isotopic precision. For the sample introduction, the coupling of gas chromatography (GC) to either IRMS or MS is state of the art technique for targeted isotopic analysis of volatile analytes. However, liquid chromatography (LC) also needs to be considered as a tool for the sample introduction into IRMS or MS for (13)C isotopic analyses of non-volatile analytes at natural abundance as well as for (13)C-labeled compounds. This review presents the past and the current processes used to perform (13)C isotopic analysis in combination with LC. It gives particular attention to the combination of LC with IRMS which started in the 1990's with the moving wire transport, then subsequently moved to the chemical reaction interface (CRI) and was made commercially available in 2004 with the wet chemical oxidation interface (LC-IRMS). The LC-IRMS method development is also discussed in this review, including the possible approaches for increasing selectivity and efficiency, for example, using a 100% aqueous mobile phase for the LC separation. In addition, applications for measuring (13)C isotopic enrichments using atmospheric pressure LC-MS instruments with a quadrupole, a time-of-flight, and an ion trap analyzer are also discussed as well as a LC-ICPMS using a prototype instrument with two quadrupoles.
Collapse
Affiliation(s)
- Jean-Philippe Godin
- Nestlé Research Center, Nestec Ltd, Vers chez les blanc, P.O. BOX 44, CH-1000 Lausanne 26, Switzerland.
| | | | | |
Collapse
|
39
|
Blessing M, Jochmann MA, Schmidt TC. Pitfalls in compound-specific isotope analysis of environmental samples. Anal Bioanal Chem 2007; 390:591-603. [PMID: 17901949 DOI: 10.1007/s00216-007-1588-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 11/25/2022]
Abstract
In the last decade compound-specific stable isotope analysis (CSIA) has evolved as a valuable technique in the field of environmental science, especially in contaminated site assessment. Instrumentation and methods exist for highly precise measurements of the isotopic composition of organic contaminants even in a very low concentration range. Nevertheless, the determination of precise and accurate isotope data of environmental samples can be a challenge. Since CSIA is gaining more and more popularity in the assessment of in situ biodegradation of organic contaminants, an increasing number of authorities and environmental consulting offices are interested in the application of the method for contaminated site remediation. Because of this, it is important to demonstrate the problems and limitations associated with compound-specific isotope measurements of environmental samples. In this review, potential pitfalls of the analytical procedure are critically discussed and strategies to avoid possible sources of error are provided. In order to maintain the analytical quality and to ensure the basis for reliable stable isotope data, recommendations on groundwater sampling, and sample preservation and storage are given. Important aspects of sample preparation and preconcentration techniques to improve sensitivity are highlighted. Problems related to chromatographic resolution and matrix interference are discussed that have to be considered in order to achieve accurate gas chromatography/isotope ratio mass spectrometry measurements. As a result, the need for a thorough investigation of compound-specific isotope fractionation effects introduced by any step of the overall analytical method by standards with known isotopic composition is emphasized. Finally, we address some important points that have to be considered when interpreting data from field investigations.
Collapse
Affiliation(s)
- Michaela Blessing
- Center for Applied Geoscience (ZAG), Eberhard Karls University of Tuebingen, Sigwartstr. 10, 72076, Tuebingen, Germany
| | | | | |
Collapse
|
40
|
Teutenberg T, Tuerk J, Holzhauser M, Giegold S. Temperature stability of reversed phase and normal phase stationary phases under aqueous conditions. J Sep Sci 2007; 30:1101-14. [PMID: 17595945 DOI: 10.1002/jssc.200600507] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study the temperature stability of several normal phase and RP columns was investigated using a water-only mobile phase. The temperature was adjusted to 120 degrees C for the bare silica stationary phases and to 185 degrees C for the metal oxide and carbon stationary phases. It could be shown that metal oxide stationary phases exhibited excellent thermal stability over the duration of the test period and are therefore suitable for high temperature LC applications.
Collapse
|
41
|
Schierbeek H, Te Braake F, Godin JP, Fay LB, van Goudoever JB. Novel method for measurement of glutathione kinetics in neonates using liquid chromatography coupled to isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2805-12. [PMID: 17661340 DOI: 10.1002/rcm.3148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A novel analytical method using liquid chromatography coupled to isotope ratio mass spectrometry (LC/IRMS) was developed for measuring the fractional synthesis rate (FSR) of glutathione (GSH) in neonates after infusion of [1-(13)C]-glycine as a tracer. After transformation of GSH into GSSG, its dimeric form, the intra-erythrocytic concentration and (13)C-isotopic enrichment of GSH were determined using 200 microL of blood. The results showed that, using LC/IRMS, the concentration (range of micromol/mL) was reliably measured using norvaline as internal standard with precision better than 0.1 micromol/mL. In addition, the (13)C-isotopic enrichment measured in the same run gave reliable values with excellent precision (with standard deviation (sd) lower than 0.3 per thousand) and accuracy (measured between 0 and 2 Atom % Excess (APE)). The inter-assay repeatability of delta(13)C of norvaline used as internal standard with in vivo samples was assessed at -26.07 +/- 0.28 per thousand with coefficient of variance (CV) at 1.1%. The FSR calculated either with GSH or GSSG showed similar results with slightly higher values for GSSG (41.6 +/- 4.7 and 46.5 +/- 4.4, respectively). The slightly lower FSR of GSH is probably due to interfering compounds in the biological matrix. Successfully used in a clinical study, this rapid and reliable method opens up a variety of kinetic studies with relatively low administration of tracer infusates, reducing the total cost of the study design. The small volume of blood needed enables studies even in extremely small subjects, such as premature infants, as reported in this study.
Collapse
Affiliation(s)
- Henk Schierbeek
- Erasmus MC - Sophia Children's Hospital, Department of Neonatology, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
MacGregor BJ, Boschker HTS, Amann R. Comparison of rRNA and polar-lipid-derived fatty acid biomarkers for assessment of 13C-substrate incorporation by microorganisms in marine sediments. Appl Environ Microbiol 2006; 72:5246-53. [PMID: 16885272 PMCID: PMC1538766 DOI: 10.1128/aem.00423-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined whether a recently developed method to isolate specific small-subunit (SSU) rRNAs can be used in 13C-labeling studies to directly link community structure and function in natural ecosystems. Replicate North Sea sediment cores were incubated at the in situ temperature following addition of 13C-labeled acetate, propionate, amino acids, or glucose. Eukaryotic and bacterial SSU rRNAs were separated from total RNA by means of biotin-labeled oligonucleotide probes and streptavidin-coated paramagnetic beads, and the 13C content of the isolated rRNA was determined by elemental analysis-isotope ratio mass spectrometry. The SSU rRNA yield with the bead-capture protocol was improved by using helper probes. Incorporation of label into bacterial SSU rRNA was detectable after 2 h of incubation. The labeling was always much greater in bacterial SSU rRNA than in eukaryotic SSU rRNA, suggesting that bacteria were the main consumers of the 13C-labeled compounds. Similar results were obtained with the 13C-labeled polar-lipid-derived fatty acid (PLFA) approach, except that more label was detected in bacterial PLFA than in bacterial SSU rRNA. This may be attributable to the generally slow growth of sediment microbial populations, which results in low ribosome synthesis rates and relatively few ribosomes per cell. We discuss possible ways to improve the probe-capture protocol and the sensitivity of the 13C analysis of the captured SSU rRNA.
Collapse
|
43
|
McCullagh JSO, Juchelka D, Hedges REM. Analysis of amino acid 13C abundance from human and faunal bone collagen using liquid chromatography/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:2761-8. [PMID: 16921562 DOI: 10.1002/rcm.2651] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The scope of compound-specific stable isotope analysis has recently been increased with the development of the LC IsoLink which interfaces high-performance liquid chromatography (HPLC) and isotope ratio mass spectrometry (IRMS) to provide online LC/IRMS. This enables isotopic measurement of non-volatile compounds previously not amenable to compound-specific analysis or requiring substantial modification for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), which results in reduced precision. Amino acids are an example of such compounds. We present a new chromatographic method for the HPLC separation of underivatized amino acids using an acidic, aqueous mobile phase in conjunction with a mixed-mode stationary phase that can be interfaced with the LC IsoLink for compound-specific delta13C analysis. The method utilizes a reversed-phase Primesep-A column with embedded, ionizable, functional groups providing the capability for ion-exchange and hydrophobic interactions. Baseline separation of 15 amino acids and their carbon isotope values are reported with an average standard deviation of 0.18 per thousand (n = 6). In addition delta13C values of 18 amino acids are determined from modern protein and archaeological bone collagen hydrolysates, demonstrating the potential of this method for compound-specific applications in a number of fields including metabolic, ecological and palaeodietary studies.
Collapse
Affiliation(s)
- James S O McCullagh
- University of Oxford, Research Laboratory for Archaeology, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK.
| | | | | |
Collapse
|