1
|
Asrorov AM, Ayubov MS, Tu B, Shi M, Wang H, Mirzaakhmedov S, Kumar Nayak A, Abdurakhmonov IY, Huang Y. Coronavirus spike protein-based vaccines. Vaccine delivery systems. MEDICINE IN DRUG DISCOVERY 2024; 24:100198. [DOI: 10.1016/j.medidd.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
|
2
|
Nosaka T, Ohtsuka J, Ohtsuka T, Fukumura M. Next Generation RNA/Protein-Carrying Vector With Pleiotropic Activity. Rev Med Virol 2024; 34:e70008. [PMID: 39488720 DOI: 10.1002/rmv.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Human parainfluenza virus type 2 (hPIV2), one of the causative agents of infantile common cold, is a non-segmented negative-sense RNA virus with a robust gene expression system. It infects recurrently throughout human life without causing severe disease. Because hPIV2 has a viral envelope that can carry ectopic proteins, we developed a non-propagative RNA/protein-carrying vector BC-PIV by deleting the F gene from hPIV2. BC-PIV can be vigorously proliferated in the stable packaging cell line Vero/BC-F cells expressing the hPIV2 F gene but not in other cells. BC-PIV can deliver exogenous gene(s) on a multigenic RNA genome as an inserted gene fragment(s) and simultaneously deliver exogenous protein(s) on its envelope in a membrane-anchored form. For example, influenza virus M2e protein, Ebola virus GP protein, and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) spike protein were shown to be highly expressed in packaging cells and incorporated into the virion. The Ebola virus GP protein and SARS-CoV-2 spike protein, each delivered via BC-PIV, efficiently induced neutralising antibodies against each virus, even after prior treatment with recombinant BC-PIV in mice and hamsters, respectively. In this review, we describe the properties of BC-PIV as a promising vaccine vector, and also demonstrate its application as an anti-tumour virus.
Collapse
Grants
- JP233fa827011 Japan Agency for Medical Research and Development
- 17K19652 Ministry of Education, Culture, Sports, Science and Technology
- 20K21614 Ministry of Education, Culture, Sports, Science and Technology
- 20H03529 Ministry of Education, Culture, Sports, Science and Technology
- 24K02323 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
| | - Junpei Ohtsuka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
- BioComo Inc., Komono, Japan
| | - Tomomi Ohtsuka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
- BioComo Inc., Komono, Japan
| | - Masayuki Fukumura
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Research Centre for Development of Recombinant VLP Vaccines, Research Institutes of Excellence, Mie University, Tsu, Japan
- BioComo Inc., Komono, Japan
| |
Collapse
|
3
|
Wimalawansa SJ. Unlocking insights: Navigating COVID-19 challenges and Emulating future pandemic Resilience strategies with strengthening natural immunity. Heliyon 2024; 10:e34691. [PMID: 39166024 PMCID: PMC11334859 DOI: 10.1016/j.heliyon.2024.e34691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
The original COVID-19 vaccines, developed against SARS-CoV-2, initially mitigated hospitalizations. Bivalent vaccine boosters were used widely during 2022-23, but the outbreaks persisted. Despite this, hospitalizations, mortality, and outbreaks involving dominant mutants like Alpha and Delta increased during winters when the population's vitamin D levels were at their lowest. Notably, 75 % of human immune cell/system functions, including post-vaccination adaptive immunity, rely on adequate circulatory vitamin D levels. Consequently, hypovitaminosis compromises innate and adaptive immune responses, heightening susceptibility to infections and complications. COVID-19 vaccines primarily target SARS-CoV-2 Spike proteins, thus offering only a limited protection through antibodies. mRNA vaccines, such as those for COVID-19, fail to generate secretory/mucosal immunity-like IgG responses, rendering them ineffective in halting viral spread. Additionally, mutations in the SARS-CoV-2 binding domain reduce immune recognition by vaccine-derived antibodies, leading to immune evasion by mutant viruses like Omicron variants. Meanwhile, the repeated administration of bivalent boosters intended to enhance efficacy resulted in the immunoparesis of recipients. As a result, relying solely on vaccines for outbreak prevention, it became less effective. Dominant variants exhibit increased affinity to angiotensin-converting enzyme receptor-2, enhancing infectivity but reducing virulence. Meanwhile, spike protein-related viral mutations do not impact the potency of widely available, repurposed early therapies, like vitamin D and ivermectin. With the re-emergence of COVID-19 and impending coronaviral pandemics, regulators and health organizations should proactively consider approval and strategic use of cost-effective adjunct therapies mentioned above to counter the loss of vaccine efficacy against emerging variants and novel coronaviruses and eliminate vaccine- and anti-viral agents-related serious adverse effects. Timely implementation of these strategies could reduce morbidity, mortality, and healthcare costs and provide a rational approach to address future epidemics and pandemics. This perspective critically reviews relevant literature, providing insights, justifications, and viewpoints into how the scientific community and health authorities can leverage this knowledge cost-effectively.
Collapse
Affiliation(s)
- Sunil J. Wimalawansa
- Medicine, Endocrinology, and Nutrition, B14 G2, De Soyza Flats, Moratuwa, Sri Lanka
| |
Collapse
|
4
|
Zhang W, Xiao L, Li D, Hu Y, Yu W. New Strategies for Responding to SARS-CoV-2: The Present and Future of Dual-Target Drugs. J Med Chem 2024; 67:11522-11542. [PMID: 38967785 DOI: 10.1021/acs.jmedchem.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths, posing a serious threat to public health and safety. Rapid mutations of SARS-CoV-2 and complex interactions among multiple targets during infection pose a risk of expiry for small molecule inhibitors. This suggests that the traditional concept of "one bug, one drug" could be ineffective in dealing with the coronavirus. The dual-target drug strategy is expected to be the key to ending coronavirus infections. However, the lack of design method and improper combination of dual-targets poses obstacle to the discovery of new dual-target drugs. In this Perspective, we summarized the profiles concerning drug design methods, structure-activity relationships, and pharmacological parameters of dual-target drugs for the treatment of COVID-19. Importantly, we underscored how target combination and rational drug design illuminate the development of dual-target drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lecheng Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
5
|
Wang P. Potential Usefulness of IgA for the Early Detection of SARS-CoV-2 Infection: Comparison With IgM. Pol J Microbiol 2024; 73:123-130. [PMID: 38905276 PMCID: PMC11192524 DOI: 10.33073/pjm-2024-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 06/23/2024] Open
Abstract
Serological testing can be a powerful complementary approach to achieve timely diagnosis of severe acute respiratory coronavirus 2 (SARS-CoV-2) infection, along with nucleic acid detection. Immunoglobulin (Ig) A antibodies are less frequently utilized to detect SARS-CoV-2 infection than IgM and IgG antibodies, even though IgA antibodies play an important role in protective immunity against SARS-CoV-2. This review discusses the differences in kinetics and assay performance between IgA and IgM antibodies and the factors influencing antibody responses. It highlights the potential usefulness of analyzing IgA antibodies for the early detection of SARS-CoV-2 infection. The early appearance of IgA and the high sensitivity of IgA-based immunoassays can aid in diagnosing coronavirus disease 2019. However, because of cross-reactivity, it is important to recognize the only moderate specificity of the early detection of SARS-CoV-2 IgA antibodies against spike antigens. Either the analysis of antibodies targeting the nucleocapsid antigen or a combination of antibodies against the nucleocapsid and spike antigens may strengthen the accuracy of serological evaluation.
Collapse
Affiliation(s)
- Pei Wang
- Department of Laboratory Medicine and Blood Transfusion, Jingmen Central Hospital, Jingmen, China
| |
Collapse
|
6
|
Sidhu N, Vanathi M, Gupta N, Tandon R. COVID and COVID vaccine-related corneal morbidity: A review. Indian J Ophthalmol 2023; 71:3595-3599. [PMID: 37991289 PMCID: PMC10788745 DOI: 10.4103/ijo.ijo_765_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 07/30/2023] [Indexed: 11/23/2023] Open
Abstract
Systemic coronavirus disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has had several ocular consequences. Many vaccines have been developed against the disease, with adverse events being reported as well. Various ocular adverse events secondary to coronavirus disease 2019 (COVID-19) vaccines have also featured in literature in recent times. This review features the reported corneal-related effects of COVID infection and vaccination. These include direct effects on corneal grafts and unilateral or bilateral corneal melts. The compilation of reported experiences from across the world in this systematic review will help clinicians recognize the possible presentations, pathogenesis, and management of the same.
Collapse
Affiliation(s)
- Navneet Sidhu
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Murugesan Vanathi
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Noopur Gupta
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Radhika Tandon
- Dr. R. P. Center for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Yamamoto T, Tanji M, Mitsunaga F, Nakamura S. SARS-CoV-2 sublingual vaccine with RBD antigen and poly(I:C) adjuvant: Preclinical study in cynomolgus macaques. Biol Methods Protoc 2023; 8:bpad017. [PMID: 37711440 PMCID: PMC10497375 DOI: 10.1093/biomethods/bpad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Mucosal vaccine for sublingual route was prepared with recombinant SARS-CoV-2 spike protein receptor binding domain (RBD) antigen and poly(I:C) adjuvant components. The efficacy of this sublingual vaccine was examined using Cynomolgus macaques. Nine of the macaque monkeys were divided into three groups of three animals: control [just 400 µg poly(I:C) per head], low dose [30 µg RBD and 400 µg poly(I:C) per head], and high dose [150 µg RBD and 400 µg poly(I:C) per head], respectively. N-acetylcysteine (NAC), a mild reducing agent losing mucin barrier, was used to enhance vaccine delivery to mucosal immune cells. RBD-specific IgA antibody secreted in pituita was detected in two of three monkeys of the high dose group and one of three animals of the low dose group. RBD-specific IgG and/or IgA antibodies in plasma were also detected in these monkeys. These indicated that the sublingual vaccine stimulated mucosal immune response to produce antigen-specific secretory IgA antibodies in pituita and/or saliva. This sublingual vaccine also affected systemic immune response to produce IgG (IgA) in plasma. Little RBD-specific IgE was detected in plasma, suggesting no allergic antigenicity of this sublingual vaccine. Thus, SARS-CoV-2 sublingual vaccine consisting of poly(I:C) adjuvant showed reasonable efficacy in a non-human primate model.
Collapse
Affiliation(s)
- Tetsuro Yamamoto
- Innovation Research Center, EPS Holdings, Inc., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- EP Mediate Co., Ltd, 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- Research Center, EPS Innovative Medicine Co., Ltd, 2-1 Tsukudohachimancho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Masanori Tanji
- Innovation Research Center, EPS Holdings, Inc., 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
- EP Mediate Co., Ltd, 1-8 Tsukudocho, Shinjuku-ku, Tokyo 162-0821, Japan
| | - Fusako Mitsunaga
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| | - Shin Nakamura
- Biomedical Institute, NPO Primate Agora, 52-2 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
- Intelligence & Technology Lab, Inc., 52-1 Fukue, Kaizu-cho, Kaizu 503-0628, Japan
| |
Collapse
|
8
|
Al-Bawab R, Abu-Farha R, El-Dahiyat F, Nassar RI, Zawiah M. A qualitative assessment of the adverse effects associated with COVID-19 vaccines: a study from Jordan. J Pharm Policy Pract 2023; 16:100. [PMID: 37563664 PMCID: PMC10416411 DOI: 10.1186/s40545-023-00605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES The current study aimed to qualitatively explore the side effects reported by participants who received the COVID-19 vaccine among the Jordanian population. METHODS Between April 18th and May 12th, 2022, an in-depth interview was conducted with a purposive sample of vaccinated individuals to assess the side effects of the COVID-19 vaccine in this study. Thematic analysis was used to identify themes and sub-themes within the current qualitative data. RESULTS A total of 20 participants were interviewed. They had a mean age of 41.3 (SD = 14.3) years. Half of the participants were females (n = 10, 50.0%). The study revealed six main themes: first, most of the respondents believed that COVID-19 vaccines were safe. Second, the vaccines are not equivalent in their safety. The third there showed that participants follow preventive measures to decrease the possibility of experiencing side effects. The fourth theme showed that reporting of side effects by the participants is dependent on the experienced side effects. Moreover, the next theme revealed that participants showed hesitancy to take more than one type of vaccine. Finally, participants were willing to take the vaccine annually, because they believed that the vaccine is better than the disease itself and decreases the aggressive effects of the disease. CONCLUSIONS This study found that the majority of participants believed in the safety of the COVID-19 vaccines and emphasized the responsibility of the healthcare providers in increasing awareness among the population about the importance of the vaccines. Enhancing such awareness is essential to improve the acceptance of receiving different types of vaccines.
Collapse
Affiliation(s)
- Rawan Al-Bawab
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Rana Abu-Farha
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Faris El-Dahiyat
- Clinical Pharmacy Program, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Al Ain, United Arab Emirates
| | - Razan I Nassar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mohammed Zawiah
- Department of Pharmacy Practice, Faculty of Clinical Pharmacy, Hodeidah University, Al Hodeidah, Yemen.
| |
Collapse
|
9
|
Qashqari FS, Alfelali M, Barasheed O, Almaimani R, Alghamdi A, Alharbi SS, Balahmar E, S Alhothali A, Alsharif RH, Jalal NA, Makhdoom H. Evaluation of the Most Visible Symptoms Associated with COVID-19 Vaccines Among the Residents of Makkah, Saudi Arabia: An Observational, Cross-Sectional Study. Infect Drug Resist 2023; 16:5107-5119. [PMID: 37576522 PMCID: PMC10422958 DOI: 10.2147/idr.s409200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023] Open
Abstract
Background This research evaluated the most visible symptoms associated with coronavirus (COVID-19) vaccines among residents in Makkah of Saudi Arabia. Methods A cross-sectional study was conducted in 2021 among a representative sample of residents receiving COVID-19 vaccination at King Abdullah Medical City, Al Ukayshiyyah, and Umm Al-Qura University vaccination centers. A total of 805 participants selected by a census sampling method were included. Data regarding characteristics, medical history, and post-vaccination symptoms were obtained with an interview-based questionnaire. Results The participants' mean age was 25.20 ± 15.5 years. Of them, 61.7% and 38.3% received one and two doses of the COVID-19 vaccine, respectively. 2.2% have an allergic reaction to the COVID-19 vaccine. 25.3% were infected with COVID-19, 23% were infected before the first dose, and only 1.6% were infected after the first dose. Significant statistical associations were found between males and females in smoking status, age, body mass index, history of diabetes mellitus, and types of COVID-19 vaccines (P-value < 0.05). After adjustment for confounding variables, male participants had lower odds of having swelling, redness, or pain at the injection site, muscle or joint pain, headache, dizziness, and nausea compared to female participants [OR = 0.596, 95% CI = (0.388-0.916)], [OR = 0.272, 95% CI = (0.149-0.495)], [OR = 0.529, 95% CI = (0.338-0.828)], [OR = 0.263, 95% CI = (0.125-0.554)], and [OR = 0.145, 95% CI = (0.31-0.679), P < 0.05 for all], respectively. Conclusion The female participants may have a higher risk of post-COVID-19 vaccination symptoms than males among Makkah residents of Saudi Arabia.
Collapse
Affiliation(s)
- Fadi S Qashqari
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Alfelali
- Department of Family and Community Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osamah Barasheed
- Research and Innovation Center, King Abdullah Medical City, Makkah, Saudi Arabia
- Basira Center for Health Research Training and Consulting, Makkah, Saudi Arabia
| | - Ruba Almaimani
- Health Promotion and Education Department, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Anas Alghamdi
- Faculty of Dental Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sarah S Alharbi
- Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Balahmar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ammar S Alhothali
- Faculty of Medicine and Surgery, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Naif A Jalal
- Department of Microbiology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hatim Makhdoom
- Department of Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
10
|
Mirzaie F, Badakhsh M, Badiei nasab M, Mousaei Z. Evaluation of Side Effects Associated with COVID-19 Vaccines in Pregnant Women. Med J Islam Repub Iran 2023; 37:54. [PMID: 37457425 PMCID: PMC10349353 DOI: 10.47176/mjiri.37.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 07/18/2023] Open
Abstract
Background A variety of vaccinations have been developed to fight the coronavirus disease 2019 (Covid-19) 2 years after the coronavirus epidemic spread globally. During clinical studies, these vaccinations were linked to mild to severe side effects. This study aimed to evaluate the short-term side effects of Covid-19 vaccination in pregnant women in Zabol (Iran). Methods This cross-sectional study was conducted between August and October 2021 to collect data on the adverse side effects of Covid-19 vaccinations among 117 pregnant women in Zabol (Iran). A questionnaire was used to collect demographic data, vaccination information, and vaccine complications. SPSS software Version 22 was used to analyze the data at 2 levels descriptive and inferential statistics. Results A total of 117 pregnant women aged 27.67 ± 5.14 years were included. After the first and second doses of Covid-19 vaccinations, 91 (86.7%) and 84 (71.8%) pregnant women, respectively, suffered adverse effects. Moreover, after the first dose, 55(51.4%) and 60 (56.1%) of pregnant women reported fatigue and headache, and after the second dose, 39 (33.3%) and 37 (31.6%) reported fatigue and headache, respectively. Conclusion The side effects reported in our study after receiving Covid-19 vaccinations in pregnant women were similar to those described in clinical studies of vaccines and were mild to moderate, showing that injectable vaccines had safe profiles. More research is needed, however, to assess the long-term side effects of existing vaccines.
Collapse
Affiliation(s)
- Fatemeh Mirzaie
- Midwifery Department, Faculty of Nursing and Midwifery, Zabol University
of Medical Sciences, Zabol, Iran
| | - Mahin Badakhsh
- Midwifery Department, Faculty of Nursing and Midwifery, Zabol University
of Medical Sciences, Zabol, Iran
| | - Maleknaz Badiei nasab
- Department of Anatomy, Faculty of Medicine, Zahedan University of
Medical Sciences, Zahedan, Iran
| | - Zahra Mousaei
- Midwifery Department, Faculty of Nursing and Midwifery, Zabol University
of Medical Sciences, Zabol, Iran
| |
Collapse
|
11
|
Villarraza J, Fuselli A, Gugliotta A, Garay E, Rodríguez MC, Fontana D, Antuña S, Gastaldi V, Battagliotti JM, Tardivo MB, Alvarez D, Castro E, Cassataro J, Ceaglio N, Prieto C. A COVID-19 vaccine candidate based on SARS-CoV-2 spike protein and immune-stimulating complexes. Appl Microbiol Biotechnol 2023; 107:3429-3441. [PMID: 37093307 PMCID: PMC10124706 DOI: 10.1007/s00253-023-12520-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023]
Abstract
Spike protein from SARS-CoV-2, the etiologic agent of the COVID-19 pandemic disease, constitutes a structural protein that proved to be the main responsible for neutralizing antibody production. Thus, its sequence is highly considered for the design of candidate vaccines. Animal cell culture represents the best option for the production of subunit vaccines based on recombinant proteins since they introduce post-translational modifications that are important to mimic the natural antigenic epitopes. Particularly, the human cell line HEK293T has been explored and used for the production of biotherapeutics since the products derived from them present human-like post-translational modifications that are important for the protein's activity and immunogenicity. The aim of this study was to produce and characterize a potential vaccine for COVID-19 based on the spike ectodomain (S-ED) of SARS-CoV-2 and two different adjuvants: aluminum hydroxide (AH) and immune-stimulating complexes (ISCOMs). The S-ED was produced in sHEK293T cells using a 1-L stirred tank bioreactor operated in perfusion mode and purified. S-ED characterization revealed the expected size and morphology. High N-glycan content was confirmed. S-ED-specific binding with the hACE2 (human angiotensin-converting enzyme 2) receptor was verified. The immunogenicity of S-ED was evaluated using AH and ISCOMs. Both formulations demonstrated the presence of anti-RBD antibodies in the plasma of immunized mice, being significantly higher for the latter adjuvant. Also, higher levels of IFN-γ and IL-4 were detected after the ex vivo immune stimulation of spleen-derived MNCs from ISCOMs immunized mice. Further analysis confirmed that S-ED/ISCOMs elicit neutralizing antibodies against SARS-CoV-2. KEY POINTS: Trimeric SARS-CoV-2 S-ED was produced in stable recombinant sHEK cells in serum-free medium. A novel S-ED vaccine formulation induced potent humoral and cellular immunity. S-ED formulated with ISCOMs adjuvant elicited a highly neutralizing antibody titer.
Collapse
Affiliation(s)
- Javier Villarraza
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Antonela Fuselli
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Agustina Gugliotta
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina.
| | - Ernesto Garay
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Diego Fontana
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | | | - Victoria Gastaldi
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
| | | | | | - Diego Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juliana Cassataro
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
| | - Claudio Prieto
- Biotecnofe S.A. PTLC, Santa Fe, Pcia., Santa Fe, Argentina
- UNL, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia., Santa Fe, Argentina
- Cellargen Biotech SRL, Santa Fe, Pcia., Santa Fe, Argentina
| |
Collapse
|
12
|
Pacheco-García U, Serafín-López J. Indirect Dispersion of SARS-CoV-2 Live-Attenuated Vaccine and Its Contribution to Herd Immunity. Vaccines (Basel) 2023; 11:655. [PMID: 36992239 PMCID: PMC10055900 DOI: 10.3390/vaccines11030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico
| |
Collapse
|
13
|
Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-Based Vaccine for COVID-19: They Are New but Not Unknown! Vaccines (Basel) 2023; 11:507. [PMID: 36992091 PMCID: PMC10052021 DOI: 10.3390/vaccines11030507] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
mRNA vaccines take advantage of the mechanism that our cells use to produce proteins. Our cells produce proteins based on the knowledge contained in our DNA; each gene encodes a unique protein. The genetic information is essential, but cells cannot use it until mRNA molecules convert it into instructions for producing specific proteins. mRNA vaccinations provide ready-to-use mRNA instructions for constructing a specific protein. BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) both are newly approved mRNA-based COVID-19 vaccines that have shown excellent protection and efficacy. In total, there are five more mRNA-based vaccine candidates for COVID-19 under different phases of clinical development. This review is specifically focused on mRNA-based vaccines for COVID-19 covering its development, mechanism, and clinical aspects.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Gargi Jogi
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India
| | - Srusti Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Bhoomika M. Patel
- School of Medico-legal Studies, National Forensic Sciences University, Gandhinagar 382007, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522302, India
| | - Krishna Koradia
- Department of Pharmaceutics, Saurashtra University, Rajkot 360005, India
| |
Collapse
|
14
|
Salimian J, Ahmadi A, Amani J, Olad G, Halabian R, Saffaei A, Arabfard M, Nasiri M, Nazarian S, Abolghasemi H, Alishiri G. Safety and immunogenicity of a recombinant receptor-binding domain-based protein subunit vaccine (Noora vaccine™) against COVID-19 in adults: A randomized, double-blind, placebo-controlled, Phase 1 trial. J Med Virol 2023; 95:10.1002/jmv.28097. [PMID: 36029105 PMCID: PMC9539327 DOI: 10.1002/jmv.28097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
The development of a safe and effective vaccine is essential to protect populations against coronavirus disease 2019 (COVID-19). There are several vaccine candidates under investigation with different mechanisms of action. In the present study, we have evaluated the safety and immunogenicity of a recombinant receptor-binding domain (RBD)-based protein subunit vaccine (Noora vaccine) against COVID-19 in adults. This Phase 1 trial is a randomized, double-blind, placebo-controlled study to evaluate the safety and immunogenicity of the recombinant RBD-based protein subunit vaccine (Noora vaccine) against COVID-19 in healthy adults volunteers. Eligible participants were included in this study after evaluating their health status and considering the exclusion criteria. They were then randomized into three groups and received three doses of vaccine (80 µg, 120 µg, and placebo) on Days 0, 21, and 35. Primary outcomes including solicited, unsolicited, and medically attended adverse events were recorded during this study. Secondary outcomes including the humoral and cellular immunity (including anti-RBD IgG antibody and neutralizing antibody) were measured on Days 0, 21, 28, 35, 42, and 49 by using the ELISA kit and the Virus Neutralization Test (VNT) was performed on day 49. Totally 70 cases were included in this Phase 1 trial and 60 of them completed the study. Safety assessments showed no severe adverse events. Local pain at the vaccine injection site occurred in 80% of the vaccinated volunteers. Induration and redness at the injection site were the other adverse reactions of this vaccine. There was no significant difference between the studied groups regarding adverse reactions. Anti-RBD IgG antibody and neutralizing antibody assessment showed significant seroconversion in comparison to the placebo group (80%, and 100% respectively, p < 0.001). The cellular immunity panel also showed mild to moderate induction of TH1 responses and the VNT showed 78% of seroprotection. The results of this Phase 1 trial showed acceptable safety without serious adverse events and significant seroconversions in the humoral and cellular immunity panel. The dose of 80 µg is an appropriate dose for injection in the next phases of the trial.
Collapse
Affiliation(s)
- Jafar Salimian
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Gholamreza Olad
- Applied Biotechnology Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Ali Saffaei
- Department of Clinical Pharmacy, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
- Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
- Skull Base Research Center, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Masoud Arabfard
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Mojtaba Nasiri
- Clinical Trial CenterTehran University of Medical SciencesTehranIran
| | - Shahram Nazarian
- Department of Biology, Faculty of ScienceImam Hossein UniversityTehranIran
| | - Hassan Abolghasemi
- Applied Microbiology Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
15
|
Peng Y, Liu Y, Hu Y, Chang F, Wu Q, Yang J, Chen J, Teng S, Zhang J, He R, Wei Y, Bostina M, Luo T, Liu W, Qu X, Li YP. Monoclonal antibodies constructed from COVID-19 convalescent memory B cells exhibit potent binding activity to MERS-CoV spike S2 subunit and other human coronaviruses. Front Immunol 2022; 13:1056272. [PMID: 36618428 PMCID: PMC9813381 DOI: 10.3389/fimmu.2022.1056272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two highly contagious coronaviruses causing MERS and COVID-19, respectively, without an effective antiviral drug and a long-lasting vaccine. Approaches for diagnosis, therapeutics, prevention, etc., particularly for SARS-CoV-2 that is continually spreading and evolving, are urgently needed. Our previous study discovered that >60% of sera from convalescent COVID-19 individuals, but <8% from general population, showed binding activity against the MERS-CoV spike protein, indicating that SARS-CoV-2 infection boosted antibodies cross-reactive with MERS-CoV. Methods To generate antibodies specific to both SARS-CoV-2 and MERS-CoV, here we screened 60 COVID-19 convalescent sera against MERS-CoV spike extracellular domain and S1 and S2 subunits. We constructed and characterized monoclonal antibodies (mAbs) from COVID-19 convalescent memory B cells and examined their binding and neutralizing activities against human coronaviruses. Results and Discussion Of 60 convalescent serum samples, 34 showed binding activity against MERS-CoV S2, with endpoint titers positively correlated with the titers to SARS-CoV-2 S2. By sorting single memory B cells from COVID-19 convalescents, we constructed 38 mAbs and found that 11 mAbs showed binding activity with MERS-CoV S2, of which 9 mAbs showed potent cross-reactivity with all or a proportion of spike proteins of alphacoronaviruses (229E and NL63) and betacoronaviruses (SARS-CoV-1, SARS-CoV-2, OC43, and HKU1). Moreover, 5 mAbs also showed weak neutralization efficiency against MERS-CoV spike pseudovirus. Epitope analysis revealed that 3 and 8 mAbs bound to linear and conformational epitopes in MERS-CoV S2, respectively. In summary, we have constructed a panel of antibodies with broad-spectrum reactivity against all seven human coronaviruses, thus facilitating the development of diagnosis methods and vaccine design for multiple coronaviruses.
Collapse
Affiliation(s)
- Yuan Peng
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China,Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Yongcheng Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yabin Hu
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Fangfang Chang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qian Wu
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China,Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Yang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jun Chen
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Shishan Teng
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Jian Zhang
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Rongzhang He
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Youchuan Wei
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tingrong Luo
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China
| | - Wenpei Liu
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China
| | - Xiaowang Qu
- Translational Medicine Institute, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Chenzhou, China,*Correspondence: Yi-Ping Li, ; Xiaowang Qu,
| | - Yi-Ping Li
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, and Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China,*Correspondence: Yi-Ping Li, ; Xiaowang Qu,
| |
Collapse
|
16
|
Francis AG, Elhadd K, Camera V, Ferreira Dos Santos M, Rocchi C, Adib-Samii P, Athwal B, Attfield K, Barritt A, Craner M, Fisniku L, Iversen AKN, Leach O, Matthews L, Redmond I, O'Riordan J, Scalfari A, Tanasescu R, Wren D, Huda S, Leite MI, Fugger L, Palace J. Acute Inflammatory Diseases of the Central Nervous System After SARS-CoV-2 Vaccination. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200063. [PMID: 36411077 PMCID: PMC9679888 DOI: 10.1212/nxi.0000000000200063] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Acute inflammatory CNS diseases include neuromyelitis optica spectrum disorders (NMOSDs) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Both MOGAD and acute disseminated encephalomyelitis (ADEM) have been reported after vaccination. Consequently, the mass SARS-CoV-2 vaccination program could result in increased rates of these conditions. We described the features of patients presenting with new acute CNS demyelination resembling NMOSDs or MOGAD within 8 weeks of SARS-CoV-2 vaccination. METHODS The study included a prospective case series of patients referred to highly specialized NMOSD services in the UK from the introduction of SARS-CoV-2 vaccination program up to May 2022. Twenty-five patients presented with new optic neuritis (ON) and/or transverse myelitis (TM) ± other CNS inflammation within 8 weeks of vaccination with either AstraZeneca (ChAdOx1S) or Pfizer (BNT162b2) vaccines. Their clinical records and paraclinical investigations including MRI scans were reviewed. Serologic testing for antibodies to myelin oligodendrocyte glycoprotein (MOG) and aquaporin 4 (AQP4) was performed using live cell-based assays. Patients' outcomes were graded good, moderate, or poor based on the last clinical assessment. RESULTS Of 25 patients identified (median age 38 years, 14 female), 12 (48%) had MOG antibodies (MOGIgG+), 2 (8%) had aquaporin 4 antibodies (AQP4IgG+), and 11 (44%) had neither. Twelve of 14 (86%) antibody-positive patients received the ChAdOx1S vaccine. MOGIgG+ patients presented most commonly with TM (10/12, 83%), frequently in combination with ADEM-like brain/brainstem lesions (6/12, 50%). Transverse myelitis was longitudinally extensive in 7 of the 10 patients. A peak in new MOGAD cases in Spring 2021 was attributable to postvaccine cases. Both AQP4IgG+ patients presented with brain lesions and TM. Four of 6 (67%) seronegative ChAdOx1S recipients experienced longitudinally extensive TM (LETM) compared with 1 of 5 (20%) of the BNT162b2 group, and facial nerve inflammation was reported only in ChAdOx1S recipients (2/5, 40%). Guillain-Barre syndrome was confirmed in 1 seronegative ChAdOx1S recipient and suspected in another. DISCUSSION ChAdOx1S was associated with 12/14 antibody-positive cases, the majority MOGAD. MOGAD patients presented atypically, only 2 with isolated ON (1 after BNT162b2 vaccine) but with frequent ADEM-like brain lesions and LETM. Within the seronegative group, phenotypic differences were observed between ChAdOx1S and BNT162b2 recipients. These observations might support a causative role of the ChAdOx1S vaccine in inflammatory CNS disease and particularly MOGAD. Further study of this cohort could provide insights into vaccine-associated immunopathology.
Collapse
Affiliation(s)
- Anna G Francis
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.).
| | - Kariem Elhadd
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Valentina Camera
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Monica Ferreira Dos Santos
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Chiara Rocchi
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Poneh Adib-Samii
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Bal Athwal
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Kathrine Attfield
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Andrew Barritt
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Matthew Craner
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Leonora Fisniku
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Astrid K N Iversen
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Oliver Leach
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Lucy Matthews
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Ian Redmond
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Jonathan O'Riordan
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Antonio Scalfari
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Radu Tanasescu
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Damian Wren
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Saif Huda
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Maria Isabel Leite
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Lars Fugger
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| | - Jacqueline Palace
- From the Nuffield Department of Clinical Neurology (A.G.F., V.C., M.F.S., K.A., M.C., A.K.N.I., M.I.L., Lars Fugger, J.P.), Oxford University; The Walton Centre NHS Foundation Trust (K.E., C.R.)Neurology Unit (V.C.), Azienda Ospedaliero-Universitaria of Modena, Italy; Neurology (M.F.S.), Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal; Neurological Clinic (C.R.), Marche Polytechnic University, Ancona, Italy; Department of Neurology (P.A.-S., B.A.), Royal Free London NHS Trust; Department of Neurology (A.B., L.E.), Brighton and Sussex University Hospitals NHS Foundation Trust; Royal Cornwall Hospitals NHS Trust (O.L.); Milton Keynes University Hospital (L.M.); East Kent Hospitals University Foundation Trust (I.R.); Department of Clinical Neurology (J.O.), University of Dundee; Imperial College London (A.S.); Centre of Neuroscience (A.S.), Department of Medicine, Charing Cross Hospital; Division of Clinical Neuroscience (R.T.), University of Nottingham, United Kingdom; Nottingham Centre for Multiple Sclerosis and Neuroinflammation (R.T.), Queen's Medical Centre, Nottingham University Hospitals NHS Trust; Frimley Health NHS Foundation Trust (D.W.); and University of Liverpool (S.H.)
| |
Collapse
|
17
|
Scalabrin S, Becco A, Vitale A, Nuzzi R. Ocular effects caused by viral infections and corresponding vaccines: An overview of varicella zoster virus, measles virus, influenza viruses, hepatitis B virus, and SARS-CoV-2. Front Med (Lausanne) 2022; 9:999251. [PMID: 36388944 PMCID: PMC9643669 DOI: 10.3389/fmed.2022.999251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/30/2022] [Indexed: 09/19/2023] Open
Abstract
Many viral infections can affect vision and the visual system. Vaccination to prevent diseases is commonplace today, acting by stimulating an immune response without developing the pathology. It involves the production of persisting antibodies against the pathogen and the activation of T cells. Certain diseases have already been eradicated by rigorous vaccination campaigns, while others are hoped to be eliminated soon. Vaccines currently available on the market are largely safe, even if they can rarely cause some adverse effects, such as ocular complications. Analyzing existing literature, we aimed to compare the pathological effects on the eye due to the most common viral infections [in particular varicella zoster virus (VZV), measles virus, influenza viruses, hepatitis B virus, and SARS-CoV-2] with the possible ocular adverse effects of their relative vaccines, in order to establish a risk-benefit relationship from an ophthalmological point of view.
Collapse
Affiliation(s)
| | | | | | - Raffaele Nuzzi
- Department of Surgical Sciences, Eye Clinic, University of Turin, Turin, Italy
| |
Collapse
|
18
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Chavda VP, Yao Q, Vora LK, Apostolopoulos V, Patel CA, Bezbaruah R, Patel AB, Chen ZS. Fast-track development of vaccines for SARS-CoV-2: The shots that saved the world. Front Immunol 2022; 13:961198. [PMID: 36263030 PMCID: PMC9574046 DOI: 10.3389/fimmu.2022.961198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
In December 2019, an outbreak emerged of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which leads to coronavirus disease 2019 (COVID-19). The World Health Organisation announced the outbreak a global health emergency on 30 January 2020 and by 11 March 2020 it was declared a pandemic. The spread and severity of the outbreak took a heavy toll and overburdening of the global health system, particularly since there were no available drugs against SARS-CoV-2. With an immediate worldwide effort, communication, and sharing of data, large amounts of funding, researchers and pharmaceutical companies immediately fast-tracked vaccine development in order to prevent severe disease, hospitalizations and death. A number of vaccines were quickly approved for emergency use, and worldwide vaccination rollouts were immediately put in place. However, due to several individuals being hesitant to vaccinations and many poorer countries not having access to vaccines, multiple SARS-CoV-2 variants quickly emerged that were distinct from the original variant. Uncertainties related to the effectiveness of the various vaccines against the new variants as well as vaccine specific-side effects have remained a concern. Despite these uncertainties, fast-track vaccine approval, manufacturing at large scale, and the effective distribution of COVID-19 vaccines remain the topmost priorities around the world. Unprecedented efforts made by vaccine developers/researchers as well as healthcare staff, played a major role in distributing vaccine shots that provided protection and/or reduced disease severity, and deaths, even with the delta and omicron variants. Fortunately, even for those who become infected, vaccination appears to protect against major disease, hospitalisation, and fatality from COVID-19. Herein, we analyse ongoing vaccination studies and vaccine platforms that have saved many deaths from the pandemic.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Qian Yao
- Graduate School, University of St. La Salle, Bacolod City, Philippines
| | | | | | - Chirag A. Patel
- Department of Pharmacology, LM College of Pharmacy, Ahmedabad, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, India
| | - Aayushi B. Patel
- Pharmacy Section, LM. College of Pharmacy, Ahmedabad, Gujarat, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| |
Collapse
|
20
|
Nurpeisova A, Khairullin B, Abitaev R, Shorayeva K, Jekebekov K, Kalimolda E, Kerimbayev A, Akylbayeva K, Abay Z, Myrzakhmetova B, Nakhanov A, Absatova Z, Nurabayev S, Orynbayev M, Assanzhanova N, Abeuov K, Kutumbetov L, Kassenov M, Abduraimov Y, Zakarya K. Safety and immunogenicity of the first Kazakh inactivated vaccine for COVID-19. Hum Vaccin Immunother 2022; 18:2087412. [PMID: 35960911 DOI: 10.1080/21645515.2022.2087412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This article describes the results of a preclinical safety and immunogenicity study of QazCovid-in®, the first COVID-19 vaccine developed in Kazakhstan, on BALB/c mice, rats, ferrets, Syrian hamsters and rhesus macaques (Macaca mulatta). The study's safety data suggests that this immunobiological preparation can be technically considered a Class 5 nontoxic vaccine. The series of injections that were made did not produce any adverse effect or any change in the general condition of the model animals' health, while macroscopy and histology studies identified no changes in the internal organs of the BALB/c mice and rats. This study has demonstrated that a double immunization enhances the growth of antibody titers as assessed by the microneutralization assay (MNA) and the enzyme-linked immunosorbent assay (ELISA) in a pre-clinical immunogenicity test on animal models. The best GMT results were assessed in MNA and ELISA 7 days after re-vaccination; however, we noted that GMT antibody results in ELISA were lower than in MNA. A comparative GMT assessment after the first immunization and the re-immunization identified significant differences between model animal groups and a growth of GMT antibodies in all of them; also, differences between the gender groups were statistically significant. Moreover, the most marked MNA immune response to the QazCovid-in® vaccine was seen in the Syrian hamsters, while their SARS-CoV-2-specific antibody activity as assessed with ELISA was the lowest.
Collapse
Affiliation(s)
- Ainur Nurpeisova
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Berik Khairullin
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Ruslan Abitaev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Kamshat Shorayeva
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Kuanish Jekebekov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Elina Kalimolda
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Karligash Akylbayeva
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Zhandos Abay
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | | | - Aziz Nakhanov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Zharkinay Absatova
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Mukhit Orynbayev
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Nurika Assanzhanova
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Khairulla Abeuov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Yergaly Abduraimov
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems (RIBSP), Guardeyskiy, Kazakhstan
| |
Collapse
|
21
|
Immunogenicity and Safety of the BNT162b2 mRNA COVID-19 Vaccine in Patients with Melanoma Treated with Immunotherapy. Cancers (Basel) 2022; 14:cancers14153791. [PMID: 35954454 PMCID: PMC9367332 DOI: 10.3390/cancers14153791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 07/31/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The efficacy and safety of the BNT126b2 vaccine against SARS-CoV-2 has not been thoroughly studied in cancer patients treated with immunotherapy. This research aims to investigate the efficacy and safety of the vaccine in patients with melanoma under immunotherapy; at the same time, through the immunophenotyping of T cells and myeloid cells of the peripheral blood, it will be possible to look for changes in the subpopulations of such cells after vaccinations. The results of the study help establish the efficacy and safety of the vaccine in this population, especially since a theoretical concern exists about the vaccine triggering irAEs. Abstract The BNT162b2 vaccine against SARS-CoV-2 has a proven efficacy and a favorable safety profile. In cancer patients under immunotherapy in the form of immune-checkpoint inhibitors (ICIs), the efficacy of the vaccine has not been thoroughly studied, while a theoretical concern has also been raised about triggering immune-related adverse events (irAEs) by the vaccine. We conducted a prospective, non-interventional study on the immunogenicity and safety of the BNT162b2 vaccine in patients with advanced or metastatic melanoma treated with ICIs. Blood samples were obtained 0–4 days before the first dose and 12–21 days after the second dose of the vaccine for the quantification of the SARS-CoV-2 anti-spike antibody using an ELISA and immunophenotyping of the T and myeloid cell subpopulations. The active recording of AEs for a two-month period was conducted. Forty patients were included in the study. All but one (97.3%) achieved seroconversion after two doses of the vaccine and no correlations of the antibody titers with any of the studied parameters (age, gender, stage and duration of the disease, type of ICI, previous treatment, etc.) were found. Moreover, no differences in the subpopulations of the T cells (including the T-regulatory cells) or the myeloid cells were found pre- and post-vaccination. All AEs were low-grade, while one case of arthritis exacerbation was noted. The seroconversion rate in the studied population was high and was comparable to that of healthy subjects, while no major safety issues were raised during the safety follow-up. Finally, no derangements in the subpopulations of T cells or myeloid cells were noted. This is the first study focusing on the immunogenicity, safety, and effect of anti-SARS-CoV-2 vaccines on the blood-cell immunophenotype status of patients with melanoma treated with ICIs.
Collapse
|
22
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
23
|
Heidary M, Kaviar VH, Shirani M, Ghanavati R, Motahar M, Sholeh M, Ghahramanpour H, Khoshnood S. A Comprehensive Review of the Protein Subunit Vaccines Against COVID-19. Front Microbiol 2022; 13:927306. [PMID: 35910658 PMCID: PMC9329957 DOI: 10.3389/fmicb.2022.927306] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022] Open
Abstract
Two years after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019, the first infections were identified in Wuhan city of China. SARS-CoV-2 infection caused a global pandemic and accordingly, 5.41 million deaths worldwide. Hence, developing a safe and efficient vaccine for coronavirus disease 2019 (COVID-19) seems to be an urgent need. Attempts to produce efficient vaccines inexhaustibly are ongoing. At present time, according to the COVID-19 vaccine tracker and landscape provided by World Health Organization (WHO), there are 161 vaccine candidates in different clinical phases all over the world. In between, protein subunit vaccines are types of vaccines that contain a viral protein like spike protein or its segment as the antigen assumed to elicit humoral and cellular immunity and good protective effects. Previously, this technology of vaccine manufacturing was used in a recombinant influenza vaccine (RIV4). In the present work, we review protein subunit vaccines passing their phase 3 and 4 clinical trials, population participated in these trials, vaccines manufactures, vaccines efficiency and their side effects, and other features of these vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Moloudsadat Motahar
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
24
|
Alshahrani MM, Alqahtani A. Side Effects of Mixing Vaccines against COVID-19 Infection among Saudi Population. Vaccines (Basel) 2022; 10:vaccines10040519. [PMID: 35455268 PMCID: PMC9028800 DOI: 10.3390/vaccines10040519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Mixing two different vaccines has been utilized to minimize the impact of any supply chain interruptions and to combat the COVID-19 pandemic in Saudi Arabia. We conducted this study to evaluate the side effects, if any, associated with the mixed vaccination approach. Methods: An online survey study was administered among COVID-19 vaccine recipients in Saudi Arabia. Symptoms post vaccination were assessed in 311 vaccinated participants with two matched doses of either Oxford–AstraZeneca or Pfizer–BioNTech vaccines, or two mixed doses, respectively. Results: After the second dose, around 31% of the matched vaccine group reported no symptoms, while only 6% of the mixed vaccine group reported no symptoms. Most of the side effects after the second dose associated with matched vaccines were injection site pain (46%), while the mixed vaccines group reported significantly more symptoms compared with the matched vaccine group, which included fever (41%), fatigue (66%), muscle pain (44%), chills (17%) and injection site pain (60%). Conclusion: The data suggest the overall safety of the mixed vaccination protocol; however, it might be associated with side effects such as fever, fatigue, muscle pain, chills, and injection site pain. Further studies with a larger cohort size could shed more light on this aspect, which would be imperative for deciding to utilize a mixed vaccination approach.
Collapse
Affiliation(s)
- Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
- Correspondence:
| | - Abdulaziz Alqahtani
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61321, Saudi Arabia;
| |
Collapse
|
25
|
Espinoza C, Alarcón M. The Immune Response to SARS-CoV-2: Mechanisms, Aging, Sequelae and Vaccines. Mini Rev Med Chem 2022; 22:2166-2185. [PMID: 35249484 DOI: 10.2174/1389557522666220304231537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
This review seeks to clarify the factors involved in the various immune responses to SARS-CoV-2 infection and the mechanisms that influence the development of COVID-19 with severe evolution. The innate immune response that evolves against SARS-CoV-2 in a complex way is highlighted, integrating multiple pathways by coronaviruses to evade it, in addition to characterizing the adaptive immune response, which can lead to an effective immune response or can contribute to immunopathological imbalance. In turn, host-dependent biomarkers such as age, gender, ABO blood group, and risk factors that contribute to the critical and varied progress of COVID-19 immunopathogenesis were analyzed. Finally, the potential vaccine candidates are presented, capable of generating immune protection with humoral and/or cellular neutralizing responses, in favor of blocking and destroying both the new human coronavirus and its variants, which cause the current pandemic.
Collapse
Affiliation(s)
- Carolina Espinoza
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, Universidad de Talca, Talca, Chile
| |
Collapse
|
26
|
Novel Strategies of Immunization against COVID-19. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
COVID-19 manifested itself as a global pandemic in 2019 but even in 2021, it is still not successfully contained. This virus has claimed millions of lives worldwide and rendered many more jobless. Apart from causing mild to severe pneumonia, the virus has also caused a loss of livelihood for thousands globally, along with widespread trauma and depression. Since the transmission rate of the virus is so high, temporary prophylaxis relied on sanitization, wearing masks and physical distancing. However, a long-term solution for stopping viral spread is vaccination. Apart from being the fastest way to induce immunity against the virus, vaccination is also the cheapest and most practical way. However, a vaccine can only be commercially available after it has passed through various clinical trial phases. So far, more than two hundred potential vaccine candidates underwent different phases of the clinical trial, and some of the front-runners have shown more than 90% efficacy. This review has compiled all such vaccine candidates, their types, their modes of action, and the associated pros and cons. The current advances in clinical trials of vaccines have also been discussed, such as plant-based and cocktail vaccines that have recently emerged. Nowadays, novel strains like Delta plus are also emerging and posing a threat. Thus, it is mandatory to get vaccinated and choose a vaccine that provides long-term protection against multiple strains.
Collapse
|
27
|
Jin Y, Hou C, Li Y, Zheng K, Wang C. mRNA Vaccine: How to Meet the Challenge of SARS-CoV-2. Front Immunol 2022; 12:821538. [PMID: 35126377 PMCID: PMC8813741 DOI: 10.3389/fimmu.2021.821538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high infectivity, pathogenicity, and variability, is a global pandemic that severely affected public health and the world economy. The development of safe and effective vaccines is crucial to the prevention and control of an epidemic. As an emerging technology, mRNA vaccine is widely used for infectious disease prevention and control and has significant safety, efficacy, and high production. It has received support and funding from many pharmaceutical enterprises and becomes one of the main technologies for preventing COVID-19. This review introduces the current status of SARS-CoV-2 vaccines, specifically mRNA vaccines, focusing on the challenges of developing mRNA vaccines against SARS-CoV-2, and discusses the relevant strategies.
Collapse
Affiliation(s)
- Yingqi Jin
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Chen Hou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Yonghao Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
28
|
Briz-Redón Á, Serrano-Aroca Á. On the association between COVID-19 vaccination levels and incidence and lethality rates at a regional scale in Spain. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 36:2941-2948. [PMID: 35002502 PMCID: PMC8727484 DOI: 10.1007/s00477-021-02166-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 05/07/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19), has led to the deepest global health and economic crisis of the current century. This dramatic situation has forced the public health authorities and pharmaceutical companies to develop anti-COVID-19 vaccines in record time. Currently, almost 80% of the population are vaccinated with the required number of doses in Spain. Thus, in this paper, COVID-19 incidence and lethality rates are analyzed through a segmented spatio-temporal regression model that allows studying if there is an association between a certain vaccination level and a change (in mean) in either the incidence or the lethality rates. Spatial dependency is included by considering the Besag-York-Mollié model, whereas natural cubic splines are used for capturing the temporal structure of the data. Lagged effects between the exposure and the outcome are also taken into account. The results suggest that COVID-19 vaccination has not allowed yet (as of September 2021) to observe a consistent reduction in incidence levels at a regional scale in Spain. In contrast, the lethality rates have displayed a declining tendency which has associated with vaccination levels above 50%.
Collapse
Affiliation(s)
- Álvaro Briz-Redón
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
| | - Ángel Serrano-Aroca
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
29
|
Piadel K, Haybatollahi A, Dalgleish AG, Smith PL. Selection and T-cell antigenicity of synthetic long peptides derived from SARS-CoV-2. J Gen Virol 2022; 103:001698. [PMID: 35014605 PMCID: PMC8895615 DOI: 10.1099/jgv.0.001698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 has led to the successful development of effective vaccines however the prospect of variants of SARS-CoV-2 and future coronavirus outbreaks necessitates the investigation of other vaccine strategies capable of broadening vaccine mediated T-cell responses and potentially providing cross-immunity. In this study the SARS-CoV-2 proteome was assessed for clusters of immunogenic epitopes restricted to diverse human leucocyte antigen. These regions were then assessed for their conservation amongst other coronaviruses representative of different alpha and beta coronavirus genera. Sixteen highly conserved peptides containing numerous HLA class I and II restricted epitopes were synthesized from these regions and assessed in vitro for their antigenicity against T-cells from individuals with previous SARS-CoV-2 infection. Monocyte derived dendritic cells were generated from these peripheral blood mononuclear cells (PBMC), loaded with SARS-CoV-2 peptides, and used to induce autologous CD4+ and CD8+ T cell activation. The SARS-CoV-2 peptides demonstrated antigenicity against the T-cells from individuals with previous SARS-CoV-2 infection indicating that this approach holds promise as a method to activate anti-SAR-CoV-2 T-cell responses from conserved regions of the virus which are not included in vaccines utilising the Spike protein.
Collapse
Affiliation(s)
- Katarzyna Piadel
- Institute of Infection and Immunity, St Georges University of London, London UK
| | - Amin Haybatollahi
- Institute of Infection and Immunity, St Georges University of London, London UK
| | | | | |
Collapse
|
30
|
Tam NM, Pham DH, Hiep DM, Tran PT, Quang DT, Ngo ST. Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations. RSC Adv 2021; 11:38495-38504. [PMID: 35493244 PMCID: PMC9044063 DOI: 10.1039/d1ra06534c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 novel coronavirus (SARS-CoV-2) worldwide has caused the coronavirus disease 2019 (COVID-19) pandemic. A hundred million people were infected, resulting in several millions of death worldwide. In order to prevent viral replication, scientists have been aiming to prevent the biological activity of the SARS-CoV-2 main protease (3CL pro or Mpro). In this work, we demonstrate that using a reasonable combination of deep-learning calculations and atomistic simulations could lead to a new approach for developing SARS-CoV-2 main protease (Mpro) inhibitors. Initially, the binding affinities of the natural compounds to SARS-CoV-2 Mpro were estimated via atomistic simulations. The compound tomatine, thevetine, and tribuloside could bind to SARS-CoV-2 Mpro with nanomolar/high-nanomolar affinities. Secondly, the deep-learning (DL) calculations were performed to chemically alter the top-lead natural compounds to improve ligand-binding affinity. The obtained results were then validated by free energy calculations using atomistic simulations. The outcome of the research will probably boost COVID-19 therapy.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Duc-Hung Pham
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center Cincinnati Ohio 45229 USA
| | - Dinh Minh Hiep
- Department of Agriculture and Rural Development Ho Chi Minh City 71007 Vietnam
| | | | - Duong Tuan Quang
- Department of Chemistry, Hue University, Thua Thien Hue Province Hue City Vietnam
| | - Son Tung Ngo
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
31
|
Ocular Manifestations after Receiving COVID-19 Vaccine: A Systematic Review. Vaccines (Basel) 2021; 9:vaccines9121404. [PMID: 34960150 PMCID: PMC8709261 DOI: 10.3390/vaccines9121404] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had profound and lasting consequences since 2019. Although vaccines against COVID-19 have been developed and approved under emergency use authorization, various adverse events have also been reported after COVID-19 vaccination. This review was undertaken to help clinicians recognize the possible manifestations and systemic pathogenesis, especially those related to the eye, after receiving COVID-19 vaccination. A systemic search was performed on 22 August 2021 through Embase, Medline, and Cochrane Library for publications on ocular manifestations after COVID-19 vaccination. Two case-control studies/retrospective cohort studies, one cross-sectional study, three case series, sixteen case reports, two images, and seven letters were included. Ocular manifestations after receiving COVID-19 vaccines may appear on the eyelid, cornea and ocular surface, retina, uvea, nerve, and vessel. The ocular manifestations occurred up to forty-two days after vaccination, and vaccine-induced immunologic responses may be responsible. Although the incidence rate of ocular symptoms is considerably lower in the vaccinated subjects than in COVID-19 patients, physicians should be aware of the possible associations between COVID-19 vaccines and ocular symptoms for the early diagnosis and treatment of vision problems or life-threatening complications.
Collapse
|
32
|
Gorczynski RM, Lindley RA, Steele EJ, Wickramasinghe NC. Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. J Pers Med 2021; 11:1253. [PMID: 34945725 PMCID: PMC8708741 DOI: 10.3390/jpm11121253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The primary global response to the SARS-CoV-2 pandemic has been to bring to the clinic as rapidly as possible a number of vaccines that are predicted to enhance immunity to this viral infection. While the rapidity with which these vaccines have been developed and tested (at least for short-term efficacy and safety) is commendable, it should be acknowledged that this has occurred despite the lack of research into, and understanding of, the immune elements important for natural host protection against the virus, making this endeavor a somewhat unique one in medical history. In contrast, as pointed out in the review below, there were already important past observations that suggested that respiratory infections at mucosal surfaces were susceptible to immune clearance by mechanisms not typical of infections caused by systemic (blood-borne) pathogens. Accordingly, it was likely to be important to understand the role for both innate and acquired immunity in response to viral infection, as well as the optimum acquired immune resistance mechanisms for viral clearance (B cell or antibody-mediated, versus T cell mediated). This information was needed both to guide vaccine development and to monitor its success. We have known that many pathogens enter into a quasi-symbiotic relationship with the host, with each undergoing sequential change in response to alterations the other makes to its presence. The subsequent evolution of viral variants which has caused such widespread concern over the last 3-6 months as host immunity develops was an entirely predictable response. What is still not known is whether there will be other unexpected side-effects of the deployment of novel vaccines in humans which have yet to be characterized, and, if so, how and if these can be avoided. We conclude by remarking that to ignore a substantial body of well-attested immunological research in favour of expediency is a poor way to proceed.
Collapse
Affiliation(s)
- Reginald M. Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Robyn A. Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC 3000, Australia;
- GMDx Group Ltd., Melbourne, VIC 3000, Australia
| | - Edward J. Steele
- C.Y.O’Connor ERADE Village Foundation, Piara Waters, Perth, WA 6207, Australia;
- Melville Analytics Pty Ltd., Melbourne, VIC 3000, Australia
| | - Nalin Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, Buckingham MK18 1EG, UK;
- Centre for Astrobiology, University of Ruhuna, Matara 81000, Sri Lanka
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| |
Collapse
|
33
|
Kumar US, Afjei R, Ferrara K, Massoud TF, Paulmurugan R. Gold-Nanostar-Chitosan-Mediated Delivery of SARS-CoV-2 DNA Vaccine for Respiratory Mucosal Immunization: Development and Proof-of-Principle. ACS NANO 2021; 15:17582-17601. [PMID: 34705425 PMCID: PMC8565460 DOI: 10.1021/acsnano.1c05002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 05/16/2023]
Abstract
The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2 (SC2). A variety of anti-SC2 vaccines have been approved for human applications, including those using messenger RNA (mRNA), adenoviruses expressing SC2 spike (S) protein, and inactivated virus. The protective periods of immunization afforded by these intramuscularly administered vaccines are currently unknown. An alternative self-administrable vaccine capable of mounting long-lasting immunity via sterilizing neutralizing antibodies would be hugely advantageous in tackling emerging mutant SC2 variants. This could also diminish the possibility of vaccinated individuals acting as passive carriers of COVID-19. Here, we investigate the potential of an intranasal (IN)-delivered DNA vaccine encoding the S protein of SC2 in BALB/c and C57BL/6J immunocompetent mouse models. The immune response to IN delivery of this SC2-spike DNA vaccine transported on a modified gold-chitosan nanocarrier shows a strong and consistent surge in antibodies (IgG, IgA, and IgM) and effective neutralization of pseudoviruses expressing S proteins of different SC2 variants (Wuhan, beta, and D614G). Immunophenotyping and histological analyses reveal chronological events involved in the recognition of SC2 S antigen by resident dendritic cells and alveolar macrophages, which prime the draining lymph nodes and spleen for peak SC2-specific cellular and humoral immune responses. The attainable high levels of anti-SC2 IgA in lung mucosa and tissue-resident memory T cells can efficiently inhibit SC2 and its variants at the site of entry and also provide long-lasting immunity.
Collapse
Affiliation(s)
- Uday S. Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rayhaneh Afjei
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katherine Ferrara
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
34
|
Karrow NA, Shandilya UK, Pelech S, Wagter-Lesperance L, McLeod D, Bridle B, Mallard BA. Maternal COVID-19 Vaccination and Its Potential Impact on Fetal and Neonatal Development. Vaccines (Basel) 2021; 9:1351. [PMID: 34835282 PMCID: PMC8617890 DOI: 10.3390/vaccines9111351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Vaccines have been developed at "warp speed" to combat the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus. Although they are considered the best approach for preventing mortality, when assessing the safety of these vaccines, pregnant women have not been included in clinical trials. Thus, vaccine safety for this demographic, as well as for the developing fetus and neonate, remains to be determined. A global effort has been underway to encourage pregnant women to get vaccinated despite the uncertain risk posed to them and their offspring. Given this, post-hoc data collection, potentially for years, will be required to determine the outcomes of COVID-19 and vaccination on the next generation. Most COVID-19 vaccine reactions include injection site erythema, pain, swelling, fatigue, headache, fever and lymphadenopathy, which may be sufficient to affect fetal/neonatal development. In this review, we have explored components of the first-generation viral vector and mRNA COVID-19 vaccines that are believed to contribute to adverse reactions and which may negatively impact fetal and neonatal development. We have followed this with a discussion of the potential for using an ovine model to explore the long-term outcomes of COVID-19 vaccination during the prenatal and neonatal periods.
Collapse
Affiliation(s)
- Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Steven Pelech
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
| | - Lauraine Wagter-Lesperance
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| | - Deanna McLeod
- Kaleidoscope Strategic Inc., Toronto, ON M6R 1E7, Canada;
| | - Byram Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.W.-L.); (B.B.); (B.A.M.)
| |
Collapse
|
35
|
A Comparative Study between Spanish and British SARS-CoV-2 Variants. Curr Issues Mol Biol 2021; 43:2036-2047. [PMID: 34889898 PMCID: PMC8929045 DOI: 10.3390/cimb43030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/17/2021] [Accepted: 10/31/2021] [Indexed: 11/16/2022] Open
Abstract
The study of the interaction between the SARS-CoV-2 spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor is key to understanding binding affinity and stability. In the present report, we sought to investigate the differences between two already sequenced genome variants (Spanish and British) of SARS-CoV-2. Methods: In silico model evaluating the homology, identity and similarity in the genome sequence and the structure and alignment of the predictive spike by computational docking methods. Results: The identity results between the Spanish and British variants of the Spike protein were 28.67%. This close correspondence in the results between the Spanish and British SARS-CoV-2 variants shows that they are very similar (99.99%). The alignment obtained results in four deletions. There were 23 nucleotide substitutions also predicted which could affect the functionality of the proteins produced from this sequence. The interaction between the binding receptor domain from the spike protein and the ACE2 receptor produces some of the mutations found and, therefore, the energy of this ligand varies. However, the estimated antigenicity of the British variant is higher than its Spanish counterpart. Conclusions: Our results indicate that minimal mutations could interfere in the infectivity of the virus due to changes in the fitness between host cell recognition and interaction proteins. In particular, the N501Y substitution, situated in the RBD of the spike of the British variant, might be the reason for its extraordinary infective potential.
Collapse
|
36
|
Zieneldien T, Kim J, Cao J, Cao C. COVID-19 Vaccines: Current Conditions and Future Prospects. BIOLOGY 2021; 10:biology10100960. [PMID: 34681059 PMCID: PMC8533517 DOI: 10.3390/biology10100960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first encountered in December of 2019 in Wuhan, China. As of now, there have been over 200 million infections and 4 million deaths attributed to the virus. Due to this, it has been a priority to find an effective preventative measure, and numerous vaccines have been developed. Although the developed vaccines share the target of blocking viral entry by the spike protein, their pharmacology and efficacy differs. As such, the mechanism of action and the elicited immune response of the most common COVID-19 vaccines have been compared to help determine which vaccine is most efficacious and is best suited to prevent reinfection and address viral mutations. Abstract It has been over a year since SARS-CoV-2 was first reported in December of 2019 in Wuhan, China. To curb the spread of the virus, many therapies and cures have been tested and developed, most notably mRNA and DNA vaccines. Federal health agencies (CDC, FDA) have approved emergency usage of these S gene-based vaccines with the intention of minimizing any further loss of lives and infections. It is crucial to assess which vaccines are the most efficacious by examining their effects on the immune system, and by providing considerations for new technological vaccine strategies in the future. This paper provides an overview of the current SARS-CoV-2 vaccines with their mechanisms of action, current technologies utilized in manufacturing of the vaccines, and limitations in this new field with emerging data. Although the most popular COVID-19 vaccines have been proven effective, time will be the main factor in dictating which vaccine will be able to best address mutations and future infection.
Collapse
Affiliation(s)
- Tarek Zieneldien
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (T.Z.); (J.K.)
| | - Janice Kim
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (T.Z.); (J.K.)
| | - Jessica Cao
- Department of Natural Sciences, Wiess School of Natural Sciences, Rice University, Houston, TX 77005, USA;
| | - Chuanhai Cao
- Department of Pharmaceutical Science, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (T.Z.); (J.K.)
- Correspondence:
| |
Collapse
|
37
|
Uttamrao PP, Sathyaseelan C, Patro LPP, Rathinavelan T. Revelation of Potent Epitopes Present in Unannotated ORF Antigens of SARS-CoV-2 for Epitope-Based Polyvalent Vaccine Design Using Immunoinformatics Approach. Front Immunol 2021; 12:692937. [PMID: 34497604 PMCID: PMC8419283 DOI: 10.3389/fimmu.2021.692937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/31/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kills thousands of people worldwide every day, thus necessitating rapid development of countermeasures. Immunoinformatics analyses carried out here in search of immunodominant regions in recently identified SARS-CoV-2 unannotated open reading frames (uORFs) have identified eight linear B-cell, one conformational B-cell, 10 CD4+ T-cell, and 12 CD8+ T-cell promising epitopes. Among them, ORF9b B-cell and T-cell epitopes are the most promising followed by M.ext and ORF3c epitopes. ORF9b40-48 (CD8+ T-cell epitope) is found to be highly immunogenic and antigenic with the highest allele coverage. Furthermore, it has overlap with four potent CD4+ T-cell epitopes. Structure-based B-cell epitope prediction has identified ORF9b61-68 to be immunodominant, which partially overlaps with one of the linear B-cell epitopes (ORF9b65-69). ORF3c CD4+ T-cell epitopes (ORF3c2-16, ORF3c3-17, and ORF3c4-18) and linear B-cell epitope (ORF3c14-22) have also been identified as the candidate epitopes. Similarly, M.ext and 7a.iORF1 (overlap with M and ORF7a) proteins have promising immunogenic regions. By considering the level of antigen expression, four ORF9b and five M.ext epitopes are finally shortlisted as potent epitopes. Mutation analysis has further revealed that the shortlisted potent uORF epitopes are resistant to recurrent mutations. Additionally, four N-protein (expressed by canonical ORF) epitopes are found to be potent. Thus, SARS-CoV-2 uORF B-cell and T-cell epitopes identified here along with canonical ORF epitopes may aid in the design of a promising epitope-based polyvalent vaccine (when connected through appropriate linkers) against SARS-CoV-2. Such a vaccine can act as a bulwark against SARS-CoV-2, especially in the scenario of emergence of variants with recurring mutations in the spike protein.
Collapse
|
38
|
Lundstrom K, Barh D, Uhal BD, Takayama K, Aljabali AAA, Abd El-Aziz TM, Lal A, Redwan EM, Adadi P, Chauhan G, Sherchan SP, Azad GK, Rezaei N, Serrano-Aroca Á, Bazan NG, Hassan SS, Panda PK, Pal Choudhury P, Pizzol D, Kandimalla R, Baetas-da-Cruz W, Mishra YK, Palu G, Brufsky AM, Tambuwala MM, Uversky VN. COVID-19 Vaccines and Thrombosis-Roadblock or Dead-End Street? Biomolecules 2021; 11:1020. [PMID: 34356644 PMCID: PMC8301964 DOI: 10.3390/biom11071020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/16/2022] Open
Abstract
Two adenovirus-based vaccines, ChAdOx1 nCoV-19 and Ad26.COV2.S, and two mRNA-based vaccines, BNT162b2 and mRNA.1273, have been approved by the European Medicines Agency (EMA), and are invaluable in preventing and reducing the incidence of coronavirus disease-2019 (COVID-19). Recent reports have pointed to thrombosis with associated thrombocytopenia as an adverse effect occurring at a low frequency in some individuals after vaccination. The causes of such events may be related to SARS-CoV-2 spike protein interactions with different C-type lectin receptors, heparan sulfate proteoglycans (HSPGs) and the CD147 receptor, or to different soluble splice variants of the spike protein, adenovirus vector interactions with the CD46 receptor or platelet factor 4 antibodies. Similar findings have been reported for several viral diseases after vaccine administration. In addition, immunological mechanisms elicited by viral vectors related to cellular delivery could play a relevant role in individuals with certain genetic backgrounds. Although rare, the potential COVID-19 vaccine-induced immune thrombotic thrombocytopenia (VITT) requires immediate validation, especially in risk groups, such as the elderly, chronic smokers, and individuals with pre-existing incidences of thrombocytopenia; and if necessary, a reformulation of existing vaccines.
Collapse
Affiliation(s)
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur 721172, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Bruce D. Uhal
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kazuo Takayama
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8397, Japan;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan;
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Amos Lal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55902, USA;
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Gaurav Chauhan
- School of Engineering and Sciences, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
| | - Samendra P. Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA;
| | | | - Nima Rezaei
- Research Center for Immunodeficiency, Children’s Medical Center, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 17177 Stockholm, Sweden
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, School of Medicine, LSU Health New Orleans, New Orleans, LA 70112, USA;
| | - Sk Sarif Hassan
- Department of Mathematics, Pingla Thana Mahavidyalaya, Maligram 721140, India;
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden;
| | | | - Damiano Pizzol
- Italian Agency for Development Cooperation—Khartoum, Sudan Street 33, Al Amarat 11111, Sudan;
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| | - Wagner Baetas-da-Cruz
- Translational Laboratory in Molecular Physiology, Centre for Experimental Surgery, College of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil;
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, University of Southern Denmark, NanoSYD, Alsion 2, 6400 Sønderborg, Denmark;
| | - Giorgio Palu
- Department of Molecular Medicine, University of Padova, 35122 Padova, PD, Italy;
| | - Adam M. Brufsky
- UPMC Hillman Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
39
|
Alhazmi A, Alamer E, Daws D, Hakami M, Darraj M, Abdelwahab S, Maghfuri A, Algaissi A. Evaluation of Side Effects Associated with COVID-19 Vaccines in Saudi Arabia. Vaccines (Basel) 2021; 9:vaccines9060674. [PMID: 34207394 PMCID: PMC8235009 DOI: 10.3390/vaccines9060674] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pfizer-BioNTech and Oxford-AstraZeneca are recently introduced vaccines to combat COVID-19 pandemic. During clinical trials, mild to moderate side effects have been associated with these vaccines. Thus, we aimed to evaluate short-term post-vaccination side effects. METHODS Cross-sectional, retrospective study using an online questionnaire was conducted among COVID-19 vaccines recipients in Saudi Arabia. General and demographic data were collected, and vaccine-associated side effects after receiving at least one dose of each vaccine were evaluated. RESULTS Our final sample consisted of 515 participants with a median age of 26 years. Most of the study participants were female (57%). Nearly 13% of the study subjects have reported previous infections with SARS-CoV-2. Oxford-AstraZeneca and Pfizer-BioNTech vaccines have been received by 75% and 25% of the study participants, respectively. Side effects associated with COVID-19 vaccines have been reported by 60% of the study subjects, and most of them reported fatigue (90%), pain at the site of the injections (85%). CONCLUSION Side effects that are reported post Oxford-AstraZeneca and Pfizer-BioNTech vaccines among our study participants are not different from those that were reported in the clinical trials, indicating safe profiles for both vaccines. Further studies are needed to evaluate the effectiveness of the current vaccines in protection against SARS-CoV-2 reinfections.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Department of Microbiology and Parasitology, College of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
- Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia; (D.D.); (M.H.)
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia; (E.A.); (S.A.)
| | - Edrous Alamer
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia; (E.A.); (S.A.)
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Dalia Daws
- Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia; (D.D.); (M.H.)
| | - Mashael Hakami
- Jazan University Hospital, Jazan University, Jazan 45142, Saudi Arabia; (D.D.); (M.H.)
| | - Majid Darraj
- Department of Medicine, College of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Siddig Abdelwahab
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia; (E.A.); (S.A.)
| | - Amani Maghfuri
- College of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Abdullah Algaissi
- Medical Research Center, Jazan University, Jazan 45142, Saudi Arabia; (E.A.); (S.A.)
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: ; Tel.: +966-7-3295000
| |
Collapse
|
40
|
Mining Textual and Imagery Instagram Data during the COVID-19 Pandemic. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Instagram is perhaps the most rapidly gaining in popularity of photo and video sharing social networking applications. It has been widely adopted by both end-users and organizations, posting their personal experiences or expressing their opinion during significant events and periods of crises, such as the ongoing COVID-19 pandemic and the search for effective vaccine treatment. We identify the three major companies involved in vaccine research and extract their Instagram posts, after vaccination has started, as well as users’ reception using respective hashtags, constructing the datasets. Statistical differences regarding the companies are initially presented, on textual, as well as visual features, i.e., image classification by transfer learning. Appropriate preprocessing of English language posts and content analysis is subsequently performed, by automatically annotating the posts as one of four intent classes, thus facilitating the training of nine classifiers for a potential application capable of predicting user’s intent. By designing and carrying out a controlled experiment we validate that the resulted algorithms’ accuracy ranking is significant, identifying the two best performing algorithms; this is further improved by ensemble techniques. Finally, polarity analysis on users’ posts, leveraging a convolutional neural network, reveals a rather neutral to negative sentiment, with highly polarized user posts’ distributions.
Collapse
|
41
|
Beig Parikhani A, Bazaz M, Bamehr H, Fereshteh S, Amiri S, Salehi-Vaziri M, Arashkia A, Azadmanesh K. The Inclusive Review on SARS-CoV-2 Biology, Epidemiology, Diagnosis, and Potential Management Options. Curr Microbiol 2021; 78:1099-1114. [PMID: 33638671 PMCID: PMC7913045 DOI: 10.1007/s00284-021-02396-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/07/2021] [Indexed: 12/18/2022]
Abstract
A novel coronavirus member was reported in Wuhan City, Hubei Province, China, at the end of the year 2019. Initially, the infection spread locally, affecting the Wuhan people, and then expanded rapidly throughout the world. On 11 March 2020, the World Health Organization (WHO) proclaimed it a global pandemic. The virus is a new strain most closely related to a bat coronavirus (RaTG13) which was not previously discovered in humans and is now formally known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus disease 2019 (COVID-19) is the disease syndrome that the SARS-CoV-2 virus triggers. It is suggested that SARS-CoV-2 can be transmitted through aerosols, direct/indirect contact, and also during medical procedures and specimen handling. The infection is characterized by isolated flu-like symptoms, but there may be specific signs of fever, fatigue, cough, and shortness of breath, as well as the loss of smell and breathing difficulty. Within this report, we tried to review the most current scientific literature published by January 2021 on various aspects of the outbreak, including virus structure, pathogenesis, clinical presentation, epidemiology, diagnostic approaches, potential therapeutics and vaccines, and prospects. We hope this article makes a beneficial impact on public education to better deal with the SARS-CoV-2 crisis and push a step forward in the near term towards its prevention and control.
Collapse
Affiliation(s)
- Arezoo Beig Parikhani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoume Bazaz
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hadi Bamehr
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- Department of Arboviruses and Viral Hemorrhagic Fevers, Pasteur Institute of Iran, Tehran, Iran
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
42
|
Sinha A, Kumar R, Singh AR. Implication of mass COVID-19 vaccination on dermatology practice in 2021. Dermatol Ther 2021; 34:e14765. [PMID: 33421292 PMCID: PMC7995006 DOI: 10.1111/dth.14765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Anwita Sinha
- Department of Dermatology, Military Hospital Kirkee, Pune, India
| | - Raj Kumar
- Department of Community Medicine, Armed Forces Medical College, Pune, India
| | - Anchit Raj Singh
- Department of Medicine, Base Hospital Barrackpore, Kolkata, India
| |
Collapse
|