1
|
Jun HR, Kim YH, Moon JE, Jeong S, Goh HS, Hoang MH, Lee YN, Jeong H, Shim IK, Kim SC. Effect of isoproterenol, a β-adrenergic agonist, on the differentiation of insulin-producing pancreatic β cells derived from human pluripotent stem cells. Exp Cell Res 2024; 443:114307. [PMID: 39461404 DOI: 10.1016/j.yexcr.2024.114307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Research on islet replacement through the differentiation of functionally matured insulin-producing β-like cells for the treatment of diabetes presents a significant challenge. Neural signals in β cell differentiation significantly impact the pancreatic microenvironment in glucose metabolism, but they are not fully understood. In this study, isoproterenol, a β adrenoreceptor agonist, was introduced into pancreatic progenitor cells, derived from human pluripotent stem cells in vitro, undergoing endocrine differentiation, using 2-dimensional (2D) and 3-dimensional (3D) differentiation protocols. This resulted in increased insulin and C-peptide secretion, along with elevated expression of key pancreatic beta cell transcription factors, including PDX-1, NKX6.1, and MAFA, and improved function, demonstrated by increased responsiveness to glucose determined via a glucose-stimulated insulin secretion test. Moreover, RNA transcriptome analysis of isoproterenol-treated endocrine progenitors facilitated the identification of biological pathways and genes that contribute to mature beta cell differentiation efficiency correlated with neural signals, such as adrenoceptor beta 1, calcium/calmodulin dependent protein kinase II alpha, phospholipase C delta 4, and neurotrophic receptor tyrosine kinase 1. Among those genes, calcium/calmodulin dependent protein kinase II alpha was suggested as the most notable gene involved in the isoproterenol mechanism through inhibitor assays. This study illustrates that isoproterenol significantly enhances endocrine differentiation and underscores its effects on stem cell-derived beta cell maturation, emphasizing its therapeutic potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Hye Ryeong Jun
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Hee Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Eun Moon
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sehui Jeong
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Han Se Goh
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Minh Hien Hoang
- Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu Na Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyemin Jeong
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - In Kyong Shim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Song Cheol Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SKW, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313722. [PMID: 39417770 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeung Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanhao Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Yang
- Department of Sports Medicine, Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, 3800, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, 3800, VIC, Australia
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Küppers O, Ahmad M, Haffner-Luntzer M, Scharffetter-Kochanek K, Ignatius A, Fischer V. Inflammatory priming of human mesenchymal stem cells induces osteogenic differentiation via the early response gene IER3. FASEB J 2024; 38:e70076. [PMID: 39373973 DOI: 10.1096/fj.202401344r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/08/2024]
Abstract
Mesenchymal stem cells (MSCs) have gained tremendous interest due to their overall potent pro-regenerative and immunomodulatory properties. In recent years, various in vitro and preclinical studies have investigated different priming ("licensing") approaches to enhance MSC functions for specific therapeutic purposes. In this study, we primed bone marrow-derived human MSCs (hMSCs) with an inflammation cocktail designed to mimic the elevated levels of inflammatory mediators found in serum of patients with severe injuries, such as bone fractures. We observed a significantly enhanced osteogenic differentiation potential of primed hMSCs compared to untreated controls. By RNA-sequencing analysis, we identified the immediate early response 3 (IER3) gene as one of the top-regulated genes upon inflammatory priming. Small interfering RNA knockdown experiments established IER3 as a novel positive regulator of osteogenic differentiation. Mechanistic analysis further revealed that IER3 deletion significantly downregulated bone marrow stromal cell antigen 2 (BST2) expression and extracellular signal-related kinase 1/2 (ERK1/2) phosphorylation in hMSCs, suggesting that IER3 regulates osteogenic differentiation through BST2 and ERK1/2 signaling pathway activation. On the basis of these findings, we propose IER3 as a novel therapeutic target to promote hMSC osteoblastogenesis, which might be of high clinical relevance, for example, in patients with osteoporosis or compromised fracture healing.
Collapse
Affiliation(s)
- Oliver Küppers
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
4
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024:10.1007/s00109-024-02493-x. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
5
|
Amiri F, Mistriotis P. Leveraging Cell Migration Dynamics to Discriminate Between Senescent and Presenescent Human Mesenchymal Stem Cells. Cell Mol Bioeng 2024; 17:385-399. [PMID: 39513008 PMCID: PMC11538215 DOI: 10.1007/s12195-024-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/11/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose The suboptimal clinical performance of human mesenchymal stem cells (hMSCs) has raised concerns about their therapeutic potential. One major contributing factor to this issue is the heterogeneous nature of hMSCs. Senescent cell accumulation during stem cell expansion is a key driver of MSC heterogeneity. Current methodologies to eradicate senescent hMSCs have either shown limited success or lack clinical relevance. This study leverages the inherent capacity of hMSCs to migrate toward damaged tissues as a means to discern senescent from presenescent stem cells. Given the established deficiency of senescent cells to migrate through physiologically relevant environments, we hypothesized that a microfluidic device, designed to emulate key facets of in vivo cell motility, could serve as a platform for identifying presenescent cells. Methods We employed a Y-shaped microchannel assay, which allows fine-tuning of fluid flow rates and the degree of confinement. Results Highly migratory hMSCs detected by the device not only demonstrate increased speed, smaller size, and higher proliferative capacity but also manifest reduced DNA damage and senescence compared to non-migratory cells. Additionally, this assay detects presenescent cells in experiments with mixed early and late passage cells. The introduction of fluid flow through the device can further increase the fraction of highly motile stem cells, improving the assay's effectiveness to remove senescent hMSCs. Conclusions Collectively, this assay facilitates the detection and isolation of a highly potent stem cell subpopulation. Given the positive correlation between the migratory potential of administered MSCs and the long-term clinical outcome, delivering homogeneous, highly motile presenescent hMSCs may benefit patient outcomes. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00807-0.
Collapse
Affiliation(s)
- Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn, AL USA
| | | |
Collapse
|
6
|
Fodor Duric L, Basic Jukic N, Vujicic B. Comparison of Autologous and Allogeneic Adipose-Derived Stem Cells in Kidney Transplantation: Immunological Considerations and Therapeutic Efficacy. J Clin Med 2024; 13:5763. [PMID: 39407823 PMCID: PMC11476955 DOI: 10.3390/jcm13195763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Regenerative medicine shows significant potential in treating kidney diseases through the application of various types of stem and progenitor cells, including mesenchymal stem cells (MSCs), renal stem/progenitor cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Stem cells possess the unique ability to repair injured organs and improve impaired functions, making them a key element in the research of therapies for kidney tissue repair and organ regeneration. In kidney transplantation, reperfusion injury can cause tissue destruction, leading to an initially low glomerular filtration rate and long-term impact on function by creating irreversible interstitial fibrosis. MSCs have proven useful in repairing early tissue injury in animal models of kidney, lung, heart, and intestine transplantation. The use of stem cell therapies in solid organ transplantation raises the question of whether autologous or allogeneic cells should be preferred. Adipose-derived stem cells (ASCs), characterized by the lack of HLA Class II molecules and low expression of HLA Class I and co-stimulatory signals, are considered immune-privileged. However, the actual risk of graft rejection associated with allogeneic ASCs remains unclear. It has been demonstrated that donor-derived ASCs can promote the development of Treg cells in vitro, and some degree of tolerance induction has been observed in vivo. Nevertheless, a study comparing the efficacy of autologous and allogeneic ASCs in a rat model with a total MHC mismatch for kidney transplantation showed that donor-derived administration of ASCs did not improve the grafts' survival and was associated with increased mortality through an immunologically mediated mechanism. Given the lack of data, autologous ASCs appear to be a safer option in this research context. The aim of this review was to examine the differences between autologous and allogeneic ASCs in the context of their application in kidney transplantation therapies, considering potential immune reactions and therapeutic efficacy. Some have argued that ASCs harvested from end-stage renal disease (ESRD) patients may have lower regenerative potential due to the toxic effects of uremia, potentially limiting their use in transplantation settings. However, evidence suggests that the beneficial properties of ASCs are not affected by uremia or dialysis. Indeed, some investigators have demonstrated that ASCs harvested from chronic kidney disease (CKD) patients exhibit normal characteristics and function, maintaining consistent proliferative capacity and genetic stability over time, even after prolonged exposure to uremic serum Furthermore, no differences were observed in the response of ASCs to immune activation or their inhibitory effect on the proliferation of alloantigen-activated peripheral blood mononuclear cells between patients with normal or impaired renal function. This review presents the current achievements in stem cell research aimed at treating kidney diseases, highlighting significant progress and ongoing efforts in the development of stem cell-based therapies. Despite the encouraging results, further research is needed to overcome the current limitations and fully realize the potential of these innovative treatments. Advances in this field are crucial for developing effective therapies that can address the complex challenges associated with kidney damage and failure.
Collapse
Affiliation(s)
- Ljiljana Fodor Duric
- Medicol Polyclinic, School of Medicine, Croatian Catholic Unoversity, 10000 Zagreb, Croatia
| | - Nikolina Basic Jukic
- Department of Nephrology, Dialysis and Kidney Transplantation, Clinical Hospital Center Zagreb, Faculty of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Bozidar Vujicic
- Department of Nephrology, Dialysis and Kidney Transplantation, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
7
|
Gakhar D, Joshi H, Makkar D, Taneja N, Arora A, Rakha A. Machine learning reveals the rules governing the efficacy of mesenchymal stromal cells in septic preclinical models. Stem Cell Res Ther 2024; 15:289. [PMID: 39256841 PMCID: PMC11389403 DOI: 10.1186/s13287-024-03873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal Stromal Cells (MSCs) are the preferred candidates for therapeutics as they possess multi-directional differentiation potential, exhibit potent immunomodulatory activity, are anti-inflammatory, and can function like antimicrobials. These capabilities have therefore encouraged scientists to undertake numerous preclinical as well as a few clinical trials to access the translational potential of MSCs in disease therapeutics. In spite of these efforts, the efficacy of MSCs has not been consistent-as is reflected in the large variation in the values of outcome measures like survival rates. Survival rate is a resultant of complex cascading interactions that not only depends upon upstream experimental factors like dosage, time of infusion, type of transplant, etc.; but is also dictated, post-infusion, by intrinsic host specific attributes like inflammatory microniche including proinflammatory cytokines and alarmins released by the damaged host cells. These complex interdependencies make a researcher's task of designing MSC transfusion experiments challenging. METHODS In order to identify the rules and associated attributes that influence the final outcome (survival rates) of MSC transfusion experiments, we decided to apply machine learning techniques on manually curated data collected from available literature. As sepsis is a multi-faceted condition that involves highly dysregulated immune response, inflammatory environment and microbial invasion, sepsis can be an efficient model to verify the therapeutic effects of MSCs. We therefore decided to implement rule-based classification models on data obtained from studies involving interventions of MSCs in sepsis preclinical models. RESULTS The rules from the generated graph models indicated that survival rates, post-MSC-infusion, are influenced by factors like source, dosage, time of infusion, pre-Interleukin-6 (IL-6)/ Tumour Necrosis Factor- alpha (TNF-α levels, etc. CONCLUSION: This approach provides important information for optimization of MSCs based treatment strategies that may help the researchers design their experiments.
Collapse
Affiliation(s)
- Diksha Gakhar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Himanshu Joshi
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Diksha Makkar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Amit Arora
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| |
Collapse
|
8
|
Porubska B, Plevakova M, Fikarova N, Vasek D, Somova V, Sanovec O, Simonik O, Komrskova K, Krylov V, Tlapakova T, Krulova M, Krulova M. Therapeutic potential of Sertoli cells in vivo: alleviation of acute inflammation and improvement of sperm quality. Stem Cell Res Ther 2024; 15:282. [PMID: 39227878 PMCID: PMC11373210 DOI: 10.1186/s13287-024-03897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Inflammation-induced testicular damage is a significant contributing factor to the increasing incidence of infertility. Traditional treatments during the inflammatory phase often fail to achieve the desired fertility outcomes, necessitating innovative interventions such as cell therapy. METHODS We explored the in vivo properties of intravenously administered Sertoli cells (SCs) in an acute lipopolysaccharide (LPS)-induced inflammatory mouse model. Infiltrating and resident myeloid cell phenotypes were assessed using flow cytometry. The impact of SC administration on testis morphology and germ cell quality was evaluated using computer-assisted sperm analysis (CASA) and immunohistochemistry. RESULTS SCs demonstrated a distinctive migration pattern, importantly they preferentially concentrated in the testes and liver. SC application significantly reduced neutrophil infiltration as well as preserved the resident macrophage subpopulations. SCs upregulated MerTK expression in both interstitial and peritubular macrophages. Applied SC treatment exhibited protective effects on sperm including their motility and kinematic parameters, and maintained the physiological testicular morphology. CONCLUSION Our study provides compelling evidence of the therapeutic efficacy of SC transplantation in alleviating acute inflammation-induced testicular damage. These findings contribute to the expanding knowledge on the potential applications of cell-based therapies for addressing reproductive health challenges and offer a promising approach for targeted interventions in male infertility.
Collapse
Affiliation(s)
- Bianka Porubska
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Marie Plevakova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Natalie Fikarova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Daniel Vasek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Veronika Somova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Ondrej Sanovec
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prumyslova 595, Prague, 252 50, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prumyslova 595, Prague, 252 50, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prumyslova 595, Prague, 252 50, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Vladimir Krylov
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Tereza Tlapakova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic.
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, 2, 128 00, Czech Republic
| |
Collapse
|
9
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
10
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
11
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Taira Y, Suzuki R, Matsumoto H. Effective enhancement of the immunomodulatory capacity of canine adipose-derived mesenchymal stromal cells on colitis by priming with colon tissue from mice with colitis. Front Vet Sci 2024; 11:1437648. [PMID: 39176394 PMCID: PMC11338805 DOI: 10.3389/fvets.2024.1437648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction The therapeutic efficacy of mesenchymal stromal cells (MSCs) in inflammatory bowel disease is not completely known and is not consistent. Priming with inflammatory cytokines has been proposed to adapt MSCs to an inflammatory environment to have them ready to counteract it, but may have undesirable effects on MSCs, such as increased immunogenicity. In this study, we hypothesized that priming MSCs with inflamed intestinal tissue would more effectively enhance their therapeutic effect on intestinal inflammation. Methods The capacity of canine adipose-derived MSCs (cADSCs) primed with colon tissue homogenates from mice with experimentally induced colitis or a combination of tumor necrosis factor-α and interferon-γ to inhibit T-cell proliferation was analyzed, along with their own apoptosis, proliferation, cell surface marker expression, and transcriptome. In addition, colitis mice were treated with the primed cADSCs to assess colitis severity and immune cell profile. Results Priming with cytokines induced apoptosis, decreased cell proliferation, and major histocompatibility complex-II gene expression in cADSCs, but these adverse effects were mild or absent with colitis-tissue priming. cADSCs primed with colitis tissue reduced the severity of colitis via the induction of M2 macrophages and T-regulatory cells and suppression of T-helper (Th)1/Th17-cell responses, and their effects were comparable to those of cytokine-primed cells. Discussion Our results emphasize the importance of the activation of MSCs by the appropriate microenvironment to maximize their therapeutic effect.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Japan
| |
Collapse
|
12
|
Kaur G, Bae E, Zhang Y, Ciacciofera N, Jung KM, Barreda H, Paleti C, Oh JY, Lee RH. Biopotency and surrogate assays to validate the immunomodulatory potency of extracellular vesicles derived from mesenchymal stem/stromal cells for the treatment of experimental autoimmune uveitis. J Extracell Vesicles 2024; 13:e12497. [PMID: 39140452 PMCID: PMC11322862 DOI: 10.1002/jev2.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have been recognized as promising cytotherapeutics due to their demonstrated immunomodulatory effects in various preclinical models. The immunomodulatory capabilities of EVs stem from the proteins and genetic materials they carry from parent cells, but the cargo contents of EVs are significantly influenced by MSC tissues and donors, cellular age and culture conditions, resulting in functional variations. However, there are no surrogate assays available to validate the immunomodulatory potency of MSC-EVs before in vivo administration. In previous work, we discovered that microcarrier culture conditions enhance the immunomodulatory function of MSC-EVs, as well as the levels of immunosuppressive molecules such as TGF-β1 and let-7b in MSC-EVs. Building on these findings, we investigated whether TGF-β1 levels in MSC-EVs could serve as a surrogate biomarker for predicting their potency in vivo. Our studies revealed a strong correlation between TGF-β1 and let-7b levels in MSC-EVs, as well as their capacity to suppress IFN-γ secretion in stimulated splenocytes, establishing biopotency and surrogate assays for MSC-EVs. Subsequently, we validated MSC-EVs generated from monolayer cultures (ML-EVs) or microcarrier cultures (MC-EVs) using murine models of experimental autoimmune uveoretinitis (EAU) and additional in vitro assays reflecting the Mode of Action of MSC-EVs in vivo. Our findings demonstrated that MC-EVs carrying high levels of TGF-β1 exhibited greater efficacy than ML-EVs in halting disease progression in mice with EAU as well as inducing apoptosis and inhibiting the chemotaxis of retina-reactive T cells. Additionally, MSC-EVs suppressed the MAPK/ERK pathway in activated T cells, with treatment using TGF-β1 or let-7b showing similar effects on the MAPK/ERK pathway. Collectively, our data suggest that MSC-EVs directly inhibit the infiltration of retina-reactive T cells toward the eyes, thereby halting the disease progression in EAU mice, and their immunomodulatory potency in vivo can be predicted by their TGF-β1 levels.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Eun‐Hye Bae
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Yu Zhang
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Nicole Ciacciofera
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Kyung Min Jung
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Heather Barreda
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Carol Paleti
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| | - Joo Youn Oh
- Department of OphthalmologySeoul National University College of MedicineSeoulSouth Korea
| | - Ryang Hwa Lee
- Department of Cell Biology and Genetics, Institute for Regenerative MedicineTexas A&M University School of MedicineCollege StationTexasUSA
| |
Collapse
|
13
|
Deokate N, Acharya S, Patil R, Shaikh SM, Karwa V. A Comprehensive Review of the Role of Stem Cells in Neuroregeneration: Potential Therapies for Neurological Disorders. Cureus 2024; 16:e67506. [PMID: 39310492 PMCID: PMC11416137 DOI: 10.7759/cureus.67506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Stem cell research has emerged as a groundbreaking field with significant potential for advancing neuroregeneration and neurological disorder treatment. Neurological conditions such as Alzheimer's disease, Parkinson's disease, stroke, and spinal cord injuries pose severe challenges due to their impact on quality of life and the limited efficacy of current treatments, which primarily focus on symptom management rather than addressing the underlying damage. Neuroregeneration, the process of repairing and restoring damaged neural tissues, is crucial for improving patient outcomes, given the central nervous system's limited intrinsic repair capacity. Stem cells offer a promising solution due to their ability to self-renew and differentiate into various neural cell types, providing opportunities for innovative therapies. This review provides a comprehensive analysis of the role of stem cells in neuroregeneration, exploring different types of stem cells, including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and adult stem cells, and their mechanisms of action in neural repair. It examines current clinical trials and translational research efforts, highlighting successes and ongoing challenges such as ethical considerations, immunogenicity, and technical limitations. The review also discusses future directions in stem cell research, including advancements in gene editing, tissue engineering, and personalized medicine. By addressing these aspects, the review aims to offer a thorough understanding of the potential and challenges of stem cell-based therapies, contributing to the development of effective treatments for neurological disorders and ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Navanath Deokate
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sourya Acharya
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rajvardhan Patil
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Suhail M Shaikh
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Vineet Karwa
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
14
|
Atia GA, Rashed F, Taher ES, Cho SG, Dayem AA, Soliman MM, Shalaby HK, Mohammed NA, Taymour N, El-Sherbiny M, Ebrahim E, Ramadan MM, Abdelkader A, Abdo M, Aldarmahi AA, Atwa AM, Bafail DA, Abdeen A. Challenges of therapeutic applications and regenerative capacities of urine based stem cells in oral, and maxillofacial reconstruction. Biomed Pharmacother 2024; 177:117005. [PMID: 38945084 DOI: 10.1016/j.biopha.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Urine-derived stem cells (USCs) have gained the attention of researchers in the biomedical field in the past few years . Regarding the several varieties of cells that have been used for this purpose, USCs have demonstrated mesenchymal stem cell-like properties, such as differentiation and immunomodulation. Furthermore, they could be differentiated into several lineages. This is very interesting for regenerative techniques based on cell therapy. This review will embark on describing their separation, and profiling. We will specifically describe the USCs characteristics, in addition to their differentiation potential. Then, we will introduce and explore the primary uses of USCs. These involve thier utilization as a platform to produce stem cells, however, we shall concentrate on the utilization of USCs for therapeutic, and regenerative orofacial applications, providing an in-depth evaluation of this purpose. The final portion will address the limitations and challenges of their implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt.
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea
| | - Magdalen M Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez 43512, Egypt
| | - Nourelhuda A Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Mutah, Al-Karak 61710, Jordan
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21582, Saudi Arabia; National Guard, Health Affairs, King Abdullah International Medical Research Centre, Jeddah 21582, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Duaa A Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 11829, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
15
|
Kanda P, Gupta A, Dhillon J, Kundapur D, Gottlieb CC. Mesenchymal stem cell based therapies for uveitis: a systematic review of preclinical studies. Eye (Lond) 2024; 38:1845-1854. [PMID: 38600361 PMCID: PMC11226430 DOI: 10.1038/s41433-024-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 02/03/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Cell therapy has shown promising results for treating uveitis in preclinical studies. As the field continues to grow towards clinical translation, it is important to review and critically appraise existing studies. Herein, we analysed and critically appraised all preclinical studies using cell therapy or cell derived extracellular vesicles (EVs) for uveitis, and provided insight into mechanisms regulating ocular inflammation. We used PubMed, Medline, and Embase to search for preclinical studies examining stem cell therapy (e.g., mesenchymal stem cells [MSC]) and secreted EVs. All included studies were assessed for quality using the SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) checklist. Sixteen preclinical studies from 2011 to 2022 were analysed and included in this review of which 75% (n = 12) focused only on cell therapy, 18.7% (n = 3) studies focused on EVs, and 6.3% (n = 1) study focused on both cells and EVs. MSCs were the most common type of cells used in preclinical studies (n = 15) and EVs were commonly isolated from MSCs (n = 3). Overall, both MSCs and EVs showed improvements in ocular inflammation (seen on fundoscopy/slit lamp and histology) and electroretinogram outcomes. Overall, MSC and MSC-derived EVs shown great potential as therapeutic agents for treating uveitis. Unfortunately, small sample size, risk of selection/performance bias, and lack of standardized cell harvesting or delivery protocols are some factors which limits clinical translation. Large scaled, randomized preclinical studies are required to understand the full potential of MSCs for treating uveitis.
Collapse
Affiliation(s)
| | - Arnav Gupta
- Department of Medicine, University of Calgary, Calgary, AB, Canada
- College of Public Health, Kent State University, Kent, OH, USA
| | | | | | - Chloe C Gottlieb
- Eye Institute, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
16
|
Deng M, Gao F, Liu T, Zhan W, Quan J, Zhao Z, Wu X, Zhong Z, Zheng H, Chu J. T. gondii excretory proteins promote the osteogenic differentiation of human bone mesenchymal stem cells via the BMP/Smad signaling pathway. J Orthop Surg Res 2024; 19:386. [PMID: 38951811 PMCID: PMC11218376 DOI: 10.1186/s13018-024-04839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.
Collapse
Affiliation(s)
- Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feifei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuolan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Zheng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiaqi Chu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
17
|
Ghufran H, Azam M, Mehmood A, Umair M, Baig MT, Tasneem S, Butt H, Riazuddin S. Adipose Tissue and Umbilical Cord Tissue: Potential Sources of Mesenchymal Stem Cells for Liver Fibrosis Treatment. J Clin Exp Hepatol 2024; 14:101364. [PMID: 38449506 PMCID: PMC10912848 DOI: 10.1016/j.jceh.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Background/Aims Mesenchymal stem cells (MSCs) are potential alternatives for liver fibrosis treatment; however, their optimal sources remain uncertain. This study compares the ex-vivo expansion characteristics of MSCs obtained from adipose tissue (AT) and umbilical cord (UC) and assesses their therapeutic potential for liver fibrosis treatment. Methods Since MSCs from early to mid-passage numbers (P2-P6) are preferable for cellular therapy, we investigated the growth kinetics of AT-MSCs and UC-MSCs up to P6 and evaluated their therapeutic effects in a rat model of liver fibrosis induced by diethylnitrosamine. Results Results from the expansion studies demonstrated that both cell types exhibited bona fide characteristics of MSCs, including surface antigens, pluripotent gene expression, and differentiation potential. However, AT-MSCs demonstrated a shorter doubling time (58.2 ± 7.3 vs. 82.3 ± 4.3 h; P < 0.01) and a higher population doubling level (10.1 ± 0.7 vs. 8.2 ± 0.3; P < 0.01) compared to UC-MSCs, resulting in more cellular yield (230 ± 9.0 vs. 175 ± 13.2 million) in less time. Animal studies demonstrated that both MSC types significantly reduced liver fibrosis (P < 0.05 vs. the control group) while also improving liver function and downregulating fibrosis-associated gene expression. Conclusion AT-MSCs and UC-MSCs effectively reduce liver fibrosis. However, adipose cultures display an advantage by yielding a higher number of MSCs in a shorter duration, rendering them a viable choice for scenarios requiring immediate single-dose administration, often encountered in clinical settings.
Collapse
Affiliation(s)
- Hafiz Ghufran
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maryam Azam
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Azra Mehmood
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Muhammad Umair
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Maria T. Baig
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Saba Tasneem
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Hira Butt
- National Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Bank Road, Lahore, Pakistan
| | - Sheikh Riazuddin
- Jinnah Burn and Reconstructive Surgery Centre, Allama Iqbal Medical College, Lahore, Pakistan
| |
Collapse
|
18
|
Hamidi SH, Etebar N, Rahimzadegan M, Zali A, Roodsari SR, Niknazar S. Mesenchymal stem cells and their derived exosomes in multiple sclerosis disease: from paper to practice. Mol Cell Biochem 2024; 479:1643-1671. [PMID: 38977625 DOI: 10.1007/s11010-024-05051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative, inflammatory, and demyelinating disease of the central nervous system (CNS). Current medicines are not sufficient to control the inflammation and progressive damage to the CNS that is known in MS. These drawbacks highlight the need for novel treatment options. Cell therapy can now be used to treat complex diseases when conventional therapies are ineffective. Mesenchymal stem cells (MSCs) are a diverse group of multipotential non-hematopoietic stromal cells which have immunomodulatory, neurogenesis, and remyelinating capacity. Their advantageous effects mainly rely on paracrine, cell-cell communication and differentiation properties which introduced them as excellent candidates for MS therapy. Exosomes, as one of the MSCs secretomes, have unique properties that make them highly promising candidates for innovative approach in regenerative medicine. This review discusses the therapeutic potential of MSCs and their derived exosomes as a novel treatment for MS, highlighting the differences between these two approaches.
Collapse
Affiliation(s)
- Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences Bachelor of Pharmacy, Bangalore, India
| | - Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Rahmati Roodsari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Park JM, Rahmati M, Lee SC, Shin JI, Kim YW. Effects of mesenchymal stem cell on dopaminergic neurons, motor and memory functions in animal models of Parkinson's disease: a systematic review and meta-analysis. Neural Regen Res 2024; 19:1584-1592. [PMID: 38051903 PMCID: PMC10883506 DOI: 10.4103/1673-5374.387976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, and although restoring striatal dopamine levels may improve symptoms, no treatment can cure or reverse the disease itself. Stem cell therapy has a regenerative effect and is being actively studied as a candidate for the treatment of Parkinson's disease. Mesenchymal stem cells are considered a promising option due to fewer ethical concerns, a lower risk of immune rejection, and a lower risk of teratogenicity. We performed a meta-analysis to evaluate the therapeutic effects of mesenchymal stem cells and their derivatives on motor function, memory, and preservation of dopaminergic neurons in a Parkinson's disease animal model. We searched bibliographic databases (PubMed/MEDLINE, Embase, CENTRAL, Scopus, and Web of Science) to identify articles and included only peer-reviewed in vivo interventional animal studies published in any language through June 28, 2023. The study utilized the random-effect model to estimate the 95% confidence intervals (CI) of the standard mean differences (SMD) between the treatment and control groups. We use the systematic review center for laboratory animal experimentation's risk of bias tool and the collaborative approach to meta-analysis and review of animal studies checklist for study quality assessment. A total of 33 studies with data from 840 Parkinson's disease model animals were included in the meta-analysis. Treatment with mesenchymal stem cells significantly improved motor function as assessed by the amphetamine-induced rotational test. Among the stem cell types, the bone marrow MSCs with neurotrophic factor group showed largest effect size (SMD [95% CI] = -6.21 [-9.50 to -2.93], P = 0.0001, I2 = 0.0 %). The stem cell treatment group had significantly more tyrosine hydroxylase positive dopaminergic neurons in the striatum ([95% CI] = 1.04 [0.59 to 1.49], P = 0.0001, I2 = 65.1 %) and substantia nigra (SMD [95% CI] = 1.38 [0.89 to 1.87], P = 0.0001, I2 = 75.3 %), indicating a protective effect on dopaminergic neurons. Subgroup analysis of the amphetamine-induced rotation test showed a significant reduction only in the intracranial-striatum route (SMD [95% CI] = -2.59 [-3.25 to -1.94], P = 0.0001, I2 = 74.4 %). The memory test showed significant improvement only in the intravenous route (SMD [95% CI] = 4.80 [1.84 to 7.76], P = 0.027, I2 = 79.6 %). Mesenchymal stem cells have been shown to positively impact motor function and memory function and protect dopaminergic neurons in preclinical models of Parkinson's disease. Further research is required to determine the optimal stem cell types, modifications, transplanted cell numbers, and delivery methods for these protocols.
Collapse
Affiliation(s)
- Jong Mi Park
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Matsuda A, Hasegawa T, Ikeda Y, Wada A, Ikeda S. Histological and molecular restoration of type VII collagen in Recessive dystrophic epidermolysis bullosa mouse skin by topical injection of keratinocyte-like cells differentiated from human adipose-derived mesenchymal stromal cells. J Dermatol Sci 2024; 115:42-50. [PMID: 38876908 DOI: 10.1016/j.jdermsci.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the COL7A1 gene, which encodes type VII collagen (COL7), the main constituent of anchoring fibrils for attaching the epidermis to the dermis. Persistent skin erosions frequently result in intractable ulcers in RDEB patients. Adipose-derived mesenchymal stromal cells (AD-MSCs) are easily harvested in large quantities and have low immunogenicity. Therefore, they are suitable for clinical use, including applications involving allogeneic cell transplantation. Keratinocyte-like cells transdifferentiated from AD-MSCs (KC-AD-MSCs) express more COL7 than undifferentiated AD-MSCs and facilitate skin wound healing with less contracture. Therefore, these cells can be used for skin ulcer treatment in RDEB patients. OBJECTIVE We investigated whether KC-AD-MSCs transplantation ameliorated the RDEB phenotype severity in the grafted skin of a RDEB mouse model (col7a1-null) on the back of the immunodeficient mouse. METHODS KC-AD-MSCs were intradermally injected into the region surrounding the skin grafts, and this procedure was repeated after 7 days. After a further 7-day interval, the skin grafts were harvested. RESULTS Neodeposition of COL7 and generation of anchoring fibrils at the dermal-epidermal junction were observed, although experiments were based on qualitative. CONCLUSION KC-AD-MSCs may correct the COL7 insufficiency, repair defective/reduced anchoring fibrils, and improve skin integrity in RDEB patients.
Collapse
Affiliation(s)
- Akinori Matsuda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Toshio Hasegawa
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Yuri Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Akino Wada
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Japan; Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Japan.
| |
Collapse
|
21
|
Rofaani E, Mardani MW, Yutiana PN, Amanda O, Darmawan N. Differentiation of mesenchymal stem cells into vascular endothelial cells in 3D culture: a mini review. Mol Biol Rep 2024; 51:781. [PMID: 38913199 DOI: 10.1007/s11033-024-09743-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Mesenchymal Stem Cells, mesodermal origin and multipotent stem cells, have ability to differentiate into vascular endothelial cells. The cells are squamous in morphology, inlining, and protecting blood vessel tissue, as well as maintaining homeostatic conditions. ECs are essential in vascularization and blood vessels formation. The differentiation process, generally carried out in 2D culture systems, were relied on growth factors induction. Therefore, an artificial extracellular matrix with relevant mechanical properties is essential to build 3D culture models. Various 3D fabrication techniques, such as hydrogel-based and fibrous scaffolds, scaffold-free, and co-culture to endothelial cells were reviewed and summarized to gain insights. The obtained MSCs-derived ECs are shown by the expression of endothelial gene markers and tubule-like structure. In order to mimicking relevant vascular tissue, 3D-bioprinting facilitates to form more complex microstructures. In addition, a microfluidic chip with adequate flow rate allows medium perfusion, providing mechanical cues like shear stress to the artificial vascular vessels.
Collapse
Affiliation(s)
- E Rofaani
- Group Research of Theranostics, Research Center for Vaccine and Drug, Research Organization of Health, National Research and Innovation Agency, LAPTIAB Building No 611 PUSPIPTEK or KST BJ Habibie, Tangerang Selatan, Banten, 15315, Indonesia.
| | - M W Mardani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Ir. Sutami Street No. 36A, Jebres District, Surakarta, Central Java, 57126, Indonesia
| | - P N Yutiana
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Ir. Sutami Street No. 36A, Jebres District, Surakarta, Central Java, 57126, Indonesia
| | - O Amanda
- Department of Technique of Biomedis, Faculty of Technique of Industry, Institut Teknologi Sumatera, Jalan Terusan Ryacudu, Way Huwi, Jati Agung, Lampung Selatan, Lampung, 35365, Indonesia
| | - N Darmawan
- Laboratory of Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Kampus IPB Dramaga, Bogor, West Java, 16880, Indonesia
| |
Collapse
|
22
|
Sun M, Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer's Disease. J Inflamm Res 2024; 17:3921-3948. [PMID: 38911990 PMCID: PMC11193473 DOI: 10.2147/jir.s466821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative illness, characterized by memory loss and cognitive decline, accounting for 60-80% of dementia cases. AD is characterized by senile plaques made up of amyloid β (Aβ) protein, intracellular neurofibrillary tangles caused by hyperphosphorylation of tau protein linked with microtubules, and neuronal loss. Currently, therapeutic treatments and nanotechnological developments are effective in treating the symptoms of AD, but a cure for the illness has not yet been found. Recently, the increased study of extracellular vesicles (EVs) has led to a growing awareness of their significant involvement in neurodegenerative disorders, including AD. Exosomes are small extracellular vesicles that transport various components including messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive compounds from one cell to another, facilitating information transmission and material movement. There is growing evidence indicating that exosomes have complex functions in AD. Exosomes may have a dual role in Alzheimer's disease by contributing to neuronal death and also helping to alleviate the pathological progression of the disease. Therefore, the primary aim of this review is to outline the updated understandings on exosomes biogenesis and many functions of exosomes in the generation, conveyance, distribution, and elimination of hazardous proteins related to Alzheimer's disease. This review is intended to provide novel insights for understanding the development, specific treatment, and early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Zhuoyou Chen
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| |
Collapse
|
23
|
Velikova T, Dekova T, Miteva DG. Controversies regarding transplantation of mesenchymal stem cells. World J Transplant 2024; 14:90554. [PMID: 38947963 PMCID: PMC11212595 DOI: 10.5500/wjt.v14.i2.90554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tantalized regenerative medicine with their therapeutic potential, yet a cloud of controversies looms over their clinical transplantation. This comprehensive review navigates the intricate landscape of MSC controversies, drawing upon 15 years of clinical experience and research. We delve into the fundamental properties of MSCs, exploring their unique immunomodulatory capabilities and surface markers. The heart of our inquiry lies in the controversial applications of MSC transplantation, including the perennial debate between autologous and allogeneic sources, concerns about efficacy, and lingering safety apprehensions. Moreover, we unravel the enigmatic mechanisms surrounding MSC transplantation, such as homing, integration, and the delicate balance between differentiation and paracrine effects. We also assess the current status of clinical trials and the ever-evolving regulatory landscape. As we peer into the future, we examine emerging trends, envisioning personalized medicine and innovative delivery methods. Our review provides a balanced and informed perspective on the controversies, offering readers a clear understanding of the complexities, challenges, and potential solutions in MSC transplantation.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tereza Dekova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | |
Collapse
|
24
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
25
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
26
|
Kumar R, Mishra N, Tran T, Kumar M, Vijayaraghavalu S, Gurusamy N. Emerging Strategies in Mesenchymal Stem Cell-Based Cardiovascular Therapeutics. Cells 2024; 13:855. [PMID: 38786076 PMCID: PMC11120430 DOI: 10.3390/cells13100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Nitin Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | | | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
27
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in The management of orthopedic surgical challenges. Int J Surg 2024; 110:01279778-990000000-01425. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells is easier and can be further grown in vitro. In this review, we have discussed orthopedic-related issues including bone defects and fractures, non-unions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of mesenchymal stem cells. It aims to objectify the idea of stem cells, with a major focus on the application of Mesenchymal stem cells (MSCs) from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of mesenchymal stem cells may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
28
|
Hirani P, Chandak M, Agrawal P, Sarangi S, Suryawanshi T, Jidewar N, Naladkar K. Platelet Power: Revitalizing Endodontics With Scaffolds. Cureus 2024; 16:e60691. [PMID: 38899240 PMCID: PMC11186587 DOI: 10.7759/cureus.60691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
This article provides an overview of a biologically based method for restoring damaged tooth structures and pulp tissues known as regenerative endodontics. It explores the concept of regenerative endodontics, its tissue engineering approach, and its application in maintaining vitality. The article discusses the significance of the factors affecting growth, scaffolds, and stem cells being the three tissue engineering components involved in the regeneration of pulp tissues. It also delves into the classification of scaffolds and the role of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) as biological scaffolds. The methodology section details the search process for relevant studies, and the review section presents research findings associated with PRF and its application in regeneration and repair of tissue. The article concludes by highlighting the potential of advanced PRF and injectable PRF in regenerative endodontics, with a focus on their impact on tissue regeneration and healing.
Collapse
Affiliation(s)
- Palak Hirani
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Manoj Chandak
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Paridhi Agrawal
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swayangprabha Sarangi
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejas Suryawanshi
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Namrata Jidewar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Kapil Naladkar
- Department of Conservative Dentistry and Endodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
29
|
Iwatake M, Nagamura-Inoue T, Doi R, Tanoue Y, Ishii M, Yukawa H, Matsumoto K, Tomoshige K, Nagayasu T, Tsuchiya T. Designer umbilical cord-stem cells induce alveolar wall regeneration in pulmonary disease models. Front Immunol 2024; 15:1384718. [PMID: 38745668 PMCID: PMC11091323 DOI: 10.3389/fimmu.2024.1384718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Background Researchers are focusing on cellular therapy for chronic obstructive pulmonary disease (COPD) using mesenchymal stem cells (MSCs), with human bone marrow-derived MSCs (hBM-MSCs) leading the way. However, BM-MSCs may not be as optimal as therapeutic cells owing to their low growth potential, invasive harvesting, and high expression of aging-related genes with poor differentiation potential. Consequently, umbilical cord-derived MSCs (hUC-MSCs), which have many excellent features as allogeneic heterologous stem cells, have received considerable attention. Allogeneic and heterologous hUC-MSCs appear to be promising owing to their excellent therapeutic properties. However, MSCs cannot remain in the lungs for long periods after intravenous infusion. Objective To develop designer hUC-MSCs (dUC-MSCs), which are novel therapeutic cells with modified cell-adhesion properties, to aid COPD treatment. Methods dUC-MSCs were cultured on type-I collagen gels and laminin 411, which are extracellular matrices. Mouse models of elastase-induced COPD were treated with hUC-MSCs. Biochemical analysis of the lungs of treated and control animals was performed. Results Increased efficiency of vascular induction was found with dUC-MSCs transplanted into COPD mouse models compared with that observed with transplanted hUC-MSCs cultured on plates. The transplanted dUC-MSCs inhibited apoptosis by downregulating pro-inflammatory cytokine production, enhancing adhesion of the extracellular matrix to alveolar tissue via integrin β1, promoting the polarity of M2 macrophages, and contributing to the repair of collapsed alveolar walls by forming smooth muscle fibers. dUC-MSCs inhibited osteoclastogenesis in COPD-induced osteoporosis. hUC-MSCs are a promising cell source and have many advantages over BM-MSCs and adipose tissue-derived MSCs. Conclusion We developed novel designer cells that may be involved in anti-inflammatory, homeostatic, injury repair, and disease resistance processes. dUC-MSCs repair and regenerate the alveolar wall by enhancing adhesion to the damaged site. Therefore, they can contribute to the treatment of COPD and systemic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Mayumi Iwatake
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryoichiro Doi
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yukinori Tanoue
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsutoshi Ishii
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Yukawa
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Keitaro Matsumoto
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Cell Processing and Transfusion, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichi Tomoshige
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Division of Surgical Oncology, Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Thoracic Surgery, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
30
|
Kathami N, Moreno-Vicente C, Martín P, Vergara-Arce JA, Ruiz-Hernández R, Gerovska D, Aransay AM, Araúzo-Bravo MJ, Camarero-Espinosa S, Abarrategi A. rhBMP-2 induces terminal differentiation of human bone marrow mesenchymal stromal cells only by synergizing with other signals. Stem Cell Res Ther 2024; 15:124. [PMID: 38679735 PMCID: PMC11057131 DOI: 10.1186/s13287-024-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Recombinant human bone morphogenetic protein 2 (rhBMP-2) and human bone marrow mesenchymal stromal cells (hBM-MSCs) have been thoroughly studied for research and translational bone regeneration purposes. rhBMP-2 induces bone formation in vivo, and hBM-MSCs are its target, bone-forming cells. In this article, we studied how rhBMP-2 drives the multilineage differentiation of hBM-MSCs both in vivo and in vitro. METHODS rhBMP-2 and hBM-MSCs were tested in an in vivo subcutaneous implantation model to assess their ability to form mature bone and undergo multilineage differentiation. Then, the hBM-MSCs were treated in vitro with rhBMP-2 for short-term or long-term cell-culture periods, alone or in combination with osteogenic, adipogenic or chondrogenic media, aiming to determine the role of rhBMP-2 in these differentiation processes. RESULTS The data indicate that hBM-MSCs respond to rhBMP-2 in the short term but fail to differentiate in long-term culture conditions; these cells overexpress the rhBMP-2 target genes DKK1, HEY-1 and SOST osteogenesis inhibitors. However, in combination with other differentiation signals, rhBMP-2 acts as a potentiator of multilineage differentiation, not only of osteogenesis but also of adipogenesis and chondrogenesis, both in vitro and in vivo. CONCLUSIONS Altogether, our data indicate that rhBMP-2 alone is unable to induce in vitro osteogenic terminal differentiation of hBM-MSCs, but synergizes with other signals to potentiate multiple differentiation phenotypes. Therefore, rhBMP-2 triggers on hBM-MSCs different specific phenotype differentiation depending on the signalling environment.
Collapse
Affiliation(s)
- Neda Kathami
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
| | | | - Pablo Martín
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Jhonatan A Vergara-Arce
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Raquel Ruiz-Hernández
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
| | - Ana M Aransay
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastián, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Sandra Camarero-Espinosa
- POLYMAT, University of the Basque Country (UPV-EHU), 20018, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Ander Abarrategi
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain.
- Regenerative Medicine and Disease Models Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo Miramón, 194, 20014, Donostia, Gipuzkoa, Spain.
| |
Collapse
|
31
|
Belenichev I, Popazova O, Bukhtiyarova N, Savchenko D, Oksenych V, Kamyshnyi O. Modulating Nitric Oxide: Implications for Cytotoxicity and Cytoprotection. Antioxidants (Basel) 2024; 13:504. [PMID: 38790609 PMCID: PMC11118938 DOI: 10.3390/antiox13050504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the significant progress in the fields of biology, physiology, molecular medicine, and pharmacology; the designation of the properties of nitrogen monoxide in the regulation of life-supporting functions of the organism; and numerous works devoted to this molecule, there are still many open questions in this field. It is widely accepted that nitric oxide (•NO) is a unique molecule that, despite its extremely simple structure, has a wide range of functions in the body, including the cardiovascular system, the central nervous system (CNS), reproduction, the endocrine system, respiration, digestion, etc. Here, we systematize the properties of •NO, contributing in conditions of physiological norms, as well as in various pathological processes, to the mechanisms of cytoprotection and cytodestruction. Current experimental and clinical studies are contradictory in describing the role of •NO in the pathogenesis of many diseases of the cardiovascular system and CNS. We describe the mechanisms of cytoprotective action of •NO associated with the regulation of the expression of antiapoptotic and chaperone proteins and the regulation of mitochondrial function. The most prominent mechanisms of cytodestruction-the initiation of nitrosative and oxidative stresses, the production of reactive oxygen and nitrogen species, and participation in apoptosis and mitosis. The role of •NO in the formation of endothelial and mitochondrial dysfunction is also considered. Moreover, we focus on the various ways of pharmacological modulation in the nitroxidergic system that allow for a decrease in the cytodestructive mechanisms of •NO and increase cytoprotective ones.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Olena Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69000 Zaporizhzhia, Ukraine
| | - Dmytro Savchenko
- Department of Pharmacy and Industrial Drug Technology, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology and Immunology, I. Horbachevsky Ternopil State Medical University, 46001 Ternopil, Ukraine;
| |
Collapse
|
32
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
33
|
Hadzimustafic N, D’Elia A, Shamoun V, Haykal S. Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. Int J Mol Sci 2024; 25:1863. [PMID: 38339142 PMCID: PMC10855589 DOI: 10.3390/ijms25031863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
A hallmark of plastic and reconstructive surgery is restoring form and function. Historically, tissue procured from healthy portions of a patient's body has been used to fill defects, but this is limited by tissue availability. Human-induced pluripotent stem cells (hiPSCs) are stem cells derived from the de-differentiation of mature somatic cells. hiPSCs are of particular interest in plastic surgery as they have the capacity to be re-differentiated into more mature cells, and cultured to grow tissues. This review aims to evaluate the applications of hiPSCs in the plastic surgery context, with a focus on recent advances and limitations. The use of hiPSCs and non-human iPSCs has been researched in the context of skin, nerve, vasculature, skeletal muscle, cartilage, and bone regeneration. hiPSCs offer a future for regenerated autologous skin grafts, flaps comprised of various tissue types, and whole functional units such as the face and limbs. Also, they can be used to model diseases affecting tissues of interest in plastic surgery, such as skin cancers, epidermolysis bullosa, and scleroderma. Tumorigenicity, immunogenicity and pragmatism still pose significant limitations. Further research is required to identify appropriate somatic origin and induction techniques to harness the epigenetic memory of hiPSCs or identify methods to manipulate epigenetic memory.
Collapse
Affiliation(s)
- Nina Hadzimustafic
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Andrew D’Elia
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Valentina Shamoun
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; (N.H.); (A.D.); (V.S.)
| | - Siba Haykal
- Department of Plastic and Reconstructive Surgery, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
34
|
Paresishvili T, Kakabadze Z. Freeze-Dried Mesenchymal Stem Cells: From Bench to Bedside. Review. Adv Biol (Weinh) 2024; 8:e2300155. [PMID: 37990389 DOI: 10.1002/adbi.202300155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 11/23/2023]
Abstract
This review describes the freeze-dried mesenchymal stem cells (MSCs) and their ability to restore damaged tissues and organs. An analysis of the literature shows that after the lyophilization MSCs retain >80% of paracrine factors and that the mechanism of their action on the restoration of damaged tissues and organs is similar to the mechanism of action of paracrine factors in fresh and cryopreserved mesenchymal stem cells. Based on the own materials, the use of paracrine factors of freeze-dried MSCs in vivo and in vitro for the treatment of various diseases of organs and tissues has shown to be effective. The study also discusses about the advantages and disadvantages of freeze-dried MSCs versus cryopreserved MSCs. However, for the effective use of freeze-dried MSCs in clinical practice, a more detailed study of the mechanism of interaction of paracrine factors of freeze-dried MSCs with target cells and tissues is required. It is also necessary to identify possible other specific paracrine factors of freeze-dried MSCs. In addition, develop new therapeutic strategies for the use of freeze-dried MSCs in regenerative medicine and tissue bioengineering.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, 0186, Georgia
| |
Collapse
|
35
|
Abbà C, Croce S, Valsecchi C, Lenta E, Campanelli R, Codazzi AC, Brazzelli V, Carolei A, Catarsi P, Acquafredda G, Apicella A, Caliogna L, Berni M, Mannarino S, Avanzini MA, Rosti V, Massa M. Circulating Mesenchymal Stromal Cells in Patients with Infantile Hemangioma: Evaluation of Their Functional Capacity and Gene Expression Profile. Cells 2024; 13:254. [PMID: 38334645 PMCID: PMC10854919 DOI: 10.3390/cells13030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1β and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets.
Collapse
Affiliation(s)
- Carlotta Abbà
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Alessia C. Codazzi
- Pediatric Cardiology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.C.C.); (A.A.)
| | - Valeria Brazzelli
- Institute of Dermatology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Adriana Carolei
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Gloria Acquafredda
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Antonia Apicella
- Pediatric Cardiology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (A.C.C.); (A.A.)
| | - Laura Caliogna
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.B.)
| | - Micaela Berni
- Orthopedics and Traumatology Clinic, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (L.C.); (M.B.)
| | - Savina Mannarino
- Pediatric Cardiology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Maria A. Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Haematology Oncology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (S.C.); (C.V.); (E.L.); (G.A.); (M.A.A.)
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (R.C.); (A.C.); (P.C.); (V.R.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| |
Collapse
|
36
|
Adamickova A, Chomanicova N, Adamicka M, Valaskova S, Gazova A, Kyselovic J. Isolation and Characterization of Human Dental Pulp Stem Cells Derived from Dental Pulp of Permanent Teeth. Methods Mol Biol 2024; 2835:49-57. [PMID: 39105905 DOI: 10.1007/978-1-0716-3995-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Dental pulp stem cells (DPSCs) are a promising alternative to the source of mesenchymal stem cells (MSCs), as they are readily available in minimally invasive procedures compared to more invasive methods associated with harvesting other MSCs sources. Despite the encouraging pre-clinical outcomes in animal disease models, culture-expanding procedures are needed to obtain a sufficient number of MSCs required for delivery to the damaged site. However, this contributes to increasing regulatory difficulties in translating stem cells and tissue engineering therapy to clinical use. Moreover, discussions continue as to which isolation method is to be preferred when obtaining DPSCs from extracted molars. This protocol describes a simple explant isolation technique of human dental pulp stem cells from the dental pulp of permanent teeth based upon the plastic adherence of MSCs and subsequent outgrowth of cells out of tissue fragments with high efficacy.
Collapse
Affiliation(s)
- Adriana Adamickova
- Faculty of Medicine, 5th Department of Internal Medicine, Comenius University Bratislava, Bratislava, Slovakia
| | - Nikola Chomanicova
- International Laser Center, Slovak Centre of Scientifc and Technical Information, Bratislava, Slovakia
| | - Matus Adamicka
- Faculty of Medicine, Institute of Medical Biology, Genetics and Clinical Genetics, Comenius University Bratislava, Bratislava, Slovakia
| | - Simona Valaskova
- International Laser Center, Slovak Centre of Scientifc and Technical Information, Bratislava, Slovakia
| | - Andrea Gazova
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University Bratislava, Bratislava, Slovakia
| | - Jan Kyselovic
- Faculty of Medicine, 5th Department of Internal Medicine, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
37
|
Margiana R. Enhancing Spermatogenesis in Non-obstructive Azoospermia Through Mesenchymal Stem Cell Therapy22. Curr Stem Cell Res Ther 2024; 19:1429-1441. [PMID: 38243988 DOI: 10.2174/011574888x283311231226081845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.
Collapse
Affiliation(s)
- Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| |
Collapse
|
38
|
Morita Y, Sakata N, Nishimura M, Kawakami R, Shimizu M, Yoshimatsu G, Sawamoto O, Matsumoto S, Wada H, Kodama S. Efficacy of Neonatal Porcine Bone Marrow-Derived Mesenchymal Stem Cell Xenotransplantation for the Therapy of Hind Limb Lymphedema in Mice. Cell Transplant 2024; 33:9636897241260195. [PMID: 38867486 PMCID: PMC11179447 DOI: 10.1177/09636897241260195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Lymphedema is an intractable disease with few effective therapeutic options. Autologous mesenchymal stem cell (MSC) transplantation is a promising therapy for this disease. However, its use is limited by the cost and time for preparation. Recently, xenotransplantation of porcine MSCs has emerged as an alternative to autologous MSC transplantation. In this study, we aimed to clarify the usefulness of neonatal porcine bone marrow-derived MSC (NpBM-MSC) xenotransplantation for the treatment of lymphedema. One million NpBM-MSCs were xenotransplanted into the hind limbs of mice with severe lymphedema (MSC transplantation group). The therapeutic effects were assessed by measuring the femoral circumference, the volume of the hind limb, the number and diameter of lymphatic vessels in the hind limb, and lymphatic flow using a near-infrared fluorescence (NIRF) imaging system. We compared the effects using mice with lymphedema that did not undergo NpBM-MSC transplantation (negative control group). The condition of the transplanted NpBM-MSCs was also evaluated histologically. The femoral circumference and volume of the hind limb had been normalized by postoperative day (POD) 14 in the MSC transplantation group, but not in the negative control group (P = 0.041). NIRF imaging revealed that lymphatic flow had recovered in the MSC transplantation group by POD 14, as shown by an increase in luminance in the hind limb. Histological assessment also showed that the xenotransplantation of NpBM-MSC increased the proliferation of lymphatic vessels, but they had been rejected by POD 14. The xenotransplantation of NpBM-MSCs is an effective treatment for lymphedema, and this is mediated through the promotion of lymphangiogenesis.
Collapse
Affiliation(s)
- Yuichi Morita
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masayuki Shimizu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Osamu Sawamoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Japan
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Japan
| | - Hideichi Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
- Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan
- Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
39
|
Panda D, Nayak S. Stem Cell-Based Tissue Engineering Approaches for Diabetic Foot Ulcer: a Review from Mechanism to Clinical Trial. Stem Cell Rev Rep 2024; 20:88-123. [PMID: 37867186 DOI: 10.1007/s12015-023-10640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Diabetic foot ulcer (DFU) is a complication from incomplete or prolonged wound healing, at times requires amputation, putting substantial health and socioeconomic burden. Wound healing is a dynamic overlapping process that can be regulated by arrays of molecular factors showing redundancy in function. However, dysregulation in the mechanism of angiogenesis, extra cellular matrix (ECM) formation and immune modulation are the major causes for impair wound healing in hyperglycaemic patients. Despite development of wound care research, there is a lack of well-accepted targeted therapy with multidisciplinary approach for DFU treatment. Stem cell therapy holds a promising outcome both in preclinical and clinical trials because of its ability to promote healing via regeneration and specialized tissue differentiation. Among different types of stem cells, regenerative potential of mesenchymal stem cell (MSC) is well demonstrated in both experimental and clinical trial. Still there is a huge knowledge gap among medical practitioners for deciding the best stem cell source, administration route, and safety. This review strengthens the fact that why stem cell therapy is a promising candidate to treat DFU and cited multiple tissue engineering and biomaterial-based approaches for delivering stem cells and their aftermath paracrine events. Based on the pre-clinical and clinical studies, the review tried to come up with optimum stem cell source and delivery route for the treatment of DFU. At last, the review glances on possible direction to enhance therapeutics strategy for the same, including different approaches like: phytocompounds, exosomes, scaffold geometry, cell preconditioning and licensing etc.
Collapse
Affiliation(s)
- Debarchan Panda
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sunita Nayak
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
40
|
Krasnova O, Kovaleva A, Saveleva A, Kulakova K, Bystrova O, Martynova M, Domnina A, Sopova J, Neganova I. Mesenchymal stem cells lose the senescent phenotype under 3D cultivation. Stem Cell Res Ther 2023; 14:373. [PMID: 38111010 PMCID: PMC10729581 DOI: 10.1186/s13287-023-03599-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) cell culture is widely used in various fields of cell biology. In comparison to conventional two-dimensional (2D) cell culture, 3D cell culture facilitates a more accurate replication of the in vivo microenvironment, which is essential for obtaining more relevant results. The application of 3D cell culture techniques in regenerative medicine, particularly in mesenchymal stem cell (MSC)-based research, has been extensively studied. Many of these studies focus on the enhanced paracrine activity of MSCs cultured in 3D environments. However, few focus on the cellular processes that occur during 3D cultivation. METHODS In this work, we studied the changes occurring within 3D-cultured MSCs (3D-MSCs). Specifically, we examined the expression of numerous senescent-associated markers, the actin cytoskeleton structure, the architecture of the Golgi apparatus and the localization of mTOR, one of the main positive regulators of replicative senescence. In addition, we assessed whether the selective elimination of senescent cells occurs upon 3D culturing by using cell sorting based on autofluorescence. RESULTS Our findings indicate that 3D-MSCs were able to lose replicative senescence markers under 3D cell culture conditions. We observed changes in actin cytoskeleton structure, Golgi apparatus architecture and revealed that 3D cultivation leads to the nuclear localization of mTOR, resulting in a decrease in its active cytoplasmic form. Additionally, our findings provide evidence that 3D cell culture promotes the phenotypic reversion of senescent cell phenotype rather than their removal from the bulk population. CONCLUSION These novel insights into the biology of 3D-MSCs can be applied to research in regenerative medicine to overcome replicative senescence and MSC heterogeneity as they often pose significant concerns regarding safety and effectiveness for therapeutic purposes.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| | - A Kovaleva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A Saveleva
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - K Kulakova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - O Bystrova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - M Martynova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A Domnina
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - J Sopova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
41
|
Yasumura Y, Teshima T, Nagashima T, Michishita M, Takano T, Taira Y, Suzuki R, Matsumoto H. Immortalized Canine Adipose-Derived Mesenchymal Stem Cells Maintain the Immunomodulatory Capacity of the Original Primary Cells. Int J Mol Sci 2023; 24:17484. [PMID: 38139314 PMCID: PMC10743981 DOI: 10.3390/ijms242417484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising cell source for stem cell therapy of intractable diseases in veterinary medicine, but donor-dependent cellular heterogeneity is an issue that influences therapeutic efficacy. Thus, we previously established immortalized cells that maintain the fundamental properties of primary cells, but functional evaluation had not been performed. Therefore, we evaluated the immunomodulatory capacity of the immortalized canine adipose-derived MSCs (cADSCs) in vitro and in vivo to investigate whether they maintain primary cell functions. C57BL/6J mice were treated with dextran sulfate sodium (DSS) to induce colitis, injected intraperitoneally with immortalized or primary cADSCs on day 2 of DSS treatment, and observed for 10 days. Administration of immortalized cADSCs improved body weight loss and the disease activity index (DAI) in DSS-induced colitic mice by shifting peritoneal macrophage polarity from the M1 to M2 phenotype, suppressing T helper (Th) 1/Th17 cell responses and inducing regulatory T (Treg) cells. They also inhibited the proliferation of mouse and canine T cells in vitro. These immunomodulatory effects were comparable with primary cells. These results highlight the feasibility of our immortalized cADSCs as a cell source for stem cell therapy with stable therapeutic efficacy because they maintain the immunomodulatory capacity of primary cells.
Collapse
Affiliation(s)
- Yuyo Yasumura
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Takahiro Teshima
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | - Tomokazu Nagashima
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (T.N.); (M.M.)
| | - Masaki Michishita
- Laboratory of Veterinary Pathology, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (T.N.); (M.M.)
| | - Takashi Takano
- Laboratory of Veterinary Public Health, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan;
| | - Yoshiaki Taira
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Ryohei Suzuki
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| | - Hirotaka Matsumoto
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan; (Y.Y.); (Y.T.); (R.S.); (H.M.)
| |
Collapse
|
42
|
Sababathy M, Ramanathan G, Abd Rahaman NY, Ramasamy R, Biau FJ, Qi Hao DL, Hamid NFS. A 'one stone, two birds' approach with mesenchymal stem cells for acute respiratory distress syndrome and Type II diabetes mellitus. Regen Med 2023; 18:913-934. [PMID: 38111999 DOI: 10.2217/rme-2023-0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
This review explores the intricate relationship between acute respiratory distress syndrome (ARDS) and Type II diabetes mellitus (T2DM). It covers ARDS epidemiology, etiology and pathophysiology, along with current treatment trends and challenges. The lipopolysaccharides (LPS) role in ARDS and its association between non-communicable diseases and COVID-19 are discussed. The review highlights the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) for ARDS and T2DM, emphasizing their immunomodulatory effects. This review also underlines how T2DM exacerbates ARDS pathophysiology and discusses the potential of hUC-MSCs in modulating immune responses. In conclusion, the review highlights the multidisciplinary approach to managing ARDS and T2DM, focusing on inflammation, oxidative stress and potential therapy of hUC-MSCs in the future.
Collapse
Affiliation(s)
- Mogesh Sababathy
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ghayathri Ramanathan
- Faculty of Computer Science & Information Technology, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Yasmin Abd Rahaman
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines & Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Foo Jhi Biau
- Centre for Drug Discovery & Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor's University, Selangor, Subang Jaya, 47500, Malaysia
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Selangor, Subang Jaya, 47500, Malaysia
| | - Daniel Looi Qi Hao
- My Cytohealth Sdn. Bhd., 18-2, Jalan Radin Bagus 1, Bandar Seri Petaling, Kuala Lumpur, 57000, Malaysia
| | - Nur-Fazila Saulol Hamid
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines & Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
43
|
Altabas V, Marinković Radošević J, Špoljarec L, Uremović S, Bulum T. The Impact of Modern Anti-Diabetic Treatment on Endothelial Progenitor Cells. Biomedicines 2023; 11:3051. [PMID: 38002051 PMCID: PMC10669792 DOI: 10.3390/biomedicines11113051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is one of the leading chronic diseases globally with a significant impact on mortality. This condition is associated with chronic microvascular and macrovascular complications caused by vascular damage. Recently, endothelial progenitor cells (EPCs) raised interest due to their regenerative properties. EPCs are mononuclear cells that are derived from different tissues. Circulating EPCs contribute to regenerating the vessel's intima and restoring vascular function. The ability of EPCs to repair vascular damage depends on their number and functionality. Diabetic patients have a decreased circulating EPC count and impaired EPC function. This may at least partially explain the increased risk of diabetic complications, including the increased cardiovascular risk in these patients. Recent studies have confirmed that many currently available drugs with proven cardiovascular benefits have beneficial effects on EPC count and function. Among these drugs are also medications used to treat different types of diabetes. This manuscript aims to critically review currently available evidence about the ways anti-diabetic treatment affects EPC biology and to provide a broader context considering cardiovascular complications. The therapies that will be discussed include lifestyle adjustments, metformin, sulphonylureas, gut glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor analogs, sodium-glucose transporter 2 inhibitors, and insulin.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Marinković Radošević
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | - Lucija Špoljarec
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | | | - Tomislav Bulum
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
44
|
Boháč M, Ivanišová D, Strečanská M, Sekeľová T, Niko Fereje B, Smolinská V, Varchulová Nováková Z, Kuniaková M, Čeháková M, Čulenová M, Bernátová S, Mazreku M, Bevízová K, Nicodemou A, Zamborský R, Danišovič Ľ. Comparative Analysis of Somatic Stem Cells With Emphasis on Osteochondral Tissue Regeneration. Physiol Res 2023; 72:S299-S307. [PMID: 37888973 PMCID: PMC10669954 DOI: 10.33549/physiolres.935211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Congenital anomalies, diseases, and injuries may result in osteochondral damage. Recently, a big hope has been given to somatic stem cells (SSCs) which are characterized as undifferentiated cells with an ability of long-term self-renewing and plasticity. They are adherent with a fibroblast-like morphology in vitro and express various surface markers (e.g. CD29, CD73, CD90, and CD105), but they are negative for CD31, CD34, CD45, and HLA-DR. SSCs secrete various bioactive molecules, which are involved in processes of regeneration. The main goal of the present study was the characterization and comparison of biological properties of SSCs obtained from adipose tissue, dental pulp, and urine concerning osteochondral regeneration. SSCs were maintained in an appropriate growth medium up to the third passage and were analyzed by light and electron microscope. The immunophenotype was analyzed by flow cytometry. The kinetics of proliferation was measured by MTT assay. Human Cytokine/Chemokine Multiplex Assay was used, and SSCs secretory profile was measured by Luminex MAGPIX® Instrument. Pellet cultures and a chondrogenic medium were used to induce chondrogenic differentiation. Osteogenic differentiation was induced by the osteogenic medium. Chondrogenic and osteogenic differentiation was analyzed by real-time PCR. SSCs had similar fibroblast-like morphology. They have similar kinetics of proliferation. SSCs shared the expression CD29, CD44, CD73, CD90, and CD105. They lack expression of CD29 and CD34. SSCs secerned similar levels of IL10 and IL18 while differing in IFN-gamma, IL6, IL8, MCP-1, and RANTES production. SSCs possess a similar capacity for chondrogenic differentiation but slightly differ in osteogenic differentiation. In conclusion, it can be emphasized that SSCs from adipose tissue, dental pulp, and urine share the majority of cellular characteristics typical for SSCs and have great potential to be used in osteochondral tissue regeneration.
Collapse
Affiliation(s)
- M Boháč
- Regenmed Ltd., Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang X, Ouyang L, Chen W, Cao Y, Zhang L. Efficient expansion and delayed senescence of hUC-MSCs by microcarrier-bioreactor system. Stem Cell Res Ther 2023; 14:284. [PMID: 37794520 PMCID: PMC10552362 DOI: 10.1186/s13287-023-03514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUC-MSCs) are widely used in cell therapy due to their robust immunomodulatory and tissue regenerative capabilities. Currently, the predominant method for obtaining hUC-MSCs for clinical use is through planar culture expansion, which presents several limitations. Specifically, continuous cell passaging can lead to cellular aging, susceptibility to contamination, and an absence of process monitoring and control, among other limitations. To overcome these challenges, the technology of microcarrier-bioreactor culture was developed with the aim of ensuring the therapeutic efficacy of cells while enabling large-scale expansion to meet clinical requirements. However, there is still a knowledge gap regarding the comparison of biological differences in cells obtained through different culture methods. METHODS We developed a culture process for hUC-MSCs using self-made microcarrier and stirred bioreactor. This study systematically compares the biological properties of hUC-MSCs amplified through planar culture and microcarrier-bioreactor systems. Additionally, RNA-seq was employed to compare the differences in gene expression profiles between the two cultures, facilitating the identification of pathways and genes associated with cell aging. RESULTS The findings revealed that hUC-MSCs expanded on microcarriers exhibited a lower degree of cellular aging compared to those expanded through planar culture. Additionally, these microcarrier-expanded hUC-MSCs showed an enhanced proliferation capacity and a reduced number of cells in the cell cycle retardation period. Moreover, bioreactor-cultured cells differ significantly from planar cultures in the expression of genes associated with the cytoskeleton and extracellular matrix. CONCLUSIONS The results of this study demonstrate that our microcarrier-bioreactor culture method enhances the proliferation efficiency of hUC-MSCs. Moreover, this culture method exhibits the potential to delay the process of cell aging while preserving the essential stem cell properties of hUC-MSCs.
Collapse
Affiliation(s)
- Xia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wenxia Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yulin Cao
- Beijing Tang Yi Hui Kang Biomedical Technology Co., LTD, Beijing, 100032, People's Republic of China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
46
|
Zhou AK, Jou E, Lu V, Zhang J, Chabra S, Abishek J, Wong E, Zeng X, Guo B. Using Pre-Clinical Studies to Explore the Potential Clinical Uses of Exosomes Secreted from Induced Pluripotent Stem Cell-Derived Mesenchymal Stem cells. Tissue Eng Regen Med 2023; 20:793-809. [PMID: 37651091 PMCID: PMC10519927 DOI: 10.1007/s13770-023-00557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent studies of exosomes derived from mesenchymal stem cells (MSCs) have indicated high potential clinical applications in many diseases. However, the limited source of MSCs impedes their clinical research and application. Most recently, induced pluripotent stem cells (iPSCs) have become a promising source of MSCs. Exosome therapy based on iPSC-derived MSCs (iMSCs) is a novel technique with much of its therapeutic potential untapped. Compared to MSCs, iMSCs have proved superior in cell proliferation, immunomodulation, generation of exosomes capable of controlling the microenvironment, and bioactive paracrine factor secretion, while also theoretically eliminating the dependence on immunosuppression drugs. The therapeutic effects of iMSC-derived exosomes are explored in many diseases and are best studied in wound healing, cardiovascular disease, and musculoskeletal pathology. It is pertinent clinicians have a strong understanding of stem cell therapy and the latest advances that will eventually translate into clinical practice. In this review, we discuss the various applications of exosomes derived from iMSCs in clinical medicine.
Collapse
Affiliation(s)
- Andrew Kailin Zhou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- Watford General Hospital, London, UK
| | - Eric Jou
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Victor Lu
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - James Zhang
- Addenbrookes Major Trauma Unit, Department of Trauma And Orthopaedics, Cambridge University Hospitals, Cambridge, UK
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | - Shirom Chabra
- School Of Clinical Medicine, University Of Cambridge, Cambridge, UK
| | | | | | - Xianwei Zeng
- Beijing Rehabilitation Hospital Affiliated to National Research Centre for Rehabilitation Technical Aids, Ministry of Civil Affairs of China, Beijing, China.
- Weifang People's Hospital, Weifang City, Shandong Province, China.
| | - Baoqiang Guo
- Department of Life Science, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
47
|
Moosazadeh Moghaddam M, Fazel P, Fallah A, Sedighian H, Kachuei R, Behzadi E, Imani Fooladi AA. Host and Pathogen-Directed Therapies against Microbial Infections Using Exosome- and Antimicrobial Peptide-derived Stem Cells with a Special look at Pulmonary Infections and Sepsis. Stem Cell Rev Rep 2023; 19:2166-2191. [PMID: 37495772 DOI: 10.1007/s12015-023-10594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Microbial diseases are a great threat to global health and cause considerable mortality and extensive economic losses each year. The medications for treating this group of diseases (antibiotics, antiviral, antifungal drugs, etc.) directly attack the pathogenic agents by recognizing the target molecules. However, it is necessary to note that excessive use of any of these drugs can lead to an increase in microbial resistance and infectious diseases. New therapeutic methods have been studied recently using emerging drugs such as mesenchymal stem cell-derived exosomes (MSC-Exos) and antimicrobial peptides (AMPs), which act based on two completely different strategies against pathogens including Host-Directed Therapy (HDT) and Pathogen-Directed Therapy (PDT), respectively. In the PDT approach, AMPs interact directly with pathogens to interrupt their intrusion, survival, and proliferation. These drugs interact directly with the cell membrane or intracellular components of pathogens and cause the death of pathogens or inhibit their replication. The mechanism of action of MSC-Exos in HDT is based on immunomodulation and regulation, promotion of tissue regeneration, and reduced host toxicity. This review studies the potential of mesenchymal stem cell-derived exosomes/ATPs therapeutic properties against microbial infectious diseases especially pulmonary infections and sepsis.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Parvindokht Fazel
- Department of Microbiology, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
| | - Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Babaahmadi M, Tayebi B, Gholipour NM, Kamardi MT, Heidari S, Baharvand H, Eslaminejad MB, Hajizadeh-Saffar E, Hassani SN. Rheumatoid arthritis: the old issue, the new therapeutic approach. Stem Cell Res Ther 2023; 14:268. [PMID: 37741991 PMCID: PMC10518102 DOI: 10.1186/s13287-023-03473-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/24/2023] [Indexed: 09/25/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease of unknown etiology. The most common form of this disease is chronic inflammatory arthritis, which begins with inflammation of the synovial membrane of the affected joints and eventually leads to disability of the affected limb. Despite significant advances in RA pharmaceutical therapies and the availability of a variety of medicines on the market, none of the available medicinal therapies has been able to completely cure the disease. In addition, a significant percentage (30-40%) of patients do not respond appropriately to any of the available medicines. Recently, mesenchymal stromal cells (MSCs) have shown promising results in controlling inflammatory and autoimmune diseases, including RA. Experimental studies and clinical trials have demonstrated the high power of MSCs in modulating the immune system. In this article, we first examine the mechanism of RA disease, the role of cytokines and existing medicinal therapies. We then discuss the immunomodulatory function of MSCs from different perspectives. Our understanding of how MSCs work in suppressing the immune system will lead to better utilization of these cells as a promising tool in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Mahnaz Babaahmadi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Behnoosh Tayebi
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Nima Makvand Gholipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Mehrnaz Tayebi Kamardi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Sahel Heidari
- Department of Immunology, School of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat Highway, P.O. Box: 16635-148, Tehran, 1665659911, Iran.
| |
Collapse
|
49
|
Vargas-Rodríguez P, Cuenca-Martagón A, Castillo-González J, Serrano-Martínez I, Luque RM, Delgado M, González-Rey E. Novel Therapeutic Opportunities for Neurodegenerative Diseases with Mesenchymal Stem Cells: The Focus on Modulating the Blood-Brain Barrier. Int J Mol Sci 2023; 24:14117. [PMID: 37762420 PMCID: PMC10531435 DOI: 10.3390/ijms241814117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegenerative disorders encompass a broad spectrum of profoundly disabling situations that impact millions of individuals globally. While their underlying causes and pathophysiology display considerable diversity and remain incompletely understood, a mounting body of evidence indicates that the disruption of blood-brain barrier (BBB) permeability, resulting in brain damage and neuroinflammation, is a common feature among them. Consequently, targeting the BBB has emerged as an innovative therapeutic strategy for addressing neurological disorders. Within this review, we not only explore the neuroprotective, neurotrophic, and immunomodulatory benefits of mesenchymal stem cells (MSCs) in combating neurodegeneration but also delve into their recent role in modulating the BBB. We will investigate the cellular and molecular mechanisms through which MSC treatment impacts primary age-related neurological conditions like Alzheimer's disease, Parkinson's disease, and stroke, as well as immune-mediated diseases such as multiple sclerosis. Our focus will center on how MSCs participate in the modulation of cell transporters, matrix remodeling, stabilization of cell-junction components, and restoration of BBB network integrity in these pathological contexts.
Collapse
Affiliation(s)
- Pablo Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Alejandro Cuenca-Martagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
| | - Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.C.-M.); (R.M.L.)
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004 Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004 Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004 Cordoba, Spain
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016 Granada, Spain; (P.V.-R.); (J.C.-G.); (I.S.-M.); (M.D.)
| |
Collapse
|
50
|
Thamm OC, Eschborn J, Zimmermann L, Dekker C, Martin H, Brockmann M, Zinser MJ, Fuchs PC. Sublesional fat grafting leads to a temporary improvement of wound healing in chronic leg ulcers: A prospective, randomised clinical trial. Wound Repair Regen 2023; 31:663-670. [PMID: 37534628 DOI: 10.1111/wrr.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Chronic wounds remain a therapeutic and financial challenge for physicians and the health care systems. Innovative, inexpensive and effective treatment methods would be of immense value. The sublesional fat grafting could be such treatment, although effectiveness and safety have only been assessed in a few randomised clinical trials. The fat graft was obtained by liposuction, washed with the Coleman method and then injected sublesional and into the wound margins after surgical debridement. For the control group, saline solution was used instead of fat. The primary endpoint was to determine the wound size reduction in both groups. The wounds were measured preoperatively, intraoperatively and 3, 7, 21 and 60 days after the intervention. A p-value of <0.05 was considered significant. Furthermore, histology and microbiology of the wounds and pain were assessed. A temporary effect of the treatment was observed after 14 and 21 days. The wound size reduction was significantly larger in the intervention group, whereas after 60 days, no significant difference was detected between both groups. No adverse events could be reported and the pain level was almost equal in the control and intervention group. Sublesional fat grafting temporarily enhanced healing of chronic wounds. The procedure was safe and the pain level was low. Repeated interventions could lead to complete wound closure, which should be determined in future studies.
Collapse
Affiliation(s)
- Oliver C Thamm
- Clinic for Plastic and Reconstructive Surgery, Helios Hospital Berlin-Buch, Berlin, Germany
- Clinic for Plastic- and Reconstructive Surgery, Hand Surgery, Burn Care Center, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| | - Johannes Eschborn
- Clinic for Plastic and Reconstructive Surgery, Helios Hospital Berlin-Buch, Berlin, Germany
- Clinic for Plastic- and Reconstructive Surgery, Hand Surgery, Burn Care Center, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| | - Lucas Zimmermann
- Clinic for Orthopedic and Spinal Surgery, Berit Clinic, Speicher, Switzerland
| | - Clara Dekker
- Clinic for Cardiology, Electrophysiology and Rhytmology, Hospital Porz am Rhein, Cologne, Germany
| | - Hubert Martin
- Institute for Neuropathology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brockmann
- Institute for Pathology, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| | - Max J Zinser
- Department for Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, University Hospital of Cologne, Cologne, Germany
| | - Paul C Fuchs
- Clinic for Plastic- and Reconstructive Surgery, Hand Surgery, Burn Care Center, University Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| |
Collapse
|