1
|
Luo C, Li X, Yan H, Guo Q, Liu J, Li Y. Iron oxide nanoparticles induce ferroptosis under mild oxidative stress in vitro. Sci Rep 2024; 14:31383. [PMID: 39733146 DOI: 10.1038/s41598-024-82917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes. However, the specific attributes of individual cells are frequently disregarded, particularly under the oxidative stress conditions. This may result in an underestimation of potential risk and impede the clinical translation of IONPs. The present study thus sought to evaluate the potential cytotoxicity and underlying mechanisms of IONPs in a pathological state characterized by mild oxidative stress. A cell model of mild oxidative stress was initially established in vitro. Subsequently, a series of indicators, including cell viability, live/dead ratio, mitochondrial membrane potential, and oxidative damage, were measured to assess the cytotoxicity of IONPs. Finally, a series of ferroptosis regulators were used to elucidate the involvement of ferroptosis. Preincubation with IONPs resulted in a significant reduction in cellular viability, morphological degeneration, elevated numbers of dead cells, impaired mitochondrial function, and increased oxidative damage under mild oxidative stress conditions in vitro. The cytotoxic effects of IONPs under mild oxidative stress are largely dependent on ROS and iron ions and are strongly associated with ferroptosis, which is based on the effects of ferroptosis regulators. The present in vitro study indicated that IONPs are toxic to cells under mild oxidative stress, which is linked to ferroptosis.
Collapse
Affiliation(s)
- Cheng Luo
- School of Medicine, Yichun University, Yichun, 336000, China
| | - Xuying Li
- School of Medicine, Yichun University, Yichun, 336000, China
| | - Hongyang Yan
- School of Medicine, Yichun University, Yichun, 336000, China
| | - Qitao Guo
- School of Medicine, Yichun University, Yichun, 336000, China
| | - Jiarong Liu
- School of Medicine, Yichun University, Yichun, 336000, China
| | - Yan Li
- School of Medicine, Yichun University, Yichun, 336000, China.
| |
Collapse
|
2
|
Yassin MT, Al-Otibi FO, Al-Sahli SA, El-Wetidy MS, Mohamed S. Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities. Cancers (Basel) 2024; 16:4234. [PMID: 39766133 PMCID: PMC11674168 DOI: 10.3390/cancers16244234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer remains a predominant global health concern, necessitating effective treatment options. Conventional cancer therapies, particularly chemotherapy, often face constraints such as low selectivity, insufficient solubility, and multidrug resistance (MDR), which diminish effectiveness and exacerbate negative effects. Metal oxide nanoparticles (MONPs), such as iron oxide, zinc oxide, and copper oxide, offer a promising solution by enhancing targeted drug delivery, reducing systemic toxicity, and mitigating chemotherapy-induced disabilities like neurotoxicity and cardiotoxicity. Nanocarriers conjugated with drugs can improve drug delivery within the body and enhance their circulation in the bloodstream. Recent advancements in MONP synthesis and functionalization have further improved their stability and drug-loading capacity, making them a valuable tool in cancer treatment. MONPs have distinctive physicochemical characteristics, enabling better imaging, drug encapsulation, and targeted medication delivery to cancerous cells. These nanocarriers enhance treatment effectiveness through focused and controlled drug release, reducing off-target effects and addressing drug resistance. This review aims to explore the potential of MONPs as efficient nanocarriers for anticancer drugs, addressing limitations of traditional chemotherapy such as poor specificity, systemic toxicity, and drug resistance. Additionally, the review discusses recent advancements in MONP synthesis and functionalization, which enhance their stability, drug-loading capacity, and compatibility.
Collapse
Affiliation(s)
- Mohamed Taha Yassin
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.O.A.-O.); (S.A.A.-S.)
- King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia
| | - Fatimah O. Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.O.A.-O.); (S.A.A.-S.)
| | - Sarah A. Al-Sahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.O.A.-O.); (S.A.A.-S.)
| | - Mohammad S. El-Wetidy
- College of Medicine Research Center, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sara Mohamed
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
3
|
Yao S, Ouyang S, Zhou Q, Tao Z, Chen Y, Zheng T. Environmental remediation and sustainable design of iron oxide nanoparticles for removal of petroleum-derived pollutants from water: A critical review. ENVIRONMENTAL RESEARCH 2024; 263:120009. [PMID: 39284490 DOI: 10.1016/j.envres.2024.120009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
The global problem of major oil spills not only generates crude oil pollution, but produces many derivatives that pose ecological and human health challenges. While extensive research has focused on understanding the types of these contaminants, their transport modes, detection techniques, and ecotoxicological impacts, there are still significant research gaps in mechanisms for removal of petroleum-derived pollutants by iron oxide nanoparticles (IONPs). This work summarizes systematically the types and green synthesis of IONPs for the environmental remediation of various petroleum contaminants. We also provide comprehensive coverage of the excellent removal capacity and latest environmental remediation of IONPs-based materials (e.g., pristine, modified, or porous-supported IONPs materials) for the removal of petroleum-derived pollutants, potential interaction mechanisms (e.g., adsorption, photocatalytic oxidation, and synergistic biodegradation). A sustainable framework was highlighted in depth based on a careful assessment of the environmental impacts, associated hazards, and economic viability. Finally, the review provides an possible improvements of IONPs for petroleum-derived pollutants remediation and sustainable design on future prospect. In the current global environment of pollution reduction and carbon reduction, this information is very important for researchers to synthesize and screen suitable IONPs for the control and eradication of future petroleum-based pollutants with low environmental impact.
Collapse
Affiliation(s)
- Shuli Yao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yun Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
4
|
Khan AU, Qutob M, Gacem A, Rafatullah M, Yadav KK, Kumar P, Bhutto JK, Rehman M, Bansoid S, Eltayeb LB, Malik N, Ali MA, Alreshidi MA, Alam MW. Investigation of a broad diversity of nanoparticles, including their processes, as well as toxicity testing in diverse organs and systems. Toxicology 2024; 509:153985. [PMID: 39510373 DOI: 10.1016/j.tox.2024.153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Nanotechnology arising in wide-ranging areas, covers extensively different ranges of approaches attained from fields such as biology, chemistry, physics, and medicine engineering. Nanoparticles are a necessary part of nanotechnology effectually applied in the cure of a number of diseases. Nanoparticles have gained significant importance due to their unique properties, which differ from their bulk counterparts. These distinct properties of nanoparticles are primarily influenced by their morphology, size, and size distribution. At the nanoscale, nanoparticles exhibit behaviours that can enhance therapeutic efficacy and reduce drug toxicity. Their small size and large surface area make them promising candidates for applications such as targeted drug delivery, where they can improve treatment outcomes while minimizing adverse effects. The harmful effects of nanoparticles on the environment were critically investigated to obtain appropriate results and reduce the risk by incorporating the materials. Nanoparticles tend to penetrate the human body, clear the biological barriers to reach sensitive organs and are easily incorporated into human tissue, as well as dispersing to the hepatic tissues, heart tissues, encephalum, and GI tract. This study aims to examine a wide variety of nanoparticles, focusing on their manufacturing methods, functional characteristics, and interactions within biological systems. Particular attention will be directed towards assessing the toxicity of nanoparticles in different organs and physiological systems, yielding a thorough comprehension of their potential health hazards and the processes that drive nanoparticle-induced toxicity. This analysis will also emphasize recent developments in nanoparticle applications and safety assessment methodologies.
Collapse
Affiliation(s)
- Azhar U Khan
- School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Mohammad Qutob
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Mohd Rafatullah
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Krishna Kumar Yadav
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar, Iraq.
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Meenal Rehman
- School of Life and Basic Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Sudhakar Bansoid
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University, Al-Kharj, Riyadh 11942, Saudi Arabia
| | - Nazia Malik
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammed Azam Ali
- Department of Mechanical Engineering King Khalid University, Saudi Arabia
| | | | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| |
Collapse
|
5
|
Wu K, Wang JP, Natekar NA, Ciannella S, González-Fernández C, Gomez-Pastora J, Bao Y, Liu J, Liang S, Wu X, Nguyen T Tran L, Mercedes Paz González K, Choe H, Strayer J, Iyer PR, Chalmers J, Chugh VK, Rezaei B, Mostufa S, Tay ZW, Saayujya C, Huynh Q, Bryan J, Kuo R, Yu E, Chandrasekharan P, Fellows B, Conolly S, Hadimani RL, El-Gendy AA, Saha R, Broomhall TJ, Wright AL, Rotherham M, El Haj AJ, Wang Z, Liang J, Abad-Díaz-de-Cerio A, Gandarias L, Gubieda AG, García-Prieto A, Fdez-Gubieda ML. Roadmap on magnetic nanoparticles in nanomedicine. NANOTECHNOLOGY 2024; 36:042003. [PMID: 39395441 PMCID: PMC11539342 DOI: 10.1088/1361-6528/ad8626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 10/12/2024] [Indexed: 10/14/2024]
Abstract
Magnetic nanoparticles (MNPs) represent a class of small particles typically with diameters ranging from 1 to 100 nanometers. These nanoparticles are composed of magnetic materials such as iron, cobalt, nickel, or their alloys. The nanoscale size of MNPs gives them unique physicochemical (physical and chemical) properties not found in their bulk counterparts. Their versatile nature and unique magnetic behavior make them valuable in a wide range of scientific, medical, and technological fields. Over the past decade, there has been a significant surge in MNP-based applications spanning biomedical uses, environmental remediation, data storage, energy storage, and catalysis. Given their magnetic nature and small size, MNPs can be manipulated and guided using external magnetic fields. This characteristic is harnessed in biomedical applications, where these nanoparticles can be directed to specific targets in the body for imaging, drug delivery, or hyperthermia treatment. Herein, this roadmap offers an overview of the current status, challenges, and advancements in various facets of MNPs. It covers magnetic properties, synthesis, functionalization, characterization, and biomedical applications such as sample enrichment, bioassays, imaging, hyperthermia, neuromodulation, tissue engineering, and drug/gene delivery. However, as MNPs are increasingly explored forin vivoapplications, concerns have emerged regarding their cytotoxicity, cellular uptake, and degradation, prompting attention from both researchers and clinicians. This roadmap aims to provide a comprehensive perspective on the evolving landscape of MNP research.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
- Department of Chemical and Biomolecular Engineering, University of Cantabria, Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Yuping Bao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, United States of America
| | - Jinming Liu
- Western Digital Corporation, San Jose, CA, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States of America
| | - Xian Wu
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Linh Nguyen T Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, United States of America
| | | | - Hyeon Choe
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jacob Strayer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Poornima Ramesh Iyer
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeffrey Chalmers
- William G Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Vinit Kumar Chugh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States of America
| | - Zhi Wei Tay
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute, Tsukuba, Ibaraki 305-8564, Japan
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
| | - Jacob Bryan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Renesmee Kuo
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Elaine Yu
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Prashant Chandrasekharan
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | | | - Steven Conolly
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, United States of America
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Ravi L Hadimani
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States of America
| | - Ahmed A El-Gendy
- Department of Physics, University of Texas at El Paso, El Paso, TX, United States of America
| | - Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Thomas J Broomhall
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Abigail L Wright
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Rotherham
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Institute of Translational Medicine, Birmingham, United Kingdom
| | - Zhiyi Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jiarong Liang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ana Abad-Díaz-de-Cerio
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Lucía Gandarias
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA—UMR 7265, Saint-Paul-lez-Durance, France
- Dpto. Electricidad y Electrónica, Universidad del País Vasco—UPV/EHU, Leioa, Spain
| | - Alicia G Gubieda
- Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco–UPV/EHU, Leioa, Spain
| | - Ana García-Prieto
- Dpto. Física Aplicada, Universidad del País Vasco–UPV/EHU, Bilbao, Spain
| | | |
Collapse
|
6
|
Shah DD, Chorawala MR, Mansuri MKA, Parekh PS, Singh S, Prajapati BG. Biogenic metallic nanoparticles: from green synthesis to clinical translation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8603-8631. [PMID: 38935128 DOI: 10.1007/s00210-024-03236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Biogenic metallic nanoparticles (NPs) have garnered significant attention in recent years due to their unique properties and various applications in different fields. NPs, including gold, silver, zinc oxide, copper, titanium, and magnesium oxide NPs, have attracted considerable interest. Green synthesis approaches, utilizing natural products, offer advantages such as sustainability and environmental friendliness. The theranostics applications of these NPs hold immense significance in the fields of medicine and diagnostics. The review explores intricate cellular uptake pathways, internalization dynamics, reactive oxygen species generation, and ensuing inflammatory responses, shedding light on the intricate mechanisms governing their behaviour at a molecular level. Intriguingly, biogenic metallic NPs exhibit a wide array of applications in medicine, including but not limited to anti-inflammatory, anticancer, anti-diabetic, anti-plasmodial, antiviral properties and radical scavenging efficacy. Their potential in personalized medicine stands out, with a focus on tailoring treatments to individual patients based on these NPs' unique attributes and targeted delivery capabilities. The article culminates in emphasizing the role of biogenic metallic NPs in shaping the landscape of personalized medicine. Harnessing their unique properties for tailored therapeutics, diagnostics and targeted interventions, these NPs pave the way for a paradigm shift in healthcare, promising enhanced efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Mohammad Kaif A Mansuri
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Sudarshan Singh
- Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
7
|
Amraee A, Sarikhani A, Darvish L, Alamzadeh Z, Irajirad R, Mahdavi SR. Curcumin Coated Ultra-Small Iron Oxide Nanoparticles as T 1 Contrast Agents for Magnetic Resonance Imaging of Cancer Cells. J Biomed Phys Eng 2024; 14:447-456. [PMID: 39391281 PMCID: PMC11462277 DOI: 10.31661/jbpe.v0i0.2201-1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/20/2022] [Indexed: 10/12/2024]
Abstract
Background The application of nanotechnology in the molecular diagnosis and treatment of cancer is essential. Objective This study aimed to investigate the influence of curcumin-coated ultra-small superparamagnetic iron oxide (USPIO) as a T1 contrast agent in Magnetic Resonance Imaging (MRI). Material and Methods In this experimental study, the influence of curcumin-coated USPIO (Fe3O4@C) on the diagnosis of the cancer cell line was investigated. After synthesis, characterization, and relaxation of Fe3O4@C, the contrast changes in T1-weight MRI to mouse colon carcinoma 26 cell line were evaluated in vitro. Results Fe3O4@C nanoparticles (NPs) are good at imaging; based on a relaxometry test, the r1 and r2 relaxivities of Dotarem were 3.139 and 0.603 mM-1s-1, respectively. Additionally, the r1 and r2 relaxivities of Fe3O4@C were 3.792 and 1.3 mM-1s-1, respectively, with the rate of 2.155 of r2/r1 NPs. Conclusion The NPs can be identified as a positive contrast agent with a weight of T1 in MRI. The coresh-ell Fe3O4@C NPs can be effective in cancer treatment and diagnosis because of the therapeutic effects of curcumin and the properties of USPIO.
Collapse
Affiliation(s)
- Azadeh Amraee
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alamzadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Irajirad
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
9
|
Blasiak B, MacDonald D, Jasiński K, Cheng FY, Tomanek B. Application of H 2N-Fe 3O 4 Nanoparticles for Prostate Cancer Magnetic Resonance Imaging in an Animal Model. Int J Mol Sci 2024; 25:10334. [PMID: 39408664 PMCID: PMC11477031 DOI: 10.3390/ijms251910334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This paper presents the efficacy of a contrast agent based on H2N-Fe3O4 nanoparticles for the detection of prostate cancer in an animal model using a preclinical 9.4 T MRI system. The relaxivities r1 and r2 of the nanoparticles were 6.31 mM-1s-1 and 8.33 mM-1s-1, respectively. Nanoparticles injected in a concentration of 2 mg Fe/mL decreased the tumor-relative T1 relaxation across all animals from 100 to 76 ± 26, 85 ± 27, 89 ± 20, and 97 ± 16 12 min 1 h, 2 h, and 24 h post injection, respectively. The corresponding T1 decrease in muscle tissues was 90 ± 20, 94 ± 23, 99 ± 12, and 99 ± 14. The relative T2 changes in the tumor were 82 ± 17, 89 ± 19, 97 ± 14, and 99 ± 8 12 min, 1 h, 2 h, and 24 h post injection, respectively, while, for muscle tissues, these values were 95 ± 11, 95 ± 8, 97 ± 6, and 95 ± 10 at the corresponding time points. The differences in the relative T1 and T2 were only significant 12 min after injection (p < 0.05), although a decrease was visible at each time point, but it was statistically insignificant (p > 0.05). The results showed the potential application of H2N-Fe3O4 nanoparticles as contrast agents for enhanced prostate cancer MRI.
Collapse
Affiliation(s)
- Barbara Blasiak
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - David MacDonald
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - Krzysztof Jasiński
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Boguslaw Tomanek
- The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; (D.M.); (K.J.); (B.T.)
- Division of Medical Physics, Department of Oncology, University of Alberta, 8303 112 St. NW, Edmonton, AB T6G 2T4, Canada
| |
Collapse
|
10
|
Patri S, Thanh NTK, Kamaly N. Magnetic iron oxide nanogels for combined hyperthermia and drug delivery for cancer treatment. NANOSCALE 2024; 16:15446-15464. [PMID: 39113663 DOI: 10.1039/d4nr02058h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Hyperthermia and chemotherapy represent potential modalities for cancer treatments. However, hyperthermia can be invasive, while chemotherapy drugs often have severe side effects. Recent clinical investigations have underscored the potential synergistic efficacy of combining hyperthermia with chemotherapy, leading to enhanced cancer cell killing. In this context, magnetic iron oxide nanogels have emerged as promising candidates as they can integrate superparamagnetic iron oxide nanoparticles (IONPs), providing the requisite magnetism for magnetic hyperthermia, with the nanogel scaffold facilitating smart drug delivery. This review provides an overview of the synthetic methodologies employed in fabricating magnetic nanogels. Key properties and designs of these nanogels are discussed and challenges for their translation to the clinic and the market are summarised.
Collapse
Affiliation(s)
- Sofia Patri
- Department of Materials, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK.
- Biophysic Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, UK.
| |
Collapse
|
11
|
Zhang TG, Miao CY. Iron Oxide Nanoparticles as Promising Antibacterial Agents of New Generation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1311. [PMID: 39120416 PMCID: PMC11314400 DOI: 10.3390/nano14151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Antimicrobial resistance (AMR) is growing into a major public health crisis worldwide. The reducing alternatives to conventional agents starve for novel antimicrobial agents. Due to their unique magnetic properties and excellent biocompatibility, iron oxide nanoparticles (IONPs) are the most preferable nanomaterials in biomedicine, including antibacterial therapy, primarily through reactive oxygen species (ROS) production. IONP characteristics, including their size, shape, surface charge, and superparamagnetism, influence their biodistribution and antibacterial activity. External magnetic fields, foreign metal doping, and surface, size, and shape modification improve the antibacterial effect of IONPs. Despite a few disadvantages, IONPs are expected to be promising antibacterial agents of a new generation.
Collapse
Affiliation(s)
- Tian-Guang Zhang
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Xu H, Yu P, Bandari RP, Smith CJ, Aro MR, Singh A, Ma L. Bimodal MRI/Fluorescence Nanoparticle Imaging Contrast Agent Targeting Prostate Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1177. [PMID: 39057854 PMCID: PMC11279443 DOI: 10.3390/nano14141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
We developed a novel site-specific bimodal MRI/fluorescence nanoparticle contrast agent targeting gastrin-releasing peptide receptors (GRPrs), which are overexpressed in aggressive prostate cancers. Biocompatible ultra-small superparamagnetic iron oxide (USPIO) nanoparticles were synthesized using glucose and casein coatings, followed by conjugation with a Cy7.5-K-8AOC-BBN [7-14] peptide conjugate. The resulting USPIO(Cy7.5)-BBN nanoparticles were purified by 100 kDa membrane dialysis and fully characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, and magnetic resonance imaging (MRI) relaxivity, as well as evaluated for in vitro and in vivo binding specificity and imaging efficacy in PC-3 prostate cancer cells and xenografted tumor-bearing mice. The USPIO(Cy7.5)-BBN nanoparticles had a core diameter of 4.93 ± 0.31 nm and a hydrodynamic diameter of 35.56 ± 0.58 nm. The r2 relaxivity was measured to be 70.2 ± 2.5 s-1 mM-1 at 7T MRI. The Cy7.5-K-8AOC-BBN [7-14] peptide-to-nanoparticle ratio was determined to be 21:1. The in vitro GRPr inhibitory binding (IC50) value was 2.5 ± 0.7 nM, indicating a very high binding affinity of USPIO(Cy7.5)-BBN to the GRPr on PC-3 cells. In vivo MRI showed significant tumor-to-muscle contrast enhancement in the uptake group at 4 h (31.1 ± 3.4%) and 24 h (25.7 ± 2.1%) post-injection compared to the blocking group (4 h: 15.3 ± 2.0% and 24 h: -2.8 ± 6.8%; p < 0.005). In vivo and ex vivo near-infrared fluorescence (NIRF) imaging revealed significantly increased fluorescence in tumors in the uptake group compared to the blocking group. These findings demonstrate the high specificity of bimodal USPIO(Cy7.5)-BBN nanoparticles towards GRPr-expressing PC-3 cells, suggesting their potential for targeted imaging in aggressive prostate cancer.
Collapse
Affiliation(s)
- Hang Xu
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Department of Chemical Engineering Graduate Program, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| | - Ping Yu
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Rajendra P. Bandari
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| | - Charles J. Smith
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
- University of Missouri Research Reactor (MURR), University of Missouri, Columbia, MO 65211, USA
| | - Michael R. Aro
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| | - Amolak Singh
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
| | - Lixin Ma
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Veterans’ Memorial Hospital, Columbia, MO 65201, USA
| |
Collapse
|
13
|
Ju H, Liu Y, Wang Y, Lu R, Yang B, Wang D, Wang J. The cellular response and molecular mechanism of superoxide dismutase interacting with superparamagnetic iron oxide nanoparticles. NANOIMPACT 2024; 35:100515. [PMID: 38857755 DOI: 10.1016/j.impact.2024.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
This study explored the response of superoxide dismutase (SOD) under superparamagnetic iron oxide nanoparticles (SPIONs)-induced oxidative stress using combined cellular and molecular methods. Results found that SPIONs induced the inhibition of catalase activity, the U-inverted change of SOD activity and the accumulation of reactive oxygen species (ROS), leading to oxidative damage and cytotoxicity. The change of intracellular SOD activity was resulted from the increase of molecular activity induced by directly interacting with SPIONs and ROS-inhibition of activity. The increase of molecular activity could be attributed to the structural and conformational changes of SOD, which were caused by the direct interaction of SOD with SPIONs. The SOD-SPIONs interaction and its interacting mechanism were explored by multi-spectroscopy, isothermal titration calorimetry and zeta potential assays. SOD binds to SPIONs majorly via hydrophobic forces with the involvement of electrostatic forces. SPIONs approximately adsorb 11 units of SOD molecule with the binding affinity of 2.99 × 106 M-1. The binding sites on SOD were located around Tyr residues, whose hydrophilicity increased upon interacting with SPIONs. The binding to SPIONs loosened the peptide chains, changed the secondary structure and reduced the aggregation state of SOD.
Collapse
Affiliation(s)
- Hao Ju
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Yue Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Yameng Wang
- Chinese Academy for Environmental Planning, Building 1, No. 15, Shixing Street, Shijingshan District, Beijing 100041, PR China
| | - Rui Lu
- Test Experiment Center, Shandong Institute of Space Electronic Technology, 513# Hangtian Road, Yantai 264670, PR China
| | - Bin Yang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Deyi Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| | - Jing Wang
- School of Environmental and Material Engineering, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
14
|
Choudhury S, Joshi A, Baghel VS, Ananthasuresh GK, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Design-encoded dual shape-morphing and shape-memory in 4D printed polymer parts toward cellularized vascular grafts. J Mater Chem B 2024; 12:5678-5689. [PMID: 38747702 DOI: 10.1039/d4tb00437j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Current additive manufacturing technologies wherein as-printed simple two-dimensional (2D) structures morph into complex tissue mimetic three-dimensional (3D) shapes are limited to multi-material hydrogel systems, which necessitates multiple fabrication steps and specific materials. This work utilizes a single shape memory thermoplastic polymer (SMP), PLMC (polylactide-co-trimethylene carbonate), to achieve programmable shape deformation through anisotropic design and infill angles encoded during 3D printing. The shape changes were first computationally predicted through finite element analysis (FEA) simulations and then experimentally validated through quantitative correlation. Rectangular 2D sheets could self-roll into complete hollow tubes of specific diameters (ranging from ≈6 mm to ≈10 mm) and lengths (as long as 40 mm), as quantitatively predicted from FEA simulations within one minute at relatively lower temperatures (≈80 °C). Furthermore, shape memory properties were demonstrated post-shape change to exhibit dual shape morphing at temperatures close to physiological levels. The tubes (retained as the permanent shape) were deformed into flat sheets (temporary shape), seeded with endothelial cells (at T < Tg), and thereafter triggered at ≈37 °C back into tubes (permanent shape), utilizing the shape memory properties to yield bioresorbable tubes with cellularized lumens for potential use as vascular grafts with improved long-term patency. Additionally, out-of-plane bending and twisting deformation were demonstrated in complex structures by careful control of infill angles that can unprecedently expand the scope of cellularized biomimetic 3D shapes. This work demonstrates the potential of the combination of shape morphing and SMP behaviors at physiological temperatures to yield next-generation smart implants with precise control over dimensions for tissue repair and regeneration.
Collapse
Affiliation(s)
- Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.
| | - Akshat Joshi
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.
| | - Vageesh Singh Baghel
- Department of Mechanical Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - G K Ananthasuresh
- Department of Mechanical Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Sonal Asthana
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
- Department of Hepatobiliary and Multi-Organ Transplantation Surgery, Aster CMI Hospital, Bangalore, 560024, India
| | - Shervanthi Homer-Vanniasinkam
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
- Department of Mechanical Engineering and Division of Surgery, University College London, London, UK
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India.
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
15
|
Dutta S, Sinelshchikova A, Andreo J, Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. NANOSCALE HORIZONS 2024; 9:885-899. [PMID: 38591932 DOI: 10.1039/d4nh00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water pollution and the global freshwater crisis are the most alarming concerns of the 21st century, as they threaten the sustainability and ecological balance of the environment. The growth of global population, climate change, and expansion of industrial processes are the main causes of these issues. Therefore, effective remediation of polluted water by means of detoxification and purification is of paramount importance. To this end, nanoscience and nanotechnology have emerged as viable options that hold tremendous potential toward the advancement of wastewater treatment methods to enhance treatment efficiency along with augmenting water supply via utilization of unconventional water sources. Materials at the nano level have shown great promise toward water treatment applications owing to their unique physicochemical properties. In this focus article, we highlight the role of new fundamental properties at the nano scale and material properties that are drastically increased due to the nano dimension (e.g. volume-surface ratio) and highlight their impact and potential toward water treatment. We identify and discuss how nano-properties could improve the three main domains of water remediation: the identification of pollutants, their adsorption and catalytic degradation. After discussing all the beneficial aspects we further discuss the key challenges associated with nanomaterials for water treatment. Looking at the current state-of-the-art, the potential as well as the challenges of nanomaterials, we believe that in the future we will see a significant impact of these materials on many water remediation strategies.
Collapse
Affiliation(s)
- Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Anna Sinelshchikova
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
16
|
Zhao X, Bhat A, O’Connor C, Curtin J, Singh B, Tian F. Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:855. [PMID: 38786811 PMCID: PMC11124167 DOI: 10.3390/nano14100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013-2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection.
Collapse
Affiliation(s)
- Xinyi Zhao
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Abhijnan Bhat
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Christine O’Connor
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Baljit Singh
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Research Hub, Technological University Dublin, D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman, D07 ADY7 Dublin, Ireland; (X.Z.); (A.B.); (C.O.); (B.S.)
- FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
17
|
Jungcharoen P, Thivakorakot K, Thientanukij N, Kosachunhanun N, Vichapattana C, Panaampon J, Saengboonmee C. Magnetite nanoparticles: an emerging adjunctive tool for the improvement of cancer immunotherapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:316-331. [PMID: 38745773 PMCID: PMC11090691 DOI: 10.37349/etat.2024.00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/27/2023] [Indexed: 05/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a groundbreaking field, offering promising and transformative tools for oncological research and treatment. However, it faces several limitations, including variations in cancer types, dependence on the tumor microenvironments (TMEs), immune cell exhaustion, and adverse reactions. Magnetic nanoparticles, particularly magnetite nanoparticles (MNPs), with established pharmacodynamics and pharmacokinetics for clinical use, hold great promise in this context and are now being explored for therapeutic aims. Numerous preclinical studies have illustrated their efficacy in enhancing immunotherapy through various strategies, such as modulating leukocyte functions, creating favorable TMEs for cytotoxic T lymphocytes, combining with monoclonal antibodies, and stimulating the immune response via magnetic hyperthermia (MHT) treatment (Front Immunol. 2021;12:701485. doi: 10.3389/fimmu.2021.701485). However, the current clinical trials of MNPs are mostly for diagnostic aims and as a tool for generating hyperthermia for tumor ablation. With concerns about the adverse effects of MNPs in the in vivo systems, clinical translation and clinical study of MNP-boosted immunotherapy remains limited. The lack of extensive clinical investigations poses a current barrier to patient application. Urgent efforts are needed to ascertain both the efficacy of MNP-enhanced immunotherapy and its safety profile in combination therapy. This article reviews the roles, potential, and challenges of using MNPs in advancing cancer immunotherapy. The application of MNPs in boosting immunotherapy, and its perspective role in research and development is also discussed.
Collapse
Affiliation(s)
- Phoomipat Jungcharoen
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kunakorn Thivakorakot
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nachayada Thientanukij
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natkamon Kosachunhanun
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chayanittha Vichapattana
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
| | - Charupong Saengboonmee
- Cho-Kalaphruek Excellent Research Project for Medical Students, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
18
|
Thirumurugan S, Ramanathan S, Muthiah KS, Lin YC, Hsiao M, Dhawan U, Wang AN, Liu WC, Liu X, Liao MY, Chung RJ. Inorganic nanoparticles for photothermal treatment of cancer. J Mater Chem B 2024; 12:3569-3593. [PMID: 38494982 DOI: 10.1039/d3tb02797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Kayalvizhi Samuvel Muthiah
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G116EW, UK
| | - An-Ni Wang
- Scrona AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Wai-Ching Liu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| |
Collapse
|
19
|
Ferreira-Filho VC, Morais B, Vieira BJC, Waerenborgh JC, Carmezim MJ, Tóth CN, Même S, Lacerda S, Jaque D, Sousa CT, Campello MPC, Pereira LCJ. Influence of SPION Surface Coating on Magnetic Properties and Theranostic Profile. Molecules 2024; 29:1824. [PMID: 38675647 PMCID: PMC11052394 DOI: 10.3390/molecules29081824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to develop multifunctional nanoplatforms for both cancer imaging and therapy using superparamagnetic iron oxide nanoparticles (SPIONs). Two distinct synthetic methods, reduction-precipitation (MR/P) and co-precipitation at controlled pH (MpH), were explored, including the assessment of the coating's influence, namely dextran and gold, on their magnetic properties. These SPIONs were further functionalized with gadolinium to act as dual T1/T2 contrast agents for magnetic resonance imaging (MRI). Parameters such as size, stability, morphology, and magnetic behavior were evaluated by a detailed characterization analysis. To assess their efficacy in imaging and therapy, relaxivity and hyperthermia experiments were performed, respectively. The results revealed that both synthetic methods lead to SPIONs with similar average size, 9 nm. Mössbauer spectroscopy indicated that samples obtained from MR/P consist of approximately 11-13% of Fe present in magnetite, while samples obtained from MpH have higher contents of 33-45%. Despite coating and functionalization, all samples exhibited superparamagnetic behavior at room temperature. Hyperthermia experiments showed increased SAR values with higher magnetic field intensity and frequency. Moreover, the relaxivity studies suggested potential dual T1/T2 contrast agent capabilities for the coated SPpH-Dx-Au-Gd sample, thus demonstrating its potential in cancer diagnosis.
Collapse
Affiliation(s)
- Vital Cruvinel Ferreira-Filho
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Beatriz Morais
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Bruno J. C. Vieira
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - João Carlos Waerenborgh
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Maria João Carmezim
- Centro de Química Estrutural-CQE, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Csilla Noémi Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, CEDEX 2, France; (C.N.T.); (S.M.); (S.L.)
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, CEDEX 2, France; (C.N.T.); (S.M.); (S.L.)
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d’Orléans, Rue Charles Sadron, 45071 Orléans, CEDEX 2, France; (C.N.T.); (S.M.); (S.L.)
| | - Daniel Jaque
- Departamento de Física de Materiales, Universidad Autonoma de Madrid, Avda. Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - Célia T. Sousa
- Departamento de Física Aplicada, Universidad Autonoma de Madrid, Avda. Francisco Tomás y Valiente 7, 28049 Madrid, Spain;
| | - Maria Paula Cabral Campello
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| | - Laura C. J. Pereira
- Centro de Ciências e Tecnologias Nucleares, Departamento Engenharia Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN10, km 139,7, 2695-066 Bobadela, Portugal; (V.C.F.-F.); (B.M.); (B.J.C.V.); (J.C.W.)
| |
Collapse
|
20
|
Mondal A, Mumford K, Dubey BK, Arora M. Effect of solution chemistry on the sedimentation, dissolution, and aggregation of the bimetallic Fe/Cu nanoparticles pre- and post-grafted with carboxymethyl cellulose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170966. [PMID: 38367731 DOI: 10.1016/j.scitotenv.2024.170966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The suitability of iron-based nanomaterials or composites for in-situ remediation hinges on their physicochemical stability. Introducing surface modifications like metal doping or polymer grafting can regulate interparticle forces, influencing particle stability. Thus, probing how grafting methods (i.e., pre- or post-grafting) tune material properties controlling interparticle forces, comprehend the synergistic effect of metal doping and polymer grafting, and evaluate stability under varying geochemical conditions are the way forward in designing sustainable remediation strategies. To this end, time-dependent sedimentation, dissolution, and aggregation of four synthesized iron-based nanoparticles (bare iron (Fe), copper doped bimetallic iron/copper (Fe/Cu), pre- and post-grafted Fe/Cu with carboxymethyl cellulose (CMC) - CMCpre-Fe/Cu and CMCpost-Fe/Cu, respectively) were carried out as a function of solution chemistry (i.e., pH - 5 to 10, ionic strength, IS - 0 to 100 mM NaCl, initial particle concentration, C0-20 to 200 mg.L-1) mimicking geoenvironmental conditions. CMCpre-Fe/Cu exhibited markedly higher particle availability (> 91 %) against sedimentation than others (bare Fe/Cu (11.28 %) > bare Fe (7.33 %) > CMCpost-Fe/Cu (6.09 %)) - suggesting the pivotal role of grafting method on particle stability. XDLVO energy profiles revealed pre-grafting altered magnetic properties favoring surface charge-driven electrostatic repulsion over magnetic attraction, thereby limiting aggregation-induced particle settling. In contrast, superior magnetic force overrides the electrostatic behavior for bare and post-grafted particles. Unlike bare and post-grafted nanoparticles, CMCpre-Fe/Cu aggregate size correlated positively with [H+] and IS, consistent with their settling behavior. Rise in C0 showed a visible negative effect on particle aggregation and, thereby, sedimentation except for CMCpre-Fe/Cu by facilitating particle collision through Brownian movement. Both acidic pH and copper doping promoted nanoparticle dissolution, whereas pre-grafting can provide a plausible solution against nanoparticle toxicity and loss of reactivity due to ionic release. To recapitulate, these findings are imperative in building a sustainable framework for environmental remediation application.
Collapse
Affiliation(s)
- Abhisek Mondal
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Brajesh K Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Meenakshi Arora
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
22
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
23
|
Güneş M, Aktaş K, Yalçın B, Burgazlı AY, Asilturk M, Ünşar AE, Kaya B. In vivo assessment of the toxic impact of exposure to magnetic iron oxide nanoparticles (IONPs) using Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104412. [PMID: 38492762 DOI: 10.1016/j.etap.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Iron oxide nanoparticles (IONPs) have useful properties, such as strong magnetism and compatibility with living organisms which is preferable for medical applications such as drug delivery and imaging. However, increasing use of these materials, especially in medicine, has raised concerns regarding potential risks to human health. In this study, IONPs were coated with silicon dioxide (SiO2), citric acid (CA), and polyethylenimine (PEI) to enhance their dispersion and biocompatibility. Both coated and uncoated IONPs were assessed for genotoxic effects on Drosophila melanogaster. Results showed that uncoated IONPs induced genotoxic effects, including mutations and recombinations, while the coated IONPs demonstrated reduced or negligible genotoxicity. Additionally, bioinformatic analyses highlighted potential implications of induced recombination in various cancer types, underscoring the importance of understanding nanoparticle-induced genomic instability. This study highlights the importance of nanoparticle coatings in reducing potential genotoxic effects and emphasizes the necessity for comprehensive toxicity assessments in nanomaterial research.
Collapse
Affiliation(s)
- Merve Güneş
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey.
| | - Kemal Aktaş
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | | | - Meltem Asilturk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Ayca Erdem Ünşar
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
Liu J, Liu X, Shan Y, Ting HJ, Yu X, Wang JW, Liu B. Targeted platelet with hydrogen peroxide responsive behavior for non-alcoholic steatohepatitis detection. Biomaterials 2024; 306:122506. [PMID: 38354517 DOI: 10.1016/j.biomaterials.2024.122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
The most common chronic liver illness, non-alcoholic fatty liver disease (NAFLD), refers to a range of abnormalities of the liver with varying degrees of steatosis. When the clinical symptoms including liver damage, inflammation, and fibrosis, are added to the initial steatosis, NAFLD becomes non-alcoholic steatohepatitis (NASH), the problematic and severe stage. The diagnosis of NASH at the right time could therefore effectively prevent deterioration of the disease. Considering that platelets (PLTs) could migrate to the sites of inflamed liver sinusoids with oxidative stress during the development of NASH, we purified the PLTs from fresh blood and engineered their surface with hydrogen peroxide (H2O2) responsive fluorescent probe (5-DP) through lipid fusion. The engineered PLT-DPs were recruited and trapped in the inflammation foci of the liver with NASH through interaction with the extracellular matrix, including hyaluronan and Kupffer cells. Additionally, the fluorescence of 5-DP on the surface of PLT-DP was significantly enhanced upon reacting with the elevated level of H2O2 in the NASH liver. Thus, PLT-DP has great promise for NASH fluorescence imaging with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yi Shan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Hui Jun Ting
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Nanomedicine Translational Research Program, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Xiaodong Yu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Nanomedicine Translational Research Program, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; Nanomedicine Translational Research Program, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117609, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 117599, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
25
|
Ulusoy S, Feygenson M, Thersleff T, Uusimaeki T, Valvo M, Roca AG, Nogués J, Svedlindh P, Salazar-Alvarez G. Elucidating the Lithiation Process in Fe 3-δO 4 Nanoparticles by Correlating Magnetic and Structural Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14799-14808. [PMID: 38478774 PMCID: PMC10982998 DOI: 10.1021/acsami.3c18334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Due to their high potential energy storage, magnetite (Fe3O4) nanoparticles have become appealing as anode materials in lithium-ion batteries. However, the details of the lithiation process are still not completely understood. Here, we investigate chemical lithiation in 70 nm cubic-shaped magnetite nanoparticles with varying degrees of lithiation, x = 0, 0.5, 1, and 1.5. The induced changes in the structural and magnetic properties were investigated using X-ray techniques along with electron microscopy and magnetic measurements. The results indicate that a structural transformation from spinel to rock salt phase occurs above a critical limit for the lithium concentration (xc), which is determined to be between 0.5< xc ≤ 1 for Fe3-δO4. Diffraction and magnetization measurements clearly show the formation of the antiferromagnetic LiFeO2 phase. Upon lithiation, magnetization measurements reveal an exchange bias in the hysteresis loops with an asymmetry, which can be attributed to the formation of mosaic-like LiFeO2 subdomains. The combined characterization techniques enabled us to unambiguously identify the phases and their distributions involved in the lithiation process. Correlating magnetic and structural properties opens the path to increasing the understanding of the processes involved in a variety of nonmagnetic applications of magnetic materials.
Collapse
Affiliation(s)
- Seda Ulusoy
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
| | - Mikhail Feygenson
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
- European
Spallation Source ERIC, SE-22100 Lund, Sweden
- Jülich
Centre for Neutron Science (JCNS-1) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thomas Thersleff
- Department
Materials and Environmental Chemistry, Stockholm
University, 106 91 Stockholm, Sweden
| | - Toni Uusimaeki
- Department
Materials and Environmental Chemistry, Stockholm
University, 106 91 Stockholm, Sweden
| | - Mario Valvo
- Department
Chemistry, Uppsala University, 752 37 Uppsala, Sweden
| | - Alejandro G. Roca
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
| | - Josep Nogués
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra 08193, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Peter Svedlindh
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
| | - German Salazar-Alvarez
- Department
Materials Science and Engineering, Uppsala
University, P.O. Box 35, 751 03 Uppsala, Sweden
| |
Collapse
|
26
|
Deng W, Shang H, Tong Y, Liu X, Huang Q, He Y, Wu J, Ba X, Chen Z, Chen Y, Tang K. The application of nanoparticles-based ferroptosis, pyroptosis and autophagy in cancer immunotherapy. J Nanobiotechnology 2024; 22:97. [PMID: 38454419 PMCID: PMC10921615 DOI: 10.1186/s12951-024-02297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Immune checkpoint blockers (ICBs) have been applied for cancer therapy and achieved great success in the field of cancer immunotherapy. Nevertheless, the broad application of ICBs is limited by the low response rate. To address this issue, increasing studies have found that the induction of immunogenic cell death (ICD) in tumor cells is becoming an emerging therapeutic strategy in cancer treatment, not only straightly killing tumor cells but also enhancing dying cells immunogenicity and activating antitumor immunity. ICD is a generic term representing different cell death modes containing ferroptosis, pyroptosis, autophagy and apoptosis. Traditional chemotherapeutic agents usually inhibit tumor growth based on the apoptotic ICD, but most tumor cells are resistant to the apoptosis. Thus, the induction of non-apoptotic ICD is considered to be a more efficient approach for cancer therapy. In addition, due to the ineffective localization of ICD inducers, various types of nanomaterials have been being developed to achieve targeted delivery of therapeutic agents and improved immunotherapeutic efficiency. In this review, we briefly outline molecular mechanisms of ferroptosis, pyroptosis and autophagy, as well as their reciprocal interactions with antitumor immunity, and then summarize the current progress of ICD-induced nanoparticles based on different strategies and illustrate their applications in the cancer therapy.
Collapse
Affiliation(s)
- Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
27
|
Demir Z, Sungur B, Bayram E, Özkan A. Selective cytotoxic effects of nitrogen-doped graphene coated mixed iron oxide nanoparticles on HepG2 as a new potential therapeutic approach. DISCOVER NANO 2024; 19:33. [PMID: 38386123 PMCID: PMC10884380 DOI: 10.1186/s11671-024-03977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
New selective therapeutics are needed for the treatment of hepatocellular carcinoma (HCC), the 7th most common cancer. In this study, we compared the cytotoxic effect induced by the release of pH-dependent iron nanoparticles from nitrogen-doped graphene-coated mixed iron oxide nanoparticles (FexOy/N-GN) with the cytotoxic effect of nitrogen-doped graphene (N-GN) and commercial graphene nanoflakes (GN) in Hepatoma G2 (HepG2) cells and healthy cells. The cytotoxic effect of nanocomposites (2.5-100 ug/ml) on HepG2 and healthy fibroblast (BJ) cells (12-48 h) was measured by Cell Viability assay, and the half maximal inhibitory concentration (IC50) was calculated. After the shortest (12 h) and longest incubation (48 h) incubation periods in HepG2 cells, IC50 values of FexOy/N-GN were calculated as 21.95 to 2.11 µg.mL-1, IC50 values of N-GN were calculated as 39.64 to 26.47 µg.mL-1 and IC50 values of GN were calculated as 49.94 to 29.94, respectively. After 48 h, FexOy/N-GN showed a selectivity index (SI) of 10.80 for HepG2/BJ cells, exceeding the SI of N-GN (1.27) by about 8.5-fold. The high cytotoxicity of FexOy/N-GN was caused by the fact that liver cancer cells have many transferrin receptors and time-dependent pH changes in their microenvironment increase iron release. This indicates the potential of FexOy/N-GN as a new selective therapeutic.
Collapse
Affiliation(s)
- Zeynep Demir
- Department of Biology, Institute of Natural and Applied Sciences, Akdeniz University, 07070, Antalya, Turkey
| | - Berkay Sungur
- Department of Chemistry, Institute of Natural and Applied Sciences, Akdeniz University, 07070, Antalya, Turkey
| | - Edip Bayram
- Department of Chemistry, Faculty of Science, Akdeniz University, 07070, Antalya, Turkey
| | - Aysun Özkan
- Department of Biology, Faculty of Science, Akdeniz University, 07070, Antalya, Turkey.
| |
Collapse
|
28
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
29
|
Jenne A, Soong R, Gruschke O, Bastawrous M, Monks P, Moloney C, Brougham DF, Busse F, Bermel W, Courtier-Murias D, Wu B, Simpson A. A holistic NMR framework to understand environmental impact: Examining the impacts of superparamagnetic iron oxide nanoparticles (SPIONs) in Daphnia magna via imaging, spectroscopy, and metabolomics. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:728-739. [PMID: 36137948 DOI: 10.1002/mrc.5315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are a contaminant of emerging interest, often used in the medical field as an imaging contrast agent, with additional uses in wastewater treatment and as food additives. Although the use of SPIONs is increasing, little research has been conducted on the toxic impacts to living organisms beyond traditional lethal concentration endpoints. Daphnia magna are model organisms for aquatic toxicity testing with a well understood metabolome and high sensitivity to SPIONs. Thus, as environmental concentrations continue to increase, it is becoming critical to understand their sub-lethal toxicity. Due to the paramagnetic nature of SPIONs, a range of potential nuclear magnetic resonance spectroscopy (NMR) experiments are possible, offering the potential to probe the physical location (via imaging), binding (via relaxation weighted spectroscopy), and the biochemical pathways impacted (via in vivo metabolomics). Results indicate binding to carbohydrates, likely chitin in the exoskeleton, along with a decrease in energy metabolites and specific biomarkers of oxidative stress. The holistic NMR framework used here helps provide a more comprehensive understanding of SPIONs impacts on D. magna and showcases NMR's versatility in providing physical, chemical, and biochemical insights.
Collapse
Affiliation(s)
- Amy Jenne
- Environmental NMR Center, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | | | - Monica Bastawrous
- Environmental NMR Center, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | - Patricia Monks
- Department of Chemistry, RCSI University of Health Sciences, Dublin, Ireland
| | - Cara Moloney
- School of Medicine, BioDiscovery Institute-3, University of Nottingham, University Park, Nottingham, UK
| | | | | | | | - Denis Courtier-Murias
- Université Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville IRSTV, CNRS, Nantes, France
| | - Bing Wu
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Andre Simpson
- Environmental NMR Center, University of Toronto Scarborough, Scarborough, Ontario, Canada
| |
Collapse
|
30
|
Anang E, Liu H, Fan X. Compositional transformation of Ni 2+ and Fe 0 during the removal of Ni 2+ by nanoscale zero-valent iron and the implications to groundwater remediation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2409-2422. [PMID: 37966191 PMCID: wst_2023_333 DOI: 10.2166/wst.2023.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of nanoscale zero-valent iron (nZVI) to remove heavy metal ions like Ni2+ from groundwater has been extensively studied; however, the compositional transformation of the Ni2+ and Fe0 during the removal is not clearly comprehensible. This study provides an insight into the componential, structural, and morphological transformations of Ni2+ and Fe0 at a solid-liquid interface using various characterization devices. The underlying mechanism of transformation was investigated along with the toxicity/impact of the transformed products on the groundwater ecosystem. The results indicated that Fe0 is transformed into lath-like lepidocrocite (γ-FeOOH), twin-crystal goethite (α-FeOOH), and spherical magnetite (Fe3O4), while Ni2+ is converted into Fe0.7Ni0.3 alloy and Fe-Ni composite (trevorite - NiFe2O4) with a fold-fan morphology. The Fe0 transformation mechanism includes the redox of Fe0 with Ni2+, H2O, and dissolved oxygen, the combination of Fe2+ and OH- produced by Fe0 corrosion to amorphous ferrihydrite, and the further mineralogical transformation to Fe oxides with the aid of Fe2+ adsorbed on ferrihydrite. The conversion of Ni2+ is accomplished by reduction by Fe0 and surface coordination with Fe oxides. Compared with Ni2+ and Fe0, the toxicity and bioavailability of the transformed products are significantly reduced, hence conducive to the application of zero-valent iron technology in groundwater remediation.
Collapse
Affiliation(s)
- Emmanuella Anang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China E-mail:
| | - Hong Liu
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xianyuan Fan
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
31
|
Gamberoni F, Borgese M, Pagiatakis C, Armenia I, Grazù V, Gornati R, Serio S, Papait R, Bernardini G. Iron Oxide Nanoparticles with and without Cobalt Functionalization Provoke Changes in the Transcription Profile via Epigenetic Modulation of Enhancer Activity. NANO LETTERS 2023; 23:9151-9159. [PMID: 37494138 PMCID: PMC10571150 DOI: 10.1021/acs.nanolett.3c01967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Despite the progress in the field of nanotoxicology, much about the cellular mechanisms that mediate the adverse effects of nanoparticles (NPs) and, in particular, the possible role of epigenetics in nanotoxicity, remains to be clarified. Therefore, we studied the changes occurring in the genome-wide distribution of H3K27ac, H3K4me1, H3K9me2, and H3K27me3 histone modifications and compared them with the transcriptome after exposing NIH3T3 cells to iron-based magnetic NPs (i.e., Fe2O3 and Fe2O3@Co NPs). We found that the transcription response is mainly due to changes in the genomic distribution of H3K27ac that can modulate the activity of enhancers. We propose that alteration of the epigenetic landscape is a key mechanism in defining the gene expression program changes resulting in nanotoxicity. With this approach, it is possible to construct a data set of genomic regions that could be useful for defining toxicity in a manner that is more comprehensive than what is possible with the present toxicology assays.
Collapse
Affiliation(s)
- Federica Gamberoni
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Marina Borgese
- Department
of Medicine and Surgery, University of Insubria, via Guicciardini 9, 21100 Varese, Italy
| | - Christina Pagiatakis
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
- IRCCS
Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Ilaria Armenia
- BioNanoSurf
Group, Instituto de Nanociencia y Materiales
de Aragón (INMA, CSIC-UNIZAR), Edificio I + D, 50018 Zaragoza, Spain
| | - Valeria Grazù
- BioNanoSurf
Group, Instituto de Nanociencia y Materiales
de Aragón (INMA, CSIC-UNIZAR), Edificio I + D, 50018 Zaragoza, Spain
| | - Rosalba Gornati
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Simone Serio
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
- IRCCS
Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
- Department
of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, MI, Italy
| | - Roberto Papait
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
- IRCCS
Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giovanni Bernardini
- Department
of Biotechnology and Life Sciences, University
of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
32
|
Zhang C, Wang M, Zhang J, Zou B, Wang Y. Self-template synthesis of mesoporous and biodegradable Fe 3O 4 nanospheres as multifunctional nanoplatform for cancer therapy. Colloids Surf B Biointerfaces 2023; 229:113467. [PMID: 37515962 DOI: 10.1016/j.colsurfb.2023.113467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Superparamagnetic Fe3O4 nanospheres have demonstrated great potential as important components in nanomedicine for cancer imaging and therapy. One of the major obstacles that impedes their application is the slow degradation of ingested Fe3O4 nanospheres, which potentially causes long-term health risks. To tackle this issue, we proposed to fabricate Fe3O4 nanospheres with mesoporous structure via a simple self-template etching method. The mesoporous Fe3O4 nanospheres not only offered large specific surface area and weak-acidic responsive degradability, but also exhibited T2-weighted magnetic resonance contrast enhancement and magnetic targeting, which made them possible to serve as excellent cancer therapeutic nanoplatform. Both inorganic photothermal therapeutic Au nanoparticles and organic chemotherapeutic doxorubicin hydrochloride were demonstrated to be successfully loaded onto such kind of nanoplatform, and the hybrid nanomedicine demonstrated synergistic photothermal and chemotherapeutic activity for tumor elimination under near infrared irradiation and improved biodegradability in weak acidic tumor microenvironment. We believe that this study paved a simple way for designing multifunctional Fe3O4-based biodegradable nanomedicine.
Collapse
Affiliation(s)
- Chuanbin Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Meijian Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Jianan Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Bingfang Zou
- School of Physics and Electronics, Henan University, Kaifeng 475004, PR China.
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
33
|
Fromain A, Perez JE, Van de Walle A, Lalatonne Y, Wilhelm C. Photothermia at the nanoscale induces ferroptosis via nanoparticle degradation. Nat Commun 2023; 14:4637. [PMID: 37532698 PMCID: PMC10397343 DOI: 10.1038/s41467-023-40258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The Fe(II)-induced ferroptotic cell death pathway is an asset in cancer therapy, yet it calls into question the biocompatibility of magnetic nanoparticles. In the latter, Fe(II) is sequestered within the crystal structure and is released only upon nanoparticle degradation, a transition that is not well understood. Here, we dissect the chemical environment necessary for nanoparticle degradation and subsequent Fe(II) release. Importantly, temperature acts as an accelerator of the process and can be triggered remotely by laser-mediated photothermal conversion, as evidenced by the loss of the nanoparticles' magnetic fingerprint. Remarkably, the local hot-spot temperature generated at the nanoscale can be measured in operando, in the vicinity of each nanoparticle, by comparing the photothermal-induced nanoparticle degradation patterns with those of global heating. Further, remote photothermal irradiation accelerates degradation inside cancer cells in a tumor spheroid model, with efficiency correlating with the endocytosis progression state of the nanoparticles. High-throughput imaging quantification of Fe2+ release, ROS generation, lipid peroxidation and cell death at the spheroid level confirm the synergistic thermo-ferroptotic therapy due to the photothermal degradation at the nanoparticle level.
Collapse
Affiliation(s)
- Alexandre Fromain
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Jose Efrain Perez
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Aurore Van de Walle
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France
| | - Yoann Lalatonne
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F‑ 93017, Bobigny, France
- Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F‑ 93009, Bobigny, France
| | - Claire Wilhelm
- Laboratoire Physico Chimie Curie, PCC, CNRS UMR168, Institut Curie, Sorbonne University, PSL University, 75005, Paris, France.
| |
Collapse
|
34
|
Oberdick SD, Jordanova KV, Lundstrom JT, Parigi G, Poorman ME, Zabow G, Keenan KE. Iron oxide nanoparticles as positive T 1 contrast agents for low-field magnetic resonance imaging at 64 mT. Sci Rep 2023; 13:11520. [PMID: 37460669 DOI: 10.1038/s41598-023-38222-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1 contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1 contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9-15.7 nm) in order to understand size-dependent properties of T1 contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1 contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol-1 s-1, more than an order of magnitude higher than corresponding r1 values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1 and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1 contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1 relaxivities.
Collapse
Affiliation(s)
- Samuel D Oberdick
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA.
- National Institute of Standards and Technology, Boulder, CO, 80305, USA.
| | | | - John T Lundstrom
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | | | - Gary Zabow
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Kathryn E Keenan
- National Institute of Standards and Technology, Boulder, CO, 80305, USA
| |
Collapse
|
35
|
Pavan C, Santalucia R, Escolano-Casado G, Ugliengo P, Mino L, Turci F. Physico-Chemical Approaches to Investigate Surface Hydroxyls as Determinants of Molecular Initiating Events in Oxide Particle Toxicity. Int J Mol Sci 2023; 24:11482. [PMID: 37511241 PMCID: PMC10380507 DOI: 10.3390/ijms241411482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Rosangela Santalucia
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Piero Ugliengo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Francesco Turci
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| |
Collapse
|
36
|
Kumah EA, Fopa RD, Harati S, Boadu P, Zohoori FV, Pak T. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 2023; 23:1059. [PMID: 37268899 DOI: 10.1186/s12889-023-15958-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Use of nanoparticles have established benefits in a wide range of applications, however, the effects of exposure to nanoparticles on health and the environmental risks associated with the production and use of nanoparticles are less well-established. The present study addresses this gap in knowledge by examining, through a scoping review of the current literature, the effects of nanoparticles on human health and the environment. We searched relevant databases including Medline, Web of Science, ScienceDirect, Scopus, CINAHL, Embase, and SAGE journals, as well as Google, Google Scholar, and grey literature from June 2021 to July 2021. After removing duplicate articles, the title and abstracts of 1495 articles were first screened followed by the full-texts of 249 studies, and this resulted in the inclusion of 117 studies in the presented review.In this contribution we conclude that while nanoparticles offer distinct benefits in a range of applications, they pose significant threats to humans and the environment. Using several biological models and biomarkers, the included studies revealed the toxic effects of nanoparticles (mainly zinc oxide, silicon dioxide, titanium dioxide, silver, and carbon nanotubes) to include cell death, production of oxidative stress, DNA damage, apoptosis, and induction of inflammatory responses. Most of the included studies (65.81%) investigated inorganic-based nanoparticles. In terms of biomarkers, most studies (76.9%) used immortalised cell lines, whiles 18.8% used primary cells as the biomarker for assessing human health effect of nanoparticles. Biomarkers that were used for assessing environmental impact of nanoparticles included soil samples and soybean seeds, zebrafish larvae, fish, and Daphnia magna neonates.From the studies included in this work the United States recorded the highest number of publications (n = 30, 25.64%), followed by China, India, and Saudi Arabia recording the same number of publications (n = 8 each), with 95.75% of the studies published from the year 2009. The majority of the included studies (93.16%) assessed impact of nanoparticles on human health, and 95.7% used experimental study design. This shows a clear gap exists in examining the impact of nanoparticles on the environment.
Collapse
Affiliation(s)
- Elizabeth Adjoa Kumah
- Depeartment of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Raoul Djou Fopa
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Saeed Harati
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Paul Boadu
- Department of Health Services Research and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Tannaz Pak
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK.
| |
Collapse
|
37
|
Wojcieszek J, Chay S, Jiménez-Lamana J, Curie C, Mari S. Study of the Stability, Uptake and Transformations of Zero Valent Iron Nanoparticles in a Model Plant by Means of an Optimised Single Particle ICP-MS/MS Method. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111736. [PMID: 37299639 DOI: 10.3390/nano13111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
In the context of the widespread distribution of zero valent iron nanoparticles (nZVI) in the environment and its possible exposure to many aquatic and terrestrial organisms, this study investigates the effects, uptake, bioaccumulation, localisation and possible transformations of nZVI in two different forms (aqueous dispersion-Nanofer 25S and air-stable powder-Nanofer STAR) in a model plant-Arabidopsis thaliana. Seedlings exposed to Nanofer STAR displayed symptoms of toxicity, including chlorosis and reduced growth. At the tissue and cellular level, the exposure to Nanofer STAR induced a strong accumulation of Fe in the root intercellular spaces and in Fe-rich granules in pollen grains. Nanofer STAR did not undergo any transformations during 7 days of incubation, while in Nanofer 25S, three different behaviours were observed: (i) stability, (ii) partial dissolution and (iii) the agglomeration process. The size distributions obtained by SP-ICP-MS/MS demonstrated that regardless of the type of nZVI used, iron was taken up and accumulated in the plant, mainly in the form of intact nanoparticles. The agglomerates created in the growth medium in the case of Nanofer 25S were not taken up by the plant. Taken together, the results indicate that Arabidopsis plants do take up, transport and accumulate nZVI in all parts of the plants, including the seeds, which will provide a better understanding of the behaviour and transformations of nZVI once released into the environment, a critical issue from the point of view of food safety.
Collapse
Affiliation(s)
- Justyna Wojcieszek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Sandrine Chay
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| | - Javier Jiménez-Lamana
- Universite de Pau et des Pays de l'Adour, E2SUPPA, CNRS UMR 5254, IPREM, 64053 Pau, France
| | - Catherine Curie
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| | - Stephane Mari
- IPSiM, Université de Montpellier, CNRS, INRAE, Institut Agro, Place Viala, CEDEX 1, 34060 Montpellier, France
| |
Collapse
|
38
|
Li Y, Zhao L, Zhao Q, Zhou Y, Zhou L, Song P, Liu B, Chen Q, Deng G. Ursolic acid nanoparticles for glioblastoma therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102684. [PMID: 37100267 DOI: 10.1016/j.nano.2023.102684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and fatal primary tumor in the central nervous system (CNS). The effect of chemotherapy of GBM is limited due to the existence of blood-brain barrier (BBB). The aim of this study is to develop self-assembled nanoparticles (NPs) of ursolic acid (UA) for GBM treatment. METHODS UA NPs were synthesized by solvent volatilization method. Western blot analysis fluorescent staining and flow cytometry were launched to explore the anti-glioblastoma mechanism of UA NPs. The antitumor effects of UA NPs were further confirmed in vivo using intracranial xenograft models. RESULTS UA were successfully prepared. In vitro, UA NPs could significantly increase the protein levels of cleaved-caspase 3 and LC3-II to strongly eliminate glioblastoma cells through autophagy and apoptosis. In the intracranial xenograft models, UA NPs could further effectively enter the BBB, and greatly improve the survival time of the mice. CONCLUSIONS We successfully synthesized UA NPs which could effectively enter the BBB and show strong anti-tumor effect which may have great potential in the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Yong Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Linyao Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Qingyu Zhao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Youdong Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Long Zhou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Ping Song
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| |
Collapse
|
39
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
40
|
Danafar H, Baghdadchi Y, Barsbay M, Ghaffarlou M, Mousazadeh N, Mohammadi A. Synthesis of Fe 3O 4-Gold hybrid nanoparticles coated by bovine serum albumin as a contrast agent in MR imaging. Heliyon 2023; 9:e13874. [PMID: 36895357 PMCID: PMC9988463 DOI: 10.1016/j.heliyon.2023.e13874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Despite the over spatial separation and the ability to determine soft tissues, insufficient contrast is the shortcoming of magnetic resonance imaging (MRI) that could be circumvented by the use of contrast agents. The use of MRI contrast agents are widely applied to enhance the vision of internal body structures. Nano-sized contrast materials have unique application advantages compared to other contrast agents due to their size and shape. However, for contrast agents such as bare iron (II, III) oxide (Fe3O4) magnetic nanoparticles (NPs), aggregation and accumulation are the main shortcomings. Thus, surface modifications are necessary for their use in biopharmaceutical applications. Gold, Au, nanoparticles are of big interesting for use in biomedical purposes due to their chemical stability and oxidation resistance. In this study, we synthesized magnetic Fe3O4-Au hybrid NPs with a facile method and coated them with bovine serum albumin (BSA) to increase their chemical stability and biocompatibility. Afterwards, the hybrid nanosystem was characterized by some methods, and their potential to increase MRI contrast was investigated by the phantom MRI experiments. Our data showed that the signal intensity on MR images was significantly reduced, thus confirming the contrast ability of the formulated Fe3O4-Au-BSA NPs.
Collapse
Affiliation(s)
- Hossein Danafar
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Yasamin Baghdadchi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Murat Barsbay
- Hacettepe University, Department of Chemistry, Beytepe, Ankara 06800, Turkey
| | | | - Navid Mousazadeh
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| | - Ali Mohammadi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 45139- 56184, Iran
| |
Collapse
|
41
|
Singh S, Jaiswal V, Singh JK, Semwal R, Raina D. Nanoparticle formulations: A smart era of advanced treatment with nanotoxicological imprints on the human body. Chem Biol Interact 2023; 373:110355. [PMID: 36682480 DOI: 10.1016/j.cbi.2023.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
In the modern era, nanoparticles are the preferred dosage form, and maximum research is going on in the field of nanoparticle formulations. But as they are so small, nanoparticles are able to slip through the body's defenses and cause damage to the organs and tissues deep inside. In recent years, most researchers have focused solely on the therapeutic value of drugs or, at times, the performance of dosage forms, but few have given toxicity studies equal weight in their research. This review demonstrates that nanoparticle formulations are not suitable from a safety standpoint. So, researchers should be focused on alternative formulations like nanoemulsion, nanogel, and other liquids as well as semisolid formulations.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Vishakha Jaiswal
- Faculty of Pharmacy, BBDNIIT, Lucknow, Uttar Pradesh, 226028, India
| | | | - Ravindra Semwal
- Research and Development Centre, Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Harrawala, Dehradun, 248001, India
| | - Deepika Raina
- School of Pharmacy, Graphic Era Hill University, Dehradun, India.
| |
Collapse
|
42
|
Lytvyn S, Vazhnichaya E, Kurapov Y, Semaka O, Babijchuk L, Zubov P. Cytotoxicity of magnetite nanoparticles deposited in sodium chloride matrix and their functionalized analogues in erythrocytes. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
43
|
A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology. Int J Mol Sci 2023; 24:ijms24054312. [PMID: 36901743 PMCID: PMC10001544 DOI: 10.3390/ijms24054312] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
Bone defects characterized by limited regenerative properties are considered a priority in surgical practice, as they are associated with reduced quality of life and high costs. In bone tissue engineering, different types of scaffolds are used. These implants represent structures with well-established properties that play an important role as delivery vectors or cellular systems for cells, growth factors, bioactive molecules, chemical compounds, and drugs. The scaffold must provide a microenvironment with increased regenerative potential at the damage site. Magnetic nanoparticles are linked to an intrinsic magnetic field, and when they are incorporated into biomimetic scaffold structures, they can sustain osteoconduction, osteoinduction, and angiogenesis. Some studies have shown that combining ferromagnetic or superparamagnetic nanoparticles and external stimuli such as an electromagnetic field or laser light can enhance osteogenesis and angiogenesis and even lead to cancer cell death. These therapies are based on in vitro and in vivo studies and could be included in clinical trials for large bone defect regeneration and cancer treatments in the near future. We highlight the scaffolds' main attributes and focus on natural and synthetic polymeric biomaterials combined with magnetic nanoparticles and their production methods. Then, we underline the structural and morphological aspects of the magnetic scaffolds and their mechanical, thermal, and magnetic properties. Great attention is devoted to the magnetic field effects on bone cells, biocompatibility, and osteogenic impact of the polymeric scaffolds reinforced with magnetic nanoparticles. We explain the biological processes activated due to magnetic particles' presence and underline their possible toxic effects. We present some studies regarding animal tests and potential clinical applications of magnetic polymeric scaffolds.
Collapse
|
44
|
Li Z, Xue L, Wang P, Ren X, Zhang Y, Wang C, Sun J. Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1429. [PMID: 36837058 PMCID: PMC9961196 DOI: 10.3390/ma16041429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used in bone tissue engineering because of their unique physical and chemical properties and their excellent biocompatibility. Under the action of a magnetic field, SPIONs loaded in a biological scaffold can effectively promote osteoblast proliferation, differentiation, angiogenesis, and so on. SPIONs have very broad application prospects in bone repair, bone reconstruction, bone regeneration, and other fields. In this paper, several methods for forming biological scaffolds via the biological assembly of SPIONs are reviewed, and the specific applications of these biological scaffolds in bone tissue engineering are discussed.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Le Xue
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Peng Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xueqian Ren
- Clinical Medical Engineering Department, The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing 210009, China
| | - Yunyang Zhang
- Center of Modern Analysis, Nanjing University, Nanjing 210000, China
| | - Chuan Wang
- Naval Medical Center of PLA, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Bioscience and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
45
|
Góral D, Marczuk A, Góral-Kowalczyk M, Koval I, Andrejko D. Application of Iron Nanoparticle-Based Materials in the Food Industry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:780. [PMID: 36676517 PMCID: PMC9862918 DOI: 10.3390/ma16020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Due to their different properties compared to other materials, nanoparticles of iron and iron oxides are increasingly used in the food industry. Food technologists have especially paid attention to their ease of separation by magnetic fields and biocompatibility. Unfortunately, the consumption of increasing amounts of nanoparticles has raised concerns about their biotoxicity. Hence, knowledge about the applicability of iron nanoparticle-based materials in the food industry is needed not only among scientists, but also among all individuals who are involved in food production. The first part of this article describes typical methods of obtaining iron nanoparticles using chemical synthesis and so-called green chemistry. The second part of this article describes the use of iron nanoparticles and iron nanoparticle-based materials for active packaging, including the ability to eliminate oxygen and antimicrobial activity. Then, the possibilities of using the magnetic properties of iron nano-oxides for enzyme immobilization, food analysis, protein purification and mycotoxin and histamine removal from food are described. Other described applications of materials based on iron nanoparticles are the production of artificial enzymes, process control, food fortification and preserving food in a supercooled state. The third part of the article analyzes the biocompatibility of iron nanoparticles, their impact on the human body and the safety of their use.
Collapse
Affiliation(s)
- Dariusz Góral
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Andrzej Marczuk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Małgorzata Góral-Kowalczyk
- Department of Agricultural Forestry and Transport Machines, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Iryna Koval
- Department of Physical, Analytical and General Chemistry, Lviv Polytechnic National University, 79013 Lviv, Ukraine
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
46
|
Sharma S, Mahajan SD, Chevli K, Schwartz SA, Aalinkeel R. Nanotherapeutic Approach to Delivery of Chemo- and Gene Therapy for Organ-Confined and Advanced Castration-Resistant Prostate Cancer. Crit Rev Ther Drug Carrier Syst 2023; 40:69-100. [PMID: 37075068 PMCID: PMC11007628 DOI: 10.1615/critrevtherdrugcarriersyst.2022043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatments for late-stage prostate cancer (CaP) have not been very successful. Frequently, advanced CaP progresses to castration-resistant prostate cancer (CRPC), with 50#37;-70% of patients developing bone metastases. CaP with bone metastasis-associated clinical complications and treatment resistance presents major clinical challenges. Recent advances in the formulation of clinically applicable nanoparticles (NPs) have attracted attention in the fields of medicine and pharmacology with applications to cancer and infectious and neurological diseases. NPs have been rendered biocompatible, pose little to no toxicity to healthy cells and tissues, and are engineered to carry large therapeutic payloads, including chemo- and genetic therapies. Additionally, if required, targeting specificity can be achieved by chemically coupling aptamers, unique peptide ligands, or monoclonal antibodies to the surface of NPs. Encapsulating toxic drugs within NPs and delivering them specifically to their cellular targets overcomes the problem of systemic toxicity. Encapsulating highly labile genetic therapeutics such as RNA within NPs provides a protective environment for the payload during parenteral administration. The loading efficiencies of NPs have been maximized while the controlled their therapeutic cargos has been released. Theranostic ("treat and see") NPs have developed combining therapy with imaging capabilities to provide real-time, image-guided monitoring of the delivery of their therapeutic payloads. All of these NP accomplishments have been applied to the nanotherapy of late-stage CaP, offering a new opportunity for a previously dismal prognosis. This article gives an update on current developments in the use of nanotechnology for treating late-stage, castration-resistant CaP.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Kent Chevli
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
47
|
Extracellular magnetic labeling of biomimetic hydrogel-induced human mesenchymal stem cell spheroids with ferumoxytol for MRI tracking. Bioact Mater 2023; 19:418-428. [PMID: 35574059 PMCID: PMC9079175 DOI: 10.1016/j.bioactmat.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
Labeling of mesenchymal stem cells (MSCs) with superparamagnetic iron oxide nanoparticles (SPIONs) has emerged as a potential method for magnetic resonance imaging (MRI) tracking of transplanted cells in tissue repair studies and clinical trials. Labeling of MSCs using clinically approved SPIONs (ferumoxytol) requires the use of transfection reagents or magnetic field, which largely limits their clinical application. To overcome this obstacle, we established a novel and highly effective method for magnetic labeling of MSC spheroids using ferumoxytol. Unlike conventional methods, ferumoxytol labeling was done in the formation of a mechanically tunable biomimetic hydrogel-induced MSC spheroids. Moreover, the labeled MSC spheroids exhibited strong MRI T2 signals and good biosafety. Strikingly, the encapsulated ferumoxytol was localized in the extracellular matrix (ECM) of the spheroids instead of the cytoplasm, minimizing the cytotoxicity of ferumoxytol and maintaining the viability and stemness properties of biomimetic hydrogel-induced MSC spheroids. This demonstrates the potential of this method for post-transplantation MRI tracking in the clinic. An extracellular magnetic labeling method was developed for MSC spheroids using ferumoxytol. Ferumoxytol encapsulated into abundant ECM proteins network of MSC spheroids ensured this method is stable and durable. Uniformly sized magnetic spheroids induced by mechanically tunable biomimetic hydrogels promoted MSCs stemness properties. Magnetically labeled MSC spheroids exhibited superior MRI imaging both in vitro and in vivo.
Collapse
|
48
|
Ali AAQ, Siddiqui ZN. Heteropoly ionic liquids functionalized γ-Fe2O3 NPs: synthesis, characterization, and catalytic application in selective oxidation of benzyl alcohol to benzaldehyde using H2O2 as a green oxidant. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Aires A, Fernández-Afonso Y, Guedes G, Guisasola E, Gutiérrez L, Cortajarena AL. Engineered Protein-Driven Synthesis of Tunable Iron Oxide Nanoparticles as T1 and T2 Magnetic Resonance Imaging Contrast Agents. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10832-10841. [PMID: 36590706 PMCID: PMC9798829 DOI: 10.1021/acs.chemmater.2c01746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) have become one of the most promising nanomaterials for biomedical applications because of their biocompatibility and physicochemical properties. This study demonstrates the use of protein engineering as a novel approach to design scaffolds for the tunable synthesis of ultrasmall IONPs. Rationally designed proteins, containing different number of metal-coordination sites, were evaluated to control the size and the physicochemical and magnetic properties of a set of protein-stabilized IONPs (Prot-IONPs). Prot-IONPs, synthesized through an optimized coprecipitation approach, presented good T1 and T2 relaxivity values, stability, and biocompatibility, showing potential for magnetic resonance imaging (MRI) applications.
Collapse
Affiliation(s)
- Antonio Aires
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Yilian Fernández-Afonso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Gabriela Guedes
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- University
of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Eduardo Guisasola
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Lucía Gutiérrez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Aitziber L. Cortajarena
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
50
|
Lai Y, Zheng J, Lu S, Wang Y, Duan C, Yu P, Zheng Y, Huang R, Chang L, Chu M, Hsu J, Chu Y. Antiferroelectric PbSnO 3 Epitaxial Thin Films. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203863. [PMID: 36285684 PMCID: PMC9762279 DOI: 10.1002/advs.202203863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In condensed matter physics, oxide materials show various intriguing physical properties. Therefore, many efforts are made in this field to develop functional oxides. Due to the excellent potential for tin-based perovskite oxides, an expansion of new related functional compounds is crucial. This work uses a heteroepitaxial approach supported by theoretical calculation to stabilize PbSnO3 thin films with different orientations. The analyses of X-ray diffraction and transmission electron microscopy unveil the structural information. A typical antiferroelectric feature with double hysteresis and butterfly loops is observed through electrical characterizations consistent with the theoretical prediction. The phase transition is monitored, and the transition temperatures are determined based on temperature-dependent structural and electrical characterizations. Furthermore, the microscopic antiferroelectric order is noticed under atomic resolution images via scanning transmission electron microscopy. This work offers a breakthrough in synthesizing epitaxial PbSnO3 thin films and comprehensively understanding its anisotropic antiferroelectric behavior.
Collapse
Affiliation(s)
- Yu‐Hong Lai
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Jun‐Ding Zheng
- Key Laboratory of Polar Materials and DevicesMinistry of EducationDepartment of ElectronicsEast China Normal UniversityShanghai200241China
| | - Si‐Cheng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yin‐Kuo Wang
- Center for General EducationNational Taiwan Normal UniversityTaipei10610Taiwan
| | - Chun‐Gang Duan
- Key Laboratory of Polar Materials and DevicesMinistry of EducationDepartment of ElectronicsEast China Normal UniversityShanghai200241China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of PhysicsTsinghua UniversityBeijing100084China
| | - Yun‐Zhe Zheng
- Key Laboratory of Polar Materials and DevicesMinistry of EducationDepartment of ElectronicsEast China Normal UniversityShanghai200241China
| | - Rong Huang
- Key Laboratory of Polar Materials and DevicesMinistry of EducationDepartment of ElectronicsEast China Normal UniversityShanghai200241China
| | - Li Chang
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Ming‐Wen Chu
- Center for Condensed Matter Sciences and Center of Atomic Initiative for New MaterialsNational Taiwan UniversityTaipei106Taiwan
| | - Ju‐Hung Hsu
- Integrated Service TechnologyHsinchu300Taiwan
| | - Ying‐Hao Chu
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Center for Emergent Functional Matter ScienceNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| |
Collapse
|