1
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Figueiredo ML. Applications of single-cell RNA sequencing in rheumatoid arthritis. Front Immunol 2024; 15:1491318. [PMID: 39600707 PMCID: PMC11588722 DOI: 10.3389/fimmu.2024.1491318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Single cell RNA sequencing (scRNA-seq) is a relatively new technology that provides an unprecedented, detailed view of cellular heterogeneity and function by delineating the transcriptomic difference among individual cells. This will allow for mapping of cell-type-specific signaling during physiological and pathological processes, to build highly specific models of cellular signaling networks between the many discrete clusters that are present. This technology therefore provides a powerful approach to dissecting the cellular and molecular mechanisms that contribute to autoimmune diseases, including rheumatoid arthritis (RA). scRNA-seq can offer valuable insights into RA unique cellular states and transitions, potentially enabling development of novel drug targets. However, some challenges that still limit its mainstream utilization and include higher costs, a lower sensitivity for low-abundance transcripts, and a relatively complex data analysis workflow relative to bulk or traditional RNA-seq. This minireview explores the emerging application of scRNA-seq in RA research, highlighting its role in producing important insights that can help pave the way for innovative and more effective therapeutic strategies.
Collapse
Affiliation(s)
- Marxa L. Figueiredo
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue
University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Su CM, Tsai CH, Chen HT, Wu YS, Yang SF, Tang CH. Melatonin Regulates Rheumatoid Synovial Fibroblasts-Related Inflammation: Implications for Pathological Skeletal Muscle Treatment. J Pineal Res 2024; 76:e13009. [PMID: 39315577 DOI: 10.1111/jpi.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
Melatonin has been reported to regulate circadian rhythms and have anti-inflammatory characteristics in various inflammatory autoimmune diseases, but its effects in diseases-associated muscle atrophy remain controversial. This study is aimed to determine the evidence of melatonin in rheumatoid arthritis (RA)-related pathological muscle atrophy. We used initially bioinformatics results to show that melatonin regulated significantly the correlation between pro-inflammation and myogenesis in RA synovial fibroblasts (RASF) and myoblasts. The conditioned medium (CM) from melatonin-treated RASF was incubated in myoblasts with growth medium and differentiated medium to investigate the markers of pro-inflammation, atrophy, and myogenesis. We found that melatonin regulated RASF CM-induced pathological muscle pro-inflammation and atrophy in myoblasts and differentiated myocytes through NF-κB signaling pathways. We also showed for the first time that miR-30c-1-3p is negatively regulated by three inflammatory cytokines in human RASF, which is associated with murine-differentiated myocytes. Importantly, oral administration with melatonin in a collagen-induced arthritis (CIA) mouse model also significantly improved arthritic swelling, hind limb grip strength as well as pathological muscle atrophy. In conclusion, our study is the first to demonstrate not only the underlying mechanism whereby melatonin decreases pro-inflammation in RA-induced pathological muscle atrophy but also increases myogenesis in myoblasts and differentiated myocytes.
Collapse
MESH Headings
- Melatonin/pharmacology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Humans
- Fibroblasts/metabolism
- Fibroblasts/drug effects
- Fibroblasts/pathology
- Animals
- Mice
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Inflammation/metabolism
- Inflammation/pathology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Synovial Membrane/drug effects
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Male
- Myoblasts/metabolism
- Myoblasts/drug effects
- Muscular Atrophy/metabolism
- Muscular Atrophy/pathology
- Muscular Atrophy/drug therapy
- Mice, Inbred DBA
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- School of Medicine, China Medical University, Taichung City, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung City, Taiwan
- Spine Center, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| | - Yi-Syuan Wu
- Department of Sports Medicine, China Medical University, Taichung City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung City, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung City, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung City, Taiwan
| |
Collapse
|
4
|
Tsai YH, Tseng CC, Lin YC, Nail HM, Chiu KY, Chang YH, Chang MW, Lin FH, Wang HMD. Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing. Biomed J 2024:100750. [PMID: 38838984 DOI: 10.1016/j.bj.2024.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Bone grafting is the standard treatment for critical bone defects, but autologous grafts have limitations like donor site morbidity and limited availability, while commercial artificial grafts may have poor integration with surrounding bone tissue, leading to delayed healing. Magnesium deficiency negatively impacts angiogenesis and bone repair. Therefore, incorporating magnesium into a synthetic biomaterial could provide an excellent bone substitute. This study aims to evaluate the morphological, mechanical, and biological properties of a calcium phosphate cement (CPC) sponge composed of tetracalcium phosphate (TTCP) and monocalcium phosphate monohydrate (MCPM), which could serve as an excellent bone substitute by incorporating magnesium. METHODS This study aims to develop biomedical materials composed mainly of TTCP and MCPM powder, magnesium powder, and collagen. The materials were prepared using a wet-stirred mill and freeze-dryer methods. The particle size, composition, and microstructure of the materials were investigated. Finally, the biological properties of these materials, including 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay for biocompatibility, effects on bone cell differentiation by alkaline phosphatase (ALP) activity assay and tartrate-resistant acid phosphatase (TRAP) activity assay, and endothelial cell tube formation assay for angiogenesis, were evaluated as well. RESULTS The data showed that the sub-micron CPC powder, composed of TTCP/MCPM in a 3.5:1 ratio, had a setting time shorter than 15 minutes and a compressive strength of 4.39±0.96 MPa. This reveals that the sub-micron CPC powder had an adequate setting time and mechanical strength. We found that the sub-micron CPC sponge containing magnesium had better biocompatibility, including increased proliferation and osteogenic induction effects without cytotoxicity. The CPC sponge containing magnesium also promoted angiogenesis. CONCLUSION In summary, we introduced a novel CPC sponge, which had a similar property to human bone promoted the biological functions of bone cells, and could serve as a promising material used in bone regeneration for critical bone defects.
Collapse
Affiliation(s)
- Yuan-Hsin Tsai
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan Republic of China; Department of Orthopedic Surgery, Show-Chwan Memorial Hospital, Changhua 500, Taiwan Republic of China
| | - Chun-Chieh Tseng
- Metal Industries Research & Development Centre, 1001 Kaonan Highway, Nanzi Dist., Kaohsiung 811, Taiwan Republic of China; Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 802, Taiwan Republic of China
| | - Yun-Chan Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan Republic of China
| | - Howida M Nail
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan Republic of China
| | - Kuan-Yu Chiu
- Metal Industries Research & Development Centre, 1001 Kaonan Highway, Nanzi Dist., Kaohsiung 811, Taiwan Republic of China; Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 802, Taiwan Republic of China
| | - Yen-Hao Chang
- Metal Industries Research & Development Centre, 1001 Kaonan Highway, Nanzi Dist., Kaohsiung 811, Taiwan Republic of China; Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 802, Taiwan Republic of China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Belfast, BT151AB, Northern Ireland, UK
| | - Feng-Huei Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan Republic of China; Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan Republic of China; Institute of Biomedical Engineering and Nano-medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan Republic of China.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan Republic of China; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan Republic of China; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan Republic of China.
| |
Collapse
|
5
|
Fedoce AG, Veras FP, Rosa MH, Schneider AH, Paiva IM, Machado MR, Freitas-Filho EG, Silva JF, Machado CC, Alves-Filho JC, Cunha FQ, N Z Ramalho L, Louzada-Junior P, Bonavia AS, Tostes RC. Macrophage-derived human resistin promotes perivascular adipose tissue dysfunction in experimental inflammatory arthritis. Biochem Pharmacol 2024; 224:116245. [PMID: 38685281 DOI: 10.1016/j.bcp.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in rheumatoid arthritis (RA). Resistin is an adipokine that induces adipose tissue inflammation and activation of monocytes/macrophages via adenylate cyclase-associated protein-1 (CAP1). Resistin levels are increased in RA and might cause perivascular adipose tissue (PVAT) dysfunction, leading to vascular damage and CVD. This study aimed to investigate the role of resistin in promoting PVAT dysfunction by increasing local macrophage and inflammatory cytokines content in antigen-induced arthritis (AIA). Resistin pharmacological effects were assessed by using C57Bl/6J wild-type (WT) mice, humanized resistin mice expressing human resistin in monocytes-macrophages (hRTN+/-/-), and resistin knockout mice (RTN-/-) with AIA and respective controls. We investigated AIA disease activity and functional, cellular, and molecular parameters of the PVAT. Resistin did not contribute to AIA disease activity and its concentrations were augmented in the PVAT and plasma of WT AIA and hRTN+/-/- AIA animals. In vitro exposure of murine arteries to resistin impaired vascular function by decreasing the anti-contractile effect of PVAT. WT AIA mice and hRTN+/-/- AIA mice exhibited PVAT dysfunction and knockdown of resistin prevented it. Macrophage-derived cytokines, markers of types 1 and 2 macrophages, and CAP1 expression were increased in the PVAT of resistin humanized mice with AIA, but not in knockout mice for resistin. This study reveals that macrophage-derived resistin promotes PVAT inflammation and dysfunction regardless of AIA disease activity. Resistin might represent a translational target to reduce RA-driven vascular dysfunction and CVD.
Collapse
Affiliation(s)
- Aline G Fedoce
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Flávio P Veras
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Marcos H Rosa
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Ayda H Schneider
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Isadora M Paiva
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Mirele R Machado
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Edismauro G Freitas-Filho
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Cellular and Molecular Biology and Biopathogenic Agents, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Josiane F Silva
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Caio C Machado
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pathology and Legal Medicine, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - José C Alves-Filho
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernando Q Cunha
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Leandra N Z Ramalho
- Department of Pathology and Legal Medicine, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paulo Louzada-Junior
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Clinical Medicine of the Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Anthony S Bonavia
- Departments of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Rita C Tostes
- Center of Research in Inflammatory Diseases (CRID), University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Pharmacology, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
6
|
Hayashi H, Izumiya Y, Ishida T, Arima Y, Hayashi O, Yoshiyama M, Tsujita K, Fukuda D. Exosomal miR206 Secreted From Growing Muscle Promotes Angiogenic Response in Endothelial Cells. Circ J 2024; 88:425-433. [PMID: 38008429 DOI: 10.1253/circj.cj-23-0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
BACKGROUND Resistance exercise is beneficial in patients with lower extremity arterial disease. Muscle-derived exosomes contain many types of signaling molecules, including microRNAs (miRNAs). Here, we tested the hypothesis that exosomal miRNAs secreted by growing muscles promote an angiogenic response in endothelial cells (ECs). METHODS AND RESULTS Skeletal muscle-specific conditional Akt1 transgenic (Akt1-TG) mice, in which skeletal muscle growth can be induced were used as a model of resistance training. Remarkable skeletal muscle growth was observed in mice 2 weeks after gene activation. The protein amount in exosomes secreted by growing muscles did not differ between Akt1-TG and control mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway frequency analysis of 4,665 target genes, identified using an miRNA array miRNAs, revealed a significant increase in Akt and its downstream signaling pathway genes. Among the upregulated miRNAs, miR1, miR133, and miR206 were significantly upregulated in the serum of Akt1-TG mice. miR206 was also increased in insulin-like growth factor (IGF)-1-stimulated hypertrophied myotubes. Exogenous supplementation of exosomal miR206 to human umbilical vein ECs promoted angiogenesis, as assessed using the spheroid assay, and increased the expression of angiogenesis-related transcripts. CONCLUSIONS Exosomal miR206 is upregulated in the blood of Akt1-TG mice and in IGF-stimulated cultured myotubes. Exogenous supplementation of miR206 promoted an angiogenic response in ECs. Our data suggest that miR206 secreted from growing muscles acts on ECs and promotes angiogenesis.
Collapse
Affiliation(s)
- Hiroya Hayashi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Toshifumi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Yuichiro Arima
- Laboratory of Developmental Cardiology, International Research Center for Medical Sciences, Kumamoto University
| | - Ou Hayashi
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Minoru Yoshiyama
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Daiju Fukuda
- Department of Cardiovascular Medicine, Osaka Metropolitan University Graduate School of Medicine
| |
Collapse
|
7
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Wang B, Wang M, Ao D, Wei X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188799. [PMID: 36103908 DOI: 10.1016/j.bbcan.2022.188799] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023]
Abstract
Chemokine C-X-C motif ligand 13 (CXCL13), originally identified as a B-cell chemokine, plays an important role in the immune system. The interaction between CXCL13 and its receptor, the G-protein coupled receptor (GPCR) CXCR5, builds a signaling network that regulates not only normal organisms but also the development of many diseases. However, the precise action mechanism remains unclear. In this review, we discussed the functional mechanisms of the CXCL13-CXCR5 axis under normal conditions, with special focus on its association with diseases. For certain refractory diseases, we emphasize the diagnostic and therapeutic role of CXCL13-CXCR5 axis.
Collapse
Affiliation(s)
- Binhan Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Organokines in Rheumatoid Arthritis: A Critical Review. Int J Mol Sci 2022; 23:ijms23116193. [PMID: 35682868 PMCID: PMC9180954 DOI: 10.3390/ijms23116193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that primarily affects the joints. Organokines can produce beneficial or harmful effects in this condition. Among RA patients, organokines have been associated with increased inflammation and cartilage degradation due to augmented cytokines and metalloproteinases production, respectively. This study aimed to perform a review to investigate the role of adipokines, osteokines, myokines, and hepatokines on RA progression. PubMed, Embase, Google Scholar, and Cochrane were searched, and 18 studies were selected, comprising more than 17,000 RA patients. Changes in the pattern of organokines secretion were identified, and these could directly or indirectly contribute to aggravating RA, promoting articular alterations, and predicting the disease activity. In addition, organokines have been implicated in higher radiographic damage, immune dysregulation, and angiogenesis. These can also act as RA potent regulators of cells proliferation, differentiation, and apoptosis, controlling osteoclasts, chondrocytes, and fibroblasts as well as immune cells chemotaxis to RA sites. Although much is already known, much more is still unknown, principally about the roles of organokines in the occurrence of RA extra-articular manifestations.
Collapse
|
10
|
Upregulated miR-206 Aggravates Deep Vein Thrombosis by Regulating GJA1-Mediated Autophagy of Endothelial Progenitor Cells. Cardiovasc Ther 2022; 2022:9966306. [PMID: 35360546 PMCID: PMC8956392 DOI: 10.1155/2022/9966306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background Deep vein thrombosis (DVT) is the third most prevalent vascular disease worldwide. MicroRNAs (miRNAs) play regulatory roles in functions of endothelial progenitor cells (EPCs), which is becoming a promising therapeutic choice for thrombus resolution. Nevertheless, the role of miR-206 in EPCs is unclear. Methods EPCs were isolated from the peripheral blood of patients with DVT. In DVT mouse models, DVT was induced by stenosis of the inferior vena cava (IVC). The levels of miR-206 and gap junction protein alpha 1 (GJA1) in EPCs and vascular tissues of DVT mice were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The proliferation, migration, apoptosis, and angiogenesis were tested by cell counting kit-8 (CCK-8) assay, Transwell assay, flow cytometry analysis, and in vitro tube formation assay. The levels of autophagy-related proteins as well as the level of GJA1 in EPCs and vascular tissues were evaluated by western blotting. DVT formation in vivo was observed through hematoxylin-eosin (HE) staining. The expression of thrombus resolution markers, CD34 molecule (CD34) and matrix metallopeptidase 2 (MMP2), in the thrombi was measured by immunofluorescence staining. Results miR-206 overexpression inhibited proliferation, migration, and angiogenesis and promoted apoptosis of EPCs, while miR-206 knockdown exerted an opposite effect on EPC phenotypes. Downregulation of GJA1, the target of miR-206, abolished the influence of miR-206 on EPC phenotypes. Furthermore, silencing of miR-206 suppressed the autophagy of EPCs via upregulating GJA1. miR-206 knockdown repressed thrombus formation, enhanced the homing ability of EPCs to the thrombosis site, and facilitated thrombus resolution in DVT mouse models. Additionally, miR-206 was upregulated while GJA1 was downregulated in vascular tissues of DVT mice. miR-206 knockdown elevated GJA1 expression in vascular tissues of DVT mice. The expression of miR-206 was negatively correlated with that of GJA1 in DVT mice. Conclusion miR-206 knockdown upregulates GJA1 to inhibit autophagy of EPCs and then promote EPC proliferation, migration, and angiogenesis, thereby enhancing EPC homing to thrombi and facilitating thrombus resolution.
Collapse
|
11
|
Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. Int J Mol Sci 2021; 22:ijms222413675. [PMID: 34948469 PMCID: PMC8708779 DOI: 10.3390/ijms222413675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune inflammatory disease characterized by the swelling of multiple joints, pain and stiffness, and accelerated atherosclerosis. Sustained immune response and chronic inflammation, which characterize RA, may induce endothelial activation, damage and dysfunction. An equilibrium between endothelial damage and repair, together with the preservation of endothelial integrity, is of crucial importance for the homeostasis of endothelium. Endothelial Progenitor Cells (EPCs) represent a heterogenous cell population, characterized by the ability to differentiate into mature endothelial cells (ECs), which contribute to vascular homeostasis, neovascularization and endothelial repair. A modification of the number and function of EPCs has been described in numerous chronic inflammatory and auto-immune conditions; however, reports that focus on the number and functions of EPCs in RA are characterized by conflicting results, and discrepancies exist among different studies. In the present review, the authors describe EPCs' role and response to RA-related endothelial modification, with the aim of illustrating current evidence regarding the level of EPCs and their function in this disease, to summarize EPCs' role as a biomarker in cardiovascular comorbidities related to RA, and finally, to discuss the modulation of EPCs secondary to RA therapy.
Collapse
|
12
|
Achudhan D, Liu SC, Lin YY, Lee HP, Wang SW, Huang WC, Wu YC, Kuo YH, Tang CH. Antcin K inhibits VEGF-dependent angiogenesis in human rheumatoid arthritis synovial fibroblasts. J Food Biochem 2021; 46:e14022. [PMID: 34841538 DOI: 10.1111/jfbc.14022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022]
Abstract
Antrodia cinnamomea is a well-known medicinal mushroom in Taiwan that exhibits anti-inflammatory biological activities. In rheumatoid arthritis (RA), chronic inflammation and angiogenesis driven by proinflammatory cytokines reflect the severity of the disease. Although biological treatments have improved the outlook for RA, no healing exists. Moreover, the available pharmacotherapies do not work for all patients and drug safety is a major consideration. Investigations into plant-based medicines hope to reveal better, more tolerable agents. We examined whether Antcin K, a phytosterol isolated from A. cinnamomea, has anti-angiogenic activity in RA. The GSE12021 gene dataset from the Gene Expression Omnibus (GEO) database was examined for levels of vascular endothelial growth factor (VEGF) expression in 10 RA and 10 osteoarthritis (OA) synovial tissue samples. In clinical samples, VEGF expression was analyzed by immunohistochemical staining and ELISA in normal and RA synovial tissue, as well as OA and RA synovial fluid. Collagen-induced arthritis (CIA) and control tissue was stained with hematoxylin and eosin (H&E) for histological changes; Safranin O/Fast Green staining examined histopathological changes and evidence of bone erosion. Human RA synovial fibroblasts (RASFs) were incubated with Antcin K and cell viability was examined by the MTT assay. VEGF mRNA expression was detected in RASFs using qPCR. Antcin K significantly inhibited VEGF expression and ameliorates endothelial progenitor cell (EPC) migration and tube formation in RASFs by downregulating the phospholipase C-γ/protein kinase C-α pathway. Antcin K also induced anti-angiogenic effects in human RASFs without cytotoxicity. PRACTICAL APPLICATIONS: Analysis of GEO dataset samples and human synovial fluids or synovial tissues revealed higher VEGF levels in rheumatoid arthritis (RA) samples compared with osteoarthritis (OA) and healthy control samples. VEGF levels were also higher in mice with collagen-induced arthritis (CIA) than in healthy controls. Antcin K markedly suppressed VEGF expression in human RA synovial fibroblasts and inhibited the migration and tube formation of epithelial progenitor cells (EPCs) by downregulating the phospholipase C-γ/protein kinase C-α pathway. Further investigations are warranted to examine the effects of Antcin K in other angiogenesis-associated disorders.
Collapse
Affiliation(s)
- David Achudhan
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chien Huang
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yueh-Hsiung Kuo
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Chang TK, Zhong YH, Liu SC, Huang CC, Tsai CH, Lee HP, Wang SW, Hsu CJ, Tang CH. Apelin Promotes Endothelial Progenitor Cell Angiogenesis in Rheumatoid Arthritis Disease via the miR-525-5p/Angiopoietin-1 Pathway. Front Immunol 2021; 12:737990. [PMID: 34659230 PMCID: PMC8511637 DOI: 10.3389/fimmu.2021.737990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. The adipokine apelin (APLN) plays critical roles in several cellular functions, including angiogenesis. We report that APLN treatment of RA synovial fibroblasts (RASFs) increased angiopoietin-1 (Ang1) expression. Ang1 antibody abolished endothelial progenitor cell (EPC) tube formation and migration in conditioned medium from APLN-treated RASFs. We also found significantly higher levels of APLN and Ang1 expression in synovial fluid from RA patients compared with those with osteoarthritis. APLN facilitated Ang1-dependent EPC angiogenesis by inhibiting miR-525-5p synthesis via phospholipase C gamma (PLCγ) and protein kinase C alpha (PKCα) signaling. Importantly, infection with APLN shRNA mitigated EPC angiogenesis, articular swelling, and cartilage erosion in ankle joints of mice with collagen-induced arthritis. APLN is therefore a novel therapeutic target for RA.
Collapse
Affiliation(s)
- Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
| | - You-Han Zhong
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Tsai CH, Chen CJ, Gong CL, Liu SC, Chen PC, Huang CC, Hu SL, Wang SW, Tang CH. CXCL13/CXCR5 axis facilitates endothelial progenitor cell homing and angiogenesis during rheumatoid arthritis progression. Cell Death Dis 2021; 12:846. [PMID: 34518512 PMCID: PMC8437941 DOI: 10.1038/s41419-021-04136-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022]
Abstract
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. The chemokine (C-X-C motif) ligand 13 (CXCL13) plays important roles in several cellular functions such as infiltration, migration, and motility. We report significantly higher levels of CXCL13 expression in collagen-induced arthritis (CIA) mice compared with controls and also in synovial fluid from RA patients compared with human osteoarthritis (OA) samples. RA synovial fluid increased endothelial progenitor cell (EPC) homing and angiogenesis, which was blocked by the CXCL13 antibody. By interacting with the CXCR5 receptor, CXCL13 facilitated vascular endothelial growth factor (VEGF) expression and angiogenesis in EPC through the PLC, MEK, and AP-1 signaling pathways. Importantly, infection with CXCL13 short hairpin RNA (shRNA) mitigated EPC homing and angiogenesis, articular swelling, and cartilage erosion in ankle joints of mice with CIA. CXCL13 is therefore a novel therapeutic target for RA.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Ju Chen
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Li Gong
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, Mackay Medical College, Taipei, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
15
|
S1P Increases VEGF Production in Osteoblasts and Facilitates Endothelial Progenitor Cell Angiogenesis by Inhibiting miR-16-5p Expression via the c-Src/FAK Signaling Pathway in Rheumatoid Arthritis. Cells 2021; 10:cells10082168. [PMID: 34440937 PMCID: PMC8393529 DOI: 10.3390/cells10082168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a critical process in the formation of new capillaries and a key participant in rheumatoid arthritis (RA) pathogenesis. Vascular endothelial growth factor (VEGF) stimulation of endothelial progenitor cells (EPCs) facilitates angiogenesis and the progression of RA. Phosphorylation of sphingosine kinase 1 (SphK1) produces sphingosine-1-phosphate (S1P), which increases inflammatory cytokine production, although the role of S1P in RA angiogenesis is unclear. In this study, we evaluated the impact of S1P treatment on VEGF-dependent angiogenesis in osteoblast-like cells (MG-63 cells) and the significance of SphK1 short hairpin RNA (shRNA) on S1P production in an in vivo model. We found significantly higher levels of S1P and VEGF expression in synovial fluid from RA patients compared with those with osteoarthritis by ELISA analysis. Treating MG-63 cells with S1P increased VEGF production, while focal adhesion kinase (FAK) and Src siRNAs and inhibitors decreased VEGF production in S1P-treated MG-63 cells. Conditioned medium from S1P-treated osteoblasts significantly increased EPC tube formation and migration by inhibiting miR-16-5p synthesis via proto-oncogene tyrosine-protein kinase src (c-Src) and FAK signaling in chick chorioallantoic membrane (CAM) and Matrigel plug assays. Infection with SphK1 shRNA reduced angiogenesis, articular swelling and cartilage erosion in the ankle joints of mice with collagen-induced arthritis (CIA). S1P appears to have therapeutic potential in RA treatment.
Collapse
|
16
|
Zhu P, Jiang W, He S, Zhang T, Liao F, Liu D, An X, Huang X, Zhou N. Panax notoginseng saponins promote endothelial progenitor cell angiogenesis via the Wnt/β-catenin pathway. BMC Complement Med Ther 2021; 21:53. [PMID: 33557814 PMCID: PMC7869233 DOI: 10.1186/s12906-021-03219-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Distraction osteogenesis (DO) is an effective treatment in craniomaxillofacial surgery. However, the issue of sufficient blood supply at the regeneration tissue has limited its wide application. Panax notoginseng saponins (PNS) is a Traditional Chinese Medicine that is commonly used to treat a range of angiogenic diseases. However, the mechanisms whereby PNS alters angiogenesis in endothelial progenitor cells (EPCs) have yet to be clarified. Methods EPCs were identified by immunofluorescence, confirmed by their uptake of fluorescently labeled Dil-ac-LDL and FITC-UEA-1. EPCs were treated with different concentrations of PNS, and the effects of PNS on cell proliferation were measured on the optimal concentration of PNS determined. The effects of PNS on angiogenesis and migration, angiogenic cytokines mRNA expression and the proteins of the Wnt pathway were investigated. Then knocked down β-catenin in EPCs and treated with the optimum concentrational PNS, their angiogenic potential was evaluated in tube formation and migration assays. In addition, the expression of cytokines associated with angiogenesis and Wnt/β-catenin was then assessed via WB and RT-qPCR. Results We were able to determine the optimal concentration of PNS in the promotion of cell proliferation, tube formation, and migration to be 6.25 mg/L. PNS treatment increased the mRNA levels of VEGF, bFGF, VE-Cadherin, WNT3a, LRP5, β-catenin, and TCF4. After knocked down β-catenin expression, we found that PNS could sufficient to partially reverse the suppression of EPC angiogenesis. Conclusions Overall, 6.25 mg/L PNS can promote EPC angiogenesis via Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Peiqi Zhu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Weidong Jiang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Shixi He
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Fengchun Liao
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Di Liu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiaoning An
- Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xuanping Huang
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| | - Nuo Zhou
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction; Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| |
Collapse
|
17
|
Maximus PS, Al Achkar Z, Hamid PF, Hasnain SS, Peralta CA. Adipocytokines: Are they the Theory of Everything? Cytokine 2020; 133:155144. [PMID: 32559663 PMCID: PMC7297161 DOI: 10.1016/j.cyto.2020.155144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adipose tissue secretes various bioactive peptides/proteins, immune molecules and inflammatory mediators which are known as adipokines or adipocytokines. Adipokines play important roles in the maintenance of energy homeostasis, appetite, glucose and lipid metabolism, insulin sensitivity, angiogenesis, immunity and inflammation. Enormous number of studies from all over the world proved that adipocytokines are involved in the pathogenesis of diseases affecting nearly all body systems, which raises the question whether we can always blame adipocytokines as the triggering factor of every disease that may hit the body. OBJECTIVE Our review targeted the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems including diabetes mellitus, kidney diseases, gynecological diseases, rheumatologic disorders, cancers, Alzheimer's, depression, muscle disorders, liver diseases, cardiovascular and lung diseases. METHODOLOGY We cited more than 33 recent literature reviews that discussed the role played by adipocytokines in the pathogenesis of different diseases affecting different body systems. CONCLUSION More evidence is being discovered to date about the role played by adipocytokines in more diseases and extra research is needed to explore hidden roles played by adipokine imbalance on disease pathogenesis.
Collapse
Affiliation(s)
- Pierre S Maximus
- California Institute of Behavioral Neurosciences and Psychology, United States.
| | - Zeina Al Achkar
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Pousette F Hamid
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Syeda S Hasnain
- California Institute of Behavioral Neurosciences and Psychology, United States
| | - Cesar A Peralta
- California Institute of Behavioral Neurosciences and Psychology, United States
| |
Collapse
|
18
|
Yu G, Liu P, Shi Y, Li S, Liu Y, Fan Z, Zhu W. Stimulation of endothelial progenitor cells by microRNA-31a-5p to induce endothelialization in an aneurysm neck after coil embolization by modulating the Axin1-mediated β-catenin/vascular endothelial growth factor pathway. J Neurosurg 2020; 133:918-926. [PMID: 31398705 DOI: 10.3171/2019.5.jns182901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/01/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Emerging evidence shows that frequent recurrence of intracranial aneurysms (IAs) after endovascular coiling is attributable to the lack of endothelialization across the aneurysm neck. Recently, much attention has been given to the role of microRNAs (miRs) in vascular disease, although their contributory role to IA is poorly understood. METHODS Adult male Sprague-Dawley rats were subjected to microsurgery to create a coiled embolization aneurysm model, and were injected with miR-31a-5p agomir or a negative control agomir via the tail vein at a dose of 10 mg/kg per week for 4 weeks after IA induction. H & E staining, scanning electron microscopy, and flow cytometry were performed to evaluate the effects of miR-31a-5p agomir on endothelialization and the number of circulating endothelial progenitor cells (EPCs). The effects of miR-31a-5p on the viability and functioning of EPCs were also determined using Cell Counting Kit-8, wound-healing assay, and tube formation assays. RESULTS The authors tested the ability of miR-31a-5p to promote EPC-induced endothelialization in a model of coiled embolization aneurysm. miR-31a-5p agomir improved endothelialization and elevated the number of circulating EPCs in the peripheral blood compared to a negative control agomir-treated group. In addition, the number of vWF- and KDR-positive cells in the aneurysm neck was increased in the miR-31a-5p agomir-treated group. Furthermore, upregulation of miR-31a-5p promoted EPC proliferation, migration, and tube formation and enhanced the expression of the proangiogenic factor vascular endothelial growth factor in vitro. Mechanistically, miR-31a-5p directly targeted the 3' untranslated region (3'UTR) of Axin1 messenger RNA and repressed its expression. Besides, miR-31a-5p exerted its effect on EPCs by regulating the Axin1-mediated Wnt/β-catenin pathway. CONCLUSIONS Collectively, these results indicate that miR-31a-5p is an important regulator of EPC mobilization and endothelialization and may have a positive effect on aneurysm repair.
Collapse
|
19
|
Chen WC, Lu YC, Kuo SJ, Lin CY, Tsai CH, Liu SC, Chen YL, Wang SW, Tang CH. Resistin enhances IL-1β and TNF-α expression in human osteoarthritis synovial fibroblasts by inhibiting miR-149 expression via the MEK and ERK pathways. FASEB J 2020; 34:13671-13684. [PMID: 32790946 DOI: 10.1096/fj.202001071r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Resistin is a cysteine-rich adipokine that promotes the release of inflammatory cytokines, particularly interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), which are critical pro-inflammatory mediators in osteoarthritis (OA) pathogenesis. We describe evidence of significantly higher levels of resistin, IL-1β, and TNF-α expression in OA knee synovial tissue compared with that from non-OA knees. Resistin-induced enhancement of IL-1β and TNF-α expression in human OA synovial fibroblasts (OASFs) were attenuated by MEK and ERK inhibitors, as well as their respective siRNAs. Our data reveal that resistin enhances the expression of TNF-α and IL-1β in OASFs by inhibiting miR-149 expression via MEK and ERK signaling. Our findings elucidate the inter-relationships between resistin and pro-inflammatory mediators during OA pathogenesis and could help to facilitate the development of synovium-targeted therapy in OA.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yung-Chang Lu
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Division of Sports Medicine & Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Lin
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Yen-Ling Chen
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Lee HP, Wu YC, Chen BC, Liu SC, Li TM, Huang WC, Hsu CJ, Tang CH. Soya-cerebroside reduces interleukin production in human rheumatoid arthritis synovial fibroblasts by inhibiting the ERK, NF-κB and AP-1 signalling pathways. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1766426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hsiang-Ping Lee
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Bo-Cheng Chen
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- The Biotechnology Department, College of Medical and Health Science, Asia University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
21
|
TGF-β1 enhances FOXO3 expression in human synovial fibroblasts by inhibiting miR-92a through AMPK and p38 pathways. Aging (Albany NY) 2020; 11:4075-4089. [PMID: 31232696 PMCID: PMC6628998 DOI: 10.18632/aging.102038] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/14/2019] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is an age-related disease marked by synovial inflammation and cartilage destruction arising from synovitis, joint swelling and pain. OA therapy that targets the synovium is a promising strategy for mitigating the symptoms and disease progression. Altered activity of the transforming growth factor-β1 isoform (TGF-β1) during aging underlies OA progression. Notably, aberrant forkhead box class O 3 (FOXO3) activity is implicated in the pathogenesis of various age-related diseases, including OA. This study explored the interaction and cross-talk of TGF-β1 and FOXO3 in human osteoarthritis synovial fibroblasts (OASFs). TGF-β1 stimulated FOXO3 synthesis in OASFs, which was mitigated by blocking adenosine monophosphate-activated protein kinase (AMPK) and p38 activity. TGF-β1 also inhibited the expression of miR-92a, which suppresses FOXO3 transcription. The suppression of miR-92a was effectively reversed with the blockade of the AMPK and p38 pathways. Our study showed that TGF-β1 promotes anti-inflammatory FOXO3 expression by stimulating the phosphorylation of AMPK and p38 and suppressing the downstream expression of miR-92a. These results may help to clarify OA pathogenesis and lead to better targeted treatment.
Collapse
|
22
|
Resistin Enhances VCAM-1 Expression and Monocyte Adhesion in Human Osteoarthritis Synovial Fibroblasts by Inhibiting MiR-381 Expression through the PKC, p38, and JNK Signaling Pathways. Cells 2020; 9:cells9061369. [PMID: 32492888 PMCID: PMC7349127 DOI: 10.3390/cells9061369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
The development of osteoarthritis (OA) is characterized by synovial inflammation and the upregulation of vascular cell adhesion molecule type 1 (VCAM-1) in human osteoarthritis synovial fibroblasts (OASFs). This increase in VCAM-1 expression promotes monocyte adhesion to OASFs. The adipokine resistin is known to promote the release of inflammatory cytokines during OA progression. In this study, we identified significantly higher levels of resistin and CD68 (a monocyte surface marker) expression in human OA tissue compared with in healthy control tissue. We also found that resistin enhances VCAM-1 expression in human OASFs and facilitates the adhesion of monocytes to OASFs. These effects were attenuated by inhibitors of PKCα, p38, and JNK; their respective siRNAs; and by a microRNA-381 (miR-381) mimic. In our anterior cruciate ligament transection (ACLT) rat model of OA, the inhibition of resistin activity prevented ACLT-induced damage to the OA rat cartilage and pathological changes in resistin and monocyte expression. We also found that resistin affects VCAM-1 expression and monocyte adhesion in human OASFs by inhibiting miR-381 synthesis via the PKCα, p38, and JNK signaling pathways. Our clarification of the crucial role played by resistin in the pathogenesis of OA may lead to more effective therapy that reduces OA inflammation.
Collapse
|
23
|
Tsai CH, Liu SC, Chung WH, Wang SW, Wu MH, Tang CH. Visfatin Increases VEGF-dependent Angiogenesis of Endothelial Progenitor Cells during Osteoarthritis Progression. Cells 2020; 9:cells9051315. [PMID: 32466159 PMCID: PMC7291153 DOI: 10.3390/cells9051315] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) pannus contains a network of neovascularization that is formed and maintained by angiogenesis, which is promoted by vascular endothelial growth factor (VEGF). Bone marrow-derived endothelial progenitor cells (EPCs) are involved in VEGF-induced vessel formation in OA. The adipokine visfatin stimulates the release of inflammatory cytokines during OA progression. In this study, we found significantly higher visfatin and VEGF serum concentrations in patients with OA compared with healthy controls. We describe how visfatin enhanced VEGF expression in human OA synovial fibroblasts (OASFs) and facilitated EPC migration and tube formation. Treatment of OASFs with PI3K and Akt inhibitors or siRNAs attenuated the effects of visfatin on VEGF synthesis and EPC angiogenesis. We also describe how miR-485-5p negatively regulated visfatin-induced promotion of VEGF expression and EPC angiogenesis. In our OA rat model, visfatin shRNA was capable of inhibiting visfatin and rescuing EPC angiogenesis and pathologic changes. We detail how visfatin affected VEGF expression and EPC angiogenesis in OASFs by inhibiting miR-485-5p synthesis through the PI3K and Akt signaling pathways.
Collapse
Affiliation(s)
- Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404, Taiwan;
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651, Taiwan;
| | - Wen-Hui Chung
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Min-Huan Wu
- Physical Education Office, Tunghai University, Taichung 407, Taiwan
- Sports Recreation and Health Management Continuing Studies, Tunghai University, Taichung 807, Taiwan
- Correspondence: (M.-H.W.); (C.-H.T.)
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: (M.-H.W.); (C.-H.T.)
| |
Collapse
|
24
|
Li CY, Chang CC, Tsai YH, El-Shazly M, Wu CC, Wang SW, Hwang TL, Wei CK, Hohmann J, Yang ZJ, Cheng YB, Wu YC, Chang FR. Anti-inflammatory, Antiplatelet Aggregation, and Antiangiogenesis Polyketides from Epicoccum sorghinum: Toward an Understating of Its Biological Activities and Potential Applications. ACS OMEGA 2020; 5:11092-11099. [PMID: 32455230 PMCID: PMC7241018 DOI: 10.1021/acsomega.0c01000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/24/2020] [Indexed: 05/28/2023]
Abstract
The ethyl acetate extract of an endophyte Epicoccum sorghinum exhibited anti-inflammatory activity at a concentration of <10 μg/mL. By bioassay-guided fractionation, one new compound, named epicorepoxydon A (1), and one unusual bioactive compound, 6-(hydroxymethyl)benzene-1,2,4-triol (6), together with six known compounds, were isolated from E. sorghinum. The structures of all isolates were established by spectroscopic analyses. The relative configuration of 1 was deduced by the NOESY spectrum and its absolute configuration was determined by X-ray single-crystal analysis. The biological activities of all isolates were evaluated using four types of bioassays including cytotoxicity, anti-inflammatory, antiplatelet aggregation, and antiangiogenesis activities. Compounds 4 and 6 showed potent anti-inflammatory activity, compound 2 possessed potent antiplatelet aggregation and antiangiogenesis activities, and compound 6 demonstrated antiangiogenesis activity. This fungal species can cause a human hemorrhagic disorder known as onyalai. In this study, we identified the active components with antiplatelet aggregation and antiangiogenesis activities, which may be related to the hemorrhagic disorder caused by this fungus. Moreover, we proposed a biosynthetic pathway of the isolated polyketide secondary metabolites and investigated their structure-activity relationship (SAR). Our results suggested that E. sorghinum is a potent source of biologically active compounds that can be developed as antiplatelet aggregation and anti-inflammatory agents.
Collapse
Affiliation(s)
- Chi-Ying Li
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Chia Chang
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Hong Tsai
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed El-Shazly
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
- Department
of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Chin-Chung Wu
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Wei Wang
- Department
of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Tsong-Long Hwang
- Graduate
Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Research
Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic
Safety, and Graduate Institute of Health Industry Technology, College
of Human Ecology, Chang Gung University
of Science and Technology, Taoyuan 333, Taiwan
- Department
of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chien-Kei Wei
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Judit Hohmann
- Department
of Pharmacognosy, Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary
Centre for Natural Products, University
of Szeged, H-6720 Szeged, Hungary
| | - Zih-Jie Yang
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuan-Bin Cheng
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yang-Chang Wu
- Graduate
Institute of Integrated Medicine, China
Medical University, Taichung 404, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Rong Chang
- Graduate
Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung
Medical University Hospital, Kaohsiung Medical
University, Kaohsiung 807, Taiwan
- Department
of Marine Biotechnology and Resources, National
Sun Yat-sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
25
|
Chang TK, Wang YH, Kuo SJ, Wang SW, Tsai CH, Fong YC, Wu NL, Liu SC, Tang CH. Apelin enhances IL-1β expression in human synovial fibroblasts by inhibiting miR-144-3p through the PI3K and ERK pathways. Aging (Albany NY) 2020; 12:9224-9239. [PMID: 32420902 PMCID: PMC7288923 DOI: 10.18632/aging.103195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/29/2020] [Indexed: 01/15/2023]
Abstract
Much data suggests intersecting activities between the adipokine apelin (APLN) and the pathologic processes of obesity and osteoarthritis (OA), with APLN modulating cartilage, synovium, bone, and various immune cell activities. The synovium plays an important role in the pathogenesis of OA. We investigated the crosstalk between APLN, a major OA-related adipokine, and interleukin 1 beta (IL-1β), a major proinflammatory cytokine, in human OA synovial fibroblasts (OASFs). We showed that APLN stimulated the synthesis of IL-1β in a concentration- and time-dependent manner, which was mitigated by blockade of the PI3K and ERK pathway. We also showed that APLN inhibited the expression of miRNA-144-3p, which blocks IL-1β transcription; this suppression activity was reversed via blockade of the PI3K and ERK pathway. Moreover, pathologic changes in OA cartilage were rescued when APLN was silenced by shAPLN transfection both in vitro and in vivo. Our evidence is the first to show that APLN stimulates the expression of IL-1β by activating the PI3K and ERK pathway and suppressing downstream expression of miRNA-144-3p in OASFs. We also demonstrate that knockdown of APLN expression by shAPLN transfection ameliorated changes in OA cartilage severity. These results shed light on OA pathogenesis and suggest a novel treatment pathway.
Collapse
Affiliation(s)
- Ting-Kuo Chang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Division of Spine Surgery, Department of Orthopedic Surgery, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
26
|
Chien SY, Tsai CH, Liu SC, Huang CC, Lin TH, Yang YZ, Tang CH. Noggin Inhibits IL-1β and BMP-2 Expression, and Attenuates Cartilage Degeneration and Subchondral Bone Destruction in Experimental Osteoarthritis. Cells 2020; 9:cells9040927. [PMID: 32290085 PMCID: PMC7226847 DOI: 10.3390/cells9040927] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory and progressive joint disease that results in cartilage degradation and subchondral bone remodeling. The proinflammatory cytokine interleukin 1 beta (IL-1β) is abundantly expressed in OA and plays a crucial role in cartilage remodeling, although its role in the activity of chondrocytes in cartilage and subchondral remodeling remains unclear. In this study, stimulating chondrogenic ATDC5 cells with IL-1β increased the levels of bone morphogenetic protein 2 (BMP-2), promoted articular cartilage degradation, and enhanced structural remodeling. Immunohistochemistry staining and microcomputed tomography imaging of the subchondral trabecular bone region in the experimental OA rat model revealed that the OA disease promotes levels of IL-1β, BMP-2, and matrix metalloproteinase 13 (MMP-13) expression in the articular cartilage and enhances subchondral bone remodeling. The intra-articular injection of Noggin protein (a BMP-2 inhibitor) attenuated subchondral bone remodeling and disease progression in OA rats. We also found that IL-1β increased BMP-2 expression by activating the mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase (ERK), and specificity protein 1 (Sp1) signaling pathways. We conclude that IL-1β promotes BMP-2 expression in chondrocytes via the MEK/ERK/Sp1 signaling pathways. The administration of Noggin protein reduces the expression of IL-1β and BMP-2, which prevents cartilage degeneration and OA development.
Collapse
Affiliation(s)
- Szu-Yu Chien
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404393, Taiwan;
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404022, Taiwan;
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404022, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651012, Taiwan;
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404022, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Yu-Zhen Yang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404022, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404022, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121 (ext. 7726)
| |
Collapse
|
27
|
Wang YH, Kuo SJ, Liu SC, Wang SW, Tsai CH, Fong YC, Tang CH. Apelin Affects the Progression of Osteoarthritis by Regulating VEGF-Dependent Angiogenesis and miR-150-5p Expression in Human Synovial Fibroblasts. Cells 2020; 9:cells9030594. [PMID: 32131466 PMCID: PMC7140420 DOI: 10.3390/cells9030594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Synovium-induced angiogenesis is central to osteoarthritis (OA) pathogenesis and thus a promising therapeutic target. The adipokine apelin (APLN) is involved in both OA pathogenesis and angiogenesis. We examined the role of APLN in synovium-induced angiogenesis by investigating the crosstalk between APLN and vascular endothelial growth factor (VEGF) expression in human OA synovial fibroblasts (OASFs). We found higher levels of APLN and VEGF expression in OA samples compared with normal samples. APLN-induced stimulation of VEGF expression and VEGF-dependent angiogenesis in OASFs was mitigated by FAK/Src/Akt signaling. APLN also inhibited levels of microRNA-150-5p (miR-150-5p), which represses VEGF production and angiogenesis. Analyses of an OA animal model showed that shAPLN transfection of OASFs rescued pathologic changes in OA cartilage and histology. Here, we found APLN enhances VEGF expression and angiogenesis via FAK/Src/Akt cascade and via downstream suppression of miR-150-5p expression. These findings help to clarify the pathogenesis of adipokine-induced angiogenesis in OA synovium.
Collapse
Affiliation(s)
- Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan; (C.-H.T.); (Y.-C.F.)
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651, Taiwan;
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan; (C.-H.T.); (Y.-C.F.)
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40402, Taiwan; (C.-H.T.); (Y.-C.F.)
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan;
- School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-4-22052121 (ext. 7726)
| |
Collapse
|
28
|
Wang CQ, Tang CH, Tzeng HE, Jin L, Zhao J, Kang L, Wang Y, Hu GN, Huang BF, Li X, Zhao YM, Su CM, Jin HC. Impacts of RETN genetic polymorphism on breast cancer development. J Cancer 2020; 11:2769-2777. [PMID: 32226495 PMCID: PMC7086250 DOI: 10.7150/jca.38088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
The adipokine resistin is linked with obesity, inflammation and various cancers, including breast cancer. This study sought to determine whether certain polymorphisms in the gene encoding resistin, RETN, increase the risk of breast cancer susceptibility. We analyzed levels of resistin expression in breast cancer tissue and samples from The Cancer Genome Atlas database. We also examined associations between four RETN single nucleotide polymorphisms (SNPs; rs3745367, rs7408174, rs1862513 and rs3219175) and breast cancer susceptibility in 515 patients with breast cancer and 541 healthy women without cancer. Compared with wild-type (GG) carriers, those carrying the AG genotype of the RETN SNP rs3219175 and those carrying at least one A allele in the SNP rs3219175 had a higher chance of developing breast cancer (adjusted odds ratio, AOR: 1.295, 95% confidence intervals, CI: 1.065-1.575 and 2.202, 1.701-2.243, respectively). When clinical aspects and the RETN SNP rs7408174 were examined in the breast cancer cohort, the CT genotype was linked to late-stage disease, while women with luminal A disease and at least one C allele were likely to progress to stage III/IV disease and to develop highly pathological grade III disease. Moreover, resistin-positive individuals were at greater risk than resistin-negative individuals for developing pathological grade III disease (OR: 5.020; 95% CI: 1.380-18.259). This study details risk associations between resistin and RETN SNPs in breast cancer susceptibility in Chinese Han women.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.,Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Huey-En Tzeng
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Division of Hematology/Oncology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, Taiwan
| | - Lulu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Jin Zhao
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Le Kang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Gui-Nv Hu
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xiaoni Li
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Yong-Ming Zhao
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chen-Ming Su
- Department of Sports Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Chuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang Province, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Wang CQ, Lin CY, Huang YL, Wang SW, Wang Y, Huang BF, Lai YW, Weng SL, Fong YC, Tang CH, Lv Z. Sphingosine-1-phosphate promotes PDGF-dependent endothelial progenitor cell angiogenesis in human chondrosarcoma cells. Aging (Albany NY) 2019; 11:11040-11053. [PMID: 31809267 PMCID: PMC6932882 DOI: 10.18632/aging.102508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
The malignant bone tumors that are categorized as chondrosarcomas display a high potential for metastasis in late-stage disease. Higher-grade chondrosarcomas contain higher levels of expression of platelet-derived growth factor (PDGF) and its receptor. The phosphorylation of sphingosine by sphingosine kinase enzymes SphK1 and SphK2 generates sphingosine-1-phosphate (S1P), which inhibits human chondrosarcoma cell migration, while SphK1 overexpression suppresses lung metastasis of chondrosarcoma. We sought to determine whether S1P mediates levels of PDGF-A expression and angiogenesis in chondrosarcoma. Surprisingly, our investigations found that treatment of chondrosarcoma cells with S1P and transfecting them with SphK1 cDNA increased PDGF-A expression and induced angiogenesis of endothelial progenitor cells (EPCs). Ras, Raf, MEK, ERK and AP-1 inhibitors and their small interfering RNAs (siRNAs) inhibited S1P-induced PDGF-A expression and EPC angiogenesis. Our results indicate that S1P promotes the expression of PDGF-A in chondrosarcoma via the Ras/Raf/MEK/ERK/AP-1 signaling cascade and stimulates EPC angiogenesis.
Collapse
Affiliation(s)
- Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Yang Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Bi-Fei Huang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yu-Wei Lai
- Division of Urology, Taipei Hospital Renai Branch, Taipei, Taiwan.,Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Shun-Long Weng
- Department of Obstetrics and Gynaecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Zhong Lv
- Department of General Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
30
|
Kuo SJ, Hsua PW, Chien SY, Huang CC, Hu SL, Tsai CH, Su CM, Tang CH. Associations between WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of rheumatoid arthritis among Chinese Han subjects. Medicine (Baltimore) 2019; 98:e17604. [PMID: 31689765 PMCID: PMC6946386 DOI: 10.1097/md.0000000000017604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study genotyped blood samples from 214 patients with rheumatoid arthritis (RA) and 293 healthy controls for single nucleotide polymorphisms (SNPs) rs2977537, rs2929970, rs2929973, rs2977530, rs1689334 and rs62514004. We want to investigate whether the SNPs in the WNT1-inducible signaling pathway protein 1 (WISP-1) gene may increase the risk of developing RA. We showed that RA disease was more likely with the AA genotype compared with the AG genotype of SNP rs2977537 (adjusted odds ratio [AOR]: 0.54; 95% confidence interval [CI]: 0.34-0.84), and with the TT genotype (AOR: 0.24; 95% CI: 0.13-0.39) or the GG genotype (AOR: 0.05; 95% CI: 0.03-0.10) compared with the GT genotype of rs2929973, and with the AA genotype (AOR: 0.34; 95% CI: 0.22-0.54) or GG genotype (AOR: 0.52; 95% CI: 0.31 to 0.87) vs the AG genotype of rs2977530. Rheumatoid factor positivity was more likely with the AA genotype than with the AG genotype of the rs2977537 polymorphism (AOR: 0.16; 95% CI: 0.16-0.94). High CRP (>8 mg/L) was more likely with the non-AG genotype (AA + GG) than the AG genotype of rs2977537 (AOR: 1.84; 95% CI: 1.05-3.21) and with the AA genotype vs the AG genotype of rs2977530 (AOR: 2.62; 95% CI: 1.35-5.09). Compared with the AG genotype, the AA genotype of rs2929970 was more likely to require prednisolone (AOR: 0.49; 95% CI: 0.27-0.88), while the AG genotype was more likely than the AA genotype of SNP rs2977530 to require TNF-α inhibitors (AOR: 2.07; 95% CI: 1.08 to 3.98). WISP-1 may be a diagnostic marker and therapeutic target for RA therapy.
Collapse
Affiliation(s)
- Shu-Jui Kuo
- School of Medicine
- Department of Orthopedic Surgery
| | | | | | - Chien-Chung Huang
- School of Medicine
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital
| | - Sung-Lin Hu
- School of Medicine
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu
| | | | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine
- Graduate Institute of Biomedical Science
- Chinese Medicine Research Center, China Medical University
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
31
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
32
|
Hu W, Tang CH, Chen HT, Zhao J, Jin L, Kang L, Wu Y, Ying P, Wang CQ, Su CM. Correlations between angiopoietin-2 gene polymorphisms and lung cancer progression in a Chinese Han population. J Cancer 2019; 10:2935-2941. [PMID: 31281470 PMCID: PMC6590031 DOI: 10.7150/jca.31134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/22/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the most common malignancy in China and is associated with a poor survival rate amongst Han Chinese. The high mortality is largely attributed to late-stage diagnosis, when treatment is largely ineffective. Identification of genetic variants could potentially assist with earlier diagnosis and thus more effective treatment. The development and progression of lung cancer is stimulated by angiopoietin-2 (Ang2), a ligand for Tie2, an endothelial tyrosine kinase. Patients with lung cancer with higher serum Ang2 levels have significantly poorer survival than patients with lower serum Ang2 levels. We explored the effects of Ang2 single nucleotide polymorphisms (SNPs) on lung cancer susceptibility. We used lung cancer tissue and serum samples to measure Ang2 expression in a Chinese Han population. Five Ang2 SNPs (rs2442598, rs734701, rs1823375, 11137037, and rs12674822) were analyzed using TaqMan SNP genotyping in 695 patients with lung cancer and 900 cancer-free controls. Carriers of the variant GT allele of rs12674822 had a higher risk of lung cancer than wild-type (GG) carriers, while the presence of the CC genotype at rs11137037 was associated with higher clinical stage disease compared with having the AA genotype. Our study is the first to document a correlation between Ang2 polymorphisms and lung cancer development and progression in people of Chinese Han ethnicity.
Collapse
Affiliation(s)
- Weiwei Hu
- Department of Thoracic Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan.,Department of Orthopaedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jin Zhao
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lulu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Le Kang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yueming Wu
- Department of Thoracic Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Pengqing Ying
- Department of Thoracic Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chao-Qun Wang
- Department of Pathology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
33
|
Ruiz-Fernández C, Francisco V, Pino J, Mera A, González-Gay MA, Gómez R, Lago F, Gualillo O. Molecular Relationships among Obesity, Inflammation and Intervertebral Disc Degeneration: Are Adipokines the Common Link? Int J Mol Sci 2019; 20:ijms20082030. [PMID: 31027158 PMCID: PMC6515363 DOI: 10.3390/ijms20082030] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is a chronic, expensive, and high-incidence musculoskeletal disorder largely responsible for back/neck and radicular-related pain. It is characterized by progressive degenerative damage of intervertebral tissues along with metabolic alterations of all other vertebral tissues. Despite the high socio-economic impact of IVDD, little is known about its etiology and pathogenesis, and currently, no cure or specific treatments are available. Recent evidence indicates that besides abnormal and excessive mechanical loading, inflammation may be a crucial player in IVDD. Furthermore, obese adipose tissue is characterized by a persistent and low-grade production of systemic pro-inflammatory factors. In this context, chronic low-grade inflammation associated with obesity has been hypothesized as an important contributor to IVDD through different, but still unknown, mechanisms. Adipokines, such as leptin, produced prevalently by white adipose tissues, but also by other cells of mesenchymal origin, particularly cartilage and bone, are cytokine-like hormones involved in important physiologic and pathophysiological processes. Although initially restricted to metabolic functions, adipokines are now viewed as key players of the innate and adaptative immune system and active modulators of the acute and chronic inflammatory response. The goal of this review is to summarize the most recent findings regarding the interrelationships among inflammation, obesity and the pathogenic mechanisms involved in the IVDD, with particular emphasis on the contribution of adipokines and their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Rheumatology, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| | - Miguel Angel González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, 39008 Santander, Spain.
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group. SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
34
|
Associations between Adipokines in Arthritic Disease and Implications for Obesity. Int J Mol Sci 2019; 20:ijms20061505. [PMID: 30917508 PMCID: PMC6471239 DOI: 10.3390/ijms20061505] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Secretion from adipose tissue of adipokines or adipocytokines, comprising of bioactive peptides or proteins, immune molecules and inflammatory mediators, exert critical roles in inflammatory arthritis and obesity. This review considers the evidence generated over the last decade regarding the effects of several adipokines including leptin, adiponectin, visfatin, resistin, chemerin and apelin, in cartilage and bone homeostasis in the pathogenesis of rheumatoid arthritis and osteoarthritis, which has important implications for obesity.
Collapse
|
35
|
LeBlanc AJ, Uchida S. A step closer to improving cardiac homing of adipose-derived mesenchymal stem cells. Am J Physiol Heart Circ Physiol 2019; 316:H260-H261. [PMID: 30461301 DOI: 10.1152/ajpheart.00736.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Amanda J LeBlanc
- Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky.,Department of Physiology, University of Louisville , Louisville, Kentucky
| | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky.,Institute of Molecular Cardiology, Division of Cardiovascular Medicine, Department of Medicine, University of Louisville , Louisville, Kentucky
| |
Collapse
|
36
|
An Update on the Emerging Role of Resistin on the Pathogenesis of Osteoarthritis. Mediators Inflamm 2019; 2019:1532164. [PMID: 30809105 PMCID: PMC6369476 DOI: 10.1155/2019/1532164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022] Open
Abstract
Background Resistin may be involved in the pathogenesis of osteoarthritis (OA), but a systematic understanding of the role of resistin in OA is lacking. Methods We reviewed studies that evaluated the role of resistin in OA. The expression levels of resistin in vitro experiments and OA/rheumatoid arthritis (RA) patients were analyzed. We also studied potential resistin receptors and the signaling pathways that these receptors activate, ultimately leading to cartilage degeneration. Results Resistin levels in both the serum and synovial fluid were higher in OA and RA patients than in healthy subjects. Overall, resistin levels are much higher in serum than in synovial fluid. In human cartilage, resistin induces the expression of proinflammatory factors such as degradative enzymes, leading to the inhibition of cartilage matrix synthesis, perhaps by binding to Toll-like receptor 4 and the adenylyl cyclase-associated protein 1 receptor, which then activates the p38-mitogen-activated phosphate kinase, protein kinase A–cyclic AMP, nuclear factor-κB, and C/enhancer-binding protein β signaling pathways. Conclusion Resistin levels are higher in OA patients than in healthy controls; however, the precise role of resistin in the pathogenesis of OA needs to be studied further. Resistin may be a novel therapeutic target in OA in the future.
Collapse
|
37
|
Li C, Lo I, Hsueh Y, Chung Y, Wang S, Korinek M, Tsai Y, Cheng Y, Hwang T, Wang CCC, Chang F, Wu Y. Epigenetic Manipulation Induces the Production of Coumarin‐Type Secondary Metabolite from
Arthrobotrys foliicola. Isr J Chem 2019. [DOI: 10.1002/ijch.201800162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chi‐Ying Li
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Pharmacology and Pharmaceutical Sciences University of Southern CaliforniaSchool of Pharmacy Los Angeles CA 90089 USA
| | - I‐Wen Lo
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yen‐Ping Hsueh
- Institute of Molecular BiologyAcademia Sinica Taipei 11529 Taiwan
| | - Yu‐Ming Chung
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Shih‐Wei Wang
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of MedicineMackay Medical College New Taipei City 252 Taiwan
| | - Michal Korinek
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research CenterChang Gung University Taoyuan 33302 Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human EcologyChang Gung University of Science and Technology Taoyuan 33302 Taiwan
| | - Yi‐Hong Tsai
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yuan‐Bin Cheng
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Tsong‐Long Hwang
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research CenterChang Gung University Taoyuan 33302 Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human EcologyChang Gung University of Science and Technology Taoyuan 33302 Taiwan
- Department of AnesthesiologyChang Gung Memorial Hospital Taoyuan 33305 Taiwan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences University of Southern CaliforniaSchool of Pharmacy Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern CaliforniaCollege of Letters, Arts, and Sciences Los Angeles CA 90089 USA
| | - Fang‐Rong Chang
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- National Research Institute of Chinese Medicine Taipei 112 Taiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
- Research Center for Natural Products & Drug DevelopmentKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
38
|
Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells. Cell Death Dis 2019; 10:31. [PMID: 30631040 PMCID: PMC6328541 DOI: 10.1038/s41419-018-1241-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Resistin is an adipokine that is associated with obesity, inflammation, and various cancers. Chondrosarcomas are primary malignant bone tumors that have a poor prognosis. VEGF-A is a critical angiogenic factor that is known to promote angiogenesis and metastasis in chondrosarcoma. It is unknown as to whether resistin affects human chondrosarcoma angiogenesis. In this study, we show how resistin promotes VEGF-A expression and subsequently induces angiogenesis of endothelial progenitor cells (EPCs). Resistin treatment activated the phosphatidylinositol-3-kinase (PI3K) and Akt signaling pathways, while PI3K and Akt inhibitors or siRNA diminished resistin-induced VEGF-A expression. In vitro and in vivo studies revealed the downregulation of micro RNA (miR)-16-5p in resistin-induced VEGF-A expression and EPCs angiogenesis. We also found a positive correlation between resistin and VEGF-A expression, and a negative correlation between resistin and VEGF-A with miR-16-5p in chondrosarcoma patients. These findings reveal that resistin facilitates VEGF-A expression and angiogenesis through the inhibition of miR-16-5p expression via PI3K/Akt signaling cascades. Resistin may be a promising target in chondrosarcoma angiogenesis.
Collapse
|
39
|
He Y, Guo Y, Xia Y, Guo Y, Wang R, Zhang F, Guo L, Liu Y, Yin T, Gao C, Gao E, Li C, Wang S, Zhang L, Yan W, Tao L. Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway. Am J Physiol Heart Circ Physiol 2019; 316:H233-H244. [PMID: 30412442 DOI: 10.1152/ajpheart.00457.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stem cell therapy is a potentially effective and promising treatment for ischemic heart disease. Resistin, a type of adipokine, has been found to bind to adipose-derived mesenchymal stem cells (ADSCs). However, the effects of resistin on cardiac homing by ADSCs and on ADSC-mediated cardioprotective effects have not been investigated. ADSCs were obtained from enhanced green fluorescent protein transgenic mice. C57BL/6J mice were subjected to myocardial ischemia-reperfusion (I/R) or sham operations. Six hours after the I/R operation, mice were intravenously injected with resistin-treated ADSCs (ADSC-resistin) or vehicle-treated ADSCs (ADSC-vehicle). Cardiac homing by ADSCs and cardiomyocyte apoptosis were investigated 3 days after I/R. Cardiac function, fibrosis, and angiogenesis were evaluated 4 wk after I/R. Cellular and molecular mechanisms were investigated in vitro using cultured ADSCs. Both immunostaining and flow cytometric experiments showed that resistin treatment promoted ADSC myocardial homing 3 days after intravenous injection. Echocardiographic experiments showed that ADSC-resistin, but not ADSC-vehicle, significantly improved left ventricular ejection fraction. ADSC-resistin transplantation significantly mitigated I/R-induced fibrosis and reduced atrial natriuretic peptide/brain natriuretic peptide mRNA expression. In addition, cardiomyocyte apoptosis was reduced, whereas angiogenesis was increased by ADSC-resistin treatment. At the cellular level, resistin promoted ADSC proliferation and migration but did not affect H2O2-induced apoptosis. Molecular experiments identified the ERK1/2-matrix metalloproteinase-9 pathway as a key component mediating the effects of resistin on ADSC proliferation and migration. These results demonstrate that resistin can promote homing of injected ADSCs into damaged heart tissue and stimulate functional recovery, an effect mediated through the ERK1/2 signaling pathway and matrix metalloproteinase-9. NEW & NOTEWORTHY First, intravenous injection of adipose-derived mesenchymal stem cells (ADSCs) treated with resistin significantly increased angiogenesis and reduced myocardial apoptosis and fibrosis in a murine model of ischemia-reperfusion, resulting in improved cardiac performance. Second, resistin treatment significantly increased myocardial homing of intravenously delivered ADSCs. Finally, the ERK1/2-matrix metalloproteinase 9 pathway contributed to the higher proliferative and migratory capacities of ADSCs treated with resistin.
Collapse
Affiliation(s)
- Yuan He
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanjie Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Rutao Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lanyan Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Tao Yin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chao Gao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Erhe Gao
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
40
|
Jasinski-Bergner S, Kielstein H. Adipokines Regulate the Expression of Tumor-Relevant MicroRNAs. Obes Facts 2019; 12:211-225. [PMID: 30999294 PMCID: PMC6547259 DOI: 10.1159/000496625] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing prevalence of obesity requires the investigation of respective comorbidities, including tumor diseases like colorectal, renal, post-menopausal breast, prostate cancer, and leukemia. To date, molecular mechanisms of the malignant transformation of these peripheral tissues induced by obesity remain unclear. Adipose tissue secretes factors with hormone-like functions, the adipokines, and is therefore categorized as an endocrine organ. Current research demonstrates the ability of adipose tissue to alter DNA methylation and gene expression in peripheral tissues, probably affecting microRNA (miR) expression. METHODS Literature was analyzed for adipokine-regulated miRs. Many of these adipokine upregulated or downregulated miRs exert either oncogenic or anti-tumoral potential. RESULTS The three selected and analyzed adipokines, adiponectin, leptin, and resistin, induce more strongly oncogenic miRs and simultaneously reduce anti-tumoral miRs than vice versa. This effect is not only true for the pure number of regulated miRs, it is also the case by consideration of the abundance of the respective miR expression based on actual data sets derived from next-generation sequencing. CONCLUSION The link of obesity and cancer is analyzed under the aspect of adipokine-regulated miRs. At the same time the impact of miR abundance is considered as a regulatory variable. This context offers new strategies for tumor therapy and diagnostics.
Collapse
Affiliation(s)
- Simon Jasinski-Bergner
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
41
|
Dai C, Kuo SJ, Zhao J, Jin L, Kang L, Wang L, Xu G, Tang CH, Su CM. Correlation between genetic polymorphism of angiopoietin-2 gene and clinical aspects of rheumatoid arthritis. Int J Med Sci 2019; 16:331-336. [PMID: 30745815 PMCID: PMC6367530 DOI: 10.7150/ijms.30582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Angiopoietin-2 (Ang2) gene encodes angiogenic factor, and the polymorphisms of Ang2 gene predict risk of various human diseases. We want to investigate whether the single nucleotide polymorphisms (SNPs) of the Ang2 gene can predict the risk of rheumatoid arthritis (RA). Between 2016 and 2018, we recruited 335 RA patients and 700 control participants. Comparative genotyping for SNPs rs2442598, rs734701, rs1823375 and rs12674822 was performed. We found that when compared with the subjects with the A/A genotype of SNP rs2442598, the subjects with the T/T genotype were 1.78 times likely to develop RA. The subjects with C/C genotype of SNP rs734701 were 0.53 times likely to develop RA than the subjects with TT genotype, suggesting the protective effect. The subjects with G/G genotype of SNP rs1823375 were 1.77 times likely to develop RA than the subjects with C/C genotype. The subjects with A/C and C/C genotype of SNP rs11137037 were 1.65 and 2.04 times likely to develop RA than the subjects with A/A genotype. The subjects with G/T and T/T genotype of SNP rs12674822 were 2.42 and 2.25 times likely to develop RA than the subjects with G/G genotype. The T allele over rs734701 can lead to higher serum erythrocyte sedimentation rate level (p = 0.006). The A allele over rs11137037 was associated with longer duration between disease onset and blood sampling (p = 0.003). Our study suggested that Ang2 might be a diagnostic marker and therapeutic target for RA therapy. Therapeutic agents that directly or indirectly modulate the activity of Ang2 may be the promising modalities for RA treatment.
Collapse
Affiliation(s)
- Chengqian Dai
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Jin Zhao
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lulu Jin
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Le Kang
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Lihong Wang
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Guohong Xu
- Department of Orthopedics, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
42
|
Association of Resistin Gene Polymorphisms with Oral Squamous Cell Carcinoma Progression and Development. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9531315. [PMID: 30406149 PMCID: PMC6204179 DOI: 10.1155/2018/9531315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/27/2018] [Indexed: 12/16/2022]
Abstract
Oral squamous cell carcinoma (OSCC) accounts for over 90% of malignant neoplasms of the mouth. In Taiwan, OSCC is the fourth most common male cancer and the fourth leading cause of male cancer death. Resistin (RETN) is an adipokine that is associated with obesity, inflammation, and various cancers. Here, we examine the association between four single nucleotide polymorphisms (SNPs) of the RETN gene (rs3745367, rs7408174, rs1862513, and rs3219175) and OSCC susceptibility as well as clinical outcomes in 935 patients with OSCC and in 1200 cancer-free healthy controls. We found that, in 1465 smokers, RETN polymorphisms carriers with the betel-nut chewing habit had a 6.708–10.882-fold greater risk of having OSCC compared to RETN wild-type carriers without the betel-nut chewing habit. Patients with OSCC who had A/A homozygous of RETN rs3219175 polymorphism showed a high risk for an advanced tumor size (> T2), compared to those patients with G/G homozygotes. In addition, A/T/G/G haplotype significantly increased the risks for OSCC by 1.376-fold. This study is the first to examine the risk factors associated with RETN SNPs in OSCC progression and development in Taiwan.
Collapse
|
43
|
MacDonald IJ, Liu SC, Su CM, Wang YH, Tsai CH, Tang CH. Implications of Angiogenesis Involvement in Arthritis. Int J Mol Sci 2018; 19:ijms19072012. [PMID: 29996499 PMCID: PMC6073145 DOI: 10.3390/ijms19072012] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/25/2018] [Accepted: 07/08/2018] [Indexed: 12/28/2022] Open
Abstract
Angiogenesis, the growth of new blood vessels, is essential in the pathogenesis of joint inflammatory disorders such as rheumatoid arthritis (RA) and osteoarthritis (OA), facilitating the invasion of inflammatory cells and increase in local pain receptors that contribute to structural damage and pain. The angiogenic process is perpetuated by various mediators such as growth factors, primarily vascular endothelial growth factor (VEGF) and hypoxia-inducible factors (HIFs), as well as proinflammatory cytokines, various chemokines, matrix components, cell adhesion molecules, proteases, and others. Despite the development of potent, well-tolerated nonbiologic (conventional) and biologic disease-modifying agents that have greatly improved outcomes for patients with RA, many remain resistant to these therapies, are only partial responders, or cannot tolerate biologics. The only approved therapies for OA include symptom-modifying agents, such as analgesics, non-steroidal anti-inflammatory drugs (NSAIDs), steroids, and hyaluronic acid. None of the available treatments slow the disease progression, restore the original structure or enable a return to function of the damaged joint. Moreover, a number of safety concerns surround current therapies for RA and OA. New treatments are needed that not only target inflamed joints and control articular inflammation in RA and OA, but also selectively inhibit synovial angiogenesis, while preventing healthy tissue damage. This narrative review of the literature in PubMed focuses on the evidence illustrating the therapeutic benefits of modulating angiogenic activity in experimental RA and OA. This evidence points to new treatment targets in these diseases.
Collapse
Affiliation(s)
- Iona J MacDonald
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Shan-Chi Liu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Wenzhou Medical University, Dongyang 325035, Zhejiang, China.
| | - Yu-Han Wang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- School of Medicine, China Medical University, Taichung 40402, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
44
|
Su CM, Tang CH, Chi MJ, Lin CY, Fong YC, Liu YC, Chen WC, Wang SW. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells. Biochem Pharmacol 2018; 154:234-242. [PMID: 29730230 DOI: 10.1016/j.bcp.2018.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
Chondrosarcoma is a common primary malignant tumor of the bone that can metastasize through the vascular system to other organs. A key step in the metastatic process, lymphangiogenesis, involves vascular endothelial growth factor-C (VEGF-C). However, the effects of lymphangiogenesis in chondrosarcoma metastasis remain to be clarified. Accumulating evidence shows that resistin, a cytokine secreted from adipocytes and monocytes, also promotes tumor pathogenesis. Notably, chondrosarcoma can easily metastasize. In this study, we demonstrate that resistin enhances VEGF-C expression and lymphatic endothelial cells (LECs)-associated lymphangiogenesis in human chondrosarcoma cells. We also show that resistin triggers VEGF-C-dependent lymphangiogenesis via the c-Src signaling pathway and down-regulating micro RNA (miR)-186. Overexpression of resistin in chondrosarcoma cells significantly enhanced VEGF-C production and LECs-associated lymphangiogenesis in vitro and tumor-related lymphangiogenesis in vivo. Resistin levels were positively correlated with VEGF-C-dependent lymphangiogenesis via the down-regulation of miR-186 expression in clinical samples from chondrosarcoma tissue. This study is the first to evaluate the mechanism underlying resistin-induced promotion of LECs-associated lymphangiogenesis via the upregulation of VEGF-C expression in human chondrosarcomas. We suggest that resistin may represent a molecular target in VEGF-C-associated tumor lymphangiogenesis in chondrosarcoma metastasis.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Meng-Ju Chi
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Chin Fong
- Department of Orthopaedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan; Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yueh-Ching Liu
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wei-Cheng Chen
- Department of Orthopaedics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
45
|
Lin CY, Tzeng HE, Li TM, Chen HT, Lee Y, Yang YC, Wang SW, Yang WH, Tang CH. WISP-3 inhibition of miR-452 promotes VEGF-A expression in chondrosarcoma cells and induces endothelial progenitor cells angiogenesis. Oncotarget 2018; 8:39571-39581. [PMID: 28465477 PMCID: PMC5503633 DOI: 10.18632/oncotarget.17142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/29/2017] [Indexed: 12/24/2022] Open
Abstract
Chondrosarcoma is the second most prevalent general primary tumor of bone following osteosarcoma. Chondrosarcoma development may be linked to angiogenesis, which is principally elicited by vascular endothelial growth factor-A (VEGF-A). VEGF-A level has been recognized as a prognostic marker in angiogenesis. WNT1-inducible signaling pathway protein-3 (WISP)-3/CCN6 belongs to the CCN family and is involved in regulating several cellular functions, including cell proliferation, differentiation, and migration. Nevertheless, the effect of WISP-3 on VEGF-A production and angiogenesis in human chondrosarcoma remains largely unknown. This current study shows that WISP-3 promoted VEGF-A production and induced angiogenesis of human endothelial progenitor cells. Moreover, WISP-3-enhanced VEGF-A expression and angiogenesis involved the c-Src and p38 signaling pathways, while miR-452 expression was negatively affected by WISP-3 via the c-Src and p38 pathways. Our results illustrate the clinical significance of WISP-3, VEGF-A and miR-452 in human chondrosarcoma patients. WISP-3 may illustrate a novel therapeutic target in the metastasis and angiogenesis of chondrosarcoma.
Collapse
Affiliation(s)
- Chih-Yang Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Huey-En Tzeng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Division of Hematology and Oncology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yi Lee
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yi-Chen Yang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan.,Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
46
|
Su CM, Chen CY, Lu T, Sun Y, Li W, Huang YL, Tsai CH, Chang CS, Tang CH. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress. Oncotarget 2018; 7:83530-83543. [PMID: 27835579 PMCID: PMC5347786 DOI: 10.18632/oncotarget.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.
Collapse
Affiliation(s)
- Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China.,Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan
| | - Chien-Yu Chen
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Tingting Lu
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yi Sun
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Weimin Li
- Department of Cardiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yuan-Li Huang
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- School of Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Shiang Chang
- Graduate Institute of Pharmaceutical Chemistry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
47
|
Tanshinone IIA inhibits angiogenesis in human endothelial progenitor cells in vitro and in vivo. Oncotarget 2017; 8:109217-109227. [PMID: 29312602 PMCID: PMC5752515 DOI: 10.18632/oncotarget.22649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence reports that bone marrow-derived endothelial progenitor cells (EPCs) regulate angiogenesis, postnatal neovascularization and tumor metastasis. It has been suggested that understanding the molecular targets and pharmacological functions of natural products is important for novel drug discovery. Tanshinone IIA is a major diterpene quinone compound isolated from Danshen (Salvia miltiorrhiza) and is widely used in traditional Chinese medicine (TCM). Evidence indicates that tanshinone IIA modulates angiogenic functions in human umbilical vein endothelial cells. However, the anti-angiogenic activity of tanshinone IIA in human EPCs has not been addressed. Here, we report that tanshinone IIA dramatically suppresses vascular endothelial growth factor (VEGF)-promoted migration and tube formation of human EPCs, without cytotoxic effects. We also show that tanshinone IIA markedly inhibits VEGF-induced angiogenesis in the chick embryo chorioallantoic membrane (CAM) model. Importantly, tanshinone IIA significantly attenuated microvessel formation and the expression of EPC-specific markers in the in vivo Matrigel plug assay in mice. Further, we found that tanshinone IIA inhibits EPC angiogenesis through the PLC, Akt and JNK signaling pathways. Our report is the first to reveal that tanshinone IIA reduces EPC angiogenesis both in vitro and in vivo. Tanshinone IIA is a promising natural product worthy of further development for the treatment of cancer and other angiogenesis-related pathologies.
Collapse
|
48
|
Hypoxia induced mitogenic factor (HIMF) triggers angiogenesis by increasing interleukin-18 production in myoblasts. Sci Rep 2017; 7:7393. [PMID: 28785068 PMCID: PMC5547156 DOI: 10.1038/s41598-017-07952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 07/05/2017] [Indexed: 01/10/2023] Open
Abstract
Inflammatory myopathy is a rare autoimmune muscle disorder. Treatment typically focuses on skeletal muscle weakness or inflammation within muscle, as well as complications of respiratory failure secondary to respiratory muscle weakness. Impaired respiratory muscle function contributes to increased dyspnea and reduced exercise capacity in pulmonary hypertension (PH), a debilitating condition that has few treatment options. The initiation and progression of PH is associated with inflammation and inflammatory cell recruitment and it is established that hypoxia-induced mitogenic factor (HIMF, also known as resistin-like molecule α), activates macrophages in PH. However, the relationship between HIMF and inflammatory myoblasts remains unclear. This study investigated the signaling pathway involved in interleukin-18 (IL-18) expression and its relationship with HIMF in cultured myoblasts. We found that HIMF increased IL-18 production in myoblasts and that secreted IL-18 promoted tube formation of the endothelial progenitor cells. We used the mouse xenograft model and the chick chorioallantoic membrane assay to further explore the role of HIMF in inflammatory myoblasts and angiogenesis in vivo. Thus, our study focused on the mechanism by which HIMF mediates IL-18 expression in myoblasts through angiogenesis in vitro and in vivo. Our findings provide an insight into HIMF functioning in inflammatory myoblasts.
Collapse
|
49
|
YKL-40-Induced Inhibition of miR-590-3p Promotes Interleukin-18 Expression and Angiogenesis of Endothelial Progenitor Cells. Int J Mol Sci 2017; 18:ijms18050920. [PMID: 28448439 PMCID: PMC5454833 DOI: 10.3390/ijms18050920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
YKL-40, also known as human cartilage glycoprotein-39 or chitinase-3-like-1, is a pro-inflammatory protein that is highly expressed in rheumatoid arthritis (RA) patients. Angiogenesis is a critical step in the pathogenesis of RA, promoting the infiltration of inflammatory cells into joints and providing oxygen and nutrients to RA pannus. In this study, we examined the effects of YKL-40 in the production of the pro-inflammatory cytokine interleukin-18 (IL-18), and the stimulation of angiogenesis and accumulation of osteoblasts. We observed that YKL-40 induces IL-18 production in osteoblasts and thereby stimulates angiogenesis of endothelial progenitor cells (EPCs). We found that this process occurs through the suppression of miR-590-3p via the focal adhesion kinase (FAK)/PI3K/Akt signaling pathway. YKL-40 inhibition reduced angiogenesis in in vivo models of angiogenesis: the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models. We report that YKL-40 stimulates IL-18 expression in osteoblasts and facilitates EPC angiogenesis.
Collapse
|
50
|
Leblond A, Allanore Y, Avouac J. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmun Rev 2017; 16:594-601. [PMID: 28414154 DOI: 10.1016/j.autrev.2017.04.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
In Rheumatoid arthritis (RA), neoangiogenesis is an early and crucial event to promote the development of the hyperplasic proliferative pathologic synovium. Endothelial cells are critical for the formation of new blood vessels since they highly contribute to angiogenesis and vasculogenesis. Current therapies in RA target the inflammatory consequences of autoimmune activation and despite major improvements these last years still refractory patients or incomplete responders may be seen raising the point of the need to identify complementary additive and innovative therapies. This review resumes the mechanisms of synovial neoangiogenesis in RA, including recent insights on the implication of vasculogenesis, and the regulation of synovial neoangiogenesis by angiogenic and inflammatory mediators. In line with the recent development of vascular-targeted therapies used in cancer and beyond, we also discuss possible therapeutic implications in RA, in particular the combination of targeted immunotherapies with anti-angiogenic molecules.
Collapse
Affiliation(s)
- Agathe Leblond
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France
| | - Yannick Allanore
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France
| | - Jérôme Avouac
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1016 and CNRS UMR8104, Institut Cochin, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Service de Rhumatologie A, Hôpital Cochin, Paris, France.
| |
Collapse
|