1
|
Colwell MJ, Tagomori H, Shang F, Cheng HI, Wigg CE, Browning M, Cowen PJ, Murphy SE, Harmer CJ. Direct serotonin release in humans shapes aversive learning and inhibition. Nat Commun 2024; 15:6617. [PMID: 39122687 PMCID: PMC11315928 DOI: 10.1038/s41467-024-50394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
The role of serotonin in human behaviour is informed by approaches which allow in vivo modification of synaptic serotonin. However, characterising the effects of increased serotonin signalling in human models of behaviour is challenging given the limitations of available experimental probes, notably selective serotonin reuptake inhibitors. Here we use a now-accessible approach to directly increase synaptic serotonin in humans (a selective serotonin releasing agent) and examine its influence on domains of behaviour historically considered core functions of serotonin. Computational techniques, including reinforcement learning and drift diffusion modelling, explain participant behaviour at baseline and after week-long intervention. Reinforcement learning models reveal that increasing synaptic serotonin reduces sensitivity for outcomes in aversive contexts. Furthermore, increasing synaptic serotonin enhances behavioural inhibition, and shifts bias towards impulse control during exposure to aversive emotional probes. These effects are seen in the context of overall improvements in memory for neutral verbal information. Our findings highlight the direct effects of increasing synaptic serotonin on human behaviour, underlining its role in guiding decision-making within aversive and more neutral contexts, and offering implications for longstanding theories of central serotonin function.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Fei Shang
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hoi Iao Cheng
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Chloe E Wigg
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
2
|
Samaddar S, Purkayastha S, Diallo S, Tantry SJ, Schroder R, Chanthrakumar P, Flory MJ, Banerjee P. The G Protein-Coupled Serotonin 1A Receptor Augments Protein Kinase Cε-Mediated Neurogenesis in Neonatal Mouse Hippocampus-PKCε-Mediated Signaling in the Early Hippocampus. Int J Mol Sci 2022; 23:1962. [PMID: 35216076 PMCID: PMC8878481 DOI: 10.3390/ijms23041962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/14/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) plays an important role in mood disorders. It has been demonstrated that 5-HT signaling through 5-HT1A receptors (5-HT1A-R) is crucial for early postnatal hippocampal development and later-life behavior. Although this suggests that 5-HT1A-R signaling regulates early brain development, the mechanistic underpinnings of this process have remained unclear. Here we show that stimulation of the 5-HT1A-R at postnatal day 6 (P6) by intrahippocampal infusion of the agonist 8-OH-DPAT (D) causes signaling through protein kinase Cε (PKCε) and extracellular receptor activated kinase ½ (ERK1/2) to boost neuroblast proliferation in the dentate gyrus (DG), as displayed by an increase in bromodeoxy-uridine (BrdU), doublecortin (DCX) double-positive cells. This boost in neuroproliferation was eliminated in mice treated with D in the presence of a 5-HT1A-R antagonist (WAY100635), a selective PKCε inhibitor, or an ERK1/2-kinase (MEK) inhibitor (U0126). It is believed that hippocampal neuro-progenitors undergoing neonatal proliferation subsequently become postmitotic and enter the synaptogenesis phase. Double-staining with antibodies against bromodeoxyuridine (BrdU) and neuronal nuclear protein (NeuN) confirmed that 5-HT1A-R → PKCε → ERK1/2-mediated boosted neuroproliferation at P6 also leads to an increase in BrdU-labeled granular neurons at P36. This 5-HT1A-R-mediated increase in mature neurons was unlikely due to suppressed apoptosis, because terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis showed no difference in DNA terminal labeling between vehicle and 8-OH-DPAT-infused mice. Therefore, 5-HT1A-R signaling through PKCε may play an important role in micro-neurogenesis in the DG at P6, following which many of these new-born neuroprogenitors develop into mature neurons.
Collapse
Affiliation(s)
- Sreyashi Samaddar
- Department of Physical Therapy, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA;
| | | | | | | | - Ryan Schroder
- Eurofins Lancaster PSS, Merck Sharp and Dohme, Rahway, NJ 07065, USA;
| | | | - Michael J. Flory
- Research Design and Analysis Service, New York State Institute for Developmental Disabilities, Staten Island, NY 10314, USA;
| | - Probal Banerjee
- Department of Chemistry, Center for Developmental Neuroscience, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| |
Collapse
|
3
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Colom M, Vidal B, Fieux S, Redoute J, Costes N, Lavenne F, Mérida I, Irace Z, Iecker T, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. [ 18F]F13640, a 5-HT 1A Receptor Radiopharmaceutical Sensitive to Brain Serotonin Fluctuations. Front Neurosci 2021; 15:622423. [PMID: 33762906 PMCID: PMC7982540 DOI: 10.3389/fnins.2021.622423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/17/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). Materials and Methods Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. Results D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. Conclusion The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.
Collapse
Affiliation(s)
- Matthieu Colom
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - Benjamin Vidal
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Sylvain Fieux
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, INSERM, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France.,CERMEP-Imagerie du Vivant, Bron, France.,Institut National des Sciences et Techniques Nucléaires, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Lindberg A, Lu S, Nag S, Schou M, Liow JS, Zoghbi SS, Frankland MP, Gladding RL, Morse CL, Takano A, Amini N, Elmore CS, Lee YS, Innis RB, Halldin C, Pike VW. Synthesis and evaluation of two new candidate high-affinity full agonist PET radioligands for imaging 5-HT 1B receptors. Nucl Med Biol 2019; 70:1-13. [PMID: 30811975 DOI: 10.1016/j.nucmedbio.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The serotonin 1B receptor subtype is of interest in the pathophysiology and treatment of depression, anxiety, and migraine. Over recent years 5-HT1B receptor binding in human brain has been examined with PET using radioligands that are partial but not full agonists. To explore how the intrinsic activity of a PET radioligand may affect imaging performance, two high-affinity full 5-HT1B receptor agonists (AZ11136118, 4; and AZ11895987, 5) were selected from a large compound library and radiolabeled for PET examination in non-human primates. METHODS [11C]4 was obtained through Pd(0)-mediated insertion of [11C]carbon monoxide between prepared iodoarene and homochiral amine precursors. [11C]5 was obtained through N-11C-methylation of N-desmethyl precursor 6 with [11C]methyl triflate. [11C]4 and [11C]5 were studied with PET in rhesus or cynomolgus monkey. [11C]4 was studied with PET in mice and rats to measure brain uptake and specific binding. Ex-vivo experiments in rats were performed to identify whether there were radiometabolites in brain. Physiochemical parameters for [11C]4 (pKa, logD and conformational energetics) were evaluated. RESULTS Both [11C]4 and [11C]5 were successfully produced in high radiochemical purity and in adequate amounts for PET experiments. After intravenous injection of [11C]4, brain radioactivity peaked at a low level (0.2 SUV). Pretreatment with tariquidar, an inhibitor of the brain P-gp efflux transporter, increased brain exposure four-fold whereas pretreatment with a high pharmacological dose of the 5-HT1B antagonist, AR-A000002, had no effect on the binding. Ex-vivo experiments in rats showed no radiometabolites entering brain. [11C]5 also failed to enter monkey brain under baseline conditions. CONCLUSIONS [11C]4 and [11C]5 show too low brain uptake and specific binding to be useful PET radioligands. Low brain uptake is partly ascribed to efflux transporter action as well as unfavorable conformations.
Collapse
Affiliation(s)
- Anton Lindberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, SE-17176 Stockholm, Sweden
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Michael P Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, SE-43250 Göteborg, Sweden
| | - Yong Sok Lee
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892-5624, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176 Stockholm, Sweden
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-1003, USA
| |
Collapse
|
6
|
Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl) 2015; 232:4129-57. [PMID: 25921033 PMCID: PMC4600473 DOI: 10.1007/s00213-015-3938-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 01/03/2023]
Abstract
RATIONALE This review attempts to summarize the current status in relation to the use of positron emission tomography (PET) imaging in the assessment of synaptic concentrations of endogenous mediators in the living brain. OBJECTIVES Although PET radioligands are now available for more than 40 CNS targets, at the initiation of the Innovative Medicines Initiative (IMI) "Novel Methods leading to New Medications in Depression and Schizophrenia" (NEWMEDS) in 2009, PET radioligands sensitive to an endogenous neurotransmitter were only validated for dopamine. NEWMEDS work-package 5, "Cross-species and neurochemical imaging (PET) methods for drug discovery", commenced with a focus on developing methods enabling assessment of changes in extracellular concentrations of serotonin and noradrenaline in the brain. RESULTS Sharing the workload across institutions, we utilized in vitro techniques with cells and tissues, in vivo receptor binding and microdialysis techniques in rodents, and in vivo PET imaging in non-human primates and humans. Here, we discuss these efforts and review other recently published reports on the use of radioligands to assess changes in endogenous levels of dopamine, serotonin, noradrenaline, γ-aminobutyric acid, glutamate, acetylcholine, and opioid peptides. The emphasis is on assessment of the availability of appropriate translational tools (PET radioligands, pharmacological challenge agents) and on studies in non-human primates and human subjects, as well as current challenges and future directions. CONCLUSIONS PET imaging directed at investigating changes in endogenous neurochemicals, including the work done in NEWMEDS, have highlighted an opportunity to further extend the capability and application of this technology in drug development.
Collapse
Affiliation(s)
- Sjoerd J. Finnema
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Mika Scheinin
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland , />Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Mohammed Shahid
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Jussi Lehto
- />Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland
| | - Edilio Borroni
- />Neuroscience Department, Hoffman-La Roche, Basel, Switzerland
| | | | - Jukka Sallinen
- />Research and Development, Orion Corporation, Orion Pharma, Turku, Finland
| | - Erik Wong
- />Neuroscience Innovative Medicine Unit, AstraZeneca, Wilmington, DE USA
| | - Lars Farde
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden , />Translational Science Center at Karolinska Institutet, AstraZeneca, Stockholm, Sweden
| | - Christer Halldin
- />Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grimwood
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA. .,, 610 Main Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Galusca B, Sigaud T, Costes N, Redoute J, Massoubre C, Estour B. Wide impairment of cerebral serotoninergic activity but inter-individual heterogeneity in bulimia nervosa patients: a pilot [(18)F]MPPF/PET study. World J Biol Psychiatry 2014; 15:599-608. [PMID: 25054914 DOI: 10.3109/15622975.2014.942358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Bulimia nervosa (BN) is associated with abnormalities of serotoninergic system. Functional or ligand specific brain imaging studies revealed abnormalities in non-overlapping regions. [(18)F]MPPF (4-(2-methoxyphenyl)-1-[2-(N-2-pyridinyl)-p-fluorobenzamido]-ethylpiperazine) is a selective 5-HT1A receptor antagonist with a serotonin-like affinity, capable to assess changes of brain serotoninergic activity in BN patients. METHODS [(18)F]MPPF cerebral binding potential (BPND) was measured by positron emission tomography scan in nine purging-type BN patients and eleven age-matched controls. Voxel-based statistical parametric mapping (SPM) analyses were performed to assess BPND differences between the two groups and between each BN patient and controls group. RESULTS Mean [(18)F]MPPF BPND was overall increased in BN patients. SPM analysis with revealed symmetrical large clusters of increased [(18)F]MPPF binding in insula, temporo-parietal cortex, prefrontal cortex, in limbic, paralimbic cortex and raphe nuclei. SPM individual analysis indicated significant heterogeneity of [(18)F]MPPF mapping within BN group, including cases with isolated up to widespread increased binding. [(18)F]MPPF BPND did not covariate with depression or eating behaviour-related scores. CONCLUSIONS Large clusters of increased [(18)F]MPPF binding in severe BN overlap previous results, separately described within fMRI or PET studies. The relationship between the inter-individual [(18)F]MPPF binding heterogeneity and serotoninergic modulators efficacy in these patients remains to be assessed.
Collapse
|
8
|
Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression. Eur Neuropsychopharmacol 2013; 23:822-9. [PMID: 23434290 PMCID: PMC3748207 DOI: 10.1016/j.euroneuro.2012.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 11/05/2012] [Accepted: 11/11/2012] [Indexed: 01/21/2023]
Abstract
Multiple lines of evidence suggest that serotonin type 1A (5-HT(1A)) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT(1A) receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT(1A) receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT(1A) receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [¹⁸F]FCWAY, a highly selective 5-HT(1A) receptor radio-ligand. The mean 5-HT(1A) receptor binding potential (BP(P)) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT(1A) receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT(1A) receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT(1A) receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT(1A) receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT(1A) receptor system of individuals with a tendency toward cortisol hypersecretion.
Collapse
|
9
|
Albert PR. Transcriptional regulation of the 5-HT1A receptor: implications for mental illness. Philos Trans R Soc Lond B Biol Sci 2012; 367:2402-15. [PMID: 22826341 DOI: 10.1098/rstb.2011.0376] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The serotonin-1A (5-HT(1A)) receptor is an abundant post-synaptic 5-HT receptor (heteroreceptor) implicated in regulation of mood, emotion and stress responses and is the major somatodendritic autoreceptor that negatively regulates 5-HT neuronal activity. Based on animal models, an integrated model for opposing roles of pre- and post-synaptic 5-HT(1A) receptors in anxiety and depression phenotypes and response to antidepressants is proposed. Understanding differential transcriptional regulation of pre- versus post-synaptic 5-HT(1A) receptors could provide better tools for their selective regulation. This review examines the transcription factors that regulate brain region-specific basal and stress-induced expression of the 5-HT(1A) receptor gene (Htr1a). A functional polymorphism, rs6295 in the Htr1a promoter region, blocks the function of specific repressors Hes1, Hes5 and Deaf1, resulting in increased 5-HT(1A) autoreceptor expression in animal models and humans. Its association with altered 5-HT(1A) expression, depression, anxiety and antidepressant response are related to genotype frequency in different populations, sample homogeneity, disease outcome measures and severity. Preliminary evidence from gene × environment studies suggests the potential for synergistic interaction of stress-mediated repression of 5-HT(1A) heteroreceptors, and rs6295-induced upregulation of 5-HT(1A) autoreceptors. Targeted therapeutics to inhibit 5-HT(1A) autoreceptor expression and induce 5-HT(1A) heteroreceptor expression may ameliorate treatment of anxiety and major depression.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, , 451 Smyth Road, Ottawa, ON, Canada , K1H 8M5.
| |
Collapse
|
10
|
Elmenhorst D, Kroll T, Matusch A, Bauer A. Sleep deprivation increases cerebral serotonin 2A receptor binding in humans. Sleep 2012. [PMID: 23204604 DOI: 10.5665/sleep.2230] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
STUDY OBJECTIVES Serotonin and its cerebral receptors play an important role in sleep-wake regulation. The aim of the current study is to investigate the effect of 24-h total sleep deprivation on the apparent serotonin 2A receptor (5-HT(2A)R) binding capacity in the human brain to test the hypothesis that sleep deprivation induces global molecular alterations in the cortical serotonergic receptor system. DESIGN Volunteers were tested twice with the subtype-selective radiotracer [(18)F]altanserin and positron emission tomography (PET) for imaging of 5-HT(2A)Rs at baseline and after 24 h of sleep deprivation. [(18)F]Altanserin binding potentials were analyzed in 13 neocortical regions of interest. The efficacy of sleep deprivation was assessed by questionnaires, waking electroencephalography, and cognitive performance measurements. SETTING Sleep laboratory and neuroimaging center. PATIENTS OR PARTICIPANTS Eighteen healthy volunteers. INTERVENTIONS Sleep deprivation. MEASUREMENTS AND RESULTS A total of 24 hours of sleep deprivation led to a 9.6% increase of [(18)F]altanserin binding on neocortical 5-HT(2A) receptors. Significant region-specific increases were found in the medial inferior frontal gyrus, insula, and anterior cingulate, parietal, sensomotoric, and ventrolateral prefrontal cortices. CONCLUSIONS This study demonstrates that a single night of total sleep deprivation causes significant increases of 5-HT(2A)R binding potentials in a variety of cortical regions although the increase declines as sleep deprivation continued. It provides in vivo evidence that total sleep deprivation induces adaptive processes in the serotonergic system of the human brain.
Collapse
Affiliation(s)
- David Elmenhorst
- Institute of Neuroscience and Medicine, INM-2, Forschungszentrum Jüulich, Jüulich, Germany.
| | | | | | | |
Collapse
|
11
|
Finnema SJ, Varrone A, Hwang TJ, Halldin C, Farde L. Confirmation of fenfluramine effect on 5-HT(1B) receptor binding of [(11)C]AZ10419369 using an equilibrium approach. J Cereb Blood Flow Metab 2012; 32:685-95. [PMID: 22167236 PMCID: PMC3318146 DOI: 10.1038/jcbfm.2011.172] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assessment of serotonin release in the living brain with positron emission tomography (PET) may have been hampered by the lack of suitable radioligands. We previously reported that fenfluramine caused a dose-dependent reduction in specific binding in monkeys using a classical displacement paradigm with bolus administration of [(11)C]AZ10419369. The aim of this study was to confirm our previous findings using an equilibrium approach in monkey. A total of 24 PET measurements were conducted using a bolus infusion protocol of [(11)C]AZ10419369 in three cynomolgus monkeys. Initial PET measurements were performed to assess suitable K(bol) values. The fenfluramine effect on [(11)C]AZ10419369 binding was evaluated in a displacement and pretreatment paradigm. The effect of fenfluramine on [(11)C]AZ10419369 binding potential (BP(ND)) was dose-dependent in the displacement paradigm and confirmed in the pretreatment paradigm. After pretreatment administration of fenfluramine (5.0 mg/kg), the mean BP(ND) of the occipital cortex decreased by 39%, from 1.38±0.04 to 0.84±0.09. This study confirms that the new 5-HT(1B) receptor radioligand [(11)C]AZ10419369 is sensitive to fenfluramine-induced changes in endogenous serotonin levels in vivo. The more advanced methodology is suitable for exploring the sensitivity limit to serotonin release as measured using [(11)C]AZ10419369 and PET.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Serotonin 5-HT1A receptor binding sites in the brain of the pigeon (Columba livia). Neuroscience 2012; 200:1-12. [DOI: 10.1016/j.neuroscience.2011.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 01/18/2023]
|
13
|
Cosgrove KP, Kloczynski T, Nabulsi N, Weinzimmer D, Lin SF, Staley JK, Bhagwagar Z, Carson RE. Assessing the sensitivity of [¹¹C]p943, a novel 5-HT1B radioligand, to endogenous serotonin release. Synapse 2011; 65:1113-7. [PMID: 21484884 DOI: 10.1002/syn.20942] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/03/2011] [Indexed: 11/09/2022]
Abstract
The main objective of the current study was to determine the sensitivity of the positron emission tomography (PET) radioligand [¹¹C]P943 to fenfluramine-induced changes in endogenous 5-HT in nonhuman primate brain. Fenfluramine-induced changes in 5-HT(1B) occupancy were compared to those obtained by self-block with unlabeled P943. Two baboons and 1 rhesus monkey were given preblocking or displacing doses of fenfluramine (1-5 mg/kg) or preblocking doses of unlabeled P943 (0.2 mg/kg) and imaged with [¹¹C]P943 PET. Receptor occupancy by the low dose of fenfluramine (1 mg/kg) in the baboons was 25 and 29% and by the high dose of fenfluramine (5 mg/kg) in the rhesus macaque was 42%. Receptor occupancy by P943 (0.2 mg/kg) was 68 and 86% in the baboons. PET imaging of 5-HT(1B) receptors with [¹¹C]P943 may be a useful approach for measuring changes in endogenous 5-HT in the living human brain.
Collapse
Affiliation(s)
- Kelly P Cosgrove
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Palner M, Underwood MD, Kumar DJS, Arango V, Knudsen GM, John Mann J, Parsey RV. Ex vivo evaluation of the serotonin 1A receptor partial agonist [³H]CUMI-101 in awake rats. Synapse 2011; 65:715-23. [PMID: 21108237 DOI: 10.1002/syn.20888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/11/2010] [Indexed: 11/11/2022]
Abstract
[³H]CUMI-101 is a 5-HT(1A) partial agonist, which has been evaluated for use as a positron emission tracer in baboon and humans. We sought to evaluate the properties of [³H]CUMI-101 ex vivo in awake rats and determine if [³H]CUMI-101 can measure changes in synaptic levels of serotonin after different challenge paradigms. [³H]CUMI-101 shows good uptake and good specific binding ratio (SBR) in frontal cortex 5.18 and in hippocampus 3.18. Binding was inhibited in a one-binding-site fashion by WAY100635 and unlabeled CUMI-101. The ex vivo B(max) of [³H]CUMI-101 in frontal cortex (98.7 fmol/mg) and hippocampus (131 fmol/kg) agree with the ex vivo B(max) of [³H]MPPF in frontal cortex (147.1 fmol/mg) and hippocampus (72.1 fmol/mg) and with in vitro values reported with 8-OH-DPAT. Challenges with citalopram, a selective serotonin reuptake inhibitor, fenfluramine, a serotonin releaser, and 4-chloro-DL-phenylalanine, a serotonin synthesis inhibitor, did not show any effect on the standardized uptake values (SUVs) in any region. Citalopram did alter SBR, but this was due to changes in cerebellar SUVs. Our results indicate that [³H]CUMI-101 is a good radioligand for imaging 5-HT(1A) high-density regions in rats; however, the results from pharmacological challenges remain inconclusive.
Collapse
Affiliation(s)
- Mikael Palner
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
In vivo serotonin-sensitive binding of [11C]CUMI-101: a serotonin 1A receptor agonist positron emission tomography radiotracer. J Cereb Blood Flow Metab 2011; 31:243-9. [PMID: 20571518 PMCID: PMC3049488 DOI: 10.1038/jcbfm.2010.83] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Positron emission tomography studies of 5-hydroxytryptamine (5-HT)(1A) receptors have hitherto been limited to antagonist radiotracers. Antagonists do not distinguish high/low-affinity conformations of G protein-coupled receptors and are less likely to be sensitive to intrasynaptic serotonin levels. We developed a novel 5-HT(1A) agonist radiotracer [(11)C]CUMI-101. This study evaluates the sensitivity of [(11)C]CUMI-101 binding to increases in intrasynaptic serotonin induced by intravenous citalopram and fenfluramine. Two Papio anubis were scanned, using [(11)C]CUMI-101 intravenous bolus of 4.5 ± 1.5 mCi. Binding potential (BP(F)=B(avail)/K(D)) was measured before (n=10) and 20 minutes after elevation of intrasynaptic serotonin by intravenous citalopram (2 mg/kg, n=3; 4 mg/kg, n=3) and fenfluramine (2.5 mg/kg, n=3) using a metabolite-corrected arterial input function. Occupancy was also estimated by the Lassen graphical approach. Both citalopram and fenfluramine effects were significant for BP(F) (P=0.031, P=0.049, respectively). The Lassen approach estimated 15.0, 30.4, and 23.7% average occupancy after citalopram 2 mg/kg, 4 mg/kg, and fenfluramine 2.5 mg/kg, respectively. [(11)C]CUMI-101 binding is sensitive to a large increase in intrasynaptic serotonin in response to robust pharmacological challenges. These modest changes in BP(F) may make it unlikely that this ligand will detect changes in intrasynaptic 5-HT under physiologic conditions; future work will focus on evaluating its utility in measuring the responsiveness of the 5-HT system to pharmacological challenges.
Collapse
|
16
|
Hendry N, Christie I, Rabiner EA, Laruelle M, Watson J. In vitro assessment of the agonist properties of the novel 5-HT1A receptor ligand, CUMI-101 (MMP), in rat brain tissue. Nucl Med Biol 2010; 38:273-7. [PMID: 21315283 DOI: 10.1016/j.nucmedbio.2010.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/31/2010] [Accepted: 08/11/2010] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Development of agonist positron emission tomography (PET) radioligands for the 5-HT neurotransmitter system is an important target to enable the understanding of human 5-HT function in vivo. [(11)C]CUMI-101, proposed as the first 5-HT(1A) receptor agonist PET ligand, has been reported to behave as a potent 5-HT(1A) agonist in a cellular system stably expressing human recombinant 5-HT(1A) receptors. In this study, we investigate the agonist properties of CUMI-101 in rat brain tissue. METHODS [(35)S]-GTPγS binding studies were used to determine receptor function in HEK (human embryonic kidney) 293 cells transfected with human recombinant 5-HT(1A) receptors and in rat cortex and rat hippocampal tissue, following administration of CUMI-101 and standard 5-HT1A antagonists (5-HT, 5-CT and 8-OH-DPAT). RESULTS CUMI-101 behaved as an agonist at human recombinant 5-HT(1A) receptors (pEC(50) 9.2). However, CUMI-101 did not show agonist activity in either rat cortex or hippocampus at concentrations up to 10 μM. In these tissues, CUMI-behaved as an antagonist with pK(B)s of 9.2 and 9.3, respectively. CONCLUSIONS Our studies demonstrate that as opposed to its behavior in human recombinant system, in rat brain tissue CUMI-101 behaves as a potent 5-HT(1A) receptor antagonist.
Collapse
Affiliation(s)
- Nicola Hendry
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, CM19 5AW Essex, UK
| | | | | | | | | |
Collapse
|
17
|
Abstract
Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future.
Collapse
|
18
|
Finnema SJ, Varrone A, Hwang TJ, Gulyás B, Pierson ME, Halldin C, Farde L. Fenfluramine-induced serotonin release decreases [11C]AZ10419369 binding to 5-HT1B-receptors in the primate brain. Synapse 2010; 64:573-7. [PMID: 20222157 DOI: 10.1002/syn.20780] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The need for positron emission tomography (PET)-radioligands that are sensitive to changes in endogenous serotonin (5-HT) levels in brain is recognized in experimental and clinical psychiatric research. We recently developed the novel PET radioligand [(11)C]AZ10419369 that is highly selective for the 5-HT(1B) receptor. In this PET-study in three cynomolgus monkeys, we examined the sensitivity of [(11)C]AZ10419369 to altered endogenous 5-HT levels. Fenfluramine-induced 5-HT release decreased radioligand binding in a dose-dependent fashion with a regional average of 27% after 1 mg/kg and 50% after 5 mg/kg. This preliminary study supports that [(11)C]AZ10419369 is sensitive to endogenous 5-HT levels in vivo and may serve as a tool to examine the pathophysiology and treatment of major psychiatric disorders.
Collapse
Affiliation(s)
- S J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Sargent PA, Rabiner EA, Bhagwagar Z, Clark L, Cowen P, Goodwin GM, Grasby PM. 5-HT(1A) receptor binding in euthymic bipolar patients using positron emission tomography with [carbonyl-(11)C]WAY-100635. J Affect Disord 2010; 123:77-80. [PMID: 19726088 DOI: 10.1016/j.jad.2009.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 07/22/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND This study was undertaken to examine whether brain 5-HT(1A) receptor binding is reduced in euthymic bipolar patients. METHODS Eight medicated euthymic bipolar patients and 8 healthy volunteers underwent positron emission tomography scanning using the selective 5-HT(1A) receptor radioligand [carbonyl-(11)C]WAY-100635. RESULTS No significant difference in global postsynaptic parametric binding potential (BP(ND)) was found between euthymic bipolar patients (mean + or - SD, 4.24 + or - 0.76) and healthy volunteers (mean + or - SD, 4.34 + or - 0.86). Ninety five percent Confidence Intervals for the difference in group mean global postsynaptic BP(ND) were -0.77 to 0.97. Analysis of regional BP(ND) did not reveal regional differences between patients and healthy controls. LIMITATIONS The number of subjects studied was limited and all subjects were on medication. CONCLUSIONS In contrast to previous findings of reduced 5-HT(1A) receptor binding in untreated unipolar and bipolar depressed patients [Sargent, P.A., Kjaer, K.H., Bench, C.J., Rabiner, E.A., Messa, C., Meyer, J., Gunn, R.N., Grasby, P.M., Cowen, P.J., 2000. Brain serotonin1A receptor binding measured by positron emission tomography with [(11)C]WAY-100635: effects of depression and antidepressant treatment. Arch. Gen. Psychiatry 57, 174-180]; [Drevets, W.C., Frank, E., Price, J.C., Kupfer, D.J., Holt, D., Greer, P.J., Huang, Y., Gautier, C., Mathis, C., 1999. PET imaging of serotonin1A receptor binding in depression. Biol. Psychiatry 46, 1375-1387] and in recovered unipolar depressed patients [Bhagwagar, Z., Rabiner, E.A., Sargent, P.A., Grasby, P.M., Cowen, P.J., 2004. Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [(11)C]WAY-100635. Mol. Psychiatry 9, 386-92], this study found no difference in 5-HT(1A) receptor BP(ND) between medicated euthymic bipolar patients and healthy controls. Normal 5-HT(1A) receptor BP(ND) in these patients may be a result of drug treatment or could indicate that reduced 5-HT(1A) receptor binding is specific to the depressed state in bipolar patients.
Collapse
Affiliation(s)
- Peter A Sargent
- University Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Egerton A, Hirani E, Ahmad R, Turton DR, Brickute D, Rosso L, Howes OD, Luthra SK, Grasby PM. Further evaluation of the carbon11-labeled D(2/3) agonist PET radiotracer PHNO: reproducibility in tracer characteristics and characterization of extrastriatal binding. Synapse 2010; 64:301-12. [PMID: 19957364 DOI: 10.1002/syn.20718] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[(11)C]-(+)-PHNO is a new dopamine D(2/3) receptor agonist radiotracer which has been successfully used to measure D(2/3) receptor availability in experimental animals and man. Here we report in vivo evaluation in the rat of the biodistribution, metabolism, specificity, selectivity, and dopamine sensitivity of carbon11-labeled PHNO ([(11)C]-3-PHNO) produced by an alternative radiochemical synthesis method. [(11)C]-3-PHNO showed rapid metabolism and clearance from most peripheral organs and tissues. [(11)C]-3-PHNO, but not its polar metabolite, readily crossed the blood-brain barrier and showed high levels of uptake in the D(2/3)-rich striatum. Pretreatment with unlabeled PHNO and the D(2/3) receptor antagonist raclopride indicated that binding in the striatum was specific and selective to D(2/3) receptors. PET studies in anesthetized rats revealed significant reductions in [(11)C]-3-PHNO binding in the striatum following amphetamine administration, indicating sensitivity to increases in endogenous dopamine concentrations. D(2/3) antagonist pretreatment additionally indicated moderate levels of [(11)C]-3-PHNO specific binding in several extrastriatal brain areas-most notably the olfactory bulbs and tubercles, thalamus, and hypothalamus. Of particular interest, approximately 30% of [(11)C]-3-PHNO signal in the cerebellum-a region often used as a "low-binding" reference region for PET quantification-was attributable to specific signal. These data demonstrate that [(11)C]-3-PHNO shows similar tracer characteristics to [(11)C]-(+)-PHNO, but additionally indicate that radiolabeled PHNO may be used to estimate D(2/3) receptor availability in select extrastriatal brain regions with PET.
Collapse
Affiliation(s)
- Alice Egerton
- Division of Neuroscience and Psychological Medicine, Department of Neuroscience and Mental Health, Imperial College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Egerton A, Shotbolt JP, Stokes PRA, Hirani E, Ahmad R, Lappin JM, Reeves SJ, Mehta MA, Howes OD, Grasby PM. Acute effect of the anti-addiction drug bupropion on extracellular dopamine concentrations in the human striatum: an [11C]raclopride PET study. Neuroimage 2010; 50:260-6. [PMID: 19969097 PMCID: PMC4135078 DOI: 10.1016/j.neuroimage.2009.11.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 11/19/2022] Open
Abstract
Bupropion is an effective medication in treating addiction and is widely used as an aid to smoking cessation. Bupropion inhibits striatal dopamine reuptake via dopamine transporter blockade, but it is unknown whether this leads to increased extracellular dopamine levels at clinical doses in man. The effects of bupropion on extracellular dopamine levels in the striatum were investigated using [(11)C]raclopride positron emission tomography (PET) imaging in rats administered saline, 11 or 25 mg/kg bupropion i.p. and in healthy human volunteers administered either placebo or 150 mg bupropion (Zyban Sustained-Release). A cognitive task was used to stimulate dopamine release in the human study. In rats, bupropion significantly decreased [(11)C]raclopride specific binding in the striatum, consistent with increases in extracellular dopamine concentrations. In man, no significant decreases in striatal [(11)C]raclopride specific binding were observed. Levels of dopamine transporter occupancy in the rat at 11 and 25 mg/kg bupropion i.p. were higher than predicted to occur in man at the dose used. Thus, these data indicate that, at the low levels of dopamine transporter occupancy achieved in man at clinical doses, bupropion does not increase extracellular dopamine levels. These findings have important implications for understanding the mechanism of action underlying bupropions' therapeutic efficacy and for the development of novel treatments for addiction and depression.
Collapse
Affiliation(s)
- Alice Egerton
- Psychiatric Imaging, Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds. Neurobiol Dis 2010; 37:38-47. [DOI: 10.1016/j.nbd.2009.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/24/2022] Open
|
23
|
Yatham LN, Liddle PF, Erez J, Kauer-Sant'Anna M, Lam RW, Imperial M, Sossi V, Ruth TJ. Brain serotonin-2 receptors in acute mania. Br J Psychiatry 2010; 196:47-51. [PMID: 20044660 DOI: 10.1192/bjp.bp.108.057919] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Although 5-hydroxytryptamine (5-HT) has been implicated in mania, the precise alterations in the 5-HT system remain elusive. AIMS To assess brain 5-HT2 receptors in drug-free individuals experiencing a manic episode in comparison with healthy volunteers using positron emission tomography (PET). METHOD Participants (n = 10) with DSM-IV bipolar I disorder-manic episode and healthy controls (n = 10) underwent [18F]-setoperone scans. The differences in 5-HT2 receptor binding potential between the two groups were determined using statistical parametric mapping (SPM) analysis. RESULTS Age was a significant correlate with 5-HT2 receptor binding potential with a similar magnitude of correlation in both groups. The SPM analysis with age as a covariate showed that the individuals with current mania had significantly lower 5-HT2 receptor binding potential in frontal, temporal, parietal and occipital cortical regions, with changes more prominent in the right cortical regions compared with controls. CONCLUSIONS This study suggests that brain 5-HT2 receptors are decreased in people with acute mania.
Collapse
Affiliation(s)
- Lakshmi N Yatham
- Mood Disorders Program, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lu S, Liow JS, Zoghbi SS, Hong J, Innis RB, Pike VW. Evaluation of [C]S14506 and [F]S14506 in rat and monkey as agonist PET radioligands for brain 5-HT(1A) receptors. Curr Radiopharm 2010; 3:9-18. [PMID: 20657759 DOI: 10.2174/1874471011003010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In vitro and ex vivo measurements have shown that the binding of the selective high-affinity agonist, S14506 (1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxy-naphthyl)piperazine), to 5-HT(1A) receptors, is similar in affinity (K(d) = 0.79 nM) and extent (B(max)) to that of the antagonist, WAY 100635. We aimed to test whether S14506, labeled with a positron-emitter, might serve as a radioligand for imaging brain 5-HT(1A) receptors in vivo with positron emission tomography (PET). Here we evaluated [(11)C]S14506 and [(18)F]S14506 in rat and rhesus monkey in vivo. After intravenous administration of [(11)C]S14506 into rat, radioactivity entered brain, reaching 210% SUV at 2 min. Radioactivity uptake into brain was higher (~ 350% SUV) in rats pre-treated with the P-glycoprotein (P-gp) inhibitor, cyclosporin A. In rhesus monkey, peak brain uptake of radioactivity after administration of [(11)C]S14506 or [(18)F]S14506 was also moderate and for [(11)C]S14506 increased from ~ 170% SUV after 7 min, to 240% SUV in a monkey pre-treated with the P-gp inhibitor, tariquidar. The ratios of radioactivity in 5-HT(1A) receptor-rich regions, such as cingulate or hippocampus to that in receptor-poor cerebellum reached between 1.35 and 1.5 at 60 min for both [(11)C]S14506 and [(18)F]S14506. [(11)C]S14506 gave one major polar radiometabolite in monkey plasma, and [(18)F]S14506 gave three and two more polar radiometabolites in rat and monkey plasma, respectively. The rat radiometabolites of [(18)F]S14506 did not accumulate in brain. [(18)F]S14506 was not radiodefluorinated in monkey. Thus, despite high-affinity and lack of troublesome brain radiometabolites, both [(11)C]S14506 and [(18)F]S14506 were ineffective for imaging rat or monkey brain 5-HT(1A) receptors in vivo, even under P-gp inhibited conditions. Explanations for the failure of these radioligands are offered.
Collapse
Affiliation(s)
- Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda MD 20892-1003, USA
| | | | | | | | | | | |
Collapse
|
25
|
Influence of escitalopram treatment on 5-HT 1A receptor binding in limbic regions in patients with anxiety disorders. Mol Psychiatry 2009; 14:1040-50. [PMID: 18362913 DOI: 10.1038/mp.2008.35] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is an increasing interest in the underlying mechanisms of the antidepressant and anxiolytic treatment effect associated with changes in serotonergic neurotransmission after treatment with selective serotonin (5-HT) reuptake inhibitors (SSRIs) in humans. The 5-HT(1A) receptor is known to play a crucial role in the pathophysiology of affective disorders, and altered 5-HT(1A) receptor binding has been found in anxiety patients. SSRI treatment raises the 5-HT level in the synaptic cleft and might change postsynaptic receptor densities. Therefore, our study in patients suffering from anxiety disorders investigated the effects of long-term treatment with escitalopram on the 5-HT(1A) receptor. A longitudinal positrone emission tomography (PET) study in 12 patients suffering from anxiety disorders was conducted. Two dynamic PET scans were performed applying the selective 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635. Eight regions of interest were defined a priori (orbitofrontal cortex, amygdala, hippocampus, subgenual cortex, anterior and posterior cingulate cortex, dorsal raphe nucleus and cerebellum as reference). After the baseline PET scan, patients were administered escitalopram (average dose of 11.2+/-6.0 mg day(-1)) for a minimum of 12 weeks. A second PET scan was conducted after 109+/-27 days. 5-HT(1A) receptor binding potentials in 12 patients were assessed by PET applying the Simplified Reference Tissue Model.There was a significant reduction in the 5-HT(1A) receptor binding potential after a minimum of 12 weeks of escitalopram treatment in the hippocampus (P=0.006), subgenual cortex (P=0.017) and posterior cingulate cortex (P=0.034). The significance of the hippocampus region survived the Bonferroni-adjusted threshold for multiple comparisons. These PET data in humans in vivo demonstrate a reduction of the 5-HT(1A) binding potential after SSRI treatment.
Collapse
|
26
|
Møller M, Rodell A, Gjedde A. Parametric mapping of 5HT1A receptor sites in the human brain with the Hypotime method: theory and normal values. J Nucl Med 2009; 50:1229-36. [PMID: 19617338 DOI: 10.2967/jnumed.108.053322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The radioligand [carbonyl-(11)C]WAY-100635 ((11)C-WAY) is a PET tracer of the serotonin 5HT(1A) receptors in the human brain. It is metabolized so rapidly in the circulation that it behaves more as a chemical microsphere than as a tracer subject to continuous exchange between the circulation and brain tissue. Although reference tissue methods are useful as analyses of uptake of some radioligands with indeterminate arterial input functions, their use to analyze (11)C-WAY uptake and binding is challenged by the rapid plasma metabolism, which violates the assumption that regions of interest and reference regions continue to exchange radioligand with the circulation during the entire uptake period. Here, we proposed a method of calculation (Hypotime) that specifically uses the washout rather than the accumulation of (11)C-WAY to determine binding potentials (BP(ND)), without the use of regression analysis. METHODS A total of 19 healthy volunteers (age range, 23-73 y) underwent PET to test the Hypotime application of the chemical microsphere properties of (11)C-WAY to identify regions of binding and nonbinding on the exclusive basis of the rate of washout of (11)C-WAY. RESULTS The results of the Hypotime method were compared with the simplified but multilinearized reference tissue method (MLSRTM). The distribution of receptor BP(ND) obtained with Hypotime was consistent with previous autoradiography of postmortem brain tissue, with the highest values of BP(ND) recorded in the medial temporal lobe and decline of receptor availability with age. The values in the basal ganglia and cerebellum were negligible. The MLSRTM, in contrast, yielded lower BP(ND) in all regions and only weakly revealed the decline with age. CONCLUSION The simple and computationally efficient Hypotime method gave reliable values of BP(ND) without the use of regression. The MLSRTM, on the other hand, appeared to be affected by the early disappearance of the radioligand from the circulation and the associated uncertain late presence of (11)C-WAY in the circulation.
Collapse
Affiliation(s)
- Mette Møller
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | | | | |
Collapse
|
27
|
Moulin-Sallanon M, Charnay Y, Ginovart N, Perret P, Lanfumey L, Hamon M, Hen R, Fagret D, Ibáñez V, Millet P. Acute and chronic effects of citalopram on 5-HT1A receptor-labeling by [18F]MPPF and -coupling to receptors-G proteins. Synapse 2009; 63:106-16. [PMID: 19016488 DOI: 10.1002/syn.20588] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Selective serotonin reuptake inhibitors take several weeks to produce their maximal therapeutic antidepressant effect. This delay has been attributed to the gradual desensitization of somatodendritic serotonin 5-HT(1A) autoreceptors. We evaluated adaptive changes of 5-HT(1A) receptors after acute and chronic citalopram challenges in rat. Small animal positron emission tomography trial and quantitative ex vivo autoradiography studies using [(18)F]MPPF were employed, as well as in vitro 8-OH-DPAT-stimulated [(35)S]-GTPgammaS binding assay. Additionally, 5-HT(1A) receptor knock-out mice were used to assess the specificity of [(18)F]MPPF. Acute treatment with citalopram did not alter [(18)F]MPPF binding in dorsal raphe nucleus (DR), frontal cortex, or hippocampus. The absence of [(18)F]MPPF binding in the brain of 5-HT(1A) knock-out mice demonstrates the specificity of MPPF for 5-HT(1A) receptor brain imaging, but the high affinity of [(18)F]MPPF compared to 5-HT suggests that it would only be displaced by dramatic increases in extracellular 5-HT. Chronic citalopram did not modify 5-HT(1A) receptor density in any of the brain regions studied. In addition, this treatment did not modify 8-OH-DPAT-stimulated [(35)S]-GTPgammaS binding in DR, although a significant increase was observed in frontal cortex and hippocampus. [(18)F]MPPF appears to be an efficient radioligand to quantify specifically 5-HT(1A) receptor density in brain imaging. The delayed therapeutic efficacy of citalopram did not appear to be linked to either a downregulation of 5-HT(1A) receptors or to a 5-HT(1A) receptor-G protein decoupling process in serotonergic neurons, but to increased functional sensitivity of postsynaptic 5-HT(1A) receptors.
Collapse
|
28
|
Savitz J, Lucki I, Drevets WC. 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 2009; 88:17-31. [PMID: 19428959 DOI: 10.1016/j.pneurobio.2009.01.009] [Citation(s) in RCA: 408] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 12/22/2008] [Accepted: 01/29/2009] [Indexed: 10/21/2022]
Abstract
Dysfunction of the serotonin 1A receptor (5-HT(1A)) may play a role in the genesis of major depressive disorder (MDD). Here we review the pharmacological, post-mortem, positron emission tomography (PET), and genetic evidence in support of this statement. We also touch briefly on two MDD-associated phenotypes, cognitive impairment and somatic pain. The results of pharmacological challenge studies with 5-HT(1A) receptor agonists are indicative of blunted endocrine responses in depressed patients. Lithium, valproate, selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants (TCAs), and other treatment, such as electroconvulsive shock therapy (ECT), all increase post-synaptic 5-HT(1A) receptor signaling through either direct or indirect effects. Reduced somatodendritic and postsynaptic 5-HT(1A) receptor numbers or affinity have been reported in some post-mortem studies of suicide victims, a result consistent with well-replicated PET analyses demonstrating reduced 5-HT(1A) receptor binding potential in diverse regions such as the dorsal raphe, medial prefrontal cortex (mPFC), amygdala and hippocampus. 5-HT(1A) receptor knockout (KO) mice display increased anxiety-related behavior, which, unlike in their wild-type counterparts, cannot be rescued with antidepressant drug (AD) treatment. In humans, the G allele of a single nucleotide polymorphism (SNP) in the 5-HT(1A) receptor gene (HTR1A; rs6295), which abrogates a transcription factor binding site for deformed epidermal autoregulatory factor-1 (Deaf-1) and Hes5, has been reported to be over-represented in MDD cases. Conversely, the C allele has been associated with better response to AD drugs. We raise the possibility that 5-HT(1A) receptor dysfunction represents one potential mechanism underpinning MDD and other stress-related disorders.
Collapse
Affiliation(s)
- Jonathan Savitz
- Section on Neuroimaging in Mood and Anxiety Disorders, Mood and Anxiety Disorders Program, NIH/NIMH, Bethesda, MD 20892, United States.
| | | | | |
Collapse
|
29
|
Preece MA, Taylor MJ, Raley J, Blamire A, Sharp T, Sibson NR. Evidence that increased 5-HT release evokes region-specific effects on blood-oxygenation level-dependent functional magnetic resonance imaging responses in the rat brain. Neuroscience 2009; 159:751-9. [PMID: 19174180 DOI: 10.1016/j.neuroscience.2008.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/18/2008] [Accepted: 12/16/2008] [Indexed: 01/10/2023]
Abstract
This study aimed to determine the potential of in vivo functional magnetic resonance imaging (fMRI) methods as a non-invasive means of detecting effects of increased 5-HT release in brain. Changes in blood-oxygenation level-dependent (BOLD) contrast induced by administration of the 5-HT-releasing agent, fenfluramine, were measured in selected brain regions of halothane-anesthetized rats. Initial immunohistochemical measurements of the marker of neural activation, Fos, confirmed that in halothane-anesthetized rats fenfluramine (10 mg/kg i.v.) evoked cellular responses in cortical regions which were attenuated by pre-treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (300 mg/kg i.p. once daily for 2 days). Fenfluramine-induced Fos was demonstrated in numerous glutamatergic pyramidal neurons (Fos/excitatory amino acid carrier 1 (EAAC1) co-labeled), but also a small number of GABA interneurons (Fos/glutamic acid decarboxylase (GAD)(67) colabeled). Fenfluramine (10 mg/kg i.v.) evoked changes in BOLD signal intensity in a number of cortical and sub-cortical regions with the greatest effects being observed in the nucleus accumbens (-13.0%+/-2.7%), prefrontal cortex (-10.1%+/-3.2%) and motor cortex (+2.3%+/-1.0%). Pre-treatment with p-chlorophenylalanine, significantly attenuated the response to fenfluramine (10 mg/kg i.v.) in all regions with the exception of the motor cortex which showed a trend. These experiments demonstrate that increased 5-HT release evokes region-specific changes in the BOLD signal in rats, and that this effect is attenuated in almost all regions by 5-HT depletion. These findings support the use of fMRI imaging methods as a non-invasive tool to study 5-HT function in animal models, with the potential for extension to clinical studies.
Collapse
Affiliation(s)
- M A Preece
- Department of Pharmacology, Mansfield Road, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Pharmacological MRI in animal models: A useful tool for 5-HT research? Neuropharmacology 2008; 55:1038-47. [DOI: 10.1016/j.neuropharm.2008.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 01/19/2023]
|
31
|
Egerton A, Ahmad R, Hirani E, Grasby PM. Modulation of striatal dopamine release by 5-HT2A and 5-HT2C receptor antagonists: [11C]raclopride PET studies in the rat. Psychopharmacology (Berl) 2008; 200:487-96. [PMID: 18597077 DOI: 10.1007/s00213-008-1226-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Antagonism at serotonin 5-HT2A and 5-HT2C receptors modulates cortical and striatal dopamine (DA) release and may underlie some aspects of the clinical efficacy of 'atypical' antipsychotic compounds. However, it is not known whether 5-HT2A/2C receptor-mediated modulation of DA release can be quantified with non-invasive neurochemical imaging, as would be required for investigation of these processes in man. OBJECTIVE The objective of the study was to perform a feasibility study in the rat in order to determine whether 5-HT2A/2C modulation of DA release can be observed using positron emission tomography (PET) imaging. MATERIALS AND METHODS Rats were administered with either vehicle, a combined 5-HT2A/2C antagonist (ketanserin, 3 mg/kg i.p.), or the more selective 5-HT2C antagonist SB 206,553 (10 mg/kg i.p.) 30 min before administration of the PET DA D2 receptor radiotracer [11C]raclopride ( approximately 11 MBq) and were then scanned for 60 min using a quad-high-density avalanche chamber small animal tomograph. Using the same technique, modulation of amphetamine (4 mg/kg)-induced decreases in [11C]raclopride binding by 5-HT2A antagonism (SR 46349B, 0.2 mg/kg i.v.) was also determined. RESULTS Consistent with the increase in DA release measured by others using microdialysis, 5-HT2C antagonism markedly reduced striatal [11C]raclopride binding (p < 0.003), while amphetamine-induced reductions in striatal [11C]raclopride binding (p < 0.001) were attenuated by 5-HT2A antagonist administration (p = 0.04). CONCLUSIONS These results inform the feasibility of monitoring 5-HT2A/2C receptor-mediated modulation of DA systems in man using PET and, more generally, demonstrate that D2 radiotracer PET imaging may be used to monitor the efficacy of new DA modulators in attenuating stimulated DA release.
Collapse
Affiliation(s)
- Alice Egerton
- Division of Neuroscience and Psychological Medicine, Department of Neuroscience and Mental Health, Imperial College London, London, W12 0NN, UK.
| | | | | | | |
Collapse
|
32
|
Yamamoto S, Onoe H, Tsukada H, Watanabe Y. Effects of increased endogenous serotonin on the in vivo binding of [11C]DASB to serotonin transporters in conscious monkey brain. Synapse 2007; 61:724-31. [PMID: 17559093 DOI: 10.1002/syn.20422] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using a combination of positron emission tomography (PET) and the microdialysis technique, the effects of increased endogenous serotonin (5-hydroxytryptamine; 5-HT) on the binding of [(11)C]DASB to 5-HT transporters (5-HTT) were investigated in the conscious monkey brain. Five rhesus monkeys (Macaca mulatta) were scanned with [(11)C]DASB under the control condition and the increased endogenous 5-HT condition, in which 5-hydroxy-L-tryptophan (5-HTP) was administered (20 mg/kg, i.v.) before the PET scan. Compared with the control scan, the 5-HTP administration significantly decreased the binding potential (BP) (BP = B(max)/K(d)) of [(11)C]DASB in several brain regions. The mean % decrease of BP was biggest in the caudate and putamen. Two monkeys were scanned with [(11)C]5-HTP to assess the amino acid decarboxylase (AADC) activity in the brain, resulting in the high activity in the caudate and putamen. Microdialysis measurements showed that although 5-HTP administration (20 mg/kg, i.v.) increased the extracellular 5-HT levels in both the prefrontal cortex and caudate, the increase of the 5-HT level in the caudate was 27 times higher than that in the prefrontal cortex. These results suggest that the caudate and putamen, both of which show high AADC activity, convert 5-HTP to 5-HT at a high rate, and the increased 5-HT competes with [(11)C]DASB for the 5-HTT.
Collapse
Affiliation(s)
- Shigeyuki Yamamoto
- Department of Physiology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan.
| | | | | | | |
Collapse
|
33
|
Smith GS, Gunning-Dixon FM, Lotrich FE, Taylor WD, Evans JD. Translational research in late-life mood disorders: implications for future intervention and prevention research. Neuropsychopharmacology 2007; 32:1857-75. [PMID: 17327888 DOI: 10.1038/sj.npp.1301333] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical and epidemiological studies have consistently observed the heterogeneous symptomatology and course of geriatric depression. Given the importance of genetic and environmental risk factors, aging processes, neurodegenerative and cerebrovascular disease processes, and medical comorbidity, the integration of basic and clinical neuroscience research approaches is critical for the understanding of the variability in illness course, as well as the development of prevention and intervention strategies that are more effective. These considerations were the impetus for a workshop, sponsored by the Geriatrics Research Branch in the Division of Adult Translational Research and Treatment Development of the National Institute of Mental Health that was held on September 7-8, 2005. The primary goal of the workshop was to bring together investigators in geriatric psychiatry research with researchers in specific topic areas outside of geriatric mental health to identify priority areas to advance translational research in geriatric depression. As described in this report, the workshop focused on a discussion of the development and application of integrative approaches combining genetics and neuroimaging methods to understand such complex issues as treatment response variability, the role of medical comorbidity in depression, and the potential overlap between depression and dementia. Future directions for integrative research were identified. Understanding the nature of geriatric depression requires the application of translational research and interdisciplinary research approaches. Geriatric depression could serve as a model for translational research integrating basic and clinical neuroscience approaches that would have implications for the study of other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gwenn S Smith
- PET Centre, Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
34
|
Møller M, Andersen G, Gjedde A. Serotonin 5HT1A receptor availability and pathological crying after stroke. Acta Neurol Scand 2007; 116:83-90. [PMID: 17661792 DOI: 10.1111/j.1600-0404.2007.00869.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible by selective serotonin re-uptake inhibitor (SSRI) treatment. MATERIALS AND METHODS We PET scanned patients with acute stroke and PC and age-matched control subjects. Maps of receptor availability were generated from the images of eight cortical regions and raphe nuclei. RESULTS The maps showed highest binding in limbic areas and raphe nuclei, while binding in basal ganglia and cerebellum was negligible. Baseline binding potentials of patients were lower than that of control subjects (3.7 +/- 0.6 vs 4.2 +/- 0.2). Treatment with SSRI markedly reduced free receptor sites, whereas placebo administration led to a global increase. DISCUSSION The study is the first suggestion of changes of serotonergic neurotransmission in the early phase of stroke and the modulation of these changes with SSRI treatment.
Collapse
Affiliation(s)
- M Møller
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark.
| | | | | |
Collapse
|
35
|
Moses-Kolko EL, Price JC, Thase ME, Meltzer CC, Kupfer DJ, Mathis CA, Bogers WD, Berman SR, Houck PR, Schneider TN, Drevets WC. Measurement of 5-HT1A receptor binding in depressed adults before and after antidepressant drug treatment using positron emission tomography and [11C]WAY-100635. Synapse 2007; 61:523-30. [PMID: 17447260 PMCID: PMC4448112 DOI: 10.1002/syn.20398] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To assess effects of chronic antidepressant drug treatment on serotonin type-1A receptor (5-HT(1A)R) binding potential (BP) in major depressive disorder. METHODS Depressed subjects (n = 27) were imaged using PET and [(11)C]WAY-100635 at baseline and following a median of 9.4 weeks of treatment with selective serotonin reuptake inhibitor or dual reuptake inhibitor antidepressant agents. Fifteen subjects had complete pre- and post-treatment scan data. The 5-HT(1A)R BP was derived from the tissue time-radioactivity concentrations from regions-of-interest defined a priori, using a simplified reference tissue model (SRTM), and in a subset of subjects, compartmental modeling (CMOD). RESULTS Chronic treatment had no effect on pre- or post-synaptic 5-HT(1A)R BP, as confirmed by both the SRTM and CMOD analyses. These results were unaffected by treatment response status and were consistent across brain regions. Among the 22 subjects for whom the clinical response-to-treatment was established, the treatment nonresponders (n = 7) had higher baseline BP values in the left (P = 0.01) and right orbital cortex (P = 0.02) than the responders (n = 15). CONCLUSIONS Chronic antidepressant drug treatment did not significantly change cerebral 5-HT(1A)R binding, consistent with preclinical evidence that the alterations in serotonergic function associated with antidepressant drug administration are not accompanied by changes in 5-HT(1A)R density. Higher baseline 5-HT(1A)R binding was associated with poorer response to treatment.
Collapse
Affiliation(s)
- Eydie L Moses-Kolko
- Departments of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lundquist P, Roman M, Syvänen S, Hartvig P, Blomquist G, Hammarlund-Udenaes M, Långström B. Effect on [11C]DASB binding after tranylcypromine-induced increase in serotonin concentration: positron emission tomography studies in monkeys and rats. Synapse 2007; 61:440-9. [PMID: 17372973 DOI: 10.1002/syn.20382] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several research groups have demonstrated that under specific conditions, in vivo neuroreceptor binding techniques can be used to measure acute changes in the concentrations of endogenous transmitters in the vicinity of neuroreceptors. The aim of this study was to investigate whether [(11)C]-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile ([(11)C]DASB) binding to the plasma membrane serotonin transporter (SERT) in the rhesus monkey and rat brain decreased after a pharmacologically-induced increase in the interstitial serotonin (5HT) concentration. Three rhesus monkeys were given repeated single boluses of [(11)C]DASB in sequential positron emission tomography (PET) experiments. Rats were given the tracer as a bolus dose plus a constant infusion. In vivo binding in both models was studied before and after presumably having increased interstitial 5HT concentrations using tranylcypromine (TCP), which inhibits the enzyme (monoamine oxidase, MAO), that degrades 5HT. The rat brain tissue was analyzed using high-performance liquid chromatography (HPLC) to determine the proportion of the PET signal comprising unchanged [(11)C]DASB. The binding of [(11)C]DASB in the thalamus decreased in both rhesus monkeys and rats after TCP administration. The possibility of using [(11)C]DASB as a tool for monitoring changes in endogenous serotonin concentrations merits further investigation.
Collapse
Affiliation(s)
- Pinelopi Lundquist
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
37
|
Müller CP, Carey RJ, Huston JP, De Souza Silva MA. Serotonin and psychostimulant addiction: Focus on 5-HT1A-receptors. Prog Neurobiol 2007; 81:133-78. [PMID: 17316955 DOI: 10.1016/j.pneurobio.2007.01.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 12/04/2006] [Accepted: 01/03/2007] [Indexed: 01/03/2023]
Abstract
Serotonin(1A)-receptors (5-HT(1A)-Rs) are important components of the 5-HT system in the brain. As somatodendritic autoreceptors they control the activity of 5-HT neurons, and, as postsynaptic receptors, the activity in terminal areas. Cocaine (COC), amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine ("Ecstasy", MDMA) are psychostimulant drugs that can lead to addiction-related behavior in humans and in animals. At the neurochemical level, these psychostimulant drugs interact with monoamine transporters and increase extracellular 5-HT, dopamine and noradrenalin activity in the brain. The increase in 5-HT, which, in addition to dopamine, is a core mechanism of action for drug addiction, hyperactivates 5-HT(1A)-Rs. Here, we first review the role of the various 5-HT(1A)-R populations in spontaneous behavior to provide a background to elucidate the contribution of the 5-HT(1A)-Rs to the organization of psychostimulant-induced addiction behavior. The progress achieved in this field shows the fundamental contribution of brain 5-HT(1A)-Rs to virtually all behaviors associated with psychostimulant addiction. Importantly, the contribution of pre- and postsynaptic 5-HT(1A)-Rs can be dissociated and frequently act in opposite directions. We conclude that 5-HT(1A)-autoreceptors mainly facilitate psychostimulant addiction-related behaviors by a limitation of the 5-HT response in terminal areas. Postsynaptic 5-HT(1A)-Rs, in contrast, predominantly inhibit the expression of various addiction-related behaviors directly. In addition, they may also influence the local 5-HT response by feedback mechanisms. The reviewed findings do not only show a crucial role of 5-HT(1A)-Rs in the control of brain 5-HT activity and spontaneous behavior, but also their complex role in the regulation of the psychostimulant-induced 5-HT response and subsequent addiction-related behaviors.
Collapse
Affiliation(s)
- Christian P Müller
- Institute of Physiological Psychology I, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|
38
|
Cumming P, Møller M, Benda K, Minuzzi L, Jakobsen S, Jensen SB, Pakkenberg B, Stark AK, Gramsbergen JB, Andreasen MF, Olsen AK. A PET study of effects of chronic 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on serotonin markers in Göttingen minipig brain. Synapse 2007; 61:478-87. [PMID: 17415793 DOI: 10.1002/syn.20377] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The psychostimulant 3,4-methylendioxymethamphetamine (MDMA, "ecstasy") evokes degeneration of telencephalic serotonin innervations in rodents, nonhuman primates, and human recreational drug users. However, there has been no alternative to nonhuman primates for studies of the cognitive and neurochemical consequences of serotonin depletion in a large-bodied animal. Therefore, we used positron emission tomography (PET) with [(11)C]DASB to map the distribution of plasma membrane serotonin transporters in brain of Göttingen minipigs, first in a baseline condition, and again at 2 weeks after treatment with MDMA (i.m.), administered at a range of doses. In parallel PET studies, [(11)C]WAY-100635 was used to map the distribution of serotonin 5HT(1A) receptors. The acute MDMA treatment in awake pigs evoked 1 degrees C of hyperthermia. MDMA at total doses greater than 20 mg/kg administered over 2-4 days reduced the binding potential (pB) of [(11)C]DASB for serotonin transporters in porcine brain. A mean total dose of 42 mg/kg MDMA in four animals evoked a mean 32% decrease in [(11)C]DASB pB in mesencephalon and diencephalon, and a mean 53% decrease in telencephalic structures. However, this depletion of serotonin innervations was not associated with consistent alterations in the binding of [(11)C]WAY-100635 to serotonin 5HT(1A) receptors. Stereological cell counting of serotonin-positive neurons, which numbered 95,000 in the dorsal raphé nucleus of normal animals, was unaffected in MDMA-treated group. group.
Collapse
Affiliation(s)
- Paul Cumming
- PET Centre and Centre for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Boothman L, Raley J, Denk F, Hirani E, Sharp T. In vivo evidence that 5-HT(2C) receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. Br J Pharmacol 2006; 149:861-9. [PMID: 17043669 PMCID: PMC2014685 DOI: 10.1038/sj.bjp.0706935] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent evidence suggests that 5-HT(2C) receptor activation may inhibit midbrain 5-HT neurones by activating neighbouring GABA neurones. This hypothesis was tested using the putative selective 5-HT(2C) receptor agonist, WAY 161503. EXPERIMENTAL APPROACH The effect of WAY 161503 on 5-HT cell firing in the dorsal raphe nucleus (DRN) was investigated in anaesthetised rats using single unit extracellular recordings. The effect of WAY 161503 on DRN GABA neurones was investigated using double label immunohistochemical measurements of Fos, glutamate decarboxylase (GAD) and 5-HT(2C) receptors. Finally, drug occupancy at 5-HT(2A) receptors was investigated using rat positron emission tomography and ex vivo binding studies with the 5-HT(2A) receptor radioligand [(11)C]MDL 100907. KEY RESULTS WAY 161503 caused a dose-related inhibition of 5-HT cell firing which was reversed by the 5-HT(2) receptor antagonist ritanserin and the 5-HT(2C) receptor antagonist SB 242084 but not by the 5-HT(1A) receptor antagonist WAY 100635. SB 242084 pretreatment also prevented the response to WAY 161503. The blocking effects of SB 242084 likely involved 5-HT(2C) receptors because the drug did not demonstrate 5-HT(2A) receptor occupancy in vivo or ex vivo. The inhibition of 5-HT cell firing induced by WAY 161503 was partially reversed by the GABA(A) receptor antagonist picrotoxin. Also, WAY 161503 increased Fos expression in GAD positive DRN neurones and DRN GAD positive neurones expressed 5-HT(2C) receptor immunoreactivity. CONCLUSIONS AND IMPLICATIONS These findings indicate that WAY 161503 inhibits 5-HT cell firing in the DRN in vivo, and support a mechanism involving 5-HT(2C) receptor-mediated activation of DRN GABA neurones.
Collapse
Affiliation(s)
- L Boothman
- University Department of Pharmacology, Oxford, UK
| | - J Raley
- University Department of Pharmacology, Oxford, UK
| | - F Denk
- University Department of Pharmacology, Oxford, UK
| | - E Hirani
- Hammersmith Imanet Ltd., Cyclotron Building, Hammersmith Hospital London, UK
| | - T Sharp
- University Department of Pharmacology, Oxford, UK
- Author for correspondence:
| |
Collapse
|
40
|
Udo de Haes JI, Harada N, Elsinga PH, Maguire RP, Tsukada H. Effect of fenfluramine-induced increases in serotonin release on [18F]MPPF binding: a continuous infusion PET study in conscious monkeys. Synapse 2006; 59:18-26. [PMID: 16237679 DOI: 10.1002/syn.20209] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
[(18)F]MPPF is a selective and reversible antagonist to the serotonin-1A (5-HT(1A)) receptor. The aim of the present study was to investigate whether the binding of [(18)F]MPPF is sensitive to increases in 5-HT levels. We used the 5-HT releasing agent and reuptake inhibitor fenfluramine (FEN) to increase the concentration of 5-HT. [(18)F]MPPF binding was assessed using positron emission tomography (PET) in conscious monkeys. Possible effects of blood flow on ligand binding were excluded by using a bolus-infusion paradigm. Control scans were obtained to assess the state of ligand equilibrium. FEN (5 or 10 mg/kg, i.v.) was administered between 90 and 130 min after the start of the [(18)F]MPPF infusion. The binding potential (BP) was calculated for an early interval (30 min preceding FEN administration) and late interval (20-50 min after administration of FEN). Microdialyses results showed a 20- and 35-fold increase in extracellular 5-HT levels in the prefrontal cortex after injection of FEN at a dose of 5 mg/kg and 10 mg/kg respectively. However, despite these large increases in 5-HT levels, no differences in BP were found between the control and FEN scans. These results may imply that the majority of 5-HT(1A) receptors is in the low affinity state in the living brain.
Collapse
Affiliation(s)
- Joanna I Udo de Haes
- Department of Biological Psychiatry, University Medical Center Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Borg J, Andrée B, Lundberg J, Halldin C, Farde L. Search for correlations between serotonin 5-HT1A receptor expression and cognitive functions--a strategy in translational psychopharmacology. Psychopharmacology (Berl) 2006; 185:389-94. [PMID: 16541245 DOI: 10.1007/s00213-006-0329-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/09/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Animal studies and studies of human aging have suggested that the serotonin 5-HT1A receptor may serve as a biomarker for cognitive functioning and a target for pharmacological treatment of cognitive deficits. OBJECTIVES The purpose of this positron emission tomography (PET) study was to search for relationships between interindividual variability in serotonin 5-HT1A receptor binding potential (BP) and cognitive functioning. MATERIALS AND METHODS Twenty-four male control subjects, age 20-55 years, were examined with [11C]WAY100635 PET and a battery of cognitive tests. 5-HT1A receptor binding potential were calculated for the raphe nuclei, the hippocampus and the neocortex. Correlation coefficients between BP and cognitive performance were obtained for each region. RESULTS There was a severalfold of variability in 5-HT1A BP between individuals. We found no significant correlation between regional [11C]WAY100635 binding and cognitive performance. CONCLUSIONS The results do not provide support for involvement of the 5-HT1A receptor in cognitive functioning in man and question the predictive validity of some currently used animal models in translational neuroscience.
Collapse
Affiliation(s)
- Jacqueline Borg
- Section of Psychiatry, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Jagoda EM, Lang L, Tokugawa J, Simmons A, Ma Y, Contoreggi C, Kiesewetter D, Eckelman WC. Development of 5-HT1A receptor radioligands to determine receptor density and changes in endogenous 5-HT. Synapse 2006; 59:330-41. [PMID: 16440292 DOI: 10.1002/syn.20246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
[(18)F]FCWAY and [(18)F]FPWAY, analogues of the high affinity 5-HT(1A) receptor (5-HT(1A)R) antagonist WAY100635, were evaluated in rodents as potential radiopharmaceuticals for determining 5-HT(1A)R density and changes in receptor occupancy due to changes in endogenous serotonin (5-HT) levels. The in vivo hippocampus specific binding ratio [(hippocampus(uptake)/cerebellum(uptake))-1] of [(18)F]FPWAY was decreased to 32% of the ratio of [(18)F]FCWAY, indicating that [(18)F]FPWAY has lower affinity than [(18)F]FCWAY. The 5-HT(1A)R selectivity of [(18)F]FPWAY was confirmed using ex vivo autoradiography studies with 5-HT(1A)R knockout, heterozygous, and wildtype mice.Pre- or post-treatment of awake rodents in tissue dissection studies with paroxetine had no effect on hippocampal binding of [(18)F]FCWAY or [(18)F]FPWAY compared to controls, indicating neither tracer was sensitive to changes in endogenous 5-HT. In mouse ex vivo autoradiography studies in which awake mice were treated with fenfluramine following the [(18)F]FPWAY, a significant decrease was not observed in the hippocampus specific binding ratios. In rat dissection studies with fenfluramine administered following [(18)F]FPWAY or [(18)F]FBWAY ([(18)F]-MPPF) in awake or urethane-anesthetized rats, no significant differences in the specific binding ratios of the hippocampus were observed compared to their respective controls. [(18)F]FPWAY and [(18)F]FBWAY uptakes in all brain regions were increased variably in the anesthetized group (with the greatest increase in the hippocampus) vs. the awake group, but were decreased in the fenfluramine-treated anesthetized group vs. the anesthetized group. These data are best explained by changes in blood flow caused by urethane and fenfluramine, which varies from region to region in the brain.
Collapse
Affiliation(s)
- Elaine M Jagoda
- Positron Emission Tomography PET Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Udo de Haes JI, Cremers TIFH, Bosker FJ, Postema F, Tiemersma-Wegman TD, den Boer JA. Effect of increased serotonin levels on [18F]MPPF binding in rat brain: fenfluramine vs the combination of citalopram and ketanserin. Neuropsychopharmacology 2005; 30:1624-31. [PMID: 15827572 DOI: 10.1038/sj.npp.1300721] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[18F]MPPF is a selective serotonin-1A (5-HT1A) receptor antagonist and may be used to measure changes in the functional levels of serotonin (5-HT). The technique is based on the assumption that the injected radiolabeled ligand competes for the same receptor as the endogenous transmitter. Results from studies using serotonergic ligands are not always consistent. The aim of the present study was to investigate if [18F]MPPF binding is decreased after an increase in 5-HT levels. [18F]MPPF binding was assessed in conscious rats using ex vivo autoradiography. We studied the effect of the 5-HT-releasing agent and reuptake inhibitor fenfluramine (10 mg/kg i.p.) and of a combination of the selective serotonin reuptake inhibitor (SSRI) citalopram (10 micromol/kg, s.c.) with the 5-HT2C antagonist ketanserin (100 nmol/kg, s.c). The effect of both treatments on extracellular 5-HT levels was determined using microdialysis. Fenfluramine treatment resulted in a 30-fold increase in extracellular 5-HT levels in the ventral hippocampus and induced a significant reduction of [18F]MPPF binding in the frontal cortex, hypothalamus, amygdala, and hippocampus. The microdialysis results showed a 10-fold 5-HT increase in the ventral hippocampus after combined administration of ketanserin and citalopram. The combination, however, did not affect [18F]MPPF binding. Our data show that [18F]MPPF binding in conscious rats is only reduced after substantial and therefore nonphysiological increases in 5-HT levels. These results may imply that the majority of 5-HT1A receptors is in the low-affinity state, in vivo.
Collapse
Affiliation(s)
- Joanna I Udo de Haes
- Department of Biological Psychiatry, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Giovacchini G, Lang L, Ma Y, Herscovitch P, Eckelman WC, Carson RE. Differential effects of paroxetine on raphe and cortical 5-HT1A binding: a PET study in monkeys. Neuroimage 2005; 28:238-48. [PMID: 15993625 DOI: 10.1016/j.neuroimage.2005.05.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 05/03/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022] Open
Abstract
Positron emission tomography (PET) ligands that are sensitive to transient changes in serotonin (5-HT) concentration are desirable for studies of neuropsychiatric diseases. Few studies, however, have sought to demonstrate that variations in 5-HT concentration can be closely tracked with available serotonergic ligands. Microdialysis studies in rats have shown a maximal increase in 5-HT concentration in raphe nuclei after systemic infusion of selective serotonergic re-uptake inhibitors (SSRIs). We performed PET scans with [(18)F]FPWAY, an intermediate-affinity antagonist of 5-HT(1A) receptors, in 4 anesthetized rhesus monkeys in control studies and after systemic paroxetine administration (5 mg/kg, i.v.). In addition, a paired [(11)C]DASB study revealed that this paroxetine regimen produced an occupancy of 54-83% of the serotonin transporters. According to the conventional receptor competition model, increased 5-HT concentration produces decreased binding of the radioactive ligand. Over a 3-h period following paroxetine infusion, a progressively increasing reduction (ranging from 8 +/- 6% to 27 +/- 10%) of [(18)F]FPWAY-specific binding was found in the raphe nuclei. This result is interpreted as an SSRI-induced increase in 5-HT concentration, potentially combined with reduced binding to internalized 5-HT(1A) receptors. In addition, a transient (1 h) increase in cerebral cortical binding was observed, attributed primarily to a reduction in cortical 5-HT due to the effects of raphe autoreceptor inhibition. This study is the first demonstration of the feasibility of quantifying dynamic changes in 5-HT neurotransmission in the raphe and the cortex with PET. These results lend promise to the use of these serotonergic neuroimaging techniques to study neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giampiero Giovacchini
- PET Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lundquist P, Wilking H, Höglund AU, Sandell J, Bergström M, Hartvig P, Långström B. Potential of [11C]DASB for measuring endogenous serotonin with PET: binding studies. Nucl Med Biol 2005; 32:129-36. [PMID: 15721758 DOI: 10.1016/j.nucmedbio.2004.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 11/30/2004] [Accepted: 12/05/2004] [Indexed: 11/30/2022]
Abstract
The serotonin transporter radioligand [11C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile, or [11C]DASB, was examined in order to assess its potential for measuring fluctuations in endogenous serotonin concentrations with positron emission tomography. Binding characteristics of [11C]DASB and the propensity for serotonin to displace the tracer were explored in rat brain homogenates. Experiments showed that serotonin displaced [11C]DASB in vitro. Ex vivo experiments performed after tranylcypromine injection (3 or 15 mg/kg) showed a dose-dependent trend in radioactivity uptake and suggested that serotonin may compete with [11C]DASB for transporter binding.
Collapse
Affiliation(s)
- Pinelopi Lundquist
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Cleare AJ, Messa C, Rabiner EA, Grasby PM. Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C]WAY-100635. Biol Psychiatry 2005; 57:239-46. [PMID: 15691524 DOI: 10.1016/j.biopsych.2004.10.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 10/01/2004] [Accepted: 10/29/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Research from neuroendocrine challenge and other indirect studies has suggested increased central 5-HT function in chronic fatigue syndrome (CFS) and increased 5-HT1A receptor sensitivity. We assessed brain 5-HT1A receptor binding potential directly using the specific radioligand [11C]WAY-100635 and positron emission tomography (PET). METHODS We selected 10 patients from a tertiary referral clinic who fulfilled the CDC consensus criteria for CFS. To assemble a homogenous group and avoid confounding effects, we enrolled only subjects who were completely medication-free and did not have current comorbid psychiatric illness. We also scanned 10 healthy control subjects. RESULTS There was a widespread reduction in 5-HT1A receptor binding potential in CFS relative to control subjects. This was particularly marked in the hippocampus bilaterally, where a 23% reduction was observed. CONCLUSIONS There is evidence of decreased 5-HT1A receptor number or affinity in CFS. This may be a primary feature of CFS, related to the underlying pathophysiology, or a finding secondary to other processes, such as previous depression, other biological changes or the behavioral consequences of CFS.
Collapse
Affiliation(s)
- Anthony J Cleare
- Section of Neurobiology of Mood Disorders, Division of Psychological Medicine, Institute of Psychiatry and Guy-s, King-s and St. Thomas- School of Medicine, London, United Kingdom.
| | | | | | | |
Collapse
|
47
|
Kristiansen H, Elfving B, Plenge P, Pinborg LH, Gillings N, Knudsen GM. Binding characteristics of the 5-HT2A receptor antagonists altanserin and MDL 100907. Synapse 2005; 58:249-57. [PMID: 16206185 DOI: 10.1002/syn.20205] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To study the 5-HT(2A) receptors in the living human brain, using positron emission tomography (PET), two selective radiotracers are currently in use: [(18)F]altanserin and [(11)C]MDL 100907. It is, however, currently unknown to what extent data obtained with either tracer are directly comparable. The aim of this study was to compare binding characteristics of these two radiotracers in rat brain with respect to affinity (K(d)), receptor binding density (B(max)), binding potential (BP), and nonspecific binding. Further, binding kinetics, sensitivity towards competition with the endogenous transmitter serotonin, and the competitive/noncompetitive interaction between the two radioligands were evaluated. In addition, the selectivity of [(18)F]altanserin for the 5-HT(2A) receptor was assessed. The K(d) value of [(18)F]altanserin and [(3)H]MDL 100907 was in the order of 0.3 nM. B(max) in frontal cortex was 523 and 527 fmol/mg protein, respectively. The binding of [(18)F]altanserin was not influenced by blocking either the 5-HT(2B/2C) or the alpha(1)-adrenergic receptors. At 37 degrees C the association t(1/2) was 2.8 and 2.7 min and the dissociation t(1/2) was 11 and 13.5 min for [(18)F]altanserin and [(3)H]MDL 100907, respectively. Both radioligands were displaced by 5-HT, only at high concentrations; the K(i) value of 5-HT ranging between 650 and 3,300 nM. This indicates that binding of both radioligands in PET studies is not directly influenced by changes in endogenous 5-HT.Overall, the binding of [(18)F]altanserin and [(3)H]MDL 100907 to the 5-HT(2A) receptor was very comparable, showing selective high affinity binding in the subnanomolar range.
Collapse
Affiliation(s)
- Heidi Kristiansen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
48
|
Talbot PS, Frankle WG, Hwang DR, Huang Y, Suckow RF, Slifstein M, Abi-Dargham A, Laruelle M. Effects of reduced endogenous 5-HT on the in vivo binding of the serotonin transporter radioligand11C-DASB in healthy humans. Synapse 2005; 55:164-75. [PMID: 15605360 DOI: 10.1002/syn.20105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although abnormal serotonin (5-HT) function is implicated in a range of mental disorders, there is currently no method to directly assess 5-HT synaptic levels in the living human brain. The in vivo binding of some dopamine (DA) radioligands such as (11)C-raclopride is affected by fluctuations in endogenous DA, thus providing an indirect measure of DA presynaptic activity. Attempts to identify a serotonergic radiotracer with similar properties have proved unsuccessful. Here, we investigated in humans the effects of reduced synaptic 5-HT on the in vivo binding of the 5-HT transporter (SERT) radioligand (11)C-DASB, using Positron Emission Tomography (PET) and the rapid tryptophan depletion (RTD) technique. Eight (8) subjects (5M, 3F) were scanned with (11)C-DASB under control and reduced endogenous 5-HT conditions, in a within-subject, double-blind, counterbalanced, crossover design. Regional distribution volumes (V(T)) were calculated using kinetic modeling and metabolite-corrected arterial input function. (11)C-DASB specific binding was estimated as binding potential (BP) and specific to nonspecific equilibrium partition coefficient (V(")(3)), using the cerebellum as reference region. RTD caused small but significant mean reductions in (11)C-DASB V(T) (-6.1%) and BP (-4.5%) across brain regions, probably explained by a concomitant reduction in (11)C-DASB plasma free fraction (f(1)) of similar magnitude. No significant change in (11)C-DASB V(")(3) was observed between control and reduced 5-HT conditions. Nor was there a significant relationship between the magnitude of tryptophan depletion and change in BP and V(")(3) across individual subjects. These results suggest that (11)C-DASB in vivo binding is not affected by reductions in endogenous 5-HT.
Collapse
Affiliation(s)
- Peter S Talbot
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Smith GS, Lotrich FE, Malhotra AK, Lee AT, Ma Y, Kramer E, Gregersen PK, Eidelberg D, Pollock BG. Effects of serotonin transporter promoter polymorphisms on serotonin function. Neuropsychopharmacology 2004; 29:2226-34. [PMID: 15354180 DOI: 10.1038/sj.npp.1300552] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The serotonin transporter promoter polymorphism (5-HTTLPR) has been associated with vulnerability to stress-induced depressive symptoms and with the speed and rate of response to antidepressant treatment. The goal of the present study was to evaluate the association between the 5-HTTLPR and the functional response of the serotonin system as measured by the neuroendocrine and cerebral metabolic response to intravenous administration of the selective serotonin reuptake inhibitor citalopram in normal control subjects. Genotyping was performed for 5-HTTLPR insertion/deletion polymorphism long (l) and short (s) variant alleles. The ll genotype was compared with the combined sl+ss and with the ss genotype alone. Citalopram plasma concentrations did not differ significantly between groups. The s allele was associated with a less of an increase in prolactin and cortisol than the ll genotype. The s allele was associated with greater decreases in left frontal, precentral and middle temporal gyri compared to the ll genotype. The ll genotype was associated with greater decreases in right frontal, insula and superior temporal gyrus compared to the ss genotype. These findings suggest that 5-HTTLPR is associated with an altered functional response of the serotonin system, which may represent a neurobiologic substrate for the differential response to antidepressant treatment in late life and the emergence of neuropsychiatric symptoms in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gwenn S Smith
- Department of Psychiatry, the Zucker Hillside Hospital, Glen Oaks, NY 11004, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Praschak-Rieder N, Hussey D, Wilson AA, Carella A, Lee M, Dunn E, Willeit M, Bagby RM, Houle S, Meyer JH. Tryptophan depletion and serotonin loss in selective serotonin reuptake inhibitor-treated depression: an [(18)F] MPPF positron emission tomography study. Biol Psychiatry 2004; 56:587-91. [PMID: 15476688 DOI: 10.1016/j.biopsych.2004.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/09/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recurrence of depressive symptoms after tryptophan depletion (TD) in selective serotonin reuptake inhibitor (SSRI)-treated depression is an important, unexplained phenomenon. With [(18)F] MPPF positron emission tomography (PET), serotonin (5-hydroxytryptamine, 5-HT) 1A receptor binding potential (5-HT(1A)BP) was measured after TD in various brain regions in citalopram-treated depression. This 5-HT(1A)BP measurement is sensitive to changes in extracellular 5-HT in animal models. METHODS Eight remitted patients with major depressive disorder received [(18)F] MPPF PET scans twice: once after TD and once after sham depletion. Behavioral measures were evaluated with the Hamilton Depression Rating Scale and visual analog scales. RESULTS No effect on regional 5-HT(1A)BP was observed after TD, despite an 86% decrease in total plasma tryptophan and transient depressive relapse in six of eight patients. CONCLUSIONS Large-magnitude changes in extracellular 5-HT are not crucial for the mood effects observed in SSRI-treated subjects after TD. Therefore, greater consideration must be given to other mechanisms that involve vulnerability to small perturbations in extracellular 5-HT, such as impairment of signal transduction.
Collapse
Affiliation(s)
- Nicole Praschak-Rieder
- Vivian M. Rakoff PET Imaging Centre and the Mood and Anxiety Disorders Division, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|