1
|
Lin CH, Lin HY, Yang CC, Hsu HW, Hsieh FC, Yang CY, Wu HY. Preferential cleavage of the coronavirus defective viral genome by cellular endoribonuclease with characteristics of RNase L. Virol J 2024; 21:273. [PMID: 39487538 PMCID: PMC11529150 DOI: 10.1186/s12985-024-02549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
In testing whether coronavirus defective viral genome 12.7 (DVG12.7) with transcription regulating sequence (TRS) can synthesize subgenomic mRNA (sgmRNA) in coronavirus-infected cells, it was unexpectedly found by Northern blot assay that not only sgmRNA (designated sgmDVG 12.7) but also an RNA fragment with a size less than sgmDVG 12.7 was identified. A subsequent study demonstrated that the identified RNA fragment (designated clvDVG) was a cleaved RNA product originating from DVG12.7, and the cleaved sites were located in the loop region of stem‒loop structure and after UU and UA dinucleotides. clvDVG was also identified in mock-infected HRT-18 cells transfected with DVG12.7 transcript, indicating that cellular endoribonuclease is responsible for the cleavage. In addition, the sequence and structure surrounding the cleavage sites can affect the cleavage efficiency of DVG12.7. The cleavage features are therefore consistent with the general criteria for RNA cleavage by cellular RNase L. Furthermore, both the cleavage of rRNA and the synthesis of clvDVG were also identified in A549 cells. Because (i) the cleavage sites occurred predominantly after single-stranded UA and UU dinucleotides, (ii) the sequence and structure surrounding the cleavage sites affected the cleavage efficiency, (iii) the cleavage of rRNA is an index of the activation of RNase L, and (iv) the cleavage of both rRNA and DVG12.7 was identified in A549 cells, the results together indicated that the preferential cleavage of DVG12.7 is correlated with cellular endoribonuclease with the characteristics of RNase L and such cleavage features have not been previously characterized in coronaviruses.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, 91201, Pingtung, Taiwan
| | - Hsuan-Yung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
2
|
Liu Y, Yang R, Zhang M, Yang B, Du Y, Feng H, Wang W, Xue B, Niu F, He P. Multi-omics landscape of Interferon-stimulated gene OASL reveals a potential biomarker in pan-cancer: from prognosis to tumor microenvironment. Front Immunol 2024; 15:1402951. [PMID: 39286258 PMCID: PMC11402691 DOI: 10.3389/fimmu.2024.1402951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Background OASL (Oligoadenylate Synthetase-Like), an interferon-induced protein in the OAS family, plays a significant role in anti-viral response. Studies have demonstrated its association with prognosis of certain tumors. However, the mechanism through which OASL affects tumors is unclear. A systemic pan-cancer study of OASL needs to be illustrated. Methods Analysis of OASL expression across 33 tumors was conducted utilizing TCGA, GTEx and CPTAC databases. COX and Log-Rank regressions were employed to calculate the prognosis. We validated the impact of OASL on apoptosis, migration, and invasion in pancreatic cancer cell lines. Moreover, we employed seven algorithms in bulk data to investigate the association of OASL expression and immune cell infiltration within tumor immune microenvironment (TIME) and ultimately validated at single-cell transcriptome level. Results We discovered elevated expression of OASL and its genetic heterogeneity in certain tumors, which link closely to prognosis. Validation experiments were conducted in PAAD and confirmed these findings. Additionally, OASL regulates immune checkpoint ligand such as programmed death ligand 1 (PD-L1), through IFN-γ/STAT1 and IL-6/JAK/STAT3 pathways in tumor cells. Meanwhile, OASL affects macrophages infiltration in TIME. By these mechanisms OASL could cause dysfunction of cytotoxic T lymphocytes (CTLs) in tumors. Discussion Multi-omics analysis reveals OASL as a prognostic and immunological biomarker in pan-cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengyao Zhang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bingyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Du
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Busheng Xue
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Shao R, Visser I, Fros JJ, Yin X. Versatility of the Zinc-Finger Antiviral Protein (ZAP) As a Modulator of Viral Infections. Int J Biol Sci 2024; 20:4585-4600. [PMID: 39309436 PMCID: PMC11414379 DOI: 10.7150/ijbs.98029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The zinc-finger antiviral protein (ZAP) is a restriction factor that proficiently impedes the replication of a variety of RNA and DNA viruses. In recent years, the affinity of ZAP's zinc-fingers for single-stranded RNA (ssRNA) rich in CpG dinucleotides was uncovered. High frequencies of CpGs in RNA may suggest a non-self origin, which underscores the importance of ZAP as a potential cellular sensor of (viral) RNA. Upon binding viral RNA, ZAP recruits cellular cofactors to orchestrate a finely tuned antiviral response that limits virus replication via distinct mechanisms. These include promoting degradation of viral RNA, inhibiting RNA translation, and synergizing with other immune pathways. Depending on the viral species and experimental set-up, different isoforms and cellular cofactors have been reported to be dominant in shaping the ZAP-mediated antiviral response. Here we review how ZAP differentially affects viral replication depending on distinct interactions with RNA, cellular cofactors, and viral proteins to discuss how these interactions shape the antiviral mechanisms that have thus far been reported for ZAP. Importantly, we zoom in on the unknown aspects of ZAP's antiviral system and its therapeutic potential to be employed in vaccine design.
Collapse
Affiliation(s)
- Ran Shao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Imke Visser
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
4
|
Rajput Y, Neral A, Sherwani N, Jain V, Sahu M, Paikra F, Kushwaha A, Sahu A, Lodhi H, Sundrani O, Panda RK, Jain V, Shammas MA, Pal J. A novel metric-based approach of scoring early host immune response from oro-nasopharyngeal swabs predicts COVID-19 outcome. Sci Rep 2024; 14:19510. [PMID: 39174586 PMCID: PMC11341902 DOI: 10.1038/s41598-024-70161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Unpredictable fatal outcome of COVID-19 is attributed to dysregulated inflammation. Impaired early adaptive immune response leads to late-stage inflammatory outcome. The purpose of this study was to develop biomarkers for early detection of host immune impairment at first diagnosis from leftover RNA samples, which may in turn identify high risk patients. Leftover RNA samples of COVID-19 patients at first diagnosis were stored. Following prospective follow-up, the samples were shorted and categorized into outcome groups. Impaired adaptive T cell response (severity score) and Impaired IL-10 response (undetectable IL-10 in the presence of high expression of a representative interferon response gene) were determined by RT-PCR based assay. We demonstrate that a T cell response based 'severity score' comprising rational combination of Ct values of a target genes' signature can predict high risk noncomorbid potentially critical COVID-19 patients with a sensitivity of 91% (95% CI 58.7-99.8) and specificity of 92.6% (95% CI 75.7-99) (AUC:0.88). Although inclusion of comorbid patients reduced sensitivity to 77% (95% CI 54.6-92.2), the specificity was still 94% (95% CI 79.8-99.3) (AUC:0.82). The same for 'impaired IL-10 response' were little lower to predict high risk noncomorbid patients 64.2% (95% CI 35.1-87.2) and 82% (95% CI 65.5-93.2) respectively. Inclusion of comorbid patients drastically reduce sensitivity and specificity51.6% (95% CI 33.1-69.8) and 80.5% (95% CI 64.0-91.8) respectively. As best of our knowledge this is the first demonstration of a metric-based approach showing the 'severity score' as an indicator of early adoptive immune response, could be used as predictor of severe COVID-19 outcome at the time of first diagnosis using the same leftover swab RNA. The work flow could reduce expenditure and reporting time of the prognostic test for an earliest clinical decision ensuring possibility of early rational management.
Collapse
Affiliation(s)
- Yogita Rajput
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Arvind Neral
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
- Department of Pathology, Pt. J.N.M. Medical College, Raipur, C.G, India
| | - Nikita Sherwani
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Vijaylakshmi Jain
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Malti Sahu
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Fulsay Paikra
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Aarti Kushwaha
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India
| | - Aparna Sahu
- Department of Microbiology, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Heeramani Lodhi
- Department of Anaesthesia and Pain Management, Pt. J.N.M. Medical College, Raipur, C.G, India
| | - Omprakash Sundrani
- Department of Critical Care Medicine, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Ravindra Kumar Panda
- Department of Respiratory Medicine, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Vinit Jain
- Superintendent (past), Dr. BRAM Hospital Raipur CG and Department of Orthopaedics, Pt. J.N.M. Medical College, Raipur, C.G., India
| | - Masood A Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute and VA Health Care System, Boston, MA, USA
| | - Jagannath Pal
- Multidisciplinary Research Units (MRU), Pt. J.N.M. Medical College, Raipur, Chhattisgarh, 492001, India.
| |
Collapse
|
5
|
Jung-Rodriguez E, Barbault F, Bignon E, Monari A. Molecular Bases and Specificity behind the Activation of the Immune System OAS/RNAse L Pathway by Viral RNA. Viruses 2024; 16:1246. [PMID: 39205220 PMCID: PMC11359028 DOI: 10.3390/v16081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
The first line of defense against invading pathogens usually relies on innate immune systems. In this context, the recognition of exogenous RNA structures is primordial to fight, notably, against RNA viruses. One of the most efficient immune response pathways is based on the sensing of RNA double helical motifs by the oligoadenylate synthase (OAS) proteins, which in turn triggers the activity of RNase L and, thus, cleaves cellular and viral RNA. In this contribution, by using long-range molecular dynamics simulations, complemented with enhanced sampling techniques, we elucidate the structural features leading to the activation of OAS by interaction with a model double-strand RNA oligomer mimicking a viral RNA. We characterize the allosteric regulation induced by the nucleic acid leading to the population of the active form of the protein. Furthermore, we also identify the free energy profile connected to the active vs. inactive conformational transitions in the presence and absence of RNA. Finally, the role of two RNA mutations, identified as able to downregulate OAS activation, in shaping the protein/nucleic acid interface and the conformational landscape of OAS is also analyzed.
Collapse
Affiliation(s)
- Emma Jung-Rodriguez
- Université Paris Cité and CNR, ITODYS, F-75006 Paris, France; (E.J.-R.); (F.B.)
| | - Florent Barbault
- Université Paris Cité and CNR, ITODYS, F-75006 Paris, France; (E.J.-R.); (F.B.)
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
| | - Antonio Monari
- Université Paris Cité and CNR, ITODYS, F-75006 Paris, France; (E.J.-R.); (F.B.)
| |
Collapse
|
6
|
Koul A, Hui LT, Lubna N, McKenna SA. Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases. Biochem Cell Biol 2024; 102:305-318. [PMID: 38603810 DOI: 10.1139/bcb-2023-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.
Collapse
Affiliation(s)
- Amit Koul
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lok Tin Hui
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
7
|
Gao C, Zhang H, Wang Y, Wang S, Guo X, Han Y, Zhao H, An X. Global Transcriptomic and Characteristics Comparisons between Mouse Fetal Liver and Bone Marrow Definitive Erythropoiesis. Cells 2024; 13:1149. [PMID: 38995000 PMCID: PMC11240549 DOI: 10.3390/cells13131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.
Collapse
Affiliation(s)
- Chengjie Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shihui Wang
- Institute of Hematology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
8
|
Sato K, Nakamura T, Morimatsu M, Agui T. Functional Analysis of Oligoadenylate Synthetase in the Emu ( Dromaius novaehollandiae). Animals (Basel) 2024; 14:1579. [PMID: 38891626 PMCID: PMC11171313 DOI: 10.3390/ani14111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
2'-5'-oligoadenylate synthetase (OAS) is one of the proteins that act as a defense mechanism against foreign RNA in cells. OAS has two functions: an antiviral effect against a wide range of virus species via the OAS/RNase L pathway with synthesized oligoadenylates and inhibition of viral replication specific to viruses of the genus Flavivirus, which is independent of enzymatic activity. Several birds have been reported to possess only one type of OAS family member, OASL, which has both enzymatic activity and inhibitory effects on flaviviral replication. However, the ostrich has two types of OASs, OAS1 and OASL, which show different functions-enzymatic and anti-flaviviral activities, respectively. In this study, emu OASs were cloned to investigate their sequence and function and elucidate the role of OASs in emus. The cloning results showed that emus had OAS1 and OASL, suggesting that emu OASs were more closely related to ostrich than to other birds. Functional investigations showed that emu OAS1 and OASL had enzymatic and anti-flaviviral activities, respectively, similar to those of the ostrich. Emus and ostriches are evolutionarily different from most birds and may be more closely related to mammalian OAS diversity.
Collapse
Affiliation(s)
- Keisuke Sato
- Laboratory of Laboratory Animal Science and Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (T.N.); (M.M.); (T.A.)
| | | | | | | |
Collapse
|
9
|
Felipin KP, Paloschi MV, Silva MDS, Ikenohuchi YJ, Santana HM, Setúbal SDS, Rego CMA, Lopes JA, Boeno CN, Serrath SN, De Medeiros EHRT, Pimentel IF, Oliveira AER, Cupolillo E, Cantanhêde LM, Ferreira RDGM, Zuliani JP. Transcriptomics analysis highlights potential ways in human pathogenesis in Leishmania braziliensis infected with the viral endosymbiont LRV1. PLoS Negl Trop Dis 2024; 18:e0012126. [PMID: 38743668 PMCID: PMC11093365 DOI: 10.1371/journal.pntd.0012126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
The parasite Leishmania (Viannia) braziliensis is widely distributed in Brazil and is one of the main species associated with human cases of different forms of tegumentary leishmaniasis (TL) such as cutaneous leishmaniasis (CL) and mucosal leishmaniasis (ML). The mechanisms underlying the pathogenesis of TL are still not fully understood, but it is known that factors related to the host and the parasite act in a synergistic and relevant way to direct the response to the infection. In the host, macrophages have a central connection with the parasite and play a fundamental role in the defense of the organism due to their ability to destroy intracellular parasites and present antigens. In the parasite, some intrinsic factors related to the species or even the strain analyzed are fundamental for the outcome of the disease. One of them is the presence of Leishmania RNA Virus 1 (LRV1), an endosymbiont virus that parasitizes some species of Leishmania that triggers a cascade of signals leading to a more severe TL phenotype, such as ML. One of the strategies for understanding factors associated with the immune response generated after Leishmania/host interaction is through the analysis of molecular patterns after infection. Thus, the gene expression profile in human monocyte-derived macrophages obtained from healthy donors infected in vitro with L. braziliensis positive (LbLRV1+) and negative (LbLRV1-) for LRV1 was evaluated. For this, the microarray assay was used and 162 differentially expressed genes were identified in the comparison LbLRV1+ vs. LbLRV1-, 126 upregulated genes for the type I and II interferons (IFN) signaling pathway, oligoadenylate synthase OAS/RNAse L, non-genomic actions of vitamin D3 and RIG-I type receptors, and 36 down-regulated. The top 10 downregulated genes along with the top 10 upregulated genes were considered for analysis. Type I interferon (IFNI)- and OAS-related pathways results were validated by RT-qPCR and Th1/Th2/Th17 cytokines were analyzed by Cytometric Bead Array (CBA) and enzyme-linked immunosorbent assay (ELISA). The microarray results validated by RT-qPCR showed differential expression of genes related to IFNI-mediated pathways with overexpression of different genes in cells infected with LbLRV1+ compared to LbLRV1- and to the control. No significant differences were found in cytokine levels between LbLRV1+ vs. LbLRV1- and control. The data suggest the activation of gene signaling pathways associated with the presence of LRV1 has not yet been reported so far. This study demonstrates, for the first time, the activation of the OAS/RNase L signaling pathway and the non-genomic actions of vitamin D3 when comparing infections with LbLRV1+ versus LbLRV1- and the control. This finding emphasizes the role of LRV1 in directing the host's immune response after infection, underlining the importance of identifying LRV1 in patients with TL to assess disease progression.
Collapse
Affiliation(s)
- Kátia Paula Felipin
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Mauro Valentino Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Milena Daniela Souza Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Yoda Janaina Ikenohuchi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Hallison Mota Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Sulamita da Silva Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Cristina Matiele Alves Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Jéssica Amaral Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Charles Nunes Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | - Suzanne Nery Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | | | - Iasmin Ferreira Pimentel
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
| | | | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental, EpiAmO, Porto Velho, Brazil
| | - Lilian Motta Cantanhêde
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental, EpiAmO, Porto Velho, Brazil
| | - Ricardo de Godoi Matos Ferreira
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto Nacional de Epidemiologia da Amazônia Ocidental, EpiAmO, Porto Velho, Brazil
| | - Juliana Pavan Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, Brazil
| |
Collapse
|
10
|
Carpenter S, O'Neill LAJ. From periphery to center stage: 50 years of advancements in innate immunity. Cell 2024; 187:2030-2051. [PMID: 38670064 PMCID: PMC11060700 DOI: 10.1016/j.cell.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Over the past 50 years in the field of immunology, something of a Copernican revolution has happened. For a long time, immunologists were mainly concerned with what is termed adaptive immunity, which involves the exquisitely specific activities of lymphocytes. But the other arm of immunity, so-called "innate immunity," had been neglected. To celebrate Cell's 50th anniversary, we have put together a review of the processes and components of innate immunity and trace the seminal contributions leading to the modern state of this field. Innate immunity has joined adaptive immunity in the center of interest for all those who study the body's defenses, as well as homeostasis and pathology. We are now entering the era where therapeutic targeting of innate immune receptors and downstream signals hold substantial promise for infectious and inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Susan Carpenter
- University of California Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Harioudh MK, Perez J, Chong Z, Nair S, So L, McCormick KD, Ghosh A, Shao L, Srivastava R, Soveg F, Ebert TS, Atianand MK, Hornung V, Savan R, Diamond MS, Sarkar SN. Oligoadenylate synthetase 1 displays dual antiviral mechanisms in driving translational shutdown and protecting interferon production. Immunity 2024; 57:446-461.e7. [PMID: 38423012 PMCID: PMC10939734 DOI: 10.1016/j.immuni.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNβ. This binding leads to the sequestration of IFNβ mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.
Collapse
Affiliation(s)
- Munesh K Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Zhenlu Chong
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharmila Nair
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lomon So
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA; Division of Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevin D McCormick
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Rashmi Srivastava
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA
| | - Frank Soveg
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas S Ebert
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Maninjay K Atianand
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veit Hornung
- Department of Biochemistry, Ludwig Maximilians Universität, Munich, Germany
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
13
|
Plaça DR, Fonseca DLM, Marques AHC, Zaki Pour S, Usuda JN, Baiocchi GC, Prado CADS, Salgado RC, Filgueiras IS, Freire PP, Rocha V, Camara NOS, Catar R, Moll G, Jurisica I, Calich VLG, Giil LM, Rivino L, Ochs HD, Cabral-Miranda G, Schimke LF, Cabral-Marques O. Immunological signatures unveiled by integrative systems vaccinology characterization of dengue vaccination trials and natural infection. Front Immunol 2024; 15:1282754. [PMID: 38444851 PMCID: PMC10912564 DOI: 10.3389/fimmu.2024.1282754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.
Collapse
Affiliation(s)
- Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dennyson Leandro M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Alexandre H. C. Marques
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Shahab Zaki Pour
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Júlia Nakanishi Usuda
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriela Crispim Baiocchi
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ranieri Coelho Salgado
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Igor Salerno Filgueiras
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Paccielli Freire
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology and Cell Therapy, Hospital das Clínicas, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
- Department of Hematology, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Niels Olsen Saraiva Camara
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT) and Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vera Lúcia Garcia Calich
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lasse M. Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Laura Rivino
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- Emerging Infectious Diseases, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Hans D. Ochs
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Research Institute, Seattle, WA, United States
| | - Gustavo Cabral-Miranda
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Lena F. Schimke
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, SP, Brazil
- Departament of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Instituto D’Or de Ensino e Pesquisa, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, Berlin, Germany
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, SP, Brazil
| |
Collapse
|
14
|
Zheng YX, Chen XB, Wang ZY, Ye LR, Zheng M, Man XY. Biologics protect psoriasis patients from being exacerbated by COVID-19 infection. Heliyon 2024; 10:e24534. [PMID: 38298734 PMCID: PMC10828055 DOI: 10.1016/j.heliyon.2024.e24534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Background Patients with psoriasis may experience an exacerbation in symptoms following COVID-19 infection. After abandoning 'zero COVID' strategies, China experienced a surge of Omicron infections. Objectives We aimed to investigate psoriasis exacerbation in psoriatic patients with COVID-19, following treatment with three different biologics, adalimumab, secukinumab, and ixekizumab. Methods We performed a prospective study (n = 209) at our hospital between November 01, 2022, and February 15, 2023. We defined △ PASI as post-COVID-19 PASI minus pre-COVID-19 PASI. Two endpoints were set in this study. △ PASI >0 was defined as exacerbation of psoriasis after infection. △ PASI >3 was defined as a severe exacerbation of psoriasis symptoms after infection. In addition, serum OAS1, OAS2, and OAS3 were also assessed. Results Results showed that the severity of psoriasis can worsen after COVID-19 infection, and a smaller proportion of patients taking biologics developed worsening psoriasis compared to those not using biologics; however, only the patients taking ixekizumab demonstrated a statistically significant difference (p < 0.05), while those taking adalimumab or secukinumab didn't. What's more, the use of biological agents suppressed the serum OAS2 and OAS3 at low levels and elevated the serum OAS1 level in patients with psoriasis. Conclusions This study provided new insights into the protective role of biological agents in patients with psoriasis who were infected with COVID-19, and we proposed that psoriatic patients treated with biologics should continue with the treatment during the COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | - Zhao-Yuan Wang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Ran Ye
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zheng
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Lee HL, Squire E, Fotio Y, Mabou Tagne A, Lee J, Yoon JJ, Hong Y, Kim LH, Jung KM, Piomelli D. Frequent low-impact exposure to THC during adolescence causes persistent sexually dimorphic alterations in the response to viral infection in mice. Pharmacol Res 2024; 199:107049. [PMID: 38159785 DOI: 10.1016/j.phrs.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Adolescent exposure to Δ9-tetrahydrocannabinol (THC) has enduring effects on energy metabolism and immune function. Prior work showed that daily administration of a low-impact dose of THC (5 mg/kg, intraperitoneal) during adolescence alters transcription in adult microglia and disrupts their response to bacterial endotoxin or social stress. To explore the lasting impact of adolescent THC exposure on the brain's reaction to viral infection, we administered THC (5 mg/kg, intraperitoneal) in male and female mice once daily on postnatal day (PND) 30-43. When the mice reached adulthood (PND 70), we challenged them with the viral mimic, polyinosinic acid:polycytidylic acid [Poly(I:C)], and assessed sickness behavior (motor activity, body temperature) and whole brain gene transcription. Poly(I:C) caused an elevation in body temperature which was lessened by prior THC exposure in female but not male mice. Adolescent THC exposure did not affect the locomotor response to Poly(I:C) in either sex. Transcriptomic analyses showed that Poly(I:C) produced a substantial upregulation of immune-related genes in the brain, which was decreased by THC in females. Additionally, the viral mimic caused a male-selective downregulation in transcription of genes involved in neurodevelopment and synaptic transmission, which was abrogated by adolescent THC treatment. The results indicate that Poly(I:C) produces complex transcriptional alterations in the mouse brain, which are sexually dimorphic and differentially affected by early-life THC exposure. In particular, adolescent THC dampens the brain's antiviral response to Poly(I:C) in female mice and prevents the transcriptional downregulation of neuron-related genes caused by the viral mimic in male mice.
Collapse
Affiliation(s)
- Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Jungyeon Lee
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - John Jeongwoo Yoon
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Yedam Hong
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Laura Hyunseo Kim
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, USA; Department of Biological Chemistry, University of California, Irvine, USA; Department of Pharmaceutical Sciences, University of California, Irvine, USA.
| |
Collapse
|
16
|
Susanto TT, Hung V, Levine AG, Kerr CH, Yoo Y, Chen Y, Oses-Prieto JA, Fromm L, Fujii K, Wernig M, Burlingame AL, Ruggero D, Barna M. RAPIDASH: A tag-free enrichment of ribosome-associated proteins reveals compositional dynamics in embryonic tissues and stimulated macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570613. [PMID: 38106052 PMCID: PMC10723405 DOI: 10.1101/2023.12.07.570613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translational control. However, a lack of technologies to enrich RAPs across many sample types has prevented systematic analysis of RAP number, dynamics, and functions. Here, we have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including DHX30 and LLPH, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development that is linked to the translation of genes with long coding sequences. Finally, we characterized ribosome composition remodeling during immune activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs ranging from those with neuroregulatory functions to those activated by immune stimuli, thereby providing critical insights into how ribosomes are remodeled.
Collapse
Affiliation(s)
- Teodorus Theo Susanto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew G Levine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Lisa Fromm
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Kotaro Fujii
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Gao H, Wang S, Duan H, Wang Y, Zhu H. Biological analysis of the potential pathogenic mechanisms of Infectious COVID-19 and Guillain-Barré syndrome. Front Immunol 2023; 14:1290578. [PMID: 38115996 PMCID: PMC10728822 DOI: 10.3389/fimmu.2023.1290578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Background Guillain-Barré syndrome (GBS) is a medical condition characterized by the immune system of the body attacking the peripheral nerves, including those in the spinal nerve roots, peripheral nerves, and cranial nerves. It can cause limb weakness, abnormal sensations, and facial nerve paralysis. Some studies have reported clinical cases associated with the severe coronavirus disease 2019 (COVID-19) and GBS, but how COVID-19 affects GBS is unclear. Methods We utilized bioinformatics techniques to explore the potential genetic connection between COVID-19 and GBS. Differential expression of genes (DEGs) related to COVID-19 and GBS was collected from the Gene Expression Omnibus (GEO) database. By taking the intersection, we obtained shared DEGs for COVID-19 and GBS. Subsequently, we utilized bioinformatics analysis tools to analyze common DEGs, conducting functional enrichment analysis and constructing Protein-protein interaction networks (PPI), Transcription factors (TF) -gene networks, and TF-miRNA networks. Finally, we validated our findings by constructing the Receiver Operating Characteristic (ROC) curves. Results This study utilizes bioinformatics tools for the first time to investigate the close genetic relationship between COVID-19 and GBS. CAMP, LTF, DEFA1B, SAMD9, GBP1, DDX60, DEFA4, and OAS3 are identified as the most significant interacting genes between COVID-19 and GBS. In addition, the signaling pathway of NOD-like receptors is believed to be essential in the link between COVID-19 and GBS.
Collapse
Affiliation(s)
| | | | | | | | - Hui Zhu
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
18
|
Sarkar SN, Harioudh MK, Shao L, Perez J, Ghosh A. The Many Faces of Oligoadenylate Synthetases. J Interferon Cytokine Res 2023; 43:487-494. [PMID: 37751211 PMCID: PMC10654648 DOI: 10.1089/jir.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 09/27/2023] Open
Abstract
2'-5' Oligoadenylate synthetases (OAS) are interferon-stimulated genes that are most well-known to protect hosts from viral infections. They are evolutionarily related to an ancient family of Nucleotidyltransferases, which are primarily involved in pathogen-sensing and innate immune response. Classical function of OAS proteins involves double-stranded RNA-stimulated polymerization of adenosine triphosphate in 2'-5' oligoadenylates (2-5A), which can activate the latent RNase (RNase L) to degrade RNA. However, accumulated evidence over the years have suggested alternative mode of antiviral function of several OAS family proteins. Furthermore, recent studies have connected some OAS proteins with wider function beyond viral infection. Here, we review some of the canonical and noncanonical functions of OAS proteins and their mechanisms.
Collapse
Affiliation(s)
- Saumendra N. Sarkar
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Munesh K. Harioudh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lulu Shao
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph Perez
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arundhati Ghosh
- Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Datta R, Adamska JZ, Bhate A, Li JB. A-to-I RNA editing by ADAR and its therapeutic applications: From viral infections to cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1817. [PMID: 37718249 PMCID: PMC10947335 DOI: 10.1002/wrna.1817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5. Upon activation, MDA5 leads to the induction of interferons and expression of hundreds of interferon-stimulated genes with potent antiviral activity. In this way, ADAR1 acts as a gatekeeper of the RNA sensing pathway by striking a fine balance between innate antiviral responses and prevention of autoimmunity. Reduced editing of immunogenic dsRNA by ADAR1 is strongly linked to the development of common autoimmune and inflammatory diseases. In viral infections, ADAR1 exhibits both antiviral and proviral effects. This is modulated by both editing-dependent and editing-independent functions, such as PKR antagonism. Several A-to-I RNA editing events have been identified in viruses, including in the insidious viral pathogen, SARS-CoV-2 which regulates viral fitness and infectivity, and could play a role in shaping viral evolution. Furthermore, ADAR1 is an attractive target for immuno-oncology therapy. Overexpression of ADAR1 and increased dsRNA editing have been observed in several human cancers. Silencing ADAR1, especially in cancers that are refractory to immune checkpoint inhibitors, is a promising therapeutic strategy for cancer immunotherapy in conjunction with epigenetic therapy. The mechanistic understanding of dsRNA editing by ADAR1 and dsRNA sensing by MDA5 and PKR holds great potential for therapeutic applications. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Rohini Datta
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia Z Adamska
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amruta Bhate
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
da Silva RP, Thomé BL, da Souza APD. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. BIOLOGY 2023; 12:1223. [PMID: 37759622 PMCID: PMC10525162 DOI: 10.3390/biology12091223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
Viral respiratory tract infections are a significant public health concern, particularly in children. RSV is a prominent cause of lower respiratory tract infections among infants, whereas SARS-CoV-2 has caused a global pandemic with lower overall severity in children than in adults. In this review, we aimed to compare the innate and adaptive immune responses induced by RSV and SARS-CoV-2 to better understand differences in the pathogenesis of infection. Some studies have demonstrated that children present a more robust immune response against SARS-CoV-2 than adults; however, this response is dissimilar to that of RSV. Each virus has a distinctive mechanism to escape the immune response. Understanding the mechanisms underlying these differences is crucial for developing effective treatments and improving the management of pediatric respiratory infections.
Collapse
Affiliation(s)
| | | | - Ana Paula Duarte da Souza
- Laboratory of Clinical and Experimental Immunology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil; (R.P.d.S.); (B.L.T.)
| |
Collapse
|
21
|
Cobat A, Zhang Q, Abel L, Casanova JL, Fellay J. Human Genomics of COVID-19 Pneumonia: Contributions of Rare and Common Variants. Annu Rev Biomed Data Sci 2023; 6:465-486. [PMID: 37196358 PMCID: PMC10879986 DOI: 10.1146/annurev-biodatasci-020222-021705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is silent or benign in most infected individuals, but causes hypoxemic COVID-19 pneumonia in about 10% of cases. We review studies of the human genetics of life-threatening COVID-19 pneumonia, focusing on both rare and common variants. Large-scale genome-wide association studies have identified more than 20 common loci robustly associated with COVID-19 pneumonia with modest effect sizes, some implicating genes expressed in the lungs or leukocytes. The most robust association, on chromosome 3, concerns a haplotype inherited from Neanderthals. Sequencing studies focusing on rare variants with a strong effect have been particularly successful, identifying inborn errors of type I interferon (IFN) immunity in 1-5% of unvaccinated patients with critical pneumonia, and their autoimmune phenocopy, autoantibodies against type I IFN, in another 15-20% of cases. Our growing understanding of the impact of human genetic variation on immunity to SARS-CoV-2 is enabling health systems to improve protection for individuals and populations.
Collapse
Affiliation(s)
- Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France;
- Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Aloise C, Schipper JG, van Vliet A, Oymans J, Donselaar T, Hurdiss DL, de Groot RJ, van Kuppeveld FJM. SARS-CoV-2 nucleocapsid protein inhibits the PKR-mediated integrated stress response through RNA-binding domain N2b. PLoS Pathog 2023; 19:e1011582. [PMID: 37607209 PMCID: PMC10473545 DOI: 10.1371/journal.ppat.1011582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/01/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023] Open
Abstract
The nucleocapsid protein N of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enwraps and condenses the viral genome for packaging but is also an antagonist of the innate antiviral defense. It suppresses the integrated stress response (ISR), purportedly by interacting with stress granule (SG) assembly factors G3BP1 and 2, and inhibits type I interferon responses. To elucidate its mode of action, we systematically deleted and over-expressed distinct regions and domains. We show that N via domain N2b blocks PKR-mediated ISR activation, as measured by suppression of ISR-induced translational arrest and SG formation. N2b mutations that prevent dsRNA binding abrogate these activities also when introduced in the intact N protein. Substitutions reported to block post-translation modifications of N or its interaction with G3BP1/2 did not have a detectable additive effect. In an encephalomyocarditis virus-based infection model, N2b - but not a derivative defective in RNA binding-prevented PKR activation, inhibited β-interferon expression and promoted virus replication. Apparently, SARS-CoV-2 N inhibits innate immunity by sequestering dsRNA to prevent activation of PKR and RIG-I-like receptors. Similar observations were made for the N protein of human coronavirus 229E, suggesting that this may be a general trait conserved among members of other orthocoronavirus (sub)genera.
Collapse
Affiliation(s)
- Chiara Aloise
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jelle G. Schipper
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Arno van Vliet
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Judith Oymans
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Tim Donselaar
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Daniel L. Hurdiss
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Raoul J. de Groot
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
23
|
Chu L, Gong Z, Wang W, Han GZ. Origin of the OAS-RNase L innate immune pathway before the rise of jawed vertebrates via molecular tinkering. Proc Natl Acad Sci U S A 2023; 120:e2304687120. [PMID: 37487089 PMCID: PMC10400998 DOI: 10.1073/pnas.2304687120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Discriminating self from nonself is fundamental to immunity. Yet, it remains largely elusive how the mechanisms of self and nonself discrimination originated. Sensing double-stranded RNA as nonself, the 2',5'-oligoadenylate synthetase (OAS)-ribonuclease L (RNase L) pathway represents a crucial component of innate immunity. Here, we combine phylogenomic and functional analyses to show that the functional OAS-RNase L pathway likely originated through tinkering with preexisting proteins before the rise of jawed vertebrates during or before the Silurian period (444 to 419 Mya). Multiple concerted losses of OAS and RNase L occurred during the evolution of jawed vertebrates, further supporting the ancient coupling between OAS and RNase L. Moreover, both OAS and RNase L genes evolved under episodic positive selection across jawed vertebrates, suggesting a long-running evolutionary arms race between the OAS-RNase L pathway and microbes. Our findings illuminate how an innate immune pathway originated via molecular tinkering.
Collapse
Affiliation(s)
- Lingyu Chu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| | - Zhen Gong
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| | - Wenqiang Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu210023, China
| |
Collapse
|
24
|
Spinello A, D'Anna L, Bignon E, Miclot T, Grandemange S, Terenzi A, Barone G, Barbault F, Monari A. Mechanism of the Covalent Inhibition of Human Transmembrane Protease Serine 2 as an Original Antiviral Strategy. J Phys Chem B 2023. [PMID: 37428676 DOI: 10.1021/acs.jpcb.3c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Transmembrane Protease Serine 2 (TMPRSS2) is a human enzyme which is involved in the maturation and post-translation of different proteins. In addition to being overexpressed in cancer cells, TMPRSS2 plays a further fundamental role in favoring viral infections by allowing the fusion of the virus envelope with the cellular membrane, notably in SARS-CoV-2. In this contribution, we resort to multiscale molecular modeling to unravel the structural and dynamical features of TMPRSS2 and its interaction with a model lipid bilayer. Furthermore, we shed light on the mechanism of action of a potential inhibitor (nafamostat), determining the free-energy profile associated with the inhibition reaction and showing the facile poisoning of the enzyme. Our study, while providing the first atomistically resolved mechanism of TMPRSS2 inhibition, is also fundamental in furnishing a solid framework for further rational design targeting transmembrane proteases in a host-directed antiviral strategy.
Collapse
Affiliation(s)
- Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, 90126 Palermo, Italy
| | - Luisa D'Anna
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, 90126 Palermo, Italy
| | - Emmanuelle Bignon
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France
| | - Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, 90126 Palermo, Italy
- Université de Lorraine and CNRS, UMR 7019 LPCT, F-54000 Nancy, France
| | | | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, 90126 Palermo, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, University of Palermo, 90126 Palermo, Italy
| | | | - Antonio Monari
- Université Paris Cité and CNRS, ITODYS, F-75006 Paris, France
| |
Collapse
|
25
|
Byrnes AE, Dominguez SL, Yen CW, Laufer BI, Foreman O, Reichelt M, Lin H, Sagolla M, Hötzel K, Ngu H, Soendergaard C, Estevez A, Lin HC, Goyon A, Bian J, Lin J, Hinz FI, Friedman BA, Easton A, Hoogenraad CC. Lipid nanoparticle delivery limits antisense oligonucleotide activity and cellular distribution in the brain after intracerebroventricular injection. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:773-793. [PMID: 37346977 PMCID: PMC10280097 DOI: 10.1016/j.omtn.2023.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Antisense oligonucleotide (ASO) therapeutics are being investigated for a broad range of neurological diseases. While ASOs have been effective in the clinic, improving productive ASO internalization into target cells remains a key area of focus in the field. Here, we investigated how the delivery of ASO-loaded lipid nanoparticles (LNPs) affects ASO activity, subcellular trafficking, and distribution in the brain. We show that ASO-LNPs increase ASO activity up to 100-fold in cultured primary brain cells as compared to non-encapsulated ASO. However, in contrast to the widespread ASO uptake and activity observed following free ASO delivery in vivo, LNP-delivered ASOs did not downregulate mRNA levels throughout the brain after intracerebroventricular injection. This lack of activity was likely due to ASO accumulation in cells lining the ventricles and blood vessels. Furthermore, we reveal a formulation-dependent activation of the immune system post dosing, suggesting that LNP encapsulation cannot mask cellular ASO backbone-mediated toxicities. Together, these data provide insights into how LNP encapsulation affects ASO distribution as well as activity in the brain, and a foundation that enables future optimization of brain-targeting ASO-LNPs.
Collapse
Affiliation(s)
- Amy E. Byrnes
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Sara L. Dominguez
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Benjamin I. Laufer
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Mike Reichelt
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Kathy Hötzel
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Christoffer Soendergaard
- Pharmaceutical Research and Early Development, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Alberto Estevez
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Hsiu-Chao Lin
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alexandre Goyon
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Juan Bian
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jessica Lin
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Flora I. Hinz
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Brad A. Friedman
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Amy Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
26
|
Gao LJ, He ZM, Li YY, Yang RR, Yan M, Shang X, Cao JM. Role of OAS gene family in COVID-19 induced heart failure. J Transl Med 2023; 21:212. [PMID: 36949448 PMCID: PMC10031198 DOI: 10.1186/s12967-023-04058-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND COVID-19, the current global pandemic caused by SARS-CoV-2 infection, can damage the heart and lead to heart failure (HF) and even cardiac death. The 2',5'-oligoadenylate synthetase (OAS) gene family encode interferon (IFN)-induced antiviral proteins which is associated with the antiviral immune responses of COVID-19. While the potential association of OAS gene family with cardiac injury and failure in COVID-19 has not been determined. METHODS The expression levels and biological functions of OAS gene family in SARS-CoV-2 infected cardiomyocytes dataset (GSE150392) and HF dataset (GSE120852) were determined by comprehensive bioinformatic analysis and experimental validation. The associated microRNAs (miRNAs) were explored from Targetscan and GSE104150. The potential OAS gene family-regulatory chemicals or ingredients were predicted using Comparative Toxicogenomics Database (CTD) and SymMap database. RESULTS The OAS genes were highly expressed in both SARS-CoV-2 infected cardiomyocytes and failing hearts. The differentially expressed genes (DEGs) in the two datasets were enriched in both cardiovascular disease and COVID-19 related pathways. The miRNAs-target analysis indicated that 10 miRNAs could increase the expression of OAS genes. A variety of chemicals or ingredients were predicted regulating the expression of OAS gene family especially estradiol. CONCLUSION OAS gene family is an important mediator of HF in COVID-19 and may serve as a potential therapeutic target for cardiac injury and HF in COVID-19.
Collapse
Affiliation(s)
- Li-Juan Gao
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Zhong-Mei He
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yi-Ying Li
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Rui-Rui Yang
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Min Yan
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xuan Shang
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology, Department of Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
27
|
IFN-Induced PARPs—Sensors of Foreign Nucleic Acids? Pathogens 2023; 12:pathogens12030457. [PMID: 36986379 PMCID: PMC10057411 DOI: 10.3390/pathogens12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Cells have developed different strategies to cope with viral infections. Key to initiating a defense response against viruses is the ability to distinguish foreign molecules from their own. One central mechanism is the perception of foreign nucleic acids by host proteins which, in turn, initiate an efficient immune response. Nucleic acid sensing pattern recognition receptors have evolved, each targeting specific features to discriminate viral from host RNA. These are complemented by several RNA-binding proteins that assist in sensing of foreign RNAs. There is increasing evidence that the interferon-inducible ADP-ribosyltransferases (ARTs; PARP9—PARP15) contribute to immune defense and attenuation of viruses. However, their activation, subsequent targets, and precise mechanisms of interference with viruses and their propagation are still largely unknown. Best known for its antiviral activities and its role as RNA sensor is PARP13. In addition, PARP9 has been recently described as sensor for viral RNA. Here we will discuss recent findings suggesting that some PARPs function in antiviral innate immunity. We expand on these findings and integrate this information into a concept that outlines how the different PARPs might function as sensors of foreign RNA. We speculate about possible consequences of RNA binding with regard to the catalytic activities of PARPs, substrate specificity and signaling, which together result in antiviral activities.
Collapse
|
28
|
Onyedibe KI, Mohallem R, Wang M, Aryal UK, Sintim HO. Proteomic and phosphoproteomic analyses of Jurkat T-cell treated with 2'3' cGAMP reveals various signaling axes impacted by cyclic dinucleotides. J Proteomics 2023; 279:104869. [PMID: 36889538 DOI: 10.1016/j.jprot.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Cyclic dinucleotides (CDNs), such as 2'3'-cGAMP, bind to STING to trigger the production of cytokines and interferons, mainly via activation of TBK1. STING activation by CDN also leads to the release and activation of Nuclear Factor Kappa-light-chain-enhancer of activated B cells (NF-κB) via the phosphorylation of Inhibitor of NF-κB (IκB)-alpha (IκBα) by IκB Kinase (IKK). Beyond the canonical TBK1 or IKK phosphorylations, little is known about how CDNs broadly affect the phosphoproteome and/or other signaling axes. To fill this gap, we performed an unbiased proteome and phosphoproteome analysis of Jurkat T-cell treated with 2'3'-cGAMP or vehicle control to identify proteins and phosphorylation sites that are differentially modulated by 2'3'-cGAMP. We uncovered different classes of kinase signatures associated with cell response to 2'3'-cGAMP. 2'3'-cGAMP upregulated Arginase 2 (Arg2) and the antiviral innate immune response receptor RIG-I as well as proteins involved in ISGylation, E3 ISG15-protein ligase HERC5 and ubiquitin-like protein ISG15, while downregulating ubiquitin-conjugating enzyme UBE2C. Kinases that play a role in DNA double strand break repair, apoptosis, and cell cycle regulation were differentially phosphorylated. Overall, this work demonstrates that 2'3'-cGAMP has a much broader effects on global phosphorylation events than currently appreciated, beyond the canonical TBK1/IKK signaling. SIGNIFICANCE: The host cyclic dinucleotide, 2'3'-cGAMP is known to bind to Stimulator of Interferon Genes (STING) to trigger the production of cytokines and interferons in immune cells via STING-TBK1-IRF3 pathway. Beyond the canonical phosphorelay via the STING-TBK1-IRF3 pathway, little is known about how this second messenger broadly affects the global proteome. Using an unbiased phosphoproteomics, this study identifies several kinases and phosphosites that are modulated by cGAMP. The study expands our knowledge about how cGAMP modulates global proteome and also global phosphorylations.
Collapse
Affiliation(s)
- Kenneth I Onyedibe
- Department of Chemistry, Purdue University, West Lafayette, IN, USA; Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA
| | - Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Modi Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
| | - Herman O Sintim
- Department of Chemistry, Purdue University, West Lafayette, IN, USA; Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
29
|
Wu J, You Q, Lyu R, Qian Y, Tao H, Zhang F, Cai Y, Jiang N, Zheng N, Chen D, Wu Z. Folate metabolism negatively regulates OAS-mediated antiviral innate immunity via ADAR3/endogenous dsRNA pathway. Metabolism 2023; 143:155526. [PMID: 36822494 DOI: 10.1016/j.metabol.2023.155526] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Folate (FA) is an essential cofactor in the one-carbon (1C) metabolic pathway and participates in amino acid metabolism, purine and thymidylate synthesis, and DNA methylation. FA metabolism has been reported to play an important role in viral replications; however, the roles of FA metabolism in the antiviral innate immune response are unclear. OBJECTIVE To evaluate the potential regulatory role of FA metabolism in antiviral innate immune response, we establish the model of FA deficiency (FAD) in vitro and in vivo. The molecular and functional effects of FAD on 2'-5'-oligoadenylate synthetases (OAS)-associated antiviral innate immunity pathways were assessed; and the potential relationship between FA metabolism and the axis of adenosine deaminases acting on RNA 3 (ADAR3)/endogenous double-stranded RNA (dsRNA)/OAS was further explored in the present study, as well as the potential translatability of these findings in vivo. METHODS FA-free RPMI 1640 medium and FA-free feed were used to establish the model of FAD in vitro and in vitro. And FA and homocysteine (Hcy) concentrations in cell culture supernatants and serum were used for FAD model evaluation. Ribonucleoprotein immunoprecipitation assay was used to enrich endogenous dsRNA, and dot-blot was further used for quantitative analysis of endogenous dsRNA. Western-blot assay, RNA isolation and quantitative real-time PCR, immunofluorescence assay, and other molecular biology techniques were used for exploring the potential mechanisms. RESULTS In this study, we observed that FA metabolism negatively regulated OAS-mediated antiviral innate immune response. Mechanistically, FAD induced ADAR3, which interacted with endogenous dsRNA, to inhibit deaminated adenosine (A) being converted into inosine (I), leading to the cytoplasmic accumulation of dsRNA. Furthermore, endogenous dsRNA accumulated in cytoplasm triggered the host immune activation, thus promoting the expression of OAS2 to suppress the replication of viruses. Additionally, injection of 8-Azaadenosine to experimental animals, an A-to-I editing inhibitor, efficiently enhanced OAS-mediated antiviral innate immune response to reduce the viral burden in vivo. CONCLUSIONS Taken together, our present study provided a new perspective to illustrate a relationship between FA metabolism and the axis of ADAR3/endogenous dsRNA/OAS, and a new insight for the treatment of RNA viral infectious diseases by targeting the axis of ADAR3/endogenous dsRNA/OAS.
Collapse
Affiliation(s)
- Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qiao You
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Ruining Lyu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Hongji Tao
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Fang Zhang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, People's Republic of China
| | - Yurong Cai
- School of life science, Ningxia University, Yinchuan, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Nan Zheng
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, People's Republic of China; School of life science, Ningxia University, Yinchuan, People's Republic of China.
| |
Collapse
|
30
|
Lee D, Le Pen J, Yatim A, Dong B, Aquino Y, Ogishi M, Pescarmona R, Talouarn E, Rinchai D, Zhang P, Perret M, Liu Z, Jordan I, Elmas Bozdemir S, Bayhan GI, Beaufils C, Bizien L, Bisiaux A, Lei W, Hasan M, Chen J, Gaughan C, Asthana A, Libri V, Luna JM, Jaffré F, Hoffmann HH, Michailidis E, Moreews M, Seeleuthner Y, Bilguvar K, Mane S, Flores C, Zhang Y, Arias AA, Bailey R, Schlüter A, Milisavljevic B, Bigio B, Le Voyer T, Materna M, Gervais A, Moncada-Velez M, Pala F, Lazarov T, Levy R, Neehus AL, Rosain J, Peel J, Chan YH, Morin MP, Pino-Ramirez RM, Belkaya S, Lorenzo L, Anton J, Delafontaine S, Toubiana J, Bajolle F, Fumadó V, DeDiego ML, Fidouh N, Rozenberg F, Pérez-Tur J, Chen S, Evans T, Geissmann F, Lebon P, Weiss SR, Bonnet D, Duval X, Pan-Hammarström Q, Planas AM, Meyts I, Haerynck F, Pujol A, Sancho-Shimizu V, Dalgard CL, Bustamante J, Puel A, Boisson-Dupuis S, Boisson B, Maniatis T, Zhang Q, Bastard P, Notarangelo L, Béziat V, Perez de Diego R, Rodriguez-Gallego C, Su HC, Lifton RP, Jouanguy E, Cobat A, Alsina L, Keles S, Haddad E, Abel L, Belot A, Quintana-Murci L, Rice CM, Silverman RH, Zhang SY, Casanova JL. Inborn errors of OAS-RNase L in SARS-CoV-2-related multisystem inflammatory syndrome in children. Science 2023; 379:eabo3627. [PMID: 36538032 PMCID: PMC10451000 DOI: 10.1126/science.abo3627] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/16/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.
Collapse
Affiliation(s)
- Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Ahmad Yatim
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | | | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Magali Perret
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Iolanda Jordan
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | - Camille Beaufils
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurelie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
| | - Weite Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Milena Hasan
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valentina Libri
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
| | - Joseph M. Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - Fabrice Jaffré
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - H.-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Marion Moreews
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Kaya Bilguvar
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Flores
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
| | - Yu Zhang
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Andrés A. Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
| | - Baptiste Milisavljevic
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Marcela Moncada-Velez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Tomi Lazarov
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Romain Levy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Marie-Paule Morin
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
| | | | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Lazaro Lorenzo
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jordi Anton
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Julie Toubiana
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
| | - Fanny Bajolle
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Victoria Fumadó
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
| | - Marta L. DeDiego
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Nadhira Fidouh
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
| | - Jordi Pérez-Tur
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Frédéric Geissmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pierre Lebon
- Medical School, Paris City University, Paris, France
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Damien Bonnet
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
| | - Xavier Duval
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
| | - CoV-Contact Cohort§
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - COVID Human Genetic Effort¶
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Doctoral College, Sorbonne University, Paris, France
- Laboratory of Immunology, Lyon Sud Hospital, Lyon, France
- Pediatric Intensive Care Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Kids Corona Platform, Barcelona, Spain
- Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Respiratory and Immunological Dysfunction in Pediatric Critically Ill Patients, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Bursa City Hospital, Bursa, Turkey
- Ankara City Hospital, Yildirim Beyazit University, Ankara, Turkey
- Immunology and Rheumatology Division, Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, QC, Canada
- Center for Translational Research, Institut Pasteur, Paris City University, Paris, France
- Department of Biochemistry and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- Departments of Neurosurgery and Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Research Unit, Nuestra Señora de la Candelaria University Hospital, Santa Cruz de Tenerife, Spain
- Genomics Division, Institute of Technology and Renewable Energies (ITER), Granadilla de Abona, Spain
- CIBERES, ISCIII, Madrid, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- Primary Immunodeficiencies Group, University of Antioquia (UdeA), Medellin, Colombia
- School of Microbiology, University of Antioquia (UdeA), Medellin, Colombia
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals, CIBERER U759, ISIiii, Madrid, Spain
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Pediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
- Pediatric Rheumatology Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of General Pediatrics and Pediatric Infectious Diseases, Necker Hospital for Sick Children, Assistance Publique–Hôpitaux de Paris (AP-HP), Paris City University, Paris, France
- Biodiversity and Epidemiology of Bacterial Pathogens, Pasteur Institute, Paris, France
- Department of Pediatric Cardiology, Necker Hospital for Sick Children, AP-HP, Paris City University, Paris, France
- Pediatrics Infectious Diseases Division, Hospital Sant Joan de Déu, Barcelona, Spain
- Infectious Diseases and Microbiome, Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Molecular and Cellular Biology, National Center for Biotechnology (CNB-CSIC), Madrid, Spain
- Laboratory of Virology, Bichat–Claude Bernard Hospital, Paris, France
- Laboratory of Virology, AP-HP, Cochin Hospital, Paris, France
- Molecular Genetics Unit, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain
- CIBERNED, ISCIII, Madrid, Spain
- Joint Research Unit in Neurology and Molecular Genetics, Institut of Investigation Sanitaria La Fe, Valencia, Spain
- Medical School, Paris City University, Paris, France
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Bichat–Claude Bernard Hospital, Paris, France
- University Paris Diderot, Paris 7, UFR of Médecine-Bichat, Paris, France
- IAME, INSERM, UMRS1137, Paris City University, Paris, France
- Infectious and Tropical Diseases Department, AP-HP, Bichat–Claude Bernard Hospital, Paris, France
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
- New York Genome Center, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Necmettin Erbakan University, Konya, Turkey
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
- Human Genomics and Evolution, Collège de France, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Anna M. Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institute for Biomedical Investigations August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabelle Meyts
- Department of Pediatrics, University Hospitals Leuven and Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Laboratory, Center for Primary Immunodeficiency Ghent, Ghent University Hospital, Ghent, Belgium
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, IDIBELL–Hospital Duran I Reynals; and Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- CIBERER U759, ISCiii, Madrid, Spain
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases and Virology, Imperial College London, London, UK
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Clifford L. Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | | | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Vivien Béziat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Rebeca Perez de Diego
- Laboratory of Immunogenetics of Human Diseases, Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz Hospital, Madrid, Spain
- Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Carlos Rodriguez-Gallego
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Department of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
- NIAID Clinical Genomics Program, NIH, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, NIAID, NIH, Bethesda, MD, USA
| | - Richard P. Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Laia Alsina
- Kids Corona Platform, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institute of Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Elie Haddad
- Department of Pediatrics, Department of Microbiology, Immunology and Infectious Diseases, University of Montreal and Immunology and Rheumatology Division, CHU Sainte-Justine, Montreal, QC, Canada
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Alexandre Belot
- International Center of Infectiology Research (CIRI), University of Lyon, INSERM U1111, Claude Bernard University, Lyon 1, CNRS, UMR5308, ENS of Lyon, Lyon, France
- National Reference Center for Rheumatic, Autoimmune and Systemic Diseases in Children (RAISE), Pediatric Nephrology, Rheumatology, Dermatology Unit, Hospital of Mother and Child, Hospices Civils of Lyon, Lyon, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Paris City University, CNRS UMR 2000, Paris, France
- Human Genomics and Evolution, Collège de France, Paris, France
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- Paris City University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
31
|
CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Cell Death Differ 2023; 30:992-1004. [PMID: 36681781 PMCID: PMC9864494 DOI: 10.1038/s41418-023-01116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023] Open
Abstract
cGAS/DncV-like nucleotidyltransferase (CD-NTase) family members are immune sensors that synthesize diverse nucleotide signals to initiate antiviral response in bacteria and animals. As a founding member of CD-NTase enzyme, cGAS has been identified as a key sensor for cytoplasmic DNA and type I interferons (IFNs) signaling in metazoan. However, the functions of other metazoan CD-NTases remain enigmatic. Here, we showed that Mab-21 domain-containing protein 2 (MB21D2), another member of the CD-NTase family, plays a positive role in modulating the cGAS-STING signaling in myeloid cells. Deficiency of MB21D2 in THP-1 cells or mice macrophages led to impaired production of type I interferon upon DNA stimulation. Consistently, Mb21d2-/- mice showed more susceptible to infection with DNA virus and faster growth of melanoma, compared to its counterparts. Mechanistically, MB21D2 specially bound with the N-terminal of cGAS, facilitated its liquid phase condensation and DNA-binding activity, leading to the enhanced production of cGAMP and subsequent IFN-β production. Thus, our findings unveiled that the CD-NTase family member MB21D2 contributes to host antiviral and antitumor responses by enhancing cGAS activation.
Collapse
|
32
|
Bhat SA, Shibata T, Leong M, Plummer J, Vail E, Khan Z. Comparative Upper Respiratory Tract Transcriptomic Profiling Reveals a Potential Role of Early Activation of Interferon Pathway in Severe COVID-19. Viruses 2022; 14:v14102182. [PMID: 36298737 PMCID: PMC9608318 DOI: 10.3390/v14102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Infection with SARS-CoV-2 results in Coronavirus disease 2019 (COVID-19) is known to cause mild to acute respiratory infection and sometimes progress towards respiratory failure and death. The mechanisms driving the progression of the disease and accumulation of high viral load in the lungs without initial symptoms remain elusive. In this study, we evaluated the upper respiratory tract host transcriptional response in COVID-19 patients with mild to severe symptoms and compared it with the control COVID-19 negative group using RNA-sequencing (RNA-Seq). Our results reveal an upregulated early type I interferon response in severe COVID-19 patients as compared to mild or negative COVID-19 patients. Moreover, severely symptomatic patients have pronounced induction of interferon stimulated genes (ISGs), particularly the oligoadenylate synthetase (OAS) family of genes. Our results are in concurrence with other studies depicting the early induction of IFN-I response in severe COVID-19 patients, providing novel insights about the ISGs involved.
Collapse
Affiliation(s)
- Shabir A. Bhat
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Leong
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jasmine Plummer
- The Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Eric Vail
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-(310)-423-7768
| |
Collapse
|
33
|
Mature Rotavirus Particles Contain Equivalent Amounts of 7meGpppG-Capped and Noncapped Viral Positive-Sense RNAs. J Virol 2022; 96:e0115122. [PMID: 36000838 PMCID: PMC9472601 DOI: 10.1128/jvi.01151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses have evolved different strategies to overcome their recognition by the host innate immune system. The addition of caps at their 5' RNA ends is an efficient mechanism not only to ensure escape from detection by the innate immune system but also to ensure the efficient synthesis of viral proteins. Rotavirus mRNAs contain a type 1 cap structure at their 5' end that is added by the viral capping enzyme VP3, which is a multifunctional protein with all the enzymatic activities necessary to add the cap and also functions as an antagonist of the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. Here, the relative abundances of capped and noncapped viral RNAs during the replication cycle of rotavirus were determined. We found that both classes of rotaviral plus-sense RNAs (+RNAs) were encapsidated and that they were present in a 1:1 ratio in the mature infectious particles. The capping of viral +RNAs was dynamic, since different ratios of capped and noncapped RNAs were detected at different times postinfection. Similarly, when the relative amounts of capped and uncapped viral +RNAs produced in an in vitro transcription system were determined, we found that the proportions were very similar to those in the mature viral particles and in infected cells, suggesting that the capping efficiency of VP3, both in vivo and in vitro, might be close to 50%. Unexpectedly, when the effect of simultaneously knocking down the expression of VP3 and RNase L on the cap status of viral +RNAs was evaluated, we found that, even though at late times postinfection there was an increased proportion of capped viral RNAs in infected cells, the viral particles isolated from this condition contained equal ratios of capped and noncapped viral RNA, suggesting that there might be selective packaging of capped and noncapped RNAs. IMPORTANCE Rotaviruses have a genome composed of 11 segments of double-stranded RNA. Whether all 5' ends of the positive-sense genomic RNAs contained in the mature viral particles are modified by a cap structure is unknown. In this work, we characterized the relative proportions of capped and noncapped viral RNAs in rotavirus-infected cells and in viral particles by using a direct quantitative assay. We found that, independent of the relative proportions of capped/noncapped RNAs present in rotavirus-infected cells, there were similar proportions of these two kinds of 5'-modified positive-sense RNAs in the viral particles.
Collapse
|
34
|
Žarković N, Jastrząb A, Jarocka-Karpowicz I, Orehovec B, Baršić B, Tarle M, Kmet M, Lukšić I, Łuczaj W, Skrzydlewska E. The Impact of Severe COVID-19 on Plasma Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165323. [PMID: 36014561 PMCID: PMC9416063 DOI: 10.3390/molecules27165323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Biserka Orehovec
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Bruno Baršić
- Department of Internal Medicine, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marta Kmet
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
35
|
Screening Host Antiviral Proteins under the Enhanced Immune Responses Induced by a Variant Strain of Porcine Epidemic Diarrhea Virus. Microbiol Spectr 2022; 10:e0066122. [PMID: 35762780 PMCID: PMC9430966 DOI: 10.1128/spectrum.00661-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
While discussing the ideal candidates of viral restriction factor, the interferon (IFN) and interferon-stimulated genes (ISGs) could be considered potential targets. However, numerous viruses have evolved multiple strategies to modulate the host innate immune signaling for optimal infection, including the porcine epidemic diarrhea virus (PEDV), a coronavirus spreading widely around the world with high morbidity and mortality in piglets. The immunosuppression mediated by PEDV infection creates an impediment for studying the host-virus interactions and screening the antiviral ISGs. Here, the PEDV variant strain 85-7C40 was screened using the continuous passaging, which showed significantly attenuated viral replication compared with its parent on MARC-145 cells. The comparative transcriptome analysis (accession nos. SRR13154018 to SRR13154026) indicated that 85-7C40 infection led to enhanced immune response on MARC-145 cells, particularly to the IFN antiviral signaling, which mediated the stronger activation of numerous ISGs. Numerous ISGs activated by 85-7C40 showed antiviral effects against the wild-type strain infection, particularly the IFI44 (an ISG upregulated specifically by the 85-7C40 infection) and OASL (upregulated higher in 85-7C40 than 85-7-infected cells), exhibited powerful antiviral activity. IFI44 promoted the production of RIG-I, while the OASL interacted directly with RIG-I, and then they both activated the phosphorylation of STAT1, indicating that they restricted PEDV replication by positively regulating the type I IFN response. Our results provided insight into the ISGs with antiviral activity against PEDV infection and also expanded our understanding of the innate immune response to PEDV infection, which may promote the development of novel therapeutics. IMPORTANCE Host innate immune responses, particularly interferon (IFN) antiviral signaling, can activate diverse downstream ISGs to exert antiviral effects. However, porcine epidemic diarrhea virus (PEDV) infection has evolved multiple strategies to escape from this immune clearance. The immunosuppression mediated by PEDV infection creates an impediment for studying the host-virus interactions. We screened a PEDV variant strain, 85-7C40, which induced enhanced immune responses on MARC-145 cells and thus mediated the stronger activation of numerous ISGs. The laboratory-generated variant might induce inconsistent immune responses with a natural wild-type strain during infection, while numerous ISGs activated by 85-7C40 showed antiviral effects against the wild-type strain infection, particularly the IFI44 and OASL, restricted PEDV replication by positively regulating the type I IFN response. These findings were suggestive of the immune-enhanced variant being capable of using as an ideal viral model for screening the efficient antiviral proteins and elucidating the underlying mechanisms between PEDV and host innate immune responses.
Collapse
|
36
|
Gao LJ, Li JL, Yang RR, He ZM, Yan M, Cao X, Cao JM. Biological Characterization and Clinical Value of OAS Gene Family in Pancreatic Cancer. Front Oncol 2022; 12:884334. [PMID: 35719943 PMCID: PMC9205247 DOI: 10.3389/fonc.2022.884334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022] Open
Abstract
Background OAS gene family plays an important role in antiviral process, but its role in pancreatic cancer has not yet been studied. Methods We analyzed the expression, prognostic value and biological function of the OAS gene family in human pancreatic cancer through comprehensive bioinformatic analysis and cellular level validation. Results OAS family was highly expressed in pancreatic cancer, and this high expression significantly affected the clinical stage and prognosis of the tumor. OAS gene family was closely related to the immune infiltration of pancreatic cancer, especially neutrophils and dendritic cells, and many immune-related factors and pathways are enriched in the tumor, such as type I interferon signaling pathway and NOD-like receptor signaling pathway. Conclusion Taken together, high expression of OAS family is closely related to poor prognosis of pancreatic cancer. OAS gene family may serve as the biomarker and even therapeutic target of pancreatic cancer.
Collapse
Affiliation(s)
- Li-Juan Gao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jia-Lei Li
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Rui-Rui Yang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhong-Mei He
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Min Yan
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xia Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Bignon E, Marazzi M, Miclot T, Barone G, Monari A. Specific Recognition of the 5'-Untranslated Region of West Nile Virus Genome by Human Innate Immune System. Viruses 2022; 14:v14061282. [PMID: 35746753 PMCID: PMC9227302 DOI: 10.3390/v14061282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 01/24/2023] Open
Abstract
In the last few years, the sudden outbreak of COVID-19 caused by SARS-CoV-2 proved the crucial importance of understanding how emerging viruses work and proliferate, in order to avoid the repetition of such a dramatic sanitary situation with unprecedented social and economic costs. West Nile Virus is a mosquito-borne pathogen that can spread to humans and induce severe neurological problems. This RNA virus caused recent remarkable outbreaks, notably in Europe, highlighting the need to investigate the molecular mechanisms of its infection process in order to design and propose efficient antivirals. Here, we resort to all-atom Molecular Dynamics simulations to characterize the structure of the 5′-untranslated region of the West Nile Virus genome and its specific recognition by the human innate immune system via oligoadenylate synthetase. Our simulations allowed us to map the interaction network between the viral RNA and the host protein, which drives its specific recognition and triggers the host immune response. These results may provide fundamental knowledge that can assist further antivirals’ design, including therapeutic RNA strategies.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Correspondence: (E.B.); (A.M.)
| | - Marco Marazzi
- Grupo de Reactividad y Estructura Molecular (RESMOL), Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain;
- Instituto de Investigación Química “Andrés M. del Río” (IQAR), Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain
| | - Tom Miclot
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- Department of Biological, Chemical and Pharmaceutical Sciences, Università degli Studi di Palermo, viale delle Scienze, 90128 Palermo, Italy;
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences, Università degli Studi di Palermo, viale delle Scienze, 90128 Palermo, Italy;
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France;
- ITODYS, Université Paris Cité, CNRS, F-75006 Paris, France
- Correspondence: (E.B.); (A.M.)
| |
Collapse
|
38
|
Effect of cannabidiol on apoptosis and cellular interferon and interferon-stimulated gene responses to the SARS-CoV-2 genes ORF8, ORF10 and M protein. Life Sci 2022; 301:120624. [PMID: 35568225 PMCID: PMC9091075 DOI: 10.1016/j.lfs.2022.120624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
AIMS To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). MAIN METHODS HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. KEY FINDINGS Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1-2 μM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2'-5'-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). SIGNIFICANCE Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.
Collapse
|
39
|
The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens 2022; 11:pathogens11050538. [PMID: 35631059 PMCID: PMC9147806 DOI: 10.3390/pathogens11050538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Compared to what we knew at the start of the SARS-CoV-2 global pandemic, our understanding of the interplay between the interferon signaling pathway and SARS-CoV-2 infection has dramatically increased. Innate antiviral strategies range from the direct inhibition of viral components to reprograming the host’s own metabolic pathways to block viral infection. SARS-CoV-2 has also evolved to exploit diverse tactics to overcome immune barriers and successfully infect host cells. Herein, we review the current knowledge of the innate immune signaling pathways triggered by SARS-CoV-2 with a focus on the type I interferon response, as well as the mechanisms by which SARS-CoV-2 impairs those defenses.
Collapse
|
40
|
Zhang J, Li Y, Zhou Y, Jiang N, Fan Y, Lin G, Zeng L. Characterization, expression pattern and antiviral activities of oligoadenylate synthetase in Chinese Giant Salamander, Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 129:104347. [PMID: 35007654 DOI: 10.1016/j.dci.2022.104347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The enzyme 2'-5'-oligoadenylate synthetase (OAS) is an antiviral protein induced by interferons (IFNs), which plays an important role in IFN-mediated antiviral signaling pathway. In this study, the OAS of Chinese Giant Salamander, Andrias davidianus (AdOAS) was identified for the first time, and the expression profiles in vivo and the antiviral activities in vitro were investigated. The open reading frame (ORF) of AdOAS gene is 1185 bp in length, encoding a putative protein of 394 amino acids, in which a Nucleotidyltransferase (NTase) domain (40-143 aa) and a conserved OAS1 C superfamily domain (165-341 aa) are included. qRT-PCR analysis revealed a broad expression of AdOAS in vivo, with the highest expression level in intestine and heart. After infection with Chinese giant salamander iridovirus (GSIV), the mRNA level of AdOAS in liver increased significantly at 24 h and 48 h post infection and reached the peak at 72 h compared with the control group. The AdOAS mRNA level in kidney increased slightly at 6 h and 12 h post infection, declined to the initial level at 24 h and peaked at 48 h post infection, while in spleen it was slightly up-regulated at 6 h, inhibited at 12 h, 24 h and 48 h, and then significantly increased to the peak at 72 h post infection. In vitro, AdOAS mRNA level in Chinese giant salamander muscle (GSM) cells was not noticeably up-regulated until 24 h and then peaked at 48 h post GSIV infection. In antiviral activity test, the mRNA transcription and protein level of virus major capsid protein (MCP) in AdOAS over-expressed cells was significantly reduced compared with that in control cells by qRT-PCR and western blot analysis. In addition, ddPCR results showed that lower MCP gene copy was found in AdOAS over-expressed cells compared with the control group. These results collectively suggest that AdOAS plays a crucial role against GSIV infection in Chinese giant salamander, and provide a solid base for the further studies on the mechanism of immune defense and the control of the disease in this animal.
Collapse
Affiliation(s)
- Jingjing Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ge Lin
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Lingbing Zeng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
41
|
Danziger O, Patel RS, DeGrace EJ, Rosen MR, Rosenberg BR. Inducible CRISPR activation screen for interferon-stimulated genes identifies OAS1 as a SARS-CoV-2 restriction factor. PLoS Pathog 2022; 18:e1010464. [PMID: 35421191 PMCID: PMC9041830 DOI: 10.1371/journal.ppat.1010464] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/26/2022] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Interferons establish an antiviral state through the induction of hundreds of interferon-stimulated genes (ISGs). The mechanisms and viral specificities for most ISGs remain incompletely understood. To enable high-throughput interrogation of ISG antiviral functions in pooled genetic screens while mitigating potentially confounding effects of endogenous interferon and antiproliferative/proapoptotic ISG activities, we adapted a CRISPR-activation (CRISPRa) system for inducible ISG expression in isogenic cell lines with and without the capacity to respond to interferons. We used this platform to screen for ISGs that restrict SARS-CoV-2. Results included ISGs previously described to restrict SARS-CoV-2 and novel candidate antiviral factors. We validated a subset of these by complementary CRISPRa and cDNA expression experiments. OAS1, a top-ranked hit across multiple screens, exhibited strong antiviral effects against SARS-CoV-2, which required OAS1 catalytic activity. These studies demonstrate a high-throughput approach to assess antiviral functions within the ISG repertoire, exemplified by identification of multiple SARS-CoV-2 restriction factors.
Collapse
Affiliation(s)
- Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Emma J. DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mikaela R. Rosen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
42
|
Magusali N, Graham AC, Piers TM, Panichnantakul P, Yaman U, Shoai M, Reynolds RH, Botia JA, Brookes KJ, Guetta-Baranes T, Bellou E, Bayram S, Sokolova D, Ryten M, Sala Frigerio C, Escott-Price V, Morgan K, Pocock JM, Hardy J, Salih DA. A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene. Brain 2021; 144:3727-3741. [PMID: 34619763 PMCID: PMC8500089 DOI: 10.1093/brain/awab337] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023] Open
Abstract
Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.
Collapse
Affiliation(s)
- Naciye Magusali
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Andrew C Graham
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas M Piers
- Department of Neuroinflammation, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | | | - Umran Yaman
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Maryam Shoai
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Regina H Reynolds
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London WC1N 1EH, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, UCL, London WC1N 1EH, UK
| | - Juan A Botia
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- Department of Information and Communications Engineering, Universidad de Murcia, 30100 Murcia, Spain
| | - Keeley J Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG8 11NS, UK
| | - Tamar Guetta-Baranes
- Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eftychia Bellou
- Dementia Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sevinc Bayram
- Hitachi Rail Europe Ltd, New Ludgate, London EC4M 7HX, UK
| | - Dimitra Sokolova
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Mina Ryten
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London WC1N 1EH, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, UCL, London WC1N 1EH, UK
| | | | - Valentina Escott-Price
- Dementia Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Kevin Morgan
- Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - John Hardy
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Dervis A Salih
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
43
|
Spotted Fever Group Rickettsia Trigger Species-Specific Alterations in Macrophage Proteome Signatures with Different Impacts in Host Innate Inflammatory Responses. Microbiol Spectr 2021; 9:e0081421. [PMID: 34935429 PMCID: PMC8693926 DOI: 10.1128/spectrum.00814-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular details underlying differences in pathogenicity between Rickettsia species remain to be fully understood. Evidence points to macrophage permissiveness as a key mechanism in rickettsial virulence. Different studies have shown that several rickettsial species responsible for mild forms of rickettsioses can also escape macrophage-mediated killing mechanisms and establish a replicative niche within these cells. However, their manipulative capacity with respect to host cellular processes is far from being understood. A deeper understanding of the interplay between mildly pathogenic rickettsiae and macrophages and the commonalities and specificities of host responses to infection would illuminate differences in immune evasion mechanisms and pathogenicity. We used quantitative proteomics by sequential windowed data independent acquisition of the total high-resolution mass spectra with tandem mass spectrometry (SWATH-MS/MS) to profile alterations resulting from infection of THP-1 macrophages with three mildly pathogenic rickettsiae: Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in these cells. We show that all three species trigger different proteome signatures. Our results reveal a significant impact of infection on proteins categorized as type I interferon responses, which here included several components of the retinoic acid-inducible gene I (RIG-1)-like signaling pathway, mRNA splicing, and protein translation. Moreover, significant differences in protein content between infection conditions provide evidence for species-specific induced alterations. Indeed, we confirm distinct impacts on host inflammatory responses between species during infection, demonstrating that these species trigger different levels of beta interferon (IFN-β), differences in the bioavailability of the proinflammatory cytokine interleukin 1β (IL-1β), and differences in triggering of pyroptotic events. This work reveals novel aspects and exciting nuances of macrophage-Rickettsia interactions, adding additional layers of complexity between Rickettsia and host cells' constant arms race for survival. IMPORTANCE The incidence of diseases caused by Rickettsia has been increasing over the years. It has long been known that rickettsioses comprise diseases with a continuous spectrum of severity. There are highly pathogenic species causing diseases that are life threatening if untreated, others causing mild forms of the disease, and a third group for which no pathogenicity to humans has been described. These marked differences likely reflect distinct capacities for manipulation of host cell processes, with macrophage permissiveness emerging as a key virulence trait. However, what defines pathogenicity attributes among rickettsial species is far from being resolved. We demonstrate that the mildly pathogenic Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in macrophages, trigger different proteome signatures in these cells and differentially impact critical components of innate immune responses by inducing different levels of beta interferon (IFN-β) and interleukin 1β (IL-1β) and different timing of pyroptotic events during infection. Our work reveals novel nuances in rickettsia-macrophage interactions, offering new clues to understand Rickettsia pathogenicity.
Collapse
|
44
|
Expressions of interferon-stimulated genes in peripheral blood mononuclear cells from patients with secondary syphilis. INFECTION GENETICS AND EVOLUTION 2021; 96:105137. [PMID: 34781038 DOI: 10.1016/j.meegid.2021.105137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Syphilis is a sexually transmitted disease that threatens human health worldwide. However, the immune regulation cascade caused by treponemia pallidum (TP) infection remains still largely unclear. METHODS To investigate the expression of ISGs in secondary syphilis (SS), we recruited 64 patients with SS and equal number of healthy participants to obtain their peripheral blood mononuclear cells (PBMCs). qRT-PCR was performed to estimate the expression of interferon-stimulated genes (ISGs) including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2. Receiver-operating characteristic (ROC) analysis was adapted to diagnostic value of these genes to distinguish healthy controls and patients with SS. RESULTS ISGs including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2 were all upregulated in PBMCs of patients with SS. Area under the ROC curve (AUC) of the 8 ISGs were all more than 0.5. IFIT3 exhibited the highest diagnostic value, followed by AIM2, IFIT2 and CXCL10, according to the Yoden Index. CONCLUSION ISGs including CXCL10, OAS3, OAS1, MX1, IFIT3, IFIT2, IFI6 and AIM2 were upregulated in patients with SS and they have diagnostic value for syphilis.
Collapse
|
45
|
Ficarelli M, Neil SJD, Swanson CM. Targeted Restriction of Viral Gene Expression and Replication by the ZAP Antiviral System. Annu Rev Virol 2021; 8:265-283. [PMID: 34129371 DOI: 10.1146/annurev-virology-091919-104213] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The zinc finger antiviral protein (ZAP) restricts the replication of a broad range of RNA and DNA viruses. ZAP directly binds viral RNA, targeting it for degradation and inhibiting its translation. While the full scope of RNA determinants involved in mediating selective ZAP activity are unclear, ZAP binds CpG dinucleotides, dictating at least part of its target specificity. ZAP interacts with many cellular proteins, although only a few have been demonstrated to be essential for its antiviral activity, including the 3'-5' exoribonuclease exosome complex, TRIM25, and KHNYN. In addition to inhibiting viral gene expression, ZAP also directly and indirectly targets a subset of cellular messenger RNAs to regulate the innate immune response. Overall, ZAP protects a cell from viral infection by restricting viral replication and regulating cellular gene expression. Further understanding of the ZAP antiviral system may allow for novel viral vaccine and anticancer therapy development. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mattia Ficarelli
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, United Kingdom;
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, United Kingdom;
| | - Chad M Swanson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
46
|
Modeling the complete kinetics of coxsackievirus B3 reveals human determinants of host-cell feedback. Cell Syst 2021; 12:304-323.e13. [PMID: 33740397 DOI: 10.1016/j.cels.2021.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/13/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Complete kinetic models are pervasive in chemistry but lacking in biological systems. We encoded the complete kinetics of infection for coxsackievirus B3 (CVB3), a compact and fast-acting RNA virus. The model consists of separable, detailed modules describing viral binding-delivery, translation-replication, and encapsidation. Specific module activities are dampened by the type I interferon response to viral double-stranded RNAs (dsRNAs), which is itself disrupted by viral proteinases. The experimentally validated kinetics uncovered that cleavability of the dsRNA transducer mitochondrial antiviral signaling protein (MAVS) becomes a stronger determinant of viral outcomes when cells receive supplemental interferon after infection. Cleavability is naturally altered in humans by a common MAVS polymorphism, which removes a proteinase-targeted site but paradoxically elevates CVB3 infectivity. These observations are reconciled with a simple nonlinear model of MAVS regulation. Modeling complete kinetics is an attainable goal for small, rapidly infecting viruses and perhaps viral pathogens more broadly. A record of this paper's transparent peer review process is included in the Supplemental information.
Collapse
|
47
|
Pojero F, Candore G, Caruso C, Di Bona D, Groneberg DA, Ligotti ME, Accardi G, Aiello A. The Role of Immunogenetics in COVID-19. Int J Mol Sci 2021; 22:2636. [PMID: 33807915 PMCID: PMC7961811 DOI: 10.3390/ijms22052636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is induced by SARS-CoV-2 and may arise as a variety of clinical manifestations, ranging from an asymptomatic condition to a life-threatening disease associated with cytokine storm, multiorgan and respiratory failure. The molecular mechanism behind such variability is still under investigation. Several pieces of experimental evidence suggest that genetic variants influencing the onset, maintenance and resolution of the immune response may be fundamental in predicting the evolution of the disease. The identification of genetic variants behind immune system reactivity and function in COVID-19 may help in the elaboration of personalized therapeutic strategies. In the frenetic look for universally shared treatment plans, those genetic variants that are common to other diseases/models may also help in addressing future research in terms of drug repurposing. In this paper, we discuss the most recent updates about the role of immunogenetics in determining the susceptibility to and the history of SARS-CoV-2 infection. We propose a narrative review of available data, speculating about lessons that we have learnt from other viral infections and immunosenescence, and discussing what kind of aspects of research should be deepened in order to improve our knowledge of how host genetic variability impacts the outcome for COVID-19 patients.
Collapse
Affiliation(s)
- Fanny Pojero
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Danilo Di Bona
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - David A. Groneberg
- Institute of Occupational, Social and Environmental Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany;
| | - Mattia E. Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, 90134 Palermo, Italy; (F.P.); (G.C.); (M.E.L.); (G.A.)
| |
Collapse
|
48
|
Lu D, Di S, Zhuo S, Zhou L, Bai R, Ma T, Zou Z, Chen C, Sun M, Tang J, Zhang Z. The long noncoding RNA TINCR promotes breast cancer cell proliferation and migration by regulating OAS1. Cell Death Discov 2021; 7:41. [PMID: 33649294 PMCID: PMC7921111 DOI: 10.1038/s41420-021-00419-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women around the world. It is urgently needed to identify genes associated with tumorigenesis and prognosis, as well as to elucidate the molecular mechanisms underlying the oncogenic process. Long noncoding RNAs (lncRNAs) are widely involved in the pathological and physiological processes of organisms and play an important role as oncogenes or tumor suppressor genes, affecting the development and progression of tumors. In this study, we focused on terminal differentiation-induced non-coding RNA (TINCR) (GeneID:257000) and explore its role in the pathogenesis of breast cancer. The results showed that TINCR was increased in breast cancer tissue, and high expression level of TINCR was associated with older age, larger tumor size, and advanced TNM stage. High level of TINCR can promote proliferation and metastasis of breast cancer cells, while downregulation of TINCR induces G1-G0 arrest and apoptosis. Mechanismly, TINCR can bind to staufen1 (STAU1) and then guide STAU1 (GeneID:6780) to bind to OAS1 mRNA (NM_016816.4) to mediate its stability. Thus low level of OAS1(GeneID:4938) can lead to cell proliferation and migration. This result elucidates a new mechanism for TINCR in breast cancer development and provides a survival indicator and potential therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Die Lu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Shihao Di
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Shuaishuai Zhuo
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Linyan Zhou
- Department of Pathology, Changzhou Jintan District People's Hospital, Jintan Affiliated Hospital of Jiangsu University, 16 Nanmen Road, Jintan, Jiangsu Province, 213200, China
| | - Rumeng Bai
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Tianshi Ma
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.,Department of Pathology, Zhejiang Provincial People's Hospital & People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, 310014, China
| | - Zigui Zou
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.,Department of Pathology, the First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu Province, 215000, China
| | - Chunni Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.
| | - Zhihong Zhang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou road, Nanjing, Jiangsu Province, 210029, China.
| |
Collapse
|
49
|
Interferon therapies in small animals. Vet J 2021; 271:105648. [PMID: 33840487 DOI: 10.1016/j.tvjl.2021.105648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 01/03/2023]
Abstract
Interferons (IFNs) are cytokines that play an important role in the immune response of animals and humans. A number of studies reviewed here have evaluated the use of human, canine and feline IFNs as treatments for infectious, inflammatory and neoplastic disease in dogs and cats. Recombinant canine IFN-γ is deemed an efficacious therapy for canine atopic dermatitis. Recombinant feline IFN-ω is effective against canine parvoviral enteritis and has also been recommended for canine atopic dermatitis. Based on limited evidence, recombinant canine IFN-α could be a topical treatment option for dogs with gingivitis and keratoconjunctivitis sicca. Conclusive evidence is lacking for other diseases and large randomised controlled trials are needed before IFNs can be recommended for other indications.
Collapse
|
50
|
Pillon MC, Gordon J, Frazier MN, Stanley RE. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Crit Rev Biochem Mol Biol 2021; 56:88-108. [PMID: 33349060 PMCID: PMC7856873 DOI: 10.1080/10409238.2020.1856769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|