1
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
2
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Li J, Wang Q, Cai H, He Z, Wang H, Chen J, Zheng Z, Yin J, Liao Z, Xu H, Xiao J, Gong F. FGF1 improves functional recovery through inducing PRDX1 to regulate autophagy and anti-ROS after spinal cord injury. J Cell Mol Med 2018. [PMID: 29512938 PMCID: PMC5908106 DOI: 10.1111/jcmm.13566] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) is thought to exert protective and regenerative effects on neurons following spinal cord injury (SCI), although the mechanism of these effects is not well understood. The use of FGF1 as a therapeutic agent is limited by its lack of physicochemical stability and its limited capacity to cross the blood‐spinal cord barrier. Here, we demonstrated that overexpression of FGF1 in spinal cord following SCI significantly reduced tissue loss, protected neurons in the ventricornu, ameliorated pathological morphology of the lesion, dramatically improved tissue recovery via neuroprotection, and promoted axonal regeneration and remyelination both in vivo and in vivo. In addition, the autophagy and the expression levels of PRDX1 (an antioxidant protein) were induced by AAV‐FGF1 in PC12 cells after H2O2 treatment. Furthermore, the autophagy levels were not changed in PRDX1‐suppressing cells that were treated by AAV‐FGF1. Taken together, these results suggest that FGF1 improves functional recovery mainly through inducing PRDX1 expression to increase autophagy and anti‐ROS activity after SCI.
Collapse
Affiliation(s)
- Jiawei Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hanxiao Cai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zili He
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoli Wang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zengming Zheng
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiayu Yin
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiyong Liao
- School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Huazi Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fanghua Gong
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Nagayasu Y, Morita SY, Hayashi H, Miura Y, Yokoyama K, Michikawa M, Ito JI. Increasing cellular level of phosphatidic acid enhances FGF-1 production in long term-cultured rat astrocytes. Brain Res 2014; 1563:31-40. [DOI: 10.1016/j.brainres.2014.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/22/2014] [Indexed: 11/15/2022]
|
5
|
Enhancement of FGF-1 release along with cytosolic proteins from rat astrocytes by hydrogen peroxide. Brain Res 2013; 1522:12-21. [DOI: 10.1016/j.brainres.2013.05.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/10/2013] [Accepted: 05/22/2013] [Indexed: 11/24/2022]
|
6
|
Porter KM, Sutliff RL. HIV-1, reactive oxygen species, and vascular complications. Free Radic Biol Med 2012; 53:143-59. [PMID: 22564529 PMCID: PMC3377788 DOI: 10.1016/j.freeradbiomed.2012.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/16/2012] [Accepted: 03/18/2012] [Indexed: 02/07/2023]
Abstract
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species (ROS), including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species and how these effects are likely to contribute to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Kristi M Porter
- Pulmonary, Allergy and Critical Care Division, Emory University School of Medicine/Atlanta VA Medical Center, 1670 Clairmont Road, Mailstop 151P, Decatur, GA 30033, USA.
| | | |
Collapse
|
7
|
Huang WC, Kuo HS, Tsai MJ, Ma H, Chiu CW, Huang MC, Yang LH, Chang PT, Lin YL, Kuo WC, Lee MJ, Liu JC, Cheng H. Adeno-associated virus-mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord-contused rats. J Gene Med 2011; 13:283-9. [PMID: 21557400 DOI: 10.1002/jgm.1568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Following spinal cord injury, the delivery of neurotrophic factors to the injured spinal cord has been shown to promote axonal regeneration and functional recovery. In previous studies, we showed that acidic fibroblast growth factor (aFGF) is a potent neurotrophic factor that promotes the regeneration of axotomized spinal cord or dorsal root ganglion neurones. METHODS We constructed a recombinant adeno-associated virus (AAV) vector to express human aFGF and evaluated aFGF expression and function in AAV-aFGF-infected PC12 cells. We analyzed AAV-green fluorescent protein (GFP) tropism and AAV-mediated aFGF expression in contused spinal cords. Animals received behavioural testing to evaluate the functional recovery. RESULTS Overexpression of aFGF was shown in AAV-aFGF-infected PC12 cells in a dose-dependent manner. Concurrently, neurite extension and cell number were significantly increased in AAV-aFGF infected cells. AAV-mediated GFP expression persisted for at least 5 weeks in contused spinal cords, and the most prominently transduced cells were neurones. Contusive injury reduced endogenous aFGF expression in spinal cords. Overexpression of aFGF was demonstrated in AAV-aFGF transduced spinal cords compared to AAV-GFP transduced spinal cords at 3 and 14 days post-injury. Evaluation of motor function revealed that the improvement of AAV-aFGF-treated rats was prominent. Both AAV-aFGF- and recombinant human aFGF-treated rats revealed significantly better recovery at 5 weeks post-injury, compared to vehicle- and AAV-GFP-treated rats. CONCLUSIONS These data suggest that supplement of aFGF improve the functional recovery of spinal cord-contused rats and that AAV-aFGF-mediated gene transfer could be a clinically feasible therapeutic approach for patients after nervous system injuries.
Collapse
Affiliation(s)
- Wen-Cheng Huang
- Centre for Neural Regeneration, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Uehara N, Ookubo K, Shimizu T. Colorimetric assay of glutathione based on the spontaneous disassembly of aggregated gold nanocomposites conjugated with water-soluble polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:6818-6825. [PMID: 20373784 DOI: 10.1021/la100460w] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This article describes the glutathione-triggered disassembly of gold nanocomposites composed of gold cores and water-soluble copolymers [poly(N-n-isopropylacrylamide-co-acryloyldiethyletriamine)] attached to the surfaces of gold cores. The gold nanocomposites exhibit a bluish purple color because of the assembled gold cores that are conjugated with the diethylenetriamine groups incorporated into the copolymers. Glutathione added to the gold nanocomposite solution adsorbs onto the surface of the gold cores to liberate diethylenetriamine groups, resulting in spontaneous disassembly that changes the color of the solution to a reddish shade. Increasing the glutathione concentration facilitates the spontaneous disassembly of the gold nanocomposites. For the determination of glutathione, the colorimetric change of the gold nanoparticles is quantified with the a* value of the L*a*b* color coordinates defined by the CIE (Commission Internationale de l'Eclairage) chromaticity diagram. A linear relationship between the a* value and the glutathione concentration of up to 6 x 10(-6) mol/L is obtained 15 min after the addition of glutathione that has a detection limit (defined as 3sigma) of 2.9 x 10(-8) mol/L. The colorimetric assay is successfully applied to the determination of glutathione in eye drops and health supplements.
Collapse
Affiliation(s)
- Nobuo Uehara
- Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | | | | |
Collapse
|
10
|
Up-regulation of pro-nerve growth factor, neurotrophin receptor p75, and sortilin is associated with retrovirus-induced spongiform encephalomyelopathy. Brain Res 2008; 1208:204-16. [PMID: 18395188 DOI: 10.1016/j.brainres.2008.02.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 02/15/2008] [Accepted: 02/24/2008] [Indexed: 11/24/2022]
Abstract
The progressive spongiform encephalomyelopathy caused by ts1, a neuropathogenic temperature-sensitive mutant of Moloney murine leukemia virus (MoMuLV-ts1), results in motor neuronal loss without direct neuronal infection. We have previously reported that ts1-mediated neuronal degeneration in mice has a multifactorial pathogenesis. Here, we report that in the ts1-infected central nervous system (CNS) activated neural cells showed intense immunoreactivity for pro-nerve growth factor (proNGF), neurotrophin receptor p75 (p75(NTR)), and sortilin in the areas showing spongiform changes. Since recent studies suggested that proNGF is more active than mature NGF in inducing neuronal death after binding to co-receptors p75(NTR)/sortilin, we hypothesized that overexpression of proNGF, sortilin and p75(NTR) play a role in ts1-induced neurodegeneration. We found that proNGF and p75(NTR), but not sortilin, mRNA and protein were significantly elevated in ts1-infected brainstem compared to non-infected control tissue. There was extensive tyrosine phosphorylation of p75(NTR), a marker for its activation, in ts1-infected brainstem with abundance in degenerating neurons. We explored whether the increase in the in vivo proNGF expression also occurs in cultured immortalized C1 astrocytes infected by ts1 virus. The proNGF level was significantly increased in infected C1 cells compared to control cells only after addition of fibroblast growth factor (FGF-1). We also showed increased expression of FGF-1 in the CNS of ts1-infected mice. Our findings suggest that the FGF-1 signaling pathway may be responsible for the overexpression of proNGF in neural cells during pathogenesis of ts1-induced neurodegeneration. This study provides new in vivo insights into the possible role of proNGF and its receptors in ts1-induced neurodegeneration.
Collapse
|
11
|
Zou W, Kim BO, Zhou BY, Liu Y, Messing A, He JJ. Protection against human immunodeficiency virus type 1 Tat neurotoxicity by Ginkgo biloba extract EGb 761 involving glial fibrillary acidic protein. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1923-35. [PMID: 18055541 DOI: 10.2353/ajpath.2007.070333] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus (HIV)-1 Tat protein is an important pathogenic factor in HIV-associated neuropathogenesis. Despite recent progress, the molecular mechanisms underlying Tat neurotoxicity are still not completely understood. However, few therapeutics have been developed to specifically target HIV infection in the brain. Recent development of an inducible brain-specific Tat transgenic mouse model has made it possible to define the mechanisms of Tat neurotoxicity and evaluate anti-neuroAIDS therapeutic candidates in the context of a whole organism. Herein, we demonstrate that administration of EGb 761, a standardized formulation of Ginkgo biloba extract, markedly protected Tat transgenic mice from Tat-induced developmental retardation, inflammation, death, astrocytosis, and neuron loss. EGb 761 directly down-regulated glial fibrillary acidic protein (GFAP) expression at both protein and mRNA levels. This down-regulation was, at least in part, attributable to direct effects of EGb 761 on the interactions of the AP1 and NF-kappaB transcription factors with the GFAP promoter. Most strikingly, Tat-induced neuropathological phenotypes including macrophage/microglia activation, central nervous system infiltration of T lymphocytes, and oxidative stress were significantly alleviated in GFAP-null/Tat transgenic mice. Taken together, these results provide the first evidence to support the potential for clinical use of EGb 761 to treat HIV-associated neurological diseases. Moreover, these findings suggest for the first time that GFAP activation is directly involved in Tat neurotoxicity, supporting the notion that astrocyte activation or astrocytosis may directly contribute to HIV-associated neurological disorders.
Collapse
Affiliation(s)
- Wei Zou
- Department of Microbiology and Immunology, Indiana University School of Medicine, R2 302, 950 W. Walnut St., Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
12
|
Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L. Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 2:139-46. [PMID: 16909019 DOI: 10.1159/000089619] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurons and surrounding glial cells compose a highly specialized functional unit. In amyotrophic lateral sclerosis (ALS) astrocytes interact with motor neurons in a complex manner to modulate neuronal survival. Experiments using chimeric mice expressing ALS-linked mutations to Cu,Zn superoxide dismutase (SOD-1) suggest a critical modulation exerted by neighboring non-neuronal cell types on disease phenotype. When perturbed by primary neuronal damage, e.g. expression of SOD-1 mutations, neurons can signal astrocytes to proliferate and become reactive. Fibroblast growth factor-1 (FGF-1) can be released by motor neurons in response to damage to induce astrocyte activation by signaling through the receptor FGFR1. FGF-1 stimulates nerve growth factor (NGF) expression and secretion, as well as activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Nrf2 leads to the expression of antioxidant and cytoprotective enzymes such as heme oxygenase-1 and a group of enzymes involved in glutathione metabolism that prevent motor neuron degeneration. However, prolonged stimulation with FGF-1 or SOD-mediated oxidative stress in astrocytes may disrupt the normal neuron-glia interactions and lead to progressive neuronal degeneration. The re-expression of p75 neurotrophin receptor and neuronal NOS in motor neurons in parallel with increased NGF secretion by reactive astrocytes may be a mechanism to eliminate critically damaged neurons. Consequently, astrocyte activation in ALS may have a complex pathogenic role.
Collapse
Affiliation(s)
- Mariana Pehar
- Departamento de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
13
|
Kaleeba JAR, Berger EA. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 2006; 311:1921-4. [PMID: 16574866 DOI: 10.1126/science.1120878] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) is the causative agent of Kaposi's sarcoma and other lymphoproliferative syndromes often associated with HIV/AIDS. Functional complementary DNA selection for a receptor mediating KSHV cell fusion identified xCT, the 12-transmembrane light chain of the human cystine/glutamate exchange transporter system x-c. Expression of recombinant xCT rendered otherwise not susceptible target cells permissive for both KSHV cell fusion and virion entry. Antibodies against xCT blocked KSHV fusion and entry with naturally permissive target cells. KSHV target cell permissiveness correlated closely with endogenous expression of xCT messenger RNA and protein in diverse human and nonhuman cell types.
Collapse
Affiliation(s)
- Johnan A R Kaleeba
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
14
|
Vargas MR, Pehar M, Cassina P, Martínez-Palma L, Thompson JA, Beckman JS, Barbeito L. Fibroblast Growth Factor-1 Induces Heme Oxygenase-1 via Nuclear FactorErythroid 2-related Factor 2 (Nrf2) in Spinal Cord Astrocytes. J Biol Chem 2005; 280:25571-9. [PMID: 15870071 DOI: 10.1074/jbc.m501920200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor-1 (FGF-1) is highly expressed in motor neurons and can be released in response to sublethal cell injury. Because FGF-1 potently activates astroglia and exerts a direct neuroprotection after spinal cord injury or axotomy, we examined whether it regulated the expression of inducible and cytoprotective heme oxygenase-1 (HO-1) enzyme in astrocytes. FGF-1 induced the expression of HO-1 in cultured rat spinal cord astrocytes, which was dependent on FGF receptor activation and prevented by cycloheximide. FGF-1 also induced Nrf2 mRNA and protein levels and prompted its nuclear translocation. HO-1 induction was abolished by transfection of astrocytes with a dominant-negative mutant Nrf2, indicating that FGF-1 regulates HO-1 expression through Nrf2. FGF-1 also modified the expression of other antioxidant genes regulated by Nrf2. Both Nrf2 and HO-1 levels were increased and co-localized with reactive astrocytes in the degenerating lumbar spinal cord of rats expressing the amyotrophic lateral sclerosis-linked SOD1 G93A mutation. Overexpression of Nrf2 in astrocytes increased survival of co-cultured embryonic motor neurons and prevented motor neuron apoptosis mediated by nerve growth factor through p75 neurotrophin receptor. Taken together, these results emphasize the key role of astrocytes in determining motor neuron fate in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Marcelo R Vargas
- Departamento de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | | | | | | | | | | |
Collapse
|
15
|
Arp J, Rieder MJ, Urquhart B, Freeman D, Tucker MJ, Krizova A, Lehmann D, Dekaban GA. Hypersensitivity of HIV-1-Infected Cells to Reactive Sulfonamide Metabolites Correlated to Expression of the HIV-1 Viral Protein Tat. J Pharmacol Exp Ther 2005; 314:1218-25. [PMID: 15933158 DOI: 10.1124/jpet.105.085050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impairment of human immunodeficiency virus (HIV)-infected cells to deal with reactive drug metabolites may be a mechanism for the increased rate of adverse drug reactions seen in AIDS. HIV Tat protein expression may be associated with increased oxidative stress within HIV-infected cells. To determine the relationship between expression of HIV Tat and sensitivity to reactive drug metabolites, we studied toxicity of sulfamethoxazole (SMX) and its reactive hydroxylamine intermediate (SMX-HA) in lymphocytes transfected with the HIV tat gene. Over a concentration range from 0 to 400 microM SMX-HA, there was a significant concentration-dependent increase in cell death in transfected cell lines expressing Tat compared with controls. Jurkat T cells transfected with a dose-dependent inducible tat gene showed increased toxicity in response to SMX-HA as more Tat expression was induced. Enhanced sensitivity to SMX-HA was accompanied by significantly lower concentrations of total intracellular glutathione compared with controls (P < 0.05). Sensitivity to reactive drug metabolites in HIV-infected cells seems to be mediated by the viral protein Tat.
Collapse
Affiliation(s)
- Jacqueline Arp
- The BioTherapeutics Group, Robarts Research Institute London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Cassina P, Pehar M, Vargas MR, Castellanos R, Barbeito AG, Estévez AG, Thompson JA, Beckman JS, Barbeito L. Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 2005; 93:38-46. [PMID: 15773903 DOI: 10.1111/j.1471-4159.2004.02984.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor-1 (FGF1 or acidic FGF) is highly expressed in motor neurons. FGF-1 is released from cells by oxidative stress, which might occur from SOD-1 aberrant function in amyotrophic lateral sclerosis (ALS). Although FGF-1 is known to be neuroprotective after spinal cord injury or axotomy, we found that FGF-1 could activate spinal cord astrocytes in a manner that decreased motor neuron survival in co-cultures. FGF-1 induced accumulation of the FGF receptor 1 (FGFR1) in astrocyte nuclei and potently stimulated nerve growth factor (NGF) expression and secretion. The FGFR1 tyrosine kinase inhibitor PD166866 prevented these effects. Previously, we have shown that NGF secretion by reactive astrocytes induces motor neuron apoptosis through a p75(NTR)-dependent mechanism. Embryonic motor neurons co-cultured on the top of astrocytes exhibiting activated FGFR1 underwent apoptosis, which was prevented by PD166866 or by adding either anti-NGF or anti-p75(NTR) neutralizing antibodies. In the degenerating spinal cord of mice carrying the ALS mutation G93A of Cu, Zn superoxide dismutase, FGF-1 was no longer localized only in the cytosol of motor neurons, while FGFR1 accumulated in the nuclei of reactive astrocytes. These results suggest that FGF-1 released by oxidative stress from motor neurons might have a role in activating astrocytes, which could in turn initiate motor neuron apoptosis in ALS through a p75(NTR)-dependent mechanism.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología, Facultad de Medicina, Universidad de la República Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bridges CC, Hu H, Miyauchi S, Siddaramappa UN, Ganapathy ME, Ignatowicz L, Maddox DM, Smith SB, Ganapathy V. Induction of cystine-glutamate transporter xc- by human immunodeficiency virus type 1 transactivator protein tat in retinal pigment epithelium. Invest Ophthalmol Vis Sci 2004; 45:2906-14. [PMID: 15326101 PMCID: PMC2735043 DOI: 10.1167/iovs.03-1355] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The transactivator protein Tat encoded by the human immunodeficiency virus-1 (HIV-1) genome reduces glutathione levels in mammalian cells. Because the retina contains large amounts of glutathione, a study was undertaken to determine the influence of Tat on glutathione levels, gamma-glutamyl transpeptidase activity, and the expression and activity of the cystine-glutamate transporter xc- in the human retinal pigment epithelial cell line ARPE-19 and in retina from Tat-transgenic mice. METHODS The transport function of xc- was measured as glutamate uptake in the absence of Na+. mRNA levels for xCT and 4F2hc, the two subunits of system xc-, were monitored by RT-PCR and Northern blot and protein levels by Western blot. The expression pattern of xCT and 4F2hc in the mouse retina was analyzed by immunofluorescence. RESULTS Expression of Tat in ARPE-19 cells led to a decrease in glutathione levels and an increase in gamma-glutamyl transpeptidase activity. The transport function of xc- was upregulated, and this increase was accompanied by increases in the levels of mRNAs for xCT and 4F2hc and in corresponding protein levels. The influence of Tat on the expression of xc- was independent of the cellular status of glutathione. Most of these findings were confirmed in the retina of Tat-transgenic mice. CONCLUSIONS Expression of HIV-1 Tat in the retina decreases glutathione levels and increases gamma-glutamyl transpeptidase activity. Tat also upregulates the expression of system xc-. Glutathione levels may be decreased and the expression of xc- enhanced in the retina of patients with HIV-1 infection, leading to oxidative stress and excitotoxicity.
Collapse
Affiliation(s)
- Christy C. Bridges
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Huankai Hu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | - Seiji Miyauchi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| | | | | | - Leszek Ignatowicz
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia
| | - Dennis M. Maddox
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
18
|
Bagnasco P, MacMillan-Crow LA, Greendorfer JS, Young CJ, Andrews L, Thompson JA. Peroxynitrite modulates acidic fibroblast growth factor (FGF-1) activity. Arch Biochem Biophys 2003; 419:178-89. [PMID: 14592461 DOI: 10.1016/j.abb.2003.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To establish peroxynitrite (ONOO(-)) as a mediator of acidic fibroblast growth factor (FGF-1) function, preparations of recombinant human FGF-1 were treated with the pro-oxidant in vitro and identified amino acid modifications were correlated with biologic activity. The sequence of FGF-1 amino acid modifications induced by increasing concentrations of ONOO(-) was from cysteine oxidation to dityrosine formation, and to tyrosine/tryptophan nitration. Low steady-state ONOO(-) concentrations (10-50 microM) induced formation of dityrosine, which involved less than 0.1% of the total tyrosines. Treatment of FGF-1 with ONOO(-) induced a dose-dependent (10-50 microM) loss of sulfhydryl groups that correlated with formation of reducible (dithiothreitol, arsenite) FGF-1 aggregates containing 50% latent biologic activity. Treatment with 0.1-0.5mM ONOO(-) induced increasing formation of non-reducible, inactivated FGF-1 structures. Combination of real-time spectral analysis and electrospray mass spectroscopy revealed that six residues (Y29, Y69, Y108, Y111, Y139, and W121) were nitrated by ONOO(-). ONOO(-) treatment (0.1mM) of an active FGF-1 mutant (cysteines converted to serines) induced dose-dependent, non-reversible inhibition of biologic activity that correlated with nitration of Y108 and Y111, both of which reside within a conserved domain encompassing the putative FGF-1 receptor binding site. Collectively, these observations predict a role for low levels of ONOO(-) during secretion of FGF-1 as an extracellular complex containing latent biologic activity. High steady-state levels of ONOO(-) may induce extensive cysteine oxidation, critical tyrosine nitration, and non-reversible inactivation of FGF-1, a potential inhibitory feedback mechanism restoring cellular homeostatis during the resolution of inflammation and repair.
Collapse
Affiliation(s)
- Patricia Bagnasco
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
19
|
Flora G, Lee YW, Nath A, Hennig B, Maragos W, Toborek M. Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp Neurol 2003; 179:60-70. [PMID: 12504868 DOI: 10.1006/exnr.2002.8048] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tat is a major regulatory protein encoded by human immunodeficiency viral genome, which has been implicated in the pathogenesis of HIV infection, including neurologic complications associated with this disease. In addition, drug abuse has been identified as a major risk factor of HIV infection. We hypothesize that abusive drugs, such as methamphetamine (METH), can directly influence specific molecular processes that can further contribute to toxic effects of Tat. To elucidate the molecular signaling pathways of Tat- and/or METH-induced toxicity, we investigated the effects of a single injection of Tat (25 microg/microl into the right hippocampus) and/or METH (10 mg/kg, intraperitoneally) on the generation of cellular oxidative stress, DNA-binding activity of specific redox-responsive transcription factors, and expression of inflammatory genes. Administration of Tat or METH resulted in stimulation of cellular oxidative stress and activation of redox-regulated transcription factors in the cortical, striatal, and hippocampal regions of the mouse brain. In addition, DNA-binding activities of NF-kappaB, AP-1, and CREB in the frontal cortex and hippocampus were more pronounced in mice injected with Tat plus METH compared to the effects of Tat or METH alone. Intercellular adhesion molecule-1 gene expression also was upregulated in a synergistic manner in cortical, striatal, and hippocampal regions in mice which received injections of Tat combined with METH compared to the effects of these agents alone. Moreover, synergistic effects of Tat plus METH on the tumor necrosis factor-alpha and interleukin-1beta mRNA levels were observed in the striatal region. These results indicate that Tat and METH can cross-amplify their cellular effects, leading to alterations of redox-regulated inflammatory pathways in the brain. Such synergistic proinflammatory stimulation may have significant implications in HIV-infected patients who abuse drugs.
Collapse
Affiliation(s)
- Govinder Flora
- Department of Surgery, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
20
|
Perez OD, Nolan GP, Magda D, Miller RA, Herzenberg LA, Herzenberg LA. Motexafin gadolinium (Gd-Tex) selectively induces apoptosis in HIV-1 infected CD4+ T helper cells. Proc Natl Acad Sci U S A 2002; 99:2270-4. [PMID: 11854523 PMCID: PMC122354 DOI: 10.1073/pnas.261711499] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2001] [Indexed: 01/23/2023] Open
Abstract
Here, we show that motexafin gadolinium (Gd-Tex), a compound that promotes intracellular oxidative stress, selectively induces apoptosis in HIV-1-infected CD4(+) T cells in IL-2-stimulated cultures of peripheral blood mononuclear cells infected in vitro with HIV-1. This selective induction of apoptosis, which we detect by FACS analysis of intracellular HIV/p24 and concomitant surface and apoptosis marker expression, is abrogated by the glutathione precursor, N-acetyl-l-cysteine. Importantly, it occurs at Gd-Tex concentrations that are not cytotoxic to uninfected cells in the culture. These findings suggest that Gd-Tex may have therapeutic utility as an anti-HIV agent capable of selectively targeting and removing HIV-infected cells in an infected host.
Collapse
Affiliation(s)
- Omar D Perez
- Department of Microbiology and Immunology, The Baxter Laboratories of Genetic Pharmacology, Stanford University, Stanford, CA 94305-5175, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kelpke SS, Reiff D, Prince CW, Thompson JA. Acidic fibroblast growth factor signaling inhibits peroxynitrite-induced death of osteoblasts and osteoblast precursors. J Bone Miner Res 2001; 16:1917-25. [PMID: 11585358 DOI: 10.1359/jbmr.2001.16.10.1917] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
After trauma injury to the musculoskeletal system, conditions such as ischemia and inflammation involve excess production of superoxide (O2*), nitric oxide (*NO), and their reaction product, peroxynitrite (ONOO-). Exposure of murine osteoblasts and rat-derived primary osteoblast precursors to ONOO- resulted in a dose- and time-dependent delayed cell death that was more characteristic of apoptosis than necrosis. Exposure of both cell populations to ONOO- immediately enhanced phosphorylation and nitration of tyrosine residues within several polypeptides. Treatment of osteoblasts and osteoblast precursors with exogenous acidic fibroblast growth factor (FGF-1) enhanced cellular growth, increased endogenous levels of tyrosine phosphorylation, and significantly induced expression of both osteopontin and osteocalcin messenger RNA (mRNA) as well as osteopontin protein. Pretreatment of both cell populations with exogenous FGF-1 prevented ONOO(-)-mediated death. Cell signaling induced by FGF-1 pretreatment had no major effect of total levels of tyrosine nitration after ONOO- treatment. Collectively, these in vitro efforts show that FGF-1 signaling renders osteoblasts and osteoblast precursors resistant to the cytotoxic effects of ONOO-. Consequently, results presented here predict the therapeutic use of this growth factor for promoting the progression of bone repair mechanisms after fracture trauma.
Collapse
Affiliation(s)
- S S Kelpke
- Department of Surgery, The University of Alabama at Birmingham, USA
| | | | | | | |
Collapse
|
22
|
Vickers SM, MacMillan-Crow L, Huang Z, Thompson JA. Acidic fibroblast growth factor (FGF-1) signaling inhibits peroxynitrite-induced cell death during pancreatic tumorigenesis. Free Radic Biol Med 2001; 30:957-66. [PMID: 11316575 DOI: 10.1016/s0891-5849(01)00479-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous immunohistochemical studies have demonstrated enhanced appearance of FGF-1 and nitrotyrosine, a footprint of reactive nitrogen species peroxynitrite (ONOO(-)), in human pancreatic adenocarcinoma. We have examined the consequences of constitutive exposure to FGF-1 in nontumorigenic rat ductal epithelial cells (ARIP). ARIP cells were transduced with either a secreted chimera of FGF-1, ARIP(FGF-1), or a control plasmid, 65 RIP(betag). These cells were evaluated for alteration in growth and morphology, responses to ONOO(-) (protein tyrosine nitration/phosphorylation), and in vivo tumor formation. ARIP(FGF-1) cells, in contrast to 65 RIP(betag), demonstrated a transformed morphology, a 2-fold increased growth rate, and enhanced protein tyrosine phosphorylation. Treatment with 150 microM ONOO(-) resulted in 86 and 7% (p <.01) death of ARIP(betag) and ARIP(FGF-1), respectively. Exposure of 65 RIP(betag) cells to ONOO(-) enhanced tyrosine phosphorylation and tyrosine nitration of several polypeptides. Cell signaling by FGF-1 enhanced both phosphorylation and nitration of tyrosine residues in target proteins modified by ONOO(-). ARIP(betag) cells failed to exhibit tumor formation in nude mice, but at d 7 in vivo cells were TUNEL and nitrotyrosine positive and FGF-1 negative. ARIP(FGF-1) cells readily formed tumor nodules, exhibiting features of pancreatic adenocarcinoma and demonstrating FGF-1-positive, nitrotyrosine-positive, and TUNEL-negative epithelium. These results suggest an interdependent role between FGF-1 and ONOO(-) during the development and progression of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- S M Vickers
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294-0007, USA.
| | | | | | | |
Collapse
|
23
|
Reiff DA, Kelpke S, Rue L, Thompson JA. Acidic fibroblast growth factor attenuates the cytotoxic effects of peroxynitrite in primary human osteoblast precursors. THE JOURNAL OF TRAUMA 2001; 50:433-8; discussion 439. [PMID: 11265022 DOI: 10.1097/00005373-200103000-00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Skeletal injury and associated ischemia and inflammation induce the generation of pro-oxidants such as peroxynitrite (ONOO-), which has been demonstrated to induce apoptosis in several cell lines. Fibroblast growth factor (FGF-1) is important for coordinating osteogenesis and angiogenesis of osseous repair. In vitro studies were performed examining the effect of FGF-1 on human osteoblast progenitor stromal stem (HSS) cell proliferation, differentiation, and response to ONOO-. METHODS HSS cells were isolated and growth kinetics determined in the presence and absence of FGF-1. The effect of FGF-1 on HSS cell expression of osteoblast-specific osteopontin and osteocalcin mRNA and protein was examined by reverse transcriptase polymerase chain reaction and Western blot techniques. To determine the sensitivity of HSS cells to ONOO- in the absence and presence of FGF-1 pretreatment, cells were exposed to varying concentrations of the oxidant and examined for cell death using quantitative fluorescence staining with fluorescein diacetate and propidium diacetate. RESULTS Treatment of HSS cells with FGF-1 significantly enhanced cellular growth rates by 5 days (4.6 x 105 cells/mL vs. 3.1 x 105 cells/mL) and induced expression of both osteopontin and osteocalcin mRNA and protein. Exposure of HSS cells to ONOO- resulted in a dose- and time-dependent delayed cell death that was more characteristic of apoptosis than necrosis. Pretreatment of HSS cells with FGF-1 prevented ONOO- mediated apoptosis. CONCLUSION In vitro, treatment of HSS cells with FGF-1 stimulates cell growth and induces expression of differentiation markers specific to osteoblasts. FGF-1 treatment renders osteoblast precursors resistant to the cytotoxic effects of ONOO-. These results suggest that FGF-1 promotes the progression of bone repair mechanisms by increasing the population of osteoblasts and imparting protection to the cell line from the hostile inflammatory environment.
Collapse
Affiliation(s)
- D A Reiff
- Center for Injury Sciences, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | |
Collapse
|
24
|
Choi J, Opalenik SR, Wu W, Thompson JA, Forman HJ. Modulation of glutathione synthetic enzymes by acidic fibroblast growth factor. Arch Biochem Biophys 2000; 375:201-9. [PMID: 10683268 DOI: 10.1006/abbi.1999.1677] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing evidence suggests that glutathione (GSH) synthesis is a regulated process. Documented increases in gamma-glutamylcysteine synthetase (GCS) occur in response to oxidants, in tumors, on plating cells at a low cell density, and with nerve growth factor stimulation, suggesting that GSH synthesis may be related to the cell growth and transformation. Previously, extracellular acidic fibroblast growth factor (FGF-1) has been demonstrated to cause transformation and aggressive cell growth in murine embryonic fibroblasts. In the present investigation, we sought to determine whether FGF-1, with its growth inducing properties, resulted in the modulation of GSH biosynthetic enzymes, GCS and GSH synthetase. Murine fibroblasts transduced with (hst/KS)FGF-1, a chimeric human FGF-1 gene containing a signal peptide sequence for secretion, displayed elevated gene expression of both heavy and light subunits of GCS. Activity of GSH synthetase was also elevated in these cells compared with control cells. Nonetheless, GSH was decreased in the FGF-1-transduced cells along with high energy phosphates, adenine nucleotides, NADH, and the redox poise. However, GSSG was not elevated in these cells. Fibroblasts stably expressing human immunodeficiency virus type 1 Tat, which induces intrinsic FGF-1 secretion, resulted in similar changes in GCS, GS, and GSH. The results suggest that although increases in the enzymes of GSH synthesis are a common response to growth factors, an increase in GSH content per se is not required for altered cell growth.
Collapse
Affiliation(s)
- J Choi
- Department of Molecular Pharmacology, University of Southern California School of Pharmacy, Los Angeles, California, 90033, USA
| | | | | | | | | |
Collapse
|