1
|
Bhat AH, Dar KB, Khan A, Alshahrani S, Alshehri SM, Ghoneim MM, Alam P, Shakeel F. Tricyclodecan-9-yl-Xanthogenate (D609): Mechanism of Action and Pharmacological Applications. Int J Mol Sci 2022; 23:3305. [PMID: 35328726 PMCID: PMC8954530 DOI: 10.3390/ijms23063305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tricyclodecan-9-yl xanthogenate (D609) is a synthetic tricyclic compound possessing a xanthate group. This xanthogenate compound is known for its diverse pharmacological properties. Over the last three decades, many studies have reported the biological activities of D609, including antioxidant, antiapoptotic, anticholinergic, anti-tumor, anti-inflammatory, anti-viral, anti-proliferative, and neuroprotective activities. Its mechanism of action is extensively attributed to its ability to cause the competitive inhibition of phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) and sphingomyelin synthase (SMS). The inhibition of PCPLC or SMS affects secondary messengers with a lipidic nature, i.e., 1,2-diacylglycerol (DAG) and ceramide. Various in vitro/in vivo studies suggest that PCPLC and SMS inhibition regulate the cell cycle, block cellular proliferation, and induce differentiation. D609 acts as a pro-inflammatory cytokine antagonist and diminishes Aβ-stimulated toxicity. PCPLC enzymatic activity essentially requires Zn2+, and D609 might act as a potential chelator of Zn2+, thereby blocking PCPLC enzymatic activity. D609 also demonstrates promising results in reducing atherosclerotic plaque formation, post-stroke cerebral infarction, and cancer progression. The present compilation provides a comprehensive mechanistic insight into D609, including its chemistry, mechanism of action, and regulation of various pharmacological activities.
Collapse
Affiliation(s)
- Aashiq Hussain Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Khalid Bashir Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India; (A.H.B.); (K.B.D.)
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.M.A.); (F.S.)
| |
Collapse
|
2
|
Schoeny H, Rampler E, Binh Chu D, Schoeberl A, Galvez L, Blaukopf M, Kosma P, Koellensperger G. Achieving Absolute Molar Lipid Concentrations: A Phospholipidomics Cross-Validation Study. Anal Chem 2022; 94:1618-1625. [PMID: 35025205 PMCID: PMC8792901 DOI: 10.1021/acs.analchem.1c03743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 01/28/2023]
Abstract
Standardization is essential in lipidomics and part of a huge community effort. However, with the still ongoing lack of reference materials, benchmarking quantification is hampered. Here, we propose traceable lipid class quantification as an important layer for the validation of quantitative lipidomics workflows. 31P nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP)-mass spectrometry (MS) can use certified species-unspecific standards to validate shotgun or liquid chromatography (LC)-MS-based lipidomics approaches. We further introduce a novel lipid class quantification strategy based on lipid class separation and mass spectrometry using an all ion fragmentation (AIF) approach. Class-specific fragments, measured over a mass range typical for the lipid classes, are integrated to assess the lipid class concentration. The concept proved particularly interesting as low absolute limits of detection in the fmol range were achieved and LC-MS platforms are widely used in the field of lipidomics, while the accessibility of NMR and ICP-MS is limited. Using completely independent calibration strategies, the introduced validation scheme comprised the quantitative assessment of the complete phospholipid sub-ome, next to the individual lipid classes. Komagataella phaffii served as a prime example, showcasing mass balances and supporting the value of benchmarks for quantification at the lipid species level.
Collapse
Affiliation(s)
- Harald Schoeny
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Evelyn Rampler
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna
Metabolomics Center (VIME), University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
- Chemistry
Meets Microbiology, Althanstraße
14, 1090 Vienna, Austria
| | - Dinh Binh Chu
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- School
of Chemical Engineering, Hanoi University
of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Vietnam
| | - Anna Schoeberl
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Luis Galvez
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| | - Markus Blaukopf
- Department
of Chemistry, University of Natural Resources
and Life Sciences Vienna, 1190 Vienna, Austria
| | - Paul Kosma
- Department
of Chemistry, University of Natural Resources
and Life Sciences Vienna, 1190 Vienna, Austria
| | - Gunda Koellensperger
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
- Vienna
Metabolomics Center (VIME), University of
Vienna, Althanstraße
14, 1090 Vienna, Austria
- Chemistry
Meets Microbiology, Althanstraße
14, 1090 Vienna, Austria
| |
Collapse
|
3
|
Hernández G, Villanueva-Ibarra CA, Maldonado-Vega M, López-Vanegas NC, Ruiz-Cascante CE, Calderón-Salinas JV. Participation of phospholipase-A 2 and sphingomyelinase in the molecular pathways to eryptosis induced by oxidative stress in lead-exposed workers. Toxicol Appl Pharmacol 2019; 371:12-19. [PMID: 30928402 DOI: 10.1016/j.taap.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/19/2022]
Abstract
The increment of eryptosis in lead-exposed workers has been associated with oxidative stress, having as the main mediator [Ca2+]i. However, other molecules could participate as signals, such as PLA2 and SMase, which have been proposed to increase PGE2 and ceramides, both involved in the increment of PS externalization due to osmotic stress. To study the role of these enzymes in lead intoxication, we studied 30 lead exposed workers and 27 non-lead exposed individuals. We found, compared to non-exposed subjects, lead intoxication characterized by high blood lead concentration (median = 39.1 μg/dL), and low δ-ALAD activity (median = 348 nmol of porphobilinogen/h/mL); oxidative stress with high lipid peroxidation (median = 1.31 nmol of malondialdehyde/mL) and low TAC (median = 370 mM Trolox equivalents); a higher enzymatic activity of PLA2 (median = 518 AFU/mg) and SMase (median = 706 AFU/mg) and higher eryptosis (median = 0.92% PS externalization). Correlation and conditional probability analyses permit to associate oxidative stress and eryptosis with high PLA2 activity. However, high SMase activity was only associated with PLA2 activity. The role of these enzymes in the signal path to eryptosis induced by oxidative stress in lead-exposed workers is discussed.
Collapse
Affiliation(s)
- Gerardo Hernández
- Section Methodology of Science, Centro de Investigación y Estudios Avanzados-IPN (Cinvestav), Ciudad de México, Mexico
| | | | - María Maldonado-Vega
- Planning, Teaching and Research Department, Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato, Mexico
| | | | - Claudia-Estefania Ruiz-Cascante
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Salud en el Trabajo, UNAM, Ciudad de México, Mexico
| | - José-Víctor Calderón-Salinas
- Biochemistry Department, Centro de Investigación y Estudios Avanzados-IPN (Cinvestav), Ciudad de México, Mexico.
| |
Collapse
|
4
|
Maganti RJ, Hronowski XL, Dunstan RW, Wipke BT, Zhang X, Jandreski L, Hamann S, Juhasz P. Defining Changes in the Spatial Distribution and Composition of Brain Lipids in the Shiverer and Cuprizone Mouse Models of Myelin Disease. J Histochem Cytochem 2018; 67:203-219. [PMID: 30501365 PMCID: PMC6393840 DOI: 10.1369/0022155418815860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myelin is composed primarily of lipids and diseases affecting myelin are associated with alterations in its lipid composition. However, correlation of the spatial (in situ) distribution of lipids with the disease-associated compositional and morphological changes is not well defined. Herein we applied high resolution matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS), immunohistochemistry (IHC), and liquid chromatography–electrospray ionization–mass spectrometry (LC-ESI-MS) to evaluate brain lipid alterations in the dysmyelinating shiverer (Shi) mouse and cuprizone (Cz) mouse model of reversible demyelination. MALDI-IMS revealed a decrease in the spatial distribution of sulfatide (SHexCer) species, SHexCer (d42:2), and a phosphatidylcholine (PC) species, PC (36:1), in white matter regions like corpus callosum (CC) both in the Shi mouse and Cz mouse model. Changes in these lipid species were restored albeit not entirely upon spontaneous remyelination after demyelination in the Cz mouse model. Lipid distribution changes correlated with the local morphological changes as confirmed by IHC. LC-ESI-MS analyses of CC extracts confirmed the MALDI-IMS derived reductions in SHexCer and PC species. These findings highlight the role of SHexCer and PC in preserving the normal myelin architecture and our experimental approaches provide a morphological basis to define lipid abnormalities relevant to myelin diseases.
Collapse
Affiliation(s)
| | | | - Robert W Dunstan
- Biogen, Cambridge, Massachusetts.,AbbVie, Worcester, Massachusetts
| | | | | | | | | | | |
Collapse
|
5
|
Holme M, Rana S, Barriga HMG, Kauscher U, Brooks NJ, Stevens MM. A Robust Liposomal Platform for Direct Colorimetric Detection of Sphingomyelinase Enzyme and Inhibitors. ACS NANO 2018; 12:8197-8207. [PMID: 30080036 PMCID: PMC6117748 DOI: 10.1021/acsnano.8b03308] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/20/2018] [Indexed: 05/23/2023]
Abstract
The enzyme sphingomyelinase (SMase) is an important biomarker for several diseases such as Niemann Pick's, atherosclerosis, multiple sclerosis, and HIV. We present a two-component colorimetric SMase activity assay that is more sensitive and much faster than currently available commercial assays. Herein, SMase-triggered release of cysteine from a sphingomyelin (SM)-based liposome formulation with 60 mol % cholesterol causes gold nanoparticle (AuNP) aggregation, enabling colorimetric detection of SMase activities as low as 0.02 mU/mL, corresponding to 1.4 pM concentration. While the lipid composition offers a stable, nonleaky liposome platform with minimal background signal, high specificity toward SMase avoids cross-reactivity of other similar phospholipases. Notably, use of an SM-based liposome formulation accurately mimics the natural in vivo substrate: the cell membrane. We studied the physical rearrangement process of the lipid membrane during SMase-mediated hydrolysis of SM to ceramide using small- and wide-angle X-ray scattering. A change in lipid phase from a liquid to gel state bilayer with increasing concentration of ceramide accounts for the observed increase in membrane permeability and consequent release of encapsulated cysteine. We further demonstrated the effectiveness of the sensor in colorimetric screening of small-molecule drug candidates, paving the way for the identification of novel SMase inhibitors in minutes. Taken together, the simplicity, speed, sensitivity, and naked-eye readout of this assay offer huge potential in point-of-care diagnostics and high-throughput drug screening.
Collapse
Affiliation(s)
- Margaret
N. Holme
- Department
of Materials, Imperial College London, London, SW7 2AZ, U.K.
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Subinoy Rana
- Department
of Materials, Imperial College London, London, SW7 2AZ, U.K.
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
- School
of Engineering, Newcastle University, Newcastle upon Tyne, NE1
7RU, U.K.
| | - Hanna M. G. Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ulrike Kauscher
- Department
of Materials, Imperial College London, London, SW7 2AZ, U.K.
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
| | | | - Molly M. Stevens
- Department
of Materials, Imperial College London, London, SW7 2AZ, U.K.
- Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London, SW7 2AZ, U.K.
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
6
|
Mawatari S, Hazeyama S, Morisaki T, Fujino T. Enzymatic measurement of ether phospholipids in human plasma after hydrolysis of plasma with phospholipase A 1. Pract Lab Med 2018; 10:44-51. [PMID: 29487891 PMCID: PMC5814366 DOI: 10.1016/j.plabm.2018.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/03/2022] Open
Abstract
Objectives Ethanolamine ether phospholipids (ePE) and choline ether phospholipid (ePC) are present in human serum or plasma. Decreases in ether phospholipids (plasmalogens) in serum (plasma) have been reported in several diseases such as Alzheimer's disease, Parkinson's disease, metabolic syndrome, schizophrenia. Therefore, need for assay of ether phospholipids in plasma may increase in the future. Nowadays, measurement of the ether phospholipids in human plasma seem to depend on tandem mass spectrometry (LC/MS/MS), but a system for LC/MS/MS is too expensive for most of ordinary clinical laboratories, moreover, use and maintenance of the system are time consuming. Design and methods Phospholipase A1 (PLA1) hydrolyzes ester (acyl) bond at the sn-1 position of glycerophospholipids, but it does not act on ether bond at the sn-1 position. We confirmed by a HPLC method that treatment of plasma with PLA1 causes complete disappearance of all diacyl phospholipids, but ether phospholipids remain intact. On the basis of these observations, we developed an enzymatic assay method for ePE and ePC in human plasma by use of a fluorescence plate reader. Results The amount of ePE in human plasma measured by the enzymatic method was well correlated to that by LC/ESI-MS method (R2 > 0.94), but the correlation of ePC between the two methods was bit poorer (R2 > 0.77) than that of ePE. Conclusion The enzymatic method may be applied to assay of ether phospholipids (ePE and ePC) not only in human plasma but also to assay of ePE and ePC in the other tissues. Enzymatic assay method of ether phospholipids in human plasma. To our knowledge, the first report of enzymatic assay method of ether phospholipids. The enzymatic method correlate with HPLC-ELSD method. The method may be applicable to many tissues other than human plasma.
Collapse
Affiliation(s)
- Shiro Mawatari
- Institute of Rheological Functions of Food, 2241 Kubara, Hisayama Chou, Kasuya-gun, Fukuoka 811-2501, Japan
| | - Seira Hazeyama
- Institute of Rheological Functions of Food, 2241 Kubara, Hisayama Chou, Kasuya-gun, Fukuoka 811-2501, Japan
| | - Tomomi Morisaki
- Institute of Rheological Functions of Food, 2241 Kubara, Hisayama Chou, Kasuya-gun, Fukuoka 811-2501, Japan
| | - Takehiko Fujino
- Institute of Rheological Functions of Food, 2241 Kubara, Hisayama Chou, Kasuya-gun, Fukuoka 811-2501, Japan
| |
Collapse
|
7
|
Sphingomyelin as a myelin biomarker in CSF of acquired demyelinating neuropathies. Sci Rep 2017; 7:7831. [PMID: 28798317 PMCID: PMC5552737 DOI: 10.1038/s41598-017-08314-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Fast, accurate and reliable methods to quantify the amount of myelin still lack, both in humans and experimental models. The overall objective of the present study was to demonstrate that sphingomyelin (SM) in the cerebrospinal fluid (CSF) of patients affected by demyelinating neuropathies is a myelin biomarker. We found that SM levels mirror both peripheral myelination during development and small myelin rearrangements in experimental models. As in acquired demyelinating peripheral neuropathies myelin breakdown occurs, SM amount in the CSF of these patients might detect the myelin loss. Indeed, quantification of SM in 262 neurological patients showed a significant increase in patients with peripheral demyelination (p = 3.81 * 10 − 8) compared to subjects affected by non-demyelinating disorders. Interestingly, SM alone was able to distinguish demyelinating from axonal neuropathies and differs from the principal CSF indexes, confirming the novelty of this potential CSF index. In conclusion, SM is a specific and sensitive biomarker to monitor myelin pathology in the CSF of peripheral neuropathies. Most importantly, SM assay is simple, fast, inexpensive, and promising to be used in clinical practice and drug development.
Collapse
|
8
|
Garnacho C, Dhami R, Solomon M, Schuchman EH, Muro S. Enhanced Delivery and Effects of Acid Sphingomyelinase by ICAM-1-Targeted Nanocarriers in Type B Niemann-Pick Disease Mice. Mol Ther 2017; 25:1686-1696. [PMID: 28606376 DOI: 10.1016/j.ymthe.2017.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 01/01/2023] Open
Abstract
Acid sphingomyelinase deficiency in type B Niemann-Pick disease leads to lysosomal sphingomyelin storage, principally affecting lungs, liver, and spleen. Infused recombinant enzyme is beneficial, yet its delivery to the lungs is limited and requires higher dosing than liver and spleen, leading to potentially adverse reactions. Previous studies showed increased enzyme pulmonary uptake by nanocarriers targeted to ICAM-1, a protein overexpressed during inflammation. Here, using polystyrene and poly(lactic-co-glycolic acid) nanocarriers, we optimized lung delivery by varying enzyme dose and nanocarrier concentration, verified endocytosis and lysosomal trafficking in vivo, and evaluated delivered activity and effects. Raising the enzyme load of nanocarriers progressively increased absolute enzyme delivery to all lung, liver, and spleen, over the naked enzyme. Varying nanocarrier concentration inversely impacted lung versus liver and spleen uptake. Mouse intravital and postmortem examination verified endocytosis, transcytosis, and lysosomal trafficking using nanocarriers. Compared to naked enzyme, nanocarriers increased enzyme activity in organs and reduced lung sphingomyelin storage and macrophage infiltration. Although old mice with advanced disease showed reactivity (pulmonary leukocyte infiltration) to injections, including buffer without carriers, antibody, or enzyme, younger mice with mild disease did not. We conclude that anti-ICAM nanocarriers may result in effective lung enzyme therapy using low enzyme doses.
Collapse
Affiliation(s)
- Carmen Garnacho
- Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, 41009 Seville, Spain
| | - Rajwinder Dhami
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA
| | - Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Murakami C, Mizuno S, Kado S, Sakane F. Development of a liquid chromatography-mass spectrometry based enzyme activity assay for phosphatidylcholine-specific phospholipase C. Anal Biochem 2017; 526:43-49. [PMID: 28315318 DOI: 10.1016/j.ab.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 01/01/2023]
Abstract
Phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) hydrolyzes PC to generate the second messenger 1,2-diacylglycerol (DG) and phosphocholine. PC-PLC plays pivotal roles in inflammation, carcinogenesis, tumor progression, atherogenesis, and subarachnoid hemorrhage. Although the activity of PC-PLC in mammalian tissues was discovered approximately 40 years ago, neither the protein nor its gene has been identified. In the present study, we developed a non-radioactive enzyme activity assay for PC-PLC based on mass spectrometric detection of DG following HPLC separation. This new liquid chromatography-mass spectrometry (LC-MS) assay directly determines a specific reaction product, 1-palmitoyl-2-oleoyl-DG, that is generated from 1-palmitoyl-2-oleoyl-PC by purified Bacillus cereus PC-PLC. The LC-MS assay offers several advantages including a lower background (0.02% versus 91%), higher signal background ratio (4242 versus 1.06)/signal noise ratio (7494 versus 4.4), higher sensitivity (≥32-fold), and lower limit of quantitation (0.04 pmol versus 0.69 pmol of PC-PLC), than a conventional fluorometric assay, which indirectly detects phosphocholine produced in the reaction. In addition to Bacillus cereus PC-PLC, the LC-MS assay was applicable to the measurement of mammalian PC-PLC prepared from the mouse brain. The radioisotope-free, highly sensitive and precise LC-MS assay for PC-PLC would be useful for the purification and identification of PC-PLC protein.
Collapse
Affiliation(s)
- Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sayaka Kado
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
10
|
Mintzer RJ, Appell KC, Cole A, Johns A, Pagila R, Polokoff MA, Tabas I, Snider RM, Meurer-Ogden JA. A Novel High-Throughput Screening Format to Identify Inhibitors of Secreted Acid Sphingomyelinase. ACTA ACUST UNITED AC 2016; 10:225-34. [PMID: 15809318 DOI: 10.1177/1087057104272546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Secreted extracellular acid sphingomyelinase (sASM) activity has been suggested to promote atherosclerosis by enhancing subendothelial aggregation and retention of low-density lipoprotein (LDL) with resultant foam cell formation. Compounds that inhibit sASM activity, at neutral pH, may prevent lipid retention and thus would be expected to be anti-atherosclerotic. With the goal of identifying novel compounds that inhibit sASM at pH 7.4, a high-throughput screen was performed. Initial screening was run using a modification of a proven system that measures the hydrolysis of radiolabeled sphingomyelin presented in detergent micelles in a 96-well format. Separation of the radiolabeled aqueous phosphorylcholine reaction product from uncleaved sphingomyelin lipid substrate was achieved by chloroform/methanol extraction. During the screening campaign, a novel extraction procedure was developed to eliminate the use of the hazardous organic reagents. This new procedure exploited the ability of uncleaved, radiolabeled lipid substrate to interact with hydrophobic phenyl-sepharose beads. A comparison of the organic-based and the bead-based extraction sASM screening assays revealed Z′ factor values ranging from 0.7 to 0.95 for both formats. In addition, both assay formats led to the identification of sub- to low micromolar inhibitors of sASM at pH 7.4 with similar IC50values. Subsequent studies demonstrated that both methods were also adaptable to run in a 384-well format. In contrast to the results observed at neutral pH, however, only the organic extraction assay was capable of accurately measuring sASM activity at its pH optimum of 5.0. The advantages and disadvantages of both sASM assay formats are discussed.
Collapse
Affiliation(s)
- Robert J Mintzer
- Departments of Molecular Pharmacology and Cardiovascular Research, Berlex Biosciences, Richmond, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Esposito S, Colicchia S, de la Torre X, Mazzarino M, Botrè F. Liposomes as potential masking agents in sport doping. Part 1: analysis of phospholipids and sphingomyelins in drugs and biological fluids by aqueous normal-phase liquid chromatography-tandem mass spectrometry. Drug Test Anal 2016; 9:75-86. [DOI: 10.1002/dta.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Simone Esposito
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti 1 00197 Rome Italy
| | - Sonia Colicchia
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti 1 00197 Rome Italy
- Dipartimento di Chimica e Tecnologie del Farmaco; ‘Sapienza’- Università di Roma; Piazzale Aldo Moro, 5 00185 Rome Italy
| | - Xavier de la Torre
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti 1 00197 Rome Italy
| | - Monica Mazzarino
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti 1 00197 Rome Italy
| | - Francesco Botrè
- Laboratorio Antidoping; Federazione Medico Sportiva Italiana; Largo Giulio Onesti 1 00197 Rome Italy
- Dipartimento di Medicina Sperimentale; ‘Sapienza’ Università di Roma; Viale Regina Elena 324 00161 Rome Italy
| |
Collapse
|
12
|
Speer A, Sun J, Danilchanka O, Meikle V, Rowland JL, Walter K, Buck BR, Pavlenok M, Hölscher C, Ehrt S, Niederweis M. Surface hydrolysis of sphingomyelin by the outer membrane protein Rv0888 supports replication of Mycobacterium tuberculosis in macrophages. Mol Microbiol 2015; 97:881-97. [PMID: 26036301 DOI: 10.1111/mmi.13073] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2015] [Indexed: 12/19/2022]
Abstract
Sphingomyelinases secreted by pathogenic bacteria play important roles in host-pathogen interactions ranging from interfering with phagocytosis and oxidative burst to iron acquisition. This study shows that the Mtb protein Rv0888 possesses potent sphingomyelinase activity cleaving sphingomyelin, a major lipid in eukaryotic cells, into ceramide and phosphocholine, which are then utilized by Mtb as carbon, nitrogen and phosphorus sources, respectively. An Mtb rv0888 deletion mutant did not grow on sphingomyelin as a sole carbon source anymore and replicated poorly in macrophages indicating that Mtb utilizes sphingomyelin during infection. Rv0888 is an unusual membrane protein with a surface-exposed C-terminal sphingomyelinase domain and a putative N-terminal channel domain that mediated glucose and phosphocholine uptake across the outer membrane in an M. smegmatis porin mutant. Hence, we propose to name Rv0888 as SpmT (sphingomyelinase of Mycobacterium tuberculosis). Erythrocyte membranes contain up to 27% sphingomyelin. The finding that Rv0888 accounts for half of Mtb's hemolytic activity is consistent with its sphingomyelinase activity and the observation that Rv0888 levels are increased in the presence of erythrocytes and sphingomyelin by 5- and 100-fold, respectively. Thus, Rv0888 is a novel outer membrane protein that enables Mtb to utilize sphingomyelin as a source of several essential nutrients during intracellular growth.
Collapse
Affiliation(s)
- Alexander Speer
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jim Sun
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga Danilchanka
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Virginia Meikle
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Rowland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kerstin Walter
- Infection Immunology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Borstel, Germany
| | - Bradford R Buck
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christoph Hölscher
- Infection Immunology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Borstel, Germany.,Cluster of Excellence 'Inflammation at Interfaces', Christian-Albrechts-University, Kiel, Germany
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Dannhausen K, Karlstetter M, Caramoy A, Volz C, Jägle H, Liebisch G, Utermöhlen O, Langmann T. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function. Biochem Biophys Res Commun 2015; 464:434-40. [PMID: 26129774 DOI: 10.1016/j.bbrc.2015.06.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/21/2015] [Indexed: 11/29/2022]
Abstract
Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase(-/-) mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase(-/-) mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase(-/-) mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function.
Collapse
Affiliation(s)
- Katharina Dannhausen
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Albert Caramoy
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Cornelia Volz
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
14
|
Williams DE, Basnet K, Grant KB. Tuning Cerium(IV)-Assisted Hydrolysis of Phosphatidylcholine Liposomes under Mildly Acidic and Neutral Conditions. Chembiochem 2015; 16:1474-82. [PMID: 25955220 DOI: 10.1002/cbic.201500041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/01/2023]
Abstract
With the goal of designing a lysosomal phospholipase mimic, we optimized experimental variables to enhance Ce(IV) -assisted hydrolysis of phosphatidylcholine (PC) liposomes. Our best result was obtained with the chelating agent bis-tris propane (BTP). Similar to the hydrolytic enzyme, Ce(IV) -assisted hydrolysis of PC phosphate ester bonds was higher at lysosomal pH (∼4.8) compared to pH 7.2. In the presence of BTP, the average cleavage yield at ∼pH 4.8 and 37 °C was: 67±1 %, 5.7-fold higher than at ∼pH 7.2 and roughly equivalent to the percent of phospholipid found on the metal-accessible exo leaflet of small liposomes. No Ce(IV) precipitation was observed. When BTP was absent, there was significant turbidity, and the amount of cleavage at ∼pH 4.8 (69±1 %) was 2.1-fold higher than the yield obtained at ∼pH 7.2. Our results show that BTP generates homogenous solutions of Ce(IV) that hydrolyze phosphatidylcholine with enhanced selectivity for lysosomal pH.
Collapse
Affiliation(s)
- Dominique E Williams
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (USA)
| | - Kanchan Basnet
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (USA)
| | - Kathryn B Grant
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (USA).
| |
Collapse
|
15
|
Charkiewicz K, Blachnio-Zabielska A, Zbucka-Kretowska M, Wolczynski S, Laudanski P. Maternal plasma and amniotic fluid sphingolipids profiling in fetal Down syndrome. PLoS One 2015; 10:e0127732. [PMID: 26000716 PMCID: PMC4441425 DOI: 10.1371/journal.pone.0127732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/20/2015] [Indexed: 01/03/2023] Open
Abstract
Introduction Sphingolipids can be potentially involved in the formation of the central and peripheral nervous systems, which are particularly connected with the pathogenesis of Down syndrome. The aim of the study was to determine the concentration of selected sphingolipids in the plasma and amniotic fluid of pregnant patients with fetal Down syndrome. Material and Methods Out of 190 amniocentesis we had 10 patients with confirmed Down syndrome. For the purpose of our control we chose 14 women without confirmed chromosomal aberration. To assess the concentration of 11 sphingolipids in the blood plasma and amniotic fluid we used an ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/MS/MS). Results We showed a significant increase in the concentration of 2 ceramides, C22-Cer and C24:1-Cer, in the plasma of women with fetal Down syndrome. Furthermore we showed a decrease in the concentration of 7 ceramides—C16-Cer, C18-Cer, C18:1-Cer, C20-Cer, C22-Cer, C24:1-Cer, and C24-Cer—in the amniotic fluid of women with fetal Down syndrome. We created ROC curves for all significant sphingolipids in maternal plasma, which set the threshold values and allowed for predicting the likelihood of Down syndrome in the fetus with specific sensitivity and specificity. We demonstrated a significantly higher risk of Down syndrome when the plasma concentration of C22-Cer > 12.66 ng/100ul (sens. 0.9, sp. 0.79, P value = 0.0007) and C24:1-Cer > 33,19 ng/100ul (sens. 0.6, sp. 0.86, P value = 0.0194). Conclusion On the basis of our findings, it seems that the sphingolipids may play a role in the pathogenesis of Down syndrome. Defining their potential as biochemical markers of Down syndrome requires further investigation on a larger group of patients.
Collapse
Affiliation(s)
- Karol Charkiewicz
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, Bialystok, 15-276, Poland
| | | | - Monika Zbucka-Kretowska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Marii Sklodowskiej Curie 24a, Bialystok, 15-273, Poland
| | - Slawomir Wolczynski
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Marii Sklodowskiej Curie 24a, Bialystok, 15-273, Poland
| | - Piotr Laudanski
- Department of Perinatology and Obstetrics, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, Bialystok, 15-276, Poland
| |
Collapse
|
16
|
A Hyphenated Technique based on High-Performance Thin Layer Chromatography for Determining Neutral Sphingolipids: A Proof of Concept. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2020167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Chuang WL, Pacheco J, Cooper S, McGovern MM, Cox GF, Keutzer J, Zhang XK. Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol Genet Metab 2014; 111:209-11. [PMID: 24418695 DOI: 10.1016/j.ymgme.2013.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/25/2022]
Abstract
Niemann-Pick disease type B (NPD-B) is caused by a partial deficiency of acid sphingomyelinase activity and results in the accumulation of lysosomal sphingomyelin (SPM) predominantly in macrophages. Notably, SPM is not significantly elevated in the plasma, whole blood, or urine of NPD-B patients. Here, we show that the de-acylated form of sphingomyelin, lyso-SPM, is elevated approximately 5-fold in dried blood spots (DBS) from NPD-B patients and has no overlap with normal controls, making it a potentially useful biomarker.
Collapse
Affiliation(s)
- Wei-Lien Chuang
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Joshua Pacheco
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Samantha Cooper
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Margaret M McGovern
- Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, New York, NY 11794-8111, USA
| | - Gerald F Cox
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - Joan Keutzer
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA
| | - X Kate Zhang
- Genzyme Corporation, a Sanofi Company, One Mountain Road, Framingham, MA 01701-9322, USA.
| |
Collapse
|
18
|
Postprandial changes in high density lipoproteins in rats subjected to gavage administration of virgin olive oil. PLoS One 2013; 8:e55231. [PMID: 23383120 PMCID: PMC3558467 DOI: 10.1371/journal.pone.0055231] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 12/28/2012] [Indexed: 01/30/2023] Open
Abstract
Background and Aims The present study was designed to verify the influence of acute fat loading on high density lipoprotein (HDL) composition, and the involvement of liver and different segments of small intestine in the changes observed. Methods and Results To address these issues, rats were administered a bolus of 5-ml of extra-virgin olive oil and sacrificed 4 and 8 hours after feeding. In these animals, lipoproteins were analyzed and gene expressions of apolipoprotein and HDL enzymes were assessed in duodenum, jejunum, ileum and liver. Using this experimental design, total plasma and HDL phospholipids increased at the 8-hour-time-point due to increased sphingomyelin content. An increase in apolipoprotein A4 was also observed mainly in lipid-poor HDL. Increased expression of intestinal Apoa1, Apoa4 and Sgms1 mRNA was accompanied by hepatic decreases in the first two genes in liver. Hepatic expression of Abcg1, Apoa1bp, Apoa2, Apoe, Ptlp, Pon1 and Scarb1 decreased significantly following fat gavage, while no changes were observed for Abca1, Lcat or Pla2g7. Significant associations were also noted for hepatic expression of apolipoproteins and Pon1. Manipulation of postprandial triglycerides using an inhibitor of microsomal transfer protein -CP-346086- or of lipoprotein lipase –tyloxapol- did not influence hepatic expression of Apoa1 or Apoa4 mRNA. Conclusion All these data indicate that dietary fat modifies the phospholipid composition of rat HDL, suggesting a mechanism of down-regulation of hepatic HDL when intestine is the main source of those particles and a coordinated regulation of hepatic components of these lipoproteins at the mRNA level, independently of plasma postprandial triglycerides.
Collapse
|
19
|
Cepeda SS, Williams DE, Grant KB. Evaluating metal ion salts as acid hydrolase mimics: metal-assisted hydrolysis of phospholipids at lysosomal pH. Biometals 2012; 25:1207-19. [DOI: 10.1007/s10534-012-9583-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/03/2012] [Indexed: 12/19/2022]
|
20
|
Morita SY, Soda K, Teraoka R, Kitagawa S, Terada T. Specific and sensitive enzymatic measurement of sphingomyelin in cultured cells. Chem Phys Lipids 2012; 165:571-6. [DOI: 10.1016/j.chemphyslip.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/29/2022]
|
21
|
Ferreiro-Vera C, Priego-Capote F, Luque de Castro M. Comparison of sample preparation approaches for phospholipids profiling in human serum by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2012; 1240:21-8. [DOI: 10.1016/j.chroma.2012.03.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 11/29/2022]
|
22
|
|
23
|
Imaging Mass Spectrometry. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/b978-0-12-394297-5.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
|
24
|
Morita SY, Ikeda N, Horikami M, Soda K, Ishihara K, Teraoka R, Terada T, Kitagawa S. Effects of phosphatidylethanolamine N-methyltransferase on phospholipid composition, microvillus formation and bile salt resistance in LLC-PK1 cells. FEBS J 2011; 278:4768-81. [PMID: 21958070 DOI: 10.1111/j.1742-4658.2011.08377.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bile salts are potent detergents and can disrupt cellular membranes, which causes cholestasis and hepatocellular injury. However, the mechanism for the resistance of the canalicular membrane against bile salts is not clear. Phosphatidylethanolamine (PE) is converted to phosphatidylcholine (PC) in the liver by phosphatidylethanolamine N-methyltransferase (PEMT). In this study, to investigate the effect of PEMT expression on the resistance to bile salts, we established an LLC-PK1 cell line stably expressing PEMT. By using enzymatic assays, we showed that the expression of PEMT increased the cellular PC content, lowered the PE content, but had no effect on the sphingomyelin content. Consequently, PEMT expression led to reductions in PE/PC and sphingomyelin/PC ratios. Mass spectrometry demonstrated that PEMT expression increased the levels of PC species containing longer acyl chains and almost all ether-linked PC species. PEMT expression enhanced the resistance to duramycin and lysenin, suggesting decreased ratios of PE and sphingomyelin in the apical membrane, respectively. In addition, SEM revealed that PEMT expression increased the diameter of microvilli. The expression of PEMT resulted in reduced resistance to unconjugated bile salts, but surprisingly in increased resistance to conjugated bile salts, which might be attributable to modifications of the phospholipid composition and/or structure in the apical membrane. Because most bile salts exist as conjugated forms in the bile canaliculi, PEMT may be important in the protection of hepatocytes from bile salts and in cholestatic liver injury.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Functional analysis of two isoforms of phosphatidylethanolamine N-methyltransferase. Biochem J 2010; 432:387-98. [PMID: 20860552 DOI: 10.1042/bj20100490] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The enzyme catalysing the conversion of PE (phosphatidylethanolamine) into PC (phosphatidylcholine), PEMT (PE N-methyltransferase), exists as two isoforms, PEMT-L (longer isoform of PEMT) and PEMT-S (shorter isoform of PEMT). In the present study, to compare the functions of the two isoforms of PEMT, we established HEK (human embryonic kidney)-293 cell lines stably expressing PEMT-L and PEMT-S. Both PEMT-L and PEMT-S were localized in the ER (endoplasmic reticulum). PEMT-L, but not PEMT-S, was N-glycosylated with high-mannose oligosaccharides. The enzymatic activity of PEMT-S was much higher than that of PEMT-L. By using novel enzymatic assays for measuring PC and PE, we showed that PEMT-L and PEMT-S expression remarkably increased the cellular PC content, whereas the PE content was decreased by PEMT-S expression, but was hardly affected by PEMT-L expression. The cellular content of phosphatidylserine was also reduced by the expression of PEMT-L or PEMT-S. MS analyses demonstrated that the expression of PEMT-S led to more increases in the molecular species of PC and PC-O (ether-linked PC) with longer polyunsaturated chains than that of PEMT-L, whereas the PC-O species with shorter chains were increased more by PEMT-L expression than by PEMT-S expression, suggesting a difference in the substrate specificity of PEMT-L and PEMT-S. On the other hand, various PE and PE-O species were decreased by PEMT-S expression. In addition, PEMT-L and PEMT-S expression promoted the proliferation of HEK-293 cells. Based upon these findings, we propose a model in which the enzymatic activity and substrate specificity are regulated by the glycosylated N-terminal region of PEMT-L localized in the ER lumen.
Collapse
|
26
|
Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci U S A 2010; 108:551-6. [PMID: 21187433 DOI: 10.1073/pnas.1014434108] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dietary absorption is a major way for mammals to obtain cholesterol, which is mediated by Niemann-Pick C1-like 1 (NPC1L1) via vesicular endocytosis. One fundamental question in this process is how free cholesterol is efficiently taken up through the internalization of NPC1L1. Using exogenously expressed NPC1L1-EGFP, we show that the lipid raft proteins flotillins associate with NPC1L1 and their localization is regulated by NPC1L1 during intracellular trafficking. Furthermore, flotillins are essential for NPC1L1-mediated cellular cholesterol uptake, biliary cholesterol reabsorption, and the regulation of lipid levels in mice. Together with NPC1L1, they form cholesterol-enriched membrane microdomains, which function as carriers for bulk of cholesterol. The hypocholesterolemic drug ezetimibe disrupts the association between NPC1L1 and flotillins, which blocks the formation of the cholesterol-enriched microdomains. Our findings reveal a functional role of flotillins in NPC1L1-mediated cholesterol uptake and elucidate the formation of NPC1L1-flotillins-postive cholesterol-enriched membrane microdomains as a mechanism for efficient cholesterol absorption.
Collapse
|
27
|
Gupta VR, Wilson BA, Blanke SR. Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA. Cell Microbiol 2010; 12:1517-33. [PMID: 20545942 DOI: 10.1111/j.1462-5822.2010.01487.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Plasma membrane sphingomyelin (SM) binds the Helicobacter pylori vacuolating toxin (VacA) to the surface of epithelial cells. To evaluate the importance of SM for VacA cellular entry, we characterized toxin uptake and trafficking within cells enriched with synthetic variants of SM, whose intracellular trafficking properties are strictly dependent on the acyl chain lengths of their sphingolipid backbones. While toxin binding to the surface of cells was independent of acyl chain length, cells enriched with 12- or 18-carbon acyl chain variants of SM (e.g. C12-SM or C18-SM) were more sensitive to VacA, as indicated by toxin-induced cellular vacuolation, than those enriched with shorter 2- or 6-carbon variants (e.g. C2-SM or C6-SM). In C18-SM-enriched cells, VacA was taken into cells by a previously described Cdc42-dependent pinocytic mechanism, localized initially to GPI-enriched vesicles, and ultimately trafficked to Rab7/Lamp1 compartments. In contrast, within C2-SM-enriched cells, VacA was taken up at a slower rate by a Cdc42-independent mechanism and trafficked to Rab11 compartments. VacA-associated predominantly with detergent-resistant membranes (DRMs) in cells enriched with C18-SM, but predominantly with non-DRMs in C2-SM-enriched cells. These results suggest that SM is required for targeting VacA to membrane rafts important for subsequent Cdc42-dependent pinocytic cellular entry.
Collapse
Affiliation(s)
- Vijay R Gupta
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, B103 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
28
|
Young SA, Smith TK. The essential neutral sphingomyelinase is involved in the trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma brucei. Mol Microbiol 2010; 76:1461-82. [PMID: 20398210 PMCID: PMC2904498 DOI: 10.1111/j.1365-2958.2010.07151.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2010] [Indexed: 12/26/2022]
Abstract
Sphingomyelin is the main sphingolipid in Trypanosoma brucei, the causative agent of African sleeping sickness. In vitro and in vivo characterization of the T. brucei neutral sphingomyelinase demonstrates that it is directly involved in sphingomyelin catabolism. Gene knockout studies in the bloodstream form of the parasite indicate that the neutral sphingomyelinase is essential for growth and survival, thus highlighting that the de novo biosynthesis of ceramide is unable to compensate for the loss of sphingomyelin catabolism. The phenotype of the conditional knockout has given new insights into the highly active endocytic and exocytic pathways in the bloodstream form of T. brucei. Hence, the formation of ceramide in the endoplasmic reticulum affects post-Golgi sorting and rate of deposition of newly synthesized GPI-anchored variant surface glycoprotein on the cell surface. This directly influences the corresponding rate of endocytosis, via the recycling endosomes, of pre-existing cell surface variant surface glycoprotein. The trypanosomes use this coupled endocytic and exocytic mechanism to maintain the cell density of its crucial variant surface glycoprotein protective coat. TbnSMase is therefore genetically validated as a drug target against African trypanosomes, and suggests that interfering with the endocytic transport of variant surface glycoprotein is a highly desirable strategy for drug development against African trypanosomasis.
Collapse
Affiliation(s)
- Simon A Young
- Biomolecular Science, The North Haugh, The University, St. AndrewsFife Scotland KY16 9ST, UK
| | - Terry K Smith
- Biomolecular Science, The North Haugh, The University, St. AndrewsFife Scotland KY16 9ST, UK
| |
Collapse
|
29
|
Löhmann C, Schachmann E, Dandekar T, Villmann C, Becker CM. Developmental profiling by mass spectrometry of phosphocholine containing phospholipids in the rat nervous system reveals temporo-spatial gradients. J Neurochem 2010; 114:1119-34. [PMID: 20524967 DOI: 10.1111/j.1471-4159.2010.06836.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phospholipids are important components of the nervous system, in particular of neuronal and glial membranes. Ontogenesis of the nervous system is associated with fundamental alterations in lipid patterns. Here, matrix-assisted-laser-desorption/ionization time-of-flight mass spectrometry and electro-spray-ionization mass spectrometry were combined to analyze phosphatidylcholines and sphingomyelins, allowing an assessment of individual molecular species. Analysis in eight different regions of the nervous system during development of the Wistar rat, from embryonic day 14 to adulthood, produced informative patterns of developmental and regional changes in lipid contents. Phospholipids containing long chain fatty acyl residues exhibited a characteristic patterning, with dramatic increases in the caudal parts of the nervous system 2 weeks after birth. In contrast, relative contents of short chain phosphatidylcholines were low in the perinatal CNS, decreasing even further during development. The relative amounts of sphingomyelins carrying the fatty acid residues 18:0, 22:0, 24:0, and 24:1 increased developmentally in the caudal nervous system. The rostro-caudal gradient of long chain lipid accumulation is matched by expression gradients of myelin structural and regulatory genes, as evident from bioinformatic analysis. These observations characterize the accumulation of individual lipid classes in the nervous system as a highly regulated process, with structurally related lipids showing a similar temporo-spatial distribution and developmental patterning.
Collapse
Affiliation(s)
- Christian Löhmann
- Emil-Fischer-Zentrum, Institut für Biochemie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
30
|
Jackson SN, Woods AS. Direct profiling of tissue lipids by MALDI-TOFMS. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2822-9. [PMID: 19095508 PMCID: PMC2945280 DOI: 10.1016/j.jchromb.2008.11.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/17/2008] [Accepted: 11/20/2008] [Indexed: 11/20/2022]
Abstract
Advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) have allowed for the direct analysis of biological molecules from tissue. Although most of the early studies of direct tissue profiling by MALDI-TOFMS have focused on proteins and peptides, analysis of lipids has increased dramatically in recent years. This review gives an overview of the factors to consider when analyzing lipids directly from tissue and some recent examples of the use of MALDI-TOFMS for the direct profiling of lipids in tissue.
Collapse
Affiliation(s)
| | - Amina S. Woods
- NIDA IRP, NIH, 333 Cassell Drive, Baltimore, MD 21224, United States
| |
Collapse
|
31
|
Morita SY, Ueda K, Kitagawa S. Enzymatic measurement of phosphatidic acid in cultured cells. J Lipid Res 2009; 50:1945-52. [PMID: 19369695 DOI: 10.1194/jlr.d900014-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we developed a novel enzymatic method for measuring phosphatidic acid (PA) in cultured cells. The enzymatic reaction sequence of the method involves hydrolysis of PA to produce glycerol-3-phosphate (G3P), which is then oxidized by G3P oxidase to generate hydrogen peroxide. In the presence of peroxidase, hydrogen peroxide reacted with Amplex Red to produce highly fluorescent resorufin. We found that lipase from Pseudomonas sp. can completely hydrolyze PA to G3P and FAs. The calibration curve for PA measurement was linear between 20 and 250 microM, and the detection limit was 5 microM (50 pmol in the reaction mixture). We also modified the method for the enzymatic measurement of lysophosphatidic acid. By this new method, we determined the PA content in the lipid extract from HEK293 cells. The cellular content of PA was decreased with increasing cell density but not correlated with the proliferation rate. The diacylglycerol kinase inhibitor R59949 markedly reduced the cellular PA content, suggesting the diacylglycerol kinase activity was involved in a large part of the PA production in HEK293 cells. This novel method for PA quantification is simple, rapid, specific, sensitive, and high-throughput and will help to study the biological functions of PA and its related enzymes.
Collapse
Affiliation(s)
- Shin-ya Morita
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | |
Collapse
|
32
|
Ageta H, Asai S, Sugiura Y, Goto-Inoue N, Zaima N, Setou M. Layer-specific sulfatide localization in rat hippocampus middle molecular layer is revealed by nanoparticle-assisted laser desorption/ionization imaging mass spectrometry. Med Mol Morphol 2009; 42:16-23. [PMID: 19294488 DOI: 10.1007/s00795-008-0427-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 10/29/2008] [Indexed: 12/11/2022]
Abstract
Lipids are major structural component of the brain and play key roles in signaling functions in the central nervous system (CNS), such as the hippocampus. In particular, sulfatide is an abundant glycosphingolipid component of both the central and the peripheral nervous system and is an essential lipid component of myelin membranes. Lack of sulfatide is observed in myelin deformation and neurological deficits. Previous studies with antisulfatide antibody have investigated distribution of sulfatide expression in neurons; however, this method cannot distinguish the differences of sulfatide lipid species raised by difference of carbon-chain length in the ceramide portion in addition to the differences of sulfatide and seminolipid. In this study, we solved the problem by our recently developed nanoparticle-assisted laser desorption/ionization (nano-PALDI)-based imaging mass spectrometry (IMS). We revealed that the level of sulfatide in the middle molecular layer was significantly higher than that in granule cell layers and the inner molecular layer in the dentate gyrus of rat hippocampus.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Zhang XK, Elbin CS, Chuang WL, Cooper SK, Marashio CA, Beauregard C, Keutzer JM. Multiplex enzyme assay screening of dried blood spots for lysosomal storage disorders by using tandem mass spectrometry. Clin Chem 2008; 54:1725-8. [PMID: 18719200 DOI: 10.1373/clinchem.2008.104711] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Reports of the use of multiplex enzyme assay screening for Pompe disease, Fabry disease, Gaucher disease, Niemann-Pick disease types A and B, and Krabbe disease have engendered interest in the use of this assay in newborn screening. We modified the assay for high-throughput use in screening laboratories. METHODS We optimized enzyme reaction conditions and procedures for the assay, including the concentrations of substrate (S) and internal standard (IS), assay cocktail compositions, sample clean-up procedures, and mass spectrometer operation. The S and IS for each enzyme were premixed and bottled at an optimized molar ratio to simplify assay cocktail preparation. Using the new S:IS ratio, we validated the modified assay according to CLSI guidelines. Stability of the S, IS, and assay cocktails were investigated. Dried blood spots from 149 healthy adults, 100 newborns, and 60 patients with a lysosomal storage disorder (LSD) were tested using the modified assay. RESULTS In our study, the median enzyme activity measured in adults was generally increased 2-3-fold compared to the original method, results indicating higher precision. In the multiplex format, each of the 5 modified enzyme assays enabled unambiguous differentiation between samples from healthy individuals (adults and newborns) and the corresponding disease-specific samples. CONCLUSIONS The modified multiplex enzyme assay with premixed S and IS is appropriate for use in high-throughput screening laboratories.
Collapse
|
34
|
Macauley SL, Sidman RL, Schuchman EH, Taksir T, Stewart GR. Neuropathology of the acid sphingomyelinase knockout mouse model of Niemann-Pick A disease including structure-function studies associated with cerebellar Purkinje cell degeneration. Exp Neurol 2008; 214:181-92. [PMID: 18778708 DOI: 10.1016/j.expneurol.2008.07.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 07/29/2008] [Accepted: 07/31/2008] [Indexed: 11/16/2022]
Abstract
Niemann-Pick A (NP-A) is an inherited metabolic (lysosomal storage) disease characterized by neurovisceral accumulation of sphingomyelin due to deficiency of acid sphingomyelinase (ASM). An ASM knockout (ASMKO) mouse model of NP-A is available through targeted disruption of the parent gene. This study presents the pattern and time course of lysosomal pathology and neurodegeneration in the ASMKO mouse nervous system. Cells throughout the nervous system developed the classic foamy appearance associated with lysosomal storage disorders. Despite this, neurons were capable of retrogradely transporting dyes within established brain pathways comparable to control animals. A silver degeneration staining method demonstrated widespread damage in the form of 'classic' impregnation of cells, fibers and synaptic terminals. Of particular interest was the degeneration of Purkinje cells (PC) within the cerebellum, beginning by 7 weeks of age in parasagittal bands and culminating with near complete degeneration of this cell type by 20 weeks. In parallel, ASMKO mice had progressively deteriorating motor performance on two versions of the rotating rod test (accelerating and rocking). ASMKO mice at 5-7 weeks of age performed similarly to controls on both rotating rod tests, but performance sharply deteriorated between 7 and 20 weeks of age. This study further characterized the neuropathology associated with ASM deficiency, and identifies quantitative histological and behavioral endpoints for evaluation of therapeutic intervention in this authentic NP-A mouse model.
Collapse
|
35
|
Hu Y, Le Leu RK, Belobrajdic D, Young GP. The potential of sphingomyelin as a chemopreventive agent in AOM-induced colon cancer model: wild-type and p53+/- mice. Mol Nutr Food Res 2008; 52:558-66. [PMID: 18324704 DOI: 10.1002/mnfr.200700258] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A protective effect of sphingolipids on colorectal cancer (CRC) has been reported in certain mouse strains. It is unknown if sphingolipids are protective in a p53 deficiency mouse model of CRC. This study investigated the effect of sphingomyelin (SM) on intestinal sphingomyelinase (SMase) activity, colonic epithelial biology and azoxymethane (AOM)-induced CRC. Groups of wild-type (C57BL/6J) and p53+/- mice were fed 0.1% SM diet for 4 wk, administered a single AOM injection and then killed 6 h later to measure apoptosis and proliferation. Separately, both mouse types were fed 0.05% SM diet, administered three AOM injections and killed 33-38 wk later to measure tumour formation. SM significantly increased SMase activity and reduced proliferation (p < 0.05) in wild-type and p53+/- mice. SM did not regulate baseline apoptosis, apoptotic response to AOM or apoptosis in tumours, nor did it restore defective apoptosis in p53+/- mice. There was a nonsignificant trend to reduced tumour incidence with SM in wild-type (p = 0.15) and p53+/- (p = 0.12) mice. In conclusion, while increasing intestinal SMase activity and suppressing proliferation, SM did not promote any form of apoptosis and failed to achieve significant protection in these mice. Further investigation to understand the variable effect of SM in preventing CRC is warranted.
Collapse
Affiliation(s)
- Ying Hu
- Department of Medicine, Flinders University of South Australia, Bedford Park, Australia.
| | | | | | | |
Collapse
|
36
|
Gupta VR, Patel HK, Kostolansky SS, Ballivian RA, Eichberg J, Blanke SR. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog 2008; 4:e1000073. [PMID: 18497859 PMCID: PMC2374909 DOI: 10.1371/journal.ppat.1000073] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 04/15/2008] [Indexed: 12/18/2022] Open
Abstract
The vacuolating cytotoxin (VacA) of the gastric pathogen Helicobacter pylori binds and enters epithelial cells, ultimately resulting in cellular vacuolation. Several host factors have been reported to be important for VacA function, but none of these have been demonstrated to be essential for toxin binding to the plasma membrane. Thus, the identity of cell surface receptors critical for both toxin binding and function has remained elusive. Here, we identify VacA as the first bacterial virulence factor that exploits the important plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor. Depletion of plasma membrane SM with sphingomyelinase inhibited VacA-mediated vacuolation and significantly reduced the sensitivity of HeLa cells, as well as several other cell lines, to VacA. Further analysis revealed that SM is critical for VacA interactions with the plasma membrane. Restoring plasma membrane SM in cells previously depleted of SM was sufficient to rescue both toxin vacuolation activity and plasma membrane binding. VacA association with detergent-resistant membranes was inhibited in cells pretreated with SMase C, indicating the importance of SM for VacA association with lipid raft microdomains. Finally, VacA bound to SM in an in vitro ELISA assay in a manner competitively inhibited by lysenin, a known SM-binding protein. Our results suggest a model where VacA may exploit the capacity of SM to preferentially partition into lipid rafts in order to access the raft-associated cellular machinery previously shown to be required for toxin entry into host cells. Sensitivity to toxins produced by pathogenic bacteria is largely dictated by the presence or absence of toxin receptors on the plasma membrane of host cells. VacA is an important toxin produced by the pathogenic bacterium Helicobacter pylori, which infects the human stomach and causes gastric ulcer disease and stomach cancer. VacA binds and enters human cells, and induces several changes resulting ultimately in the death of the intoxicated cells. However, the identity of the VacA receptor responsible for toxin binding and function has remained a topic of debate. In this paper, we demonstrate that sphingomyelin, a lipid on the surface of cells with important membrane structural and signaling properties, functions as a VacA receptor. We demonstrate that VacA binds to sphingomyelin, and that presence or absence of sphingomyelin on the plasma membrane dictates how much VacA binds to the cell surface, and therefore, how sensitive cells are to the toxin. The identification of sphingomyelin also provides a conceptual framework for how VacA may enter cells through specialized functional domains on the surface of cells. This is the first example of a bacterial toxin that exploits sphingomyelin as a receptor, and future work will focus on developing strategies to block VacA interactions with sphingomyelin, thereby protecting cells from the downstream consequences of toxin action.
Collapse
Affiliation(s)
- Vijay R. Gupta
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Hetal K. Patel
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Sean S. Kostolansky
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Roberto A. Ballivian
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Joseph Eichberg
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Biological rafts were identified and isolated at 37 degrees C and neutral pH. The strategy for isolating rafts utilized membrane tension to generate large domains. For lipid compositions that led only to microscropically unresolvable rafts in lipid bilayers, membrane tension led to the appearance of large, observable rafts. The large rafts converted back to small ones when tension was relieved. Thus, tension reversibly controls raft enlargement. For cells, application of membrane tension resulted in several types of large domains; one class of the domains was identified as rafts. Tension was generated in several ways, and all yielded raft fractions that had essentially the same composition, validating the principle of tension as a means to merge small rafts into large rafts. It was demonstrated that sphingomyelin-rich vesicles do not rise during centrifugation in sucrose gradients because they resist lysis, necessitating that, contrary to current experimental practice, membrane material be placed toward the top of a gradient for raft fractionation. Isolated raft fractions were enriched in a GPI-linked protein, alkaline phosphatase, and were poor in Na(+)-K(+) ATPase. Sphingomyelin and gangliosides were concentrated in rafts, the expected lipid raft composition. Cholesterol, however, was distributed equally between raft and nonraft fractions, contrary to the conventional view.
Collapse
|
38
|
Okino N, Ito M. Ceramidase enhances phospholipase C-induced hemolysis by Pseudomonas aeruginosa. J Biol Chem 2007; 282:6021-30. [PMID: 17202150 DOI: 10.1074/jbc.m603088200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the purification, molecular cloning, and characterization of a neutral ceramidase from Pseudomonas aeruginosa strain AN17 (Okino, N., Tani, M., Imayama, S., and Ito, M. (1998) J. Biol. Chem. 273, 14368-14373; Okino, N., Ichinose, S., Omori, A., Imayama, S., Nakamura, T., and Ito, M. (1999) J. Biol. Chem. 274, 36616-36622). Interestingly, the gene encoding the enzyme is adjacent to that encoding hemolytic phospholipase C (plcH) in the genome of Pseudomonas aeruginosa, which is a well known pathogen for opportunistic infections. We report here that simultaneous production of PlcH and ceramidase was induced by several lipids and PlcH-induced hemolysis was significantly enhanced by the action of the ceramidase. When the strain was cultured with sphingomyelin or phosphatidylcholine, production of both enzymes drastically increased, causing the increase of hemolytic activity in the cell-free culture supernatant. Ceramide and sphingosine were also effective in promoting the production of ceramidase but not that of PlcH. Furthermore, we found that the hemolytic activity of a Bacillus cereus sphingomyelinase was significantly enhanced by addition of a recombinant Pseudomonas ceramidase. TLC analysis of the erythrocytes showed that ceramide produced from sphingomyelin by the sphingomyelinase was partly converted to sphingosine by the ceramidase. A ceramidase-null mutant strain caused much less hemolysis of sheep erythrocytes than did the wild-type strain. Sphingosine was detected in the erythrocytes co-cultured with the wild-type strain but not the mutant strain. Finally, we found that the enhancement of PlcH-induced hemolysis by the ceramidase occurred in not only sheep but also human erythrocytes. These results may indicate that the ceramidase enhances the PlcH-induced cytotoxicity and provide new insights into the role of sphingolipid-degrading enzymes in the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
39
|
Jackson SN, Wang HYJ, Woods AS. In situ structural characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:17-26. [PMID: 17005416 DOI: 10.1016/j.jasms.2006.08.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/14/2006] [Accepted: 08/15/2006] [Indexed: 05/12/2023]
Abstract
Lipids are major structural components of biomembranes. Negatively charged species such as phosphatidylinositol, phosphatidylserine, sulfatides, and the zwitterionic phosphatidylethanolamines are major components of the cytoplasmic surface of the cellular membrane lipid bilayer and play a key role in several receptors signaling functions. Lipids are not just involved in metabolic and neurological diseases; negatively charged lipids in particular play crucial roles in physiological events such as signal transduction, receptors, and enzymatic activation, as well as storage and release of therapeutic drugs and toxic chemicals in the body. Due to the importance of their role in signaling, the field of lipidomics has rapidly expanded in recent years. In the present study, direct probing of tissue slices with negative ion mode matrix assisted laser desorption/ionization mass spectrometry was employed to profile the distribution of lipids in the brain. In total, 32 lipid species consisting of phosphatidylethanolamines, phosphatidylglycerol, phosphatidylinositols, phosphatidylserines, and sulfatides were assigned. To confirm the structure of lipid species, MALDI-MS/MS analysis was conducted. Product-ion spectra obtained in negative ion mode allow for the assignment of the head groups and the fatty acid chains for the lipid species.
Collapse
Affiliation(s)
- Shelley N Jackson
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
40
|
Nelson JB, O’Hara SP, Small AJ, Tietz PS, Choudhury AK, Pagano RE, Chen XM, LaRusso NF. Cryptosporidium parvum infects human cholangiocytes via sphingolipid-enriched membrane microdomains. Cell Microbiol 2006; 8:1932-45. [PMID: 16848787 PMCID: PMC2185745 DOI: 10.1111/j.1462-5822.2006.00759.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryptosporidium parvum attaches to intestinal and biliary epithelial cells via specific molecules on host-cell surface membranes including Gal/GalNAc-associated glycoproteins. Subsequent cellular entry of this parasite depends on host-cell membrane alterations to form a parasitophorous vacuole via activation of phosphatidylinositol 3-kinase (PI-3K)/Cdc42-associated actin remodelling. How C. parvum hijacks these host-cell processes to facilitate its infection of target epithelia is unclear. Using specific probes to known components of sphingolipid-enriched membrane microdomains (SEMs), we detected aggregation of host-cell SEM components at infection sites during C. parvum infection of cultured human biliary epithelial cells (i.e. cholangiocytes). Activation and membrane translocation of acid-sphingomyelinase (ASM), an enzyme involved in SEM membrane aggregation, were also observed in infected cells. Pharmacological disruption of SEMs and knockdown of ASM via a specific small interfering RNA (siRNA) significantly decreased C. parvum attachment (by approximately 84%) and cellular invasion (by approximately 88%). Importantly, knockdown of ASM and disruption of SEMs significantly blocked C. parvum-induced accumulation of Gal/GalNAc-associated glycoproteins at infection sites by approximately 90%. Disruption of SEMs and knockdown of ASM also significantly blocked C. parvum-induced activation of host-cell PI-3K and subsequent accumulation of Cdc42 and actin by up to 75%. Our results suggest an important role of SEMs for C. parvum attachment to and entry of host cells, likely via clustering of membrane-binding molecules and facilitating of C. parvum-induced actin remodelling at infection sites through activation of the PI-3K/Cdc42 signalling pathway.
Collapse
Affiliation(s)
- Jeremy B. Nelson
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Steven P. O’Hara
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Aaron J. Small
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Pamela S. Tietz
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Amit K. Choudhury
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Richard E. Pagano
- Thoracic Diseases Research Unit, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Xian-Ming Chen
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- For correspondence. E-mail ; Tel. (+1) 507 266 0346; Fax (+1) 507 284 0762
| | - Nicholas F. LaRusso
- Center for Basic Research in Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- E-mail ; Tel. (+1) 507 284 1006; Fax (+1) 507 284 0762
| |
Collapse
|
41
|
Lenne PF, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A, Guo XJ, Rigneault H, He HT, Marguet D. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 2006; 25:3245-56. [PMID: 16858413 PMCID: PMC1523176 DOI: 10.1038/sj.emboj.7601214] [Citation(s) in RCA: 359] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 06/06/2006] [Indexed: 11/08/2022] Open
Abstract
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (Ø <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Institut Fresnel, Université Paul Cézanne, Marseille, France
- CNRS UMR 6133, Marseille, France
| | - Laure Wawrezinieck
- Institut Fresnel, Université Paul Cézanne, Marseille, France
- CNRS UMR 6133, Marseille, France
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, UMR 631, Marseille, France
- CNRS, UMR 6102, Marseille, France
| | - Fabien Conchonaud
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, UMR 631, Marseille, France
- CNRS, UMR 6102, Marseille, France
| | - Olivier Wurtz
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, UMR 631, Marseille, France
- CNRS, UMR 6102, Marseille, France
| | - Annie Boned
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, UMR 631, Marseille, France
- CNRS, UMR 6102, Marseille, France
| | - Xiao-Jun Guo
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, UMR 631, Marseille, France
- CNRS, UMR 6102, Marseille, France
- Laboratoire de Biochimie et Physicochimie des Membranes Biologiques, Université Paul Cézanne, Marseille, France
| | - Hervé Rigneault
- Institut Fresnel, Université Paul Cézanne, Marseille, France
- CNRS UMR 6133, Marseille, France
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, UMR 631, Marseille, France
- CNRS, UMR 6102, Marseille, France
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Marseille, France
- INSERM, UMR 631, Marseille, France
- CNRS, UMR 6102, Marseille, France
- Centre d'Immunologie de Marseille Luminy, CNRS, Parc Scientifique de Luminy, Case 906, 13288 Marseille Cedex 13009, France. Tel.: +33 491 269 128; Fax: +33 491 269 430; E-mail:
| |
Collapse
|
42
|
Woods AS, Jackson SN. Brain tissue lipidomics: direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS JOURNAL 2006. [PMID: 16796390 DOI: 10.1208/aapsj080244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lipidomics is the new frontier in biomolecular structural studies. Not only are lipids the main components in membranes that define the contours of the cell and its organelles, but they are also used for storage. Lipids form stable noncovalent complexes with proteins as well as with many drugs. Lipids are a storage depot for drugs and certain types of organic molecules. To study lipid composition and distribution, complex and time-consuming techniques are used. However, recent advances in mass spectrometry, mainly matrix-assisted laser desorption/ionization (MALDI) have made it possible to directly probe tissues to study structural components, as well as for the localization of drugs. Direct tissue imaging is a powerful tool as it gives a more complete and accurate structural picture and can trace and follow where drugs localize in tissue with minimal anatomical disruption and a minimum of manipulations. Hence, we believe that in addition to its accuracy and efficiency, this new approach will lead to a better understanding of physiological processes as well as the pathophysiology of disease.
Collapse
Affiliation(s)
- Amina S Woods
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
43
|
Woods AS, Jackson SN. Brain tissue lipidomics: direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS JOURNAL 2006; 8:E391-5. [PMID: 16796390 PMCID: PMC3231574 DOI: 10.1007/bf02854910] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipidomics is the new frontier in biomolecular structural studies. Not only are lipids the main components in membranes that define the contours of the cell and its organelles, but they are also used for storage. Lipids form stable noncovalent complexes with proteins as well as with many drugs. Lipids are a storage depot for drugs and certain types of organic molecules. To study lipid composition and distribution, complex and time-consuming techniques are used. However, recent advances in mass spectrometry, mainly matrix-assisted laser desorption/ionization (MALDI) have made it possible to directly probe tissues to study structural components, as well as for the localization of drugs. Direct tissue imaging is a powerful tool as it gives a more complete and accurate structural picture and can trace and follow where drugs localize in tissue with minimal anatomical disruption and a minimum of manipulations. Hence, we believe that in addition to its accuracy and efficiency, this new approach will lead to a better understanding of physiological processes as well as the pathophysiology of disease.
Collapse
Affiliation(s)
- Amina S Woods
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
44
|
He Q, Riley RT, Sharma RP. Myriocin prevents fumonisin B1-induced sphingoid base accumulation in mice liver without ameliorating hepatotoxicity. Food Chem Toxicol 2005; 43:969-79. [PMID: 15811577 DOI: 10.1016/j.fct.2005.01.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/25/2005] [Accepted: 01/30/2005] [Indexed: 11/25/2022]
Abstract
Fumonisin B(1) (FB(1)), a mycotoxin produced by Fusarium verticillioides present on corn and corn-based products, causes species- and organ-specific diseases. The hepatotoxic effects of FB(1) in mice have been closely correlated with the accumulation of free sphinganine, a marker for ceramide synthase inhibition, and reduced biosynthesis of more complex sphingolipids. It has been shown that FB(1) modulates expression of many cell signaling factors. In the current study we used myriocin, a specific inhibitor of serine palmitoyltransferase, to investigate the role of free sphinganine accumulation in FB(1)-induced hepatotoxicity and increased expression of selected signaling genes in BALB/c mice. The mice were pretreated daily with intraperitoneal injection of 1.0 mg/kg myriocin 30 min before subcutaneous injections of 2.25 mg/kg of FB(1) for 3 days. Results showed that myriocin alone was not hepatotoxic and the combination of myriocin plus FB(1) completely prevented the FB(1)-induced elevation of hepatic free sphinganine and prevented the FB(1)-induced induction of selected cell signaling genes, suggesting that accumulation of free sphinganine and/or its metabolites contribute to the FB(1)-modulation of the cell signaling factors. However, the combination of myriocin and FB(1) did not prevent FB(1)-increased concentration of plasma alanine aminotransferase and only slightly attenuated aspartate aminotransferase; it did not affect the FB(1)-induced hepatocyte apoptosis or increased cell proliferation. A longer combined treatment of myriocin and FB(1) was highly toxic. The hepatotoxic effects in mice seen in this study are most likely due to a combination of factors including accumulation of free sphinganine, depletion of more complex sphingolipids and sphingomyelin, or other unknown mechanisms.
Collapse
Affiliation(s)
- Quanren He
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389, USA
| | | | | |
Collapse
|
45
|
Osuchowski MF, Edwards GL, Sharma RP. Fumonisin B1-Induced Neurodegeneration in Mice after Intracerebroventricular Infusion is Concurrent with Disruption of Sphingolipid Metabolism and Activation of Proinflammatory Signaling. Neurotoxicology 2005; 26:211-21. [PMID: 15713342 DOI: 10.1016/j.neuro.2004.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Fumonisin B1 (FB1), a mycotoxin produced by Fusarium verticillioides, causes equine leukoencephalomalacia, a condition not reproduced in any other species. We hypothesized that direct exposure of murine brain to FB1 will result in neurotoxicity, characterized by biochemical and pathological alterations. The present study compared the toxicity of FB1 in mouse brain after an intracerebroventricular (icv) or subcutaneous (sc) infusion. Female BALB/c mice (5/group) were infused (0.5 microl/h) with total doses of 0, 10 or 100 microg FB1 in saline over 7 days via osmotic pumps implanted either via icv cannulation of the ventricle or via the sc route. One day after the last day of treatment, brains were dissected either fresh or after intracardiac paraformaldehyde fixation. In mice given 100 microg of FB1 icv, FluoroJade B staining revealed neurodegeneration in the cortex, and anti-glial fibrillary acidic protein staining detected activated astrocytes in the hippocampus. High performance liquid chromatography indicated accumulation of free sphinganine in animals given FB1 icv in all brain regions and increased free sphingosine after the 100 microg FB1 in the cortex. The concentration of cortical sphingomyelin and complex sphingolipids remained unchanged. The icv administration of FB1 induced expression of tumor necrosis factor alpha, interleukin-1beta, interleukin-6 and interferon gamma after both doses, assayed by the real-time polymerase chain reaction. The sc administration of 100 microg FB1 caused slight sphinganine accumulation and increased IL-1beta expression in cortex only. Results indicated that icv injection of FB1 caused neurodegeneration with simultaneous inhibition of de novo ceramide synthesis, stimulation of astrocytes, and upregulation of pro-inflammatory cytokines in the murine brain. A relative lack of FB1 availability into the brain could be responsible for the absence of its neurotoxicity in mouse.
Collapse
Affiliation(s)
- Marcin F Osuchowski
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602-7389, USA
| | | | | |
Collapse
|
46
|
Jackson SN, Wang HYJ, Woods AS, Ugarov M, Egan T, Schultz JA. Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:133-8. [PMID: 15694763 DOI: 10.1016/j.jasms.2004.10.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 05/18/2023]
Abstract
After water, lipids are the most common biomolecules found in the brain (12%). A brief perusal of the physiology, anatomy, and pathophysiology of the brain illustrates the importance of lipids. Recent advances in mass spectrometry have allowed the direct probing of tissues. However, most studies have focused on proteins. In the present work, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and MALDI-ion mobility (IM)-TOFMS were employed for direct analysis of phospholipids in rat brain tissue. Molecular ions (MH+) corresponding to phosphatidylcholines, phosphatidylethanolamines, and sphingomyelin, were recorded. When studying pharmacology, we learn that many therapeutic compounds are stored in the body's adipose tissue. MALDI-TOFMS and MALDI- IM-TOFMS were thus used to analyze rat brain tissue with chlorisondamine added directly onto the tissue slice. With both techniques, noncovalent complexes between the tissue phospholipids and chlorisondamine were detected. In addition, MALDI-IM-TOFMS of noncovalent complexes between phospholipids and chlorisondamine displayed a mobility between that of an isobaric lipid and peptide.
Collapse
Affiliation(s)
- Shelley N Jackson
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
47
|
Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. Partitioning of NaPi cotransporter in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched membrane domains modulates NaPi protein diffusion, clustering, and activity. J Biol Chem 2004; 279:49160-71. [PMID: 15355967 DOI: 10.1074/jbc.m408942200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In dietary potassium deficiency there is a decrease in the transport activity of the type IIa sodium/phosphate cotransporter protein (NaPi) despite an increase in its apical membrane abundance. This novel posttranslational regulation of NaPi activity is mediated by the increased glycosphingolipid content of the potassium-deficient apical membrane. However, the mechanisms by which these lipids modulate NaPi activity have not been determined. We determined if in potassium deficiency NaPi is increasingly partitioned in cholesterol-, sphingomyelin-, and glycosphingolipid-enriched microdomains of the apical membrane and if the increased presence of NaPi in these microdomains modulates its activity. By using a detergent-free density gradient flotation technique, we found that 80% of the apical membrane NaPi partitions into the low density cholesterol-, sphingomyelin-, and GM1-enriched fractions characterized as "lipid raft" fractions. In potassium deficiency, a higher proportion of NaPi was localized in the lipid raft fractions. By combining fluorescence correlation spectroscopy and photon counting histogram methods for control and potassium-deficient apical membranes reconstituted into giant unilamellar vesicles, we showed a 2-fold decrease in lateral diffusion of NaPi protein and a greater than 2-fold increase in size of protein aggregates/clusters in potassium deficiency. Our results indicate that NaPi protein is localized in membrane microdomains, that in potassium deficiency a larger proportion of NaPi protein is present in these microdomains, and that NaPi lateral diffusion is slowed down and NaPi aggregation/clustering is increased in potassium deficiency, both of which could be associated with the decreased Na/Pi cotransport activity in potassium deficiency.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Medicine, University of Colorado Health Sciences Center and Denver Veterans Affairs Medical Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Woloszynek JC, Roberts M, Coleman T, Vogler C, Sly W, Semenkovich CF, Sands MS. Numerous transcriptional alterations in liver persist after short-term enzyme-replacement therapy in a murine model of mucopolysaccharidosis type VII. Biochem J 2004; 379:461-9. [PMID: 14705966 PMCID: PMC1224072 DOI: 10.1042/bj20031048] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 01/05/2004] [Accepted: 01/06/2004] [Indexed: 12/20/2022]
Abstract
The lysosomal storage disease MPS VII (mucopolysaccharidosis type VII) is caused by a deficiency in beta-glucuronidase activity, and results in the accumulation of partially degraded glycosaminoglycans in many cell types. Although MPS VII is a simple monogenetic disorder, the clinical presentation is complex and incompletely understood. ERT (enzyme replacement therapy) is relatively effective at improving the clinical course of the disease; however, some pathologies persist. In order to clarify the molecular events contributing to the disease phenotype and how ERT might impact upon them, we analysed liver tissue from untreated and treated MPS VII mice at both 2 and 5 months of age using biochemical assays and microarray analysis. Overall, as the disease progresses, more genes have altered expression and, at either age, numerous transcriptional changes in multiple pathways appear to be refractory to therapy. With respect to the primary site of disease, both transcriptional and post-transcriptional mechanisms are involved in the regulation of lysosomal enzymes and other lysosome-associated proteins. Many of the changes observed in both lysosome-associated mRNAs and proteins are normalized by enzyme replacement. In addition, gene expression changes in seemingly unrelated pathways may account for the complex metabolic phenotype of the MPS VII mouse. In particular, beta-glucuronidase deficiency appears to induce physiological malnutrition in MPS VII mice. Malnutrition may account for the pronounced adipose storage deficiency observed in this animal. Studying the molecular response to lysosomal storage, especially those changes recalcitrant to therapy, has revealed additional targets that may improve the efficacy of existing therapies.
Collapse
Affiliation(s)
- Josh C Woloszynek
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Kitchens RL, Thompson PA, Munford RS, O'Keefe GE. Acute inflammation and infection maintain circulating phospholipid levels and enhance lipopolysaccharide binding to plasma lipoproteins. J Lipid Res 2003; 44:2339-48. [PMID: 12923224 DOI: 10.1194/jlr.m300228-jlr200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circulating lipoproteins are thought to play an important role in the detoxification of lipopolysaccharide (LPS) by binding the bioactive lipid A portion of LPS to the lipoprotein surface. It has been assumed that hypocholesterolemia contributes to inflammation during critical illness by impairing LPS neutralization. We tested whether critical illness impaired LPS binding to lipoproteins and found, to the contrary, that LPS binding was enhanced and that LPS binding to the lipoprotein classes correlated with their phospholipid content. Whereas low serum cholesterol was almost entirely due to the loss of esterified cholesterol (a lipoprotein core component), phospholipids (the major lipoprotein surface lipid) were maintained at near normal levels and were increased in a hypertriglyceridemic subset of septic patients. The levels of phospholipids found in the LDL and VLDL fractions varied inversely with those in the HDL fraction, and LPS bound predominantly to lipoproteins in the LDL and VLDL fractions when HDL levels were low. Lipoproteins isolated from the serum of septic patients neutralized the bioactivity of the LPS that had bound to them. Our results show that the host response to acute inflammation and infection tends to maintain lipoprotein phospholipid levels and that, despite hypocholesterolemia and reduced HDL levels, circulating lipoproteins maintain their ability to bind and neutralize an important bacterial agonist, LPS.
Collapse
Affiliation(s)
- Richard L Kitchens
- Departments of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9113, USA.
| | | | | | | |
Collapse
|
50
|
Butler A, He X, Gordon RE, Wu HS, Gatt S, Schuchman EH. Reproductive pathology and sperm physiology in acid sphingomyelinase-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1061-75. [PMID: 12213735 PMCID: PMC1867239 DOI: 10.1016/s0002-9440(10)64267-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Types A and B Niemann-Pick disease (NPD) are lysosomal storage disorders resulting from the deficient activity of acid sphingomyelinase (ASM). In this manuscript we report the pathobiology of male gonadal tissue and sperm in a knockout mouse model of NPD and demonstrate the importance of ASM for normal sperm maturation and function. Characteristic lipid-filled vacuoles were evident in light micrographs of testis' seminiferous tubules and epithelial cells lining the epididymis of -/- mice. Electron micrographs extended these findings and revealed storage vesicles within Sertoli cells of the seminiferous tubules. Mature spermatozoa from -/- mice showed marked ASM deficiency and elevated levels of sphingomyelin and cholesterol. Flow cytometric analysis revealed that affected spermatozoa had disrupted plasma and acrosome membranes, and mitochondrial membrane depolarization. They also did not undergo proper capacitation. Morphological abnormalities such as kinks and bends at the midpiece-principle piece junction were evident in spermatozoa from affected mice, with consequent deficits in motility. Notably, the mutant sperm regained normal morphology on incubation in mild detergent, demonstrating that the bending defects were a direct consequence of membrane lipid accumulation. A mechanism for these abnormalities is proposed that suggests lipid accumulation in the gonads results in regulatory volume decrease defects within the developing sperm, and that regulatory volume decrease defects, in turn, lead to the observed abnormalities in sperm morphology and function. These results provide in vivo evidence that ASM activity plays a critical role in sperm maturation and function, and a basis for similar studies in sexually mature, male NPD patients.
Collapse
Affiliation(s)
- Avigdor Butler
- Department of Human Genetics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|