1
|
Zhang C, Su D, Choo EF, Liu L, Bobba S, Jorski JD, Ho Q, Wang J, Kenny JR, Khojasteh SC, Zhang D. Identification of a Discrete Diglucuronide of GDC-0810 in Human Plasma after Oral Administration. Drug Metab Dispos 2023; 51:1284-1294. [PMID: 37349116 DOI: 10.1124/dmd.122.001071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
GDC-0810 is a small molecule therapeutic agent having potential to treat breast cancer. In plasma of the first-in-human study, metabolite M2, accounting for 20.7% of total drug-related materials, was identified as a discrete diglucuronide that was absent in rats. Acyl glucuronide M6 and N-glucuronide M4 were also identified as prominent metabolites in human plasma. Several in vitro studies were conducted in incubations of [14C]GDC-0810, synthetic M6 and M4 with liver microsomes, intestinal microsomes, and hepatocytes of different species as well as recombinant UDP-glucuronosyltransferase (UGT) enzymes to further understand the formation of M2. The results suggested that 1) M2 was more efficiently formed from M6 than from M4, and 2) acyl glucuronidation was mainly catalyzed by UGT1A8/7/1 that is highly expressed in the intestines whereas N-glucuronidation was mainly catalyzed by UGT1A4 that is expressed in the human liver. This complicated mechanism presented challenges in predicting M2 formation using human in vitro systems. The absence of M2 and M4 in rats can be explained by low to no expression of UGT1A4 in rodents. M2 could be the first discrete diglucuronide that was formed from both acyl- and N-glucuronidation on a molecule identified in human plasma. SIGNIFICANCE STATEMENT: A discrete diglucuronidation metabolite of GDC-0810, a breast cancer drug candidate, was characterized as a unique circulating metabolite in humans that was not observed in rats or little formed in human in vitro system.
Collapse
Affiliation(s)
- Chenghong Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Dian Su
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Edna F Choo
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Lichuan Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Sudheer Bobba
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Jamie D Jorski
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Quynh Ho
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Jing Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Jane R Kenny
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (E.F.C., S.B., J.D.J., J.W., J.R.K., S.C.K., D.Z.); Pfizer, South San Francisco, California (C.Z.); Bicycle Therapeutics, Cambridge, Massachusetts (D.S.); Innovative Research BU, Yifan Pharmaceutical, Hangzhou, China (L.L.); and Abbvie Biotherapeutics Inc., South San Francisco, California (Q.H.)
| |
Collapse
|
2
|
Xue H, Sang Y, Gao Y, Zeng Y, Liao J, Tan J. Research Progress on Absorption, Metabolism, and Biological Activities of Anthocyanins in Berries: A Review. Antioxidants (Basel) 2022; 12:antiox12010003. [PMID: 36670865 PMCID: PMC9855064 DOI: 10.3390/antiox12010003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Berries, as the best dietary sources for human health, are rich in anthocyanins, vitamins, fiber, polyphenols, essential amino acids, and other ingredients. Anthocyanins are one of the most important bioactive components in berries. The attractive color of berries is attributed to the fact that berries contain different kinds of anthocyanins. Increasing research activity has indicated that anthocyanins in berries show various biological activities, including protecting vision; antioxidant, anti-inflammatory and anti-tumor qualities; inhibition of lipid peroxidation; anti-cardiovascular disease properties; control of hypoglycemic conditions; and other activities. Hence, berries have high nutritional and medicinal values. The recognized absorption, metabolism, and biological activities of anthocyanins have promoted their research in different directions. Hence, it is necessary to systematically review the research progress and future prospects of anthocyanins to promote a better understanding of anthocyanins. The absorption, metabolism, and biological activities of anthocyanins from berries were reviewed in this paper. The findings of this study provide an important reference for basic research, product development and utilization of berries' anthocyanins in food, cosmetics, and drugs.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuchao Gao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yuan Zeng
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianqing Liao
- College of Physical Science and Engineering, Yichun University, No. 576 Xuefu Road, Yichun 336000, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Medical Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Correspondence: (J.L.); (J.T.); Tel.: +86-0312-5075644 (J.L. & J.T.)
| |
Collapse
|
3
|
Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics 2021; 22:1019-1040. [PMID: 34581204 DOI: 10.2217/pgs-2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is a common immunosuppressive drug for kidney transplantation patients, and is characterized by a narrow therapeutic index and significant individual variability. UGTs are the main enzymes responsible for the metabolism of MPA. Although, many studies have focused on the relationship between UGT polymorphisms and pharmacokinetics and adverse reactions of MPA, the conclusion are controversial. We reviewed the relevant literature and summarized the significant influences of UGT polymorphisms, such as UGT1A8 (rs1042597, rs17863762), UGT1A9 (rs72551330, rs6714486, rs17868320, rs2741045, rs2741045) and UGT2B7 (rs7438135, rs7439366, rs7662029), on the pharmacokinetics of MPA and its metabolites and adverse reactions. The review provides a reference for guiding the individualized administration of MPA and reducing adverse reactions to MPA.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| |
Collapse
|
4
|
Metabolic Profiles of New Unsymmetrical Bisacridine Antitumor Agents in Electrochemical and Enzymatic Noncellular Systems and in Tumor Cells. Pharmaceuticals (Basel) 2021; 14:ph14040317. [PMID: 33915981 PMCID: PMC8066102 DOI: 10.3390/ph14040317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022] Open
Abstract
New unsymmetrical bisacridines (UAs) demonstrated high activity not only against a set of tumor cell lines but also against human tumor xenografts in nude mice. Representative UA compounds, named C-2028, C-2045 and C-2053, were characterized in respect to their physicochemical properties and the following studies aimed to elucidate the role of metabolic transformations in UAs action. We demonstrated with phase I and phase II enzymes in vitro and in tumors cells that: (i) metabolic products generated by cytochrome P450 (P450), flavin monooxygenase (FMO) and UDP-glucuronosyltransferase (UGT) isoenzymes in noncellular systems retained the compound’s dimeric structures, (ii) the main transformation pathway is the nitro group reduction with P450 isoenzymes and the metabolism to N-oxide derivative with FMO1, (iii), the selected UGT1 isoenzymes participated in the glucuronidation of one compound, C-2045, the hydroxy derivative. Metabolism in tumor cells, HCT-116 and HT-29, of normal and higher UGT1A10 expression, respectively, also resulted in the glucuronidation of only C-2045 and the specific distribution of all compounds between the cell medium and cell extract was demonstrated. Moreover, P4503A4 activity was inhibited by C-2045 and C-2053, whereas C-2028 affected UGT1A and UGT2B action. The above conclusions indicate the optimal strategy for the balance among antitumor therapeutic efficacy and drug resistance in the future antitumor therapy.
Collapse
|
5
|
Chang CF, Chang YC, Lin JT, Yu CW, Kao YT. Evaluation of inhibitors of intestinal UDP-glucuronosyltransferases 1A8 and 1A10 using raloxifene as a substrate in Caco-2 cells: Studies with four flavonoids of Scutellaria baicalensis. Toxicol In Vitro 2021; 72:105087. [PMID: 33440186 DOI: 10.1016/j.tiv.2021.105087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/06/2021] [Indexed: 11/26/2022]
Abstract
UDP glucuronosyltransferases (UGTs) of the gastrointestinal tract play a crucial role in protection against the toxic effects of xenobiotics in the environment. UGTs such as UGT1A8 and UGT1A10 are predominantly expressed in gastrointestinal tissues. In this study, we examined the phase II metabolism of raloxifene in differentiated Caco-2 monolayers by inducing UGT1A8 and UGT1A10 expression in these cells. The present study evaluated the following four flavonoids of Scutellaria baicalensis as model herbal compounds: scutellarein, salvigenin, baicalein, and wogonin. All test compounds, endpoint substrates, and their metabolites were quantified using liquid chromatography and high-resolution mass spectrometry. The transepithelial electrical resistance values for the individual compounds were comparable regardless of whether they were measured individually. Salvigenin significantly inhibited UGT1A8 and UGT1A10 activities in a concentration-dependent manner. All individual compounds except scutellarein inhibited UGT1A8 and UGT1A10 activity at a concentration of 100 μM. In addition, all individual flavonoids at 100 μM, except wogonin, significantly increased the amount of raloxifene in the basolateral chambers. The positive control, canagliflozin, significantly inhibited both UGT1A8 and UGT1A10 activities. These findings suggest that the Caco-2 assay can be utilized for identifying UGT1A8 and UGT1A10 inhibitors and indicate the potential of salvigenin for enhancing the pharmacological effects of UGT substrate drugs.
Collapse
Affiliation(s)
- Che-Fu Chang
- Department of Family Medicine, Taoyuan Armed Forces General Hospital, No.168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan
| | - Yu-Ching Chang
- School of Pharmacy, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan
| | - Jing-Tang Lin
- Department of Family Medicine, Taoyuan Armed Forces General Hospital, No.168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan
| | - Chen-Wei Yu
- Department of Family Medicine, Taoyuan Armed Forces General Hospital, No.168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan
| | - Yu-Ting Kao
- School of Pharmacy, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei City 11490, Taiwan.
| |
Collapse
|
6
|
The Relative Importance of the Small Intestine and the Liver in Phase II Metabolic Transformations and Elimination of p-Nitrophenol Administered in Different Doses in the Rat. Sci Pharm 2020. [DOI: 10.3390/scipharm88040051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Intestinal and hepatic function have been investigated in phase II metabolic reactions and elimination of p-nitrophenol (PNP) in the rat. A jejunal loop was cannulated and recirculated with isotonic solutions containing PNP in different concentrations (0, 20, 100, 500, 1000 µM). Samples were obtained from the perfusate at given intervals. To investigate the metabolic and excretory functions of the liver, the bile duct was cannulated, and the bile was collected. Metabolites of PNP were determined by validated HPLC (high pressure liquid chromatography) methods. The results demonstrated the relative importance of the small intestine and the liver in phase II metabolic transformations and elimination of PNP. There were significant differences between the luminal and biliary appearances of p-nitrophenol-glucuronide (PNP-G) and p-nitrophenol–sulfate (PNP-S). The PNP-G appeared in the intestinal lumen at the lower PNP concentrations (20 µM and 100 µM) at higher rate than in the bile. No significant difference was found between the intestinal and the biliary excretion of PNP-G when PNP was administered at a concentration of 500 µM. However, a reverse ratio of these parameters was observed at the administration of 1000 µM PNP. The results indicated that both the small intestine and the liver might play an important role in phase II metabolic reactions and elimination of PNP. However, the relative importance of the small intestine and the liver can be dependent on the dose of drugs.
Collapse
|
7
|
Vergara AG, Watson CJW, Chen G, Lazarus P. UDP-Glycosyltransferase 3A Metabolism of Polycyclic Aromatic Hydrocarbons: Potential Importance in Aerodigestive Tract Tissues. Drug Metab Dispos 2020; 48:160-168. [PMID: 31836608 PMCID: PMC7011115 DOI: 10.1124/dmd.119.089284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens and are a primary risk factor for the development of lung and other aerodigestive tract cancers in smokers. The detoxification of PAHs by glucuronidation is well-characterized for the UDP-glycosyltransferase (UGT) 1A, 2A, and 2B subfamilies; however, the role of the UGT3A subfamily in PAH metabolism remains poorly understood. UGT3A enzymes are functionally distinct from other UGT subfamilies (which use UDP-glucuronic acid as a cosubstrate) due to their utilization of alternative cosubstrates (UDP-N-acetylglucosamine for UGT3A1, and UDP-glucose and UDP-xylose for UGT3A2). The goal of the present study was to characterize UGT3A glycosylation activity against PAHs and examine their expression in human aerodigestive tract tissues. In vitro metabolism assays using UGT3A2-overexpressing cell microsomes indicated that UGT3A2 exhibits glycosylation activity against all of the simple and complex PAHs tested. The V max/K m ratios for UGT3A2 activity with UDP-xylose versus UDP-glucose as the cosubstrate ranged from 0.65 to 4.4 for all PAHs tested, demonstrating that PAH glycosylation may be occurring at rates up to 4.4-fold higher with UDP-xylose than with UDP-glucose. Limited glycosylation activity was observed against PAHs with UGT3A1-overexpressing cell microsomes. While UGT3A2 exhibited low levels of hepatic expression, it was shown by western blot analysis to be widely expressed in aerodigestive tract tissues. Conversely, UGT3A1 exhibited the highest expression in liver with lower expression in aerodigestive tract tissues. These data suggest that UGT3A2 plays an important role in the detoxification of PAHs in aerodigestive tract tissues, and that there may be cosubstrate-dependent differences in the detoxification of PAHs by UGT3A2. SIGNIFICANCE STATEMENT: UGT3A2 is highly active against PAHs with either UDP-glucose or UDP-xylose as a cosubstrate. UGT3A1 exhibited low levels of activity against PAHs. UGT3A1 is highly expressed in liver while UGT3A2 is well expressed in extrahepatic tissues. UGT3A2 may be an important detoxifier of PAHs in humans.
Collapse
Affiliation(s)
- Ana G Vergara
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
8
|
Mubarokah N, Hulin JA, Mackenzie PI, McKinnon RA, Haines AZ, Hu DG, Meech R. Cooperative Regulation of Intestinal UDP-Glucuronosyltransferases 1A8, -1A9, and 1A10 by CDX2 and HNF4 α Is Mediated by a Novel Composite Regulatory Element. Mol Pharmacol 2018. [PMID: 29519853 DOI: 10.1124/mol.117.110619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The gastrointestinal tract expresses several UDP-glucuronosyltransferases (UGTs) that act as a first line of defense against dietary toxins and contribute to the metabolism of orally administered drugs. The expression of UGT1A8, UGT1A9, and UGT1A10 in gastrointestinal tissues is known to be at least partly directed by the caudal homeodomain transcription factor, CDX2. We sought to further define the factors involved in regulation of the UGT1A8-1A10 genes and identified a novel composite element located within the proximal promoters of these three genes that binds to both CDX2 and the hepatocyte nuclear factor (HNF) 4α, and mediates synergistic activation by these factors. We also show that HNF4α and CDX2 are required for the expression of these UGT genes in colon cancer cell lines, and show robust correlation of UGT expression with CDX2 and HNF4α levels in normal human colon. Finally, we show that these factors are involved in the differential expression pattern of UGT1A8 and UGT1A10, which are intestinal specific, and that of UGT1A9, which is expressed in both intestine and liver. These studies lead to a model for the developmental patterning of UGT1A8, UGT1A9, and UGT1A10 in hepatic and/or extrahepatic tissues involving discrete regulatory modules that may function (independently and cooperatively) in a context-dependent manner.
Collapse
Affiliation(s)
- Nurul Mubarokah
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z Haines
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology (N.M., J.-A.H., P.I.M., R.A.M., A.Z.H., D.G.H., R.M.), and Flinders Centre for Innovation in Cancer (P.I.M., R.M., R.A.M., D.G.H.), College of Medicine and Public Health, Flinders University, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
9
|
Alkharfy KM, Jan BL, Afzal S, Al-Jenoobi FI, Al-Mohizea AM, Al-Muhsen S, Halwani R, Parvez MK, Al-Dosari MS. Prevalence of UDP-glucuronosyltransferase polymorphisms (UGT1A6∗2, 1A7∗12, 1A8∗3, 1A9∗3, 2B7∗2, and 2B15∗2) in a Saudi population. Saudi Pharm J 2016; 25:224-230. [PMID: 28344472 PMCID: PMC5355556 DOI: 10.1016/j.jsps.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022] Open
Abstract
Glucuronidation is an important phase II pathway responsible for many endogenous substances and drug metabolism. The present work evaluated allele frequencies of certain UDP-glucuronosyl-transferases (UGT 1A6∗2, A7∗12, A8∗3, A9∗3, 2B7∗2, and 2B15∗2) in Saudi Arabians that could provide essential ethnic information. Blood samples from 192 healthy unrelated Saudi males of various geographic regions were collected. Genomic DNA was isolated and genotyping of various UGTs was carried out using polymerase chain reaction (PCR) followed by direct sequencing. For UGT1A6∗2 A/G genotype, the most common variant was the homozygous repeat (AA) and the most common allele was (A) with a frequency of 46.5% and 67.3%, respectively. Similarly, the most common variant for UGT1A7∗12 T/C genotype was the heterozygous repeat (TC) with a frequency of 78.7% while the mutant allele (C) was present in 60.6% of the study population. Both UGT1A8∗3 (G/A) and UGT1A9∗3 (T/C) showed only a wild homozygous pattern in all screened subjects. For UGT2B7∗2, the heterozygous repeat (TC) was found with a frequency of 57.3% and the alleles (A) showed a frequency of 50.8%. In contrast, for UGT2B15∗2 (G253T), the heterozygous repeat (TG) presented 62.3% of the subjects where the most common allele (G) was with a frequency of 66.2%. In conclusion, our data indicate that Saudis harbor some important UGT mutations known to affect enzyme activity. Additional studies are therefore, warranted to assess the clinical implications of these gene polymorphisms in this ethnic group.
Collapse
Affiliation(s)
- Khalid M Alkharfy
- Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Basit L Jan
- Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sibtain Afzal
- Department of Pediatrics, Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Saleh Al-Muhsen
- Department of Pediatrics, Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Department of Pediatrics, Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Fischer E, Almási A, Bojcsev S, Fischer T, Kovács NP, Perjési P. Effect of experimental diabetes and insulin replacement on intestinal metabolism and excretion of 4-nitrophenol in rats. Can J Physiol Pharmacol 2015; 93:459-64. [PMID: 25939089 DOI: 10.1139/cjpp-2015-0065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminal appearance of 4-nitrophenol (PNP) metabolites (4-nitrophenol-β-glucuronide (PNP-G) and 4-nitrophenol-sulfate (PNP-S)) and activity of the related metabolic enzymes have been investigated in control and experimental diabetic rats. Experimental diabetes was induced by administration of streptozotocin (65 mg/kg i.v.). PNP (500 μmol/L) was luminally perfused in the small intestine and the metabolites were determined in the perfusion solution. Effect of insulin replacement was also investigated in the diabetic rats. It was found that experimental diabetes increased the luminal appearance of PNP-G, which could be completely compensated by rapid-acting insulin administration (1 U/kg i.v.). Activities of the enzymes involved in PNP-G production (UDP-glucuronyltransferase and β-glucuronidase) were also elevated; however, these changes were only partially compensated by insulin. Luminal appearance of PNP-S was not significantly changed by administration of streptozotocin and insulin. Activities of the enzymes of PNP-S production (sulfotransferases and arylsulfatases) did not change in the diabetic rats. The results indicate that experimental diabetes can provoke changes in intestinal drug metabolism. It increased intestinal glucuronidation of PNP but did not influence sulfate conjugation. No direct correlation was found between the changes of metabolic enzyme activities and the luminal appearance of the metabolites.
Collapse
Affiliation(s)
- Emil Fischer
- Institute of Pharmacology and Pharmacotherapy, Medical Faculty, University of Pécs, H-7624, Pécs, Szigeti út 12, Hungary
| | | | | | | | | | | |
Collapse
|
11
|
Ziegler K, Tumova S, Kerimi A, Williamson G. Cellular asymmetric catalysis by UDP-glucuronosyltransferase 1A8 shows functional localization to the basolateral plasma membrane. J Biol Chem 2015; 290:7622-33. [PMID: 25586184 DOI: 10.1074/jbc.m114.634428] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are highly expressed in liver, intestine and kidney, and catalyze the glucuronic acid conjugation of both endogenous compounds and xenobiotics. Using recombinant human UGT isoforms, we show that glucuronic acid conjugation of the model substrate, (-)-epicatechin, is catalyzed mainly by UGT1A8 and UGT1A9. In HepG2 cells, pretreatment with polyunsaturated fatty acids increased substrate glucuronidation. In the intestinal Caco-2/HT29-MTX co-culture model, overall relative glucuronidation rates were much higher than in HepG2 cells, and (-)-epicatechin was much more readily conjugated when applied to the basolateral side of the cell monolayer. Under these conditions, 95% of the conjugated product was effluxed back to the site of application, and none of the other phase 2-derived metabolites followed this distribution pattern. HT29-MTX cells contained >1000-fold higher levels of UGT1A8 mRNA than Caco-2 or HepG2 cells. Gene expression of UGT1A8 increased after treatment of cells with docosahexaenoic acid, as did UGT1A protein levels. Immunofluorescence staining and Western blotting showed the presence of UGT1A in the basal and lateral parts of the plasma membrane of HT29-MTX cells. These results suggest that some of the UGT1A8 enzyme is not residing in the endoplasmic reticulum but spans the plasma membrane, resulting in increased accessibility to compounds outside the cell. This facilitates more efficient conjugation of substrate and is additionally coupled with rapid efflux by functionally associated basolateral transporters. This novel molecular strategy allows the cell to carry out conjugation without the xenobiotic entering into the interior of the cell.
Collapse
Affiliation(s)
- Kerstin Ziegler
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sarka Tumova
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Asimina Kerimi
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gary Williamson
- From the Faculty of Mathematics and Physical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
12
|
|
13
|
Almási A, Bojcsev S, Fischer T, Simon H, Perjési P, Fischer E. Metabolic enzyme activities and drug excretion in the small intestine and in the liver in the rat. ACTA ACUST UNITED AC 2013; 100:478-88. [DOI: 10.1556/aphysiol.100.2013.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Zhang L, Huang M, Blair IA, Penning TM. Interception of benzo[a]pyrene-7,8-dione by UDP glucuronosyltransferases (UGTs) in human lung cells. Chem Res Toxicol 2013; 26:1570-8. [PMID: 24047243 PMCID: PMC3829198 DOI: 10.1021/tx400268q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Polycyclic
aromatic hydrocarbons (PAHs) are environmental and tobacco
carcinogens. Proximate carcinogenic PAH trans-dihydrodiols
are activated by human aldo-keto reductases (AKRs) to yield electrophilic
and redox-active o-quinones. Interconversion among
benzo[a]pyrene (B[a]P)-7,8-dione,
a representative PAH o-quinone, and its corresponding
catechol generates a futile redox-cycle with the concomitant production
of reactive oxygen species (ROS). We investigated whether glucuronidation
of B[a]P-7,8-catechol by human UDP glucuronosyltransferases
(UGTs) could intercept the catechol in three different human lung
cells. RT-PCR showed that UGT1A1, 1A3, and 2B7 were only expressed
in human lung adenocarcinoma A549 cells. The corresponding recombinant
UGTs were examined for their kinetic constants and product profile
using B[a]P-7,8-catechol as a substrate. B[a]P-7,8-dione was reduced to B[a]P-7,8-catechol
by dithiothreitol under anaerobic conditions and then further glucuronidated
by the UGTs in the presence of uridine-5′-diphosphoglucuronic
acid as a glucuronic acid group donor. UGT1A1 catalyzed the glucuronidation
of B[a]P-7,8-catechol and generated two isomeric O-monoglucuronsyl-B[a]P-7,8-catechol products
that were identified by RP-HPLC and by LC-MS/MS. By contrast, UGT1A3
and 2B7 catalyzed the formation of only one monoglucuronide, which
was identical to that formed in A549 cells. The kinetic profiles of
three UGTs followed Michaelis–Menten kinetics. On the basis
of the expression levels of UGT1A3 and UGT2B7 and the observation
that a single monoglucuronide was produced in A549 cells, we suggest
that the major UGT isoforms in A549 cells that can intercept B[a]P-7,8-catechol are UGT1A3 and 2B7.
Collapse
Affiliation(s)
- Li Zhang
- Center of Excellence in Environmental Toxicology and ‡Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6160, United States
| | | | | | | |
Collapse
|
15
|
The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45:1121-32. [DOI: 10.1016/j.biocel.2013.02.019] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
|
16
|
Wang M, Sun DF, Wang S, Qing Y, Chen S, Wu D, Lin YM, Luo JZ, Li YQ. Polymorphic expression of UDP-glucuronosyltransferase UGTlA gene in human colorectal cancer. PLoS One 2013; 8:e57045. [PMID: 23468910 PMCID: PMC3584141 DOI: 10.1371/journal.pone.0057045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
Background Polymorphism of genes encoding drug-metabolizing enzymes is known to play an important role in increased susceptibility of colorectal cancer. UGT1A gene locus has been suggested to define tissue-specific glucuronidation activity. Reduced capacity of glucuronidation is correlated with the development of colorectal cancer. Therefore, we sought to explore polymorphism of UGTlA gene in human colorectal cancer. Methods Cancerous and healthy tissues were obtained from selectedpatients. Blood samples were collected and UGTlA mRNA transcriptions were analyzed. Genomic DNA was prepared and UGTlA8 exon-1 sequences were amplified, visualized and purified. The extracted DNA was subcloned and sequenced. Two-tailed Fisher's exact test, Odds ratios (ORs), confidence interval (CIs) and Logistics Regression Analysis were used for statistical analysis. Results UGTlA mRNA expression was reduced in cancerous tissues compared with healthy tissues from the same patient . The UGTlA mRNA expression of healthy tissue in study patients was lower than control . The mRNA expression of cancerous tissue was down-regulated in UGTlAl, 1A3, 1A4, lA6, 1A9 and up-regulated in UGTlA8 and UGTlAl0 UGT1A5 and UGT1A7 were not expressed in colonic tissue of either group. The allele frequency of WT UGTlA8*1 was higher (p = 0.000), frequency of UGTlA8*3 was lowered in control group (p = 0.000). The expression of homozygous UGTlA8*1 was higher in control group (p = 0.000). Higher frequency of both heterozygous UGTlA8*1/*3 and UGTlA8*2/*3 were found in study group (p = 0.000; p = 0.000). The occurrence of colorectal cancer was mainly related to the presence of polymorphic UGTlA8*3 alleles (p = 0.000). Conclusion Regulation of human UGT1A genes is tissue-specific. Individual variation in polymorphic expressions of UGTlA gene locus was noted in all types of colonic tissue tested, whereas hepatic tissue expression was uniform. The high incidence of UGTlA8 polymorphism exists in colorectal cancer patients. UGTlA8*1 allele is a protective factor and UGTlA8*3 allele is a risk factor.
Collapse
Affiliation(s)
- Min Wang
- Department of Geriatrics and Gastroenterology, Qi-Lu Hospital of Shandong University, Key Laboratory of Proteomics of Shandong Province, Jinan, Shandong Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Song JH, Fang ZZ, Zhu LL, Cao YF, Hu CM, Ge GB, Zhao DW. Glucuronidation of the broad-spectrum antiviral drug arbidol by UGT isoforms. J Pharm Pharmacol 2012; 65:521-7. [PMID: 23488780 DOI: 10.1111/jphp.12014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 11/14/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this work was to identify the uridine glucuronosyltransferase (UGT) isoforms involved in the metabolism of the broad-spectrum antiviral drug arbidol. METHODS A human liver microsome (HLM) incubation system was employed to catalyse the formation of arbidol glucuronide. The glucuronidation activity of commercially recombinant UGT isoforms towards arbidol was screened. A combination of kinetic analysis and chemical inhibition study was used to determine the UGT isoforms involved in arbidol's glucuronidation. KEY FINDINGS The arbidol glucuronide was detected when arbidol was incubated with HLMs in the presence of UDP-glucuronic acid. The Eadie-Hofstee plot showed that glucuronidation of arbidol was best fit to the Michaelis-Menten kinetic model, and K(m) and apparent V(max) were calculated to be 8.0 ± 0.7 μm and 2.03 ± 0.05 nmol/min/mg protein, respectively. Assessment of a panel of recombinant UGT isoforms revealed that UGT1A1, UGT1A3 and UGT1A9 could catalyse the glucuronidation of arbidol. Kinetic analysis and chemical inhibition study demonstrated that UGT1A9 was the predominant UGT isoform involved in arbidol glucuronidation in HLMs. CONCLUSIONS The major contribution of UGT1A9 towards arbidol glucuronidation was demonstrated in this study.
Collapse
Affiliation(s)
- Jin-Hui Song
- Orthopedics Department, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Ross KA. Evidence for somatic gene conversion and deletion in bipolar disorder, Crohn's disease, coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes, and type-2 diabetes. BMC Med 2011; 9:12. [PMID: 21291537 PMCID: PMC3048570 DOI: 10.1186/1741-7015-9-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 02/03/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND During gene conversion, genetic information is transferred unidirectionally between highly homologous but non-allelic regions of DNA. While germ-line gene conversion has been implicated in the pathogenesis of some diseases, somatic gene conversion has remained technically difficult to investigate on a large scale. METHODS A novel analysis technique is proposed for detecting the signature of somatic gene conversion from SNP microarray data. The Wellcome Trust Case Control Consortium has gathered SNP microarray data for two control populations and cohorts for bipolar disorder (BD), cardiovascular disease (CAD), Crohn's disease (CD), hypertension (HT), rheumatoid arthritis (RA), type-1 diabetes (T1D) and type-2 diabetes (T2D). Using the new analysis technique, the seven disease cohorts are analyzed to identify cohort-specific SNPs at which conversion is predicted. The quality of the predictions is assessed by identifying known disease associations for genes in the homologous duplicons, and comparing the frequency of such associations with background rates. RESULTS Of 28 disease/locus pairs meeting stringent conditions, 22 show various degrees of disease association, compared with only 8 of 70 in a mock study designed to measure the background association rate (P < 10-9). Additional candidate genes are identified using less stringent filtering conditions. In some cases, somatic deletions appear likely. RA has a distinctive pattern of events relative to other diseases. Similarities in patterns are apparent between BD and HT. CONCLUSIONS The associations derived represent the first evidence that somatic gene conversion could be a significant causative factor in each of the seven diseases. The specific genes provide potential insights about disease mechanisms, and are strong candidates for further study.
Collapse
Affiliation(s)
- Kenneth Andrew Ross
- Department of Computer Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
19
|
Li X, Shang L, Wu Y, Abbas S, Li D, Netter P, Ouzzine M, Wang H, Magdalou J. Identification of the Human UDP-glucuronosyltransferase Isoforms Involved in the Glucuronidation of the Phytochemical Ferulic Acid. Drug Metab Pharmacokinet 2011; 26:341-50. [DOI: 10.2133/dmpk.dmpk-10-rg-125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
MacKenzie PI, Rogers A, Elliot DJ, Chau N, Hulin JA, Miners JO, Meech R. The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution. Mol Pharmacol 2010; 79:472-8. [PMID: 21088224 DOI: 10.1124/mol.110.069336] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human UDP glycosyltransferase (UGT) 3A family is one of three families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs. We showed recently that UGT3A1, the first member of the UGT3 family to be characterized, is unusual in using UDP N-acetylglucosamine as sugar donor, rather than UDP glucuronic acid or other UDP sugar nucleotides (J Biol Chem 283:36205-36210, 2008). Here, we report the cloning, expression, and characterization of UGT3A2, the second member of the UGT3 family. Like UGT3A1, UGT3A2 is inactive with UDP glucuronic acid as sugar donor. However, in contrast to UGT3A1, UGT3A2 uses both UDP glucose and UDP xylose but not UDP N-acetylglucosamine to glycosidate a broad range of substrates including 4-methylumbelliferone, 1-hydroxypyrene, bioflavones, and estrogens. It has low activity toward bile acids and androgens. UGT3A2 transcripts are found in the thymus, testis, and kidney but are barely detectable in the liver and gastrointestinal tract. The low expression of UGT3A2 in the latter, which are the main organs of drug metabolism, suggests that UGT3A2 has a more selective role in protecting the organs in which it is expressed against toxic insult rather than a more generalized role in drug metabolism. The broad substrate and novel UDP sugar specificity of UGT3A2 would be advantageous for such a function.
Collapse
Affiliation(s)
- Peter I MacKenzie
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliferone in human UGT isoforms. Molecules 2010; 15:3578-92. [PMID: 20657500 PMCID: PMC6263374 DOI: 10.3390/molecules15053578] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 11/20/2022] Open
Abstract
The effects of Andrographis paniculata and Orthosiphon stamineus extracts on the in vitro glucuronidation of 4-methylumbelliferone (4MU) by recombinant human UGTs, UGT1A1, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A10, UGT2B7 and UGT2B15 were determined. The potential inhibitory effects of both of the extracts on the activity of each of the UGT isoforms were investigated using 4MU as the substrate. Incubations contained UDP-glucuronic acid (UDPGA) as the cofactor, MgCl2, cell lysate of respective isoform, and 4MU at the approximate apparent Km or S50 value of each isoform. Final concentrations of Andrographis paniculata and Orthosiphon stamineus extracts used were 0.025, 0.25, 2.5, 25 and 50 μg/mL and 0.01, 0.10, 1.0, 10 and 50 μg/mL respectively. Both extracts variably inhibited the activity of most of the isoforms in a concentration dependent manner. Andrographis paniculata extract was the better inhibitor of all the isoforms studied (IC50 1.70 μg/mL for UGT1A3, 2.57 μg/mL for UGT1A8, 2.82 μg/mL for UGT2B7, 5.00 μg/mL for UGT1A1, 5.66 μg/mL for UGT1A6, 9.88 μg/mL for UGT1A7 and 15.66 μg/mL for UGT1A10). Both extracts showed less than 70% inhibition of UGT2B15, so the IC50 values were >50μg/mL. The inhibition of human UGTs by Andrographis paniculata and Orthosiphon stamineus extracts in vitro suggests a potential for drug-herbal extract interactions in the therapeutic setting.
Collapse
|
22
|
Barraclough KA, Lee KJ, Staatz CE. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics 2010; 11:369-90. [PMID: 20235793 DOI: 10.2217/pgs.10.9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mycophenolic acid (MPA) is a cornerstone immunosuppressant therapy in solid organ transplantation. MPA is metabolized by uridine diphosphate glucuronosyltransferase to inactive 7-O-MPA-glucuronide (MPAG). At least three minor metabolites are also formed, including a pharmacologically active acyl-glucuronide. MPA and MPAG are subject to enterohepatic recirculation. Biliary excretion of MPA/MPAG involves several transporters, including organic anion transporting polypeptides and multidrug resistant protein-2 (MRP-2). MPA metabolites are also excreted via the kidney, at least in part by MRP-2. MPA exerts its immunosuppressive effect through the inhibition of inosine-5-monophosphate dehydrogenase. Several SNPs have been identified in the genes encoding for uridine diphosphate glucuronosyltransferase, organic anion transporting polypeptides, MRP-2 and inosine-5-monophosphate dehydrogenase. This article provides an extensive overview of the known effects of these SNPs on the pharmacokinetics and pharmacodynamics of MPA.
Collapse
Affiliation(s)
- Katherine A Barraclough
- Department of Nephrology, Level 2, ARTS Building, Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Qld 4102, Australia.
| | | | | |
Collapse
|
23
|
Knights KM, Miners JO. Renal UDP-glucuronosyltransferases and the glucuronidation of xenobiotics and endogenous mediators. Drug Metab Rev 2010; 42:63-73. [DOI: 10.3109/03602530903208561] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Kalthoff S, Ehmer U, Freiberg N, Manns MP, Strassburg CP. Interaction between oxidative stress sensor Nrf2 and xenobiotic-activated aryl hydrocarbon receptor in the regulation of the human phase II detoxifying UDP-glucuronosyltransferase 1A10. J Biol Chem 2010; 285:5993-6002. [PMID: 20053997 DOI: 10.1074/jbc.m109.075770] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The defense against oxidative stress is a critical feature that prevents cellular and DNA damage. UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of xenobiotics, mutagens, and reactive metabolites and thus act as indirect antioxidants. Aim of this study was to elucidate the regulation of UGTs expressed in the mucosa of the gastrointestinal tract by xenobiotics and the main mediator of antioxidant defense, Nrf2 (nuclear factor erythroid 2-related factor 2). Xenobiotic (XRE) and antioxidant (ARE) response elements were detected in the promoters of UGT1A8, UGT1A9, and UGT1A10. Reporter gene experiments demonstrated XRE-mediated induction by dioxin in addition to tert-butylhydroquinone (ARE)-mediated induction of UGT1A8 and UGT1A10, which are expressed in extrahepatic tissue in humans in vivo. The responsible XRE and ARE motifs were identified by mutagenesis. Small interfering RNA knockdown, electrophoretic mobility shifts, and supershifts identified a functional interaction of Nrf2 and the aryl hydrocarbon receptor (AhR). Induction of UGT1A8 and UGT1A10 requires Nrf2 and AhR. It proceeds by utilizing XRE- as well as ARE-binding motifs. In summary, we demonstrate the coordinated AhR- and Nrf2-dependent transcriptional regulation of human UGT1As. Cellular protection by glucuronidation is thus inducible by xenobiotics via AhR and by oxidative metabolites via Nrf2 linking glucuronidation to cellular protection and defense against oxidative stress.
Collapse
Affiliation(s)
- Sandra Kalthoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
25
|
Strassburg CP, Kalthoff S, Ehmer U. Variability and function of family 1 uridine-5'-diphosphate glucuronosyltransferases (UGT1A). Crit Rev Clin Lab Sci 2009; 45:485-530. [PMID: 19003600 DOI: 10.1080/10408360802374624] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The substrate spectrum of human UDP-glucuronosyltransferase 1A (UGT1A) proteins includes the glucuronidation of non-steroidal anti-inflammatory drugs, anticonvulsants, chemotherapeutics, steroid hormones, bile acids, and bilirubin. The unique genetic organization of the human UGT1A gene locus, and an increasing number of functionally relevant genetic variants define tissue specificity as well as a broad range of interindividual variabilities of glucuronidation. Genetic UGT1A variability has been conserved throughout the protein's evolution and shows ethnic diversity. It is the biochemical and genetic basis for clinical phenotypes such as Gilbert's syndrome and Crigler-Najjar's disease as well as for the potential for severe, unwanted drug side effects such as in irinotecan treatment. UGT1A variants influence the metabolic effects of xenobiotic exposure and therefore have been linked to cancer risk. Detailed knowledge of the organization, function, and pharmacogenetics of the human UGT1A gene locus is likely to significantly contribute to the improvement of drug safety and efficacy as well as to the provision of steps toward the goal of individualized drug therapy and disease risk prediction.
Collapse
Affiliation(s)
- Christian P Strassburg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
26
|
Itäaho K, Court MH, Uutela P, Kostiainen R, Radominska-Pandya A, Finel M. Dopamine is a low-affinity and high-specificity substrate for the human UDP-glucuronosyltransferase 1A10. Drug Metab Dispos 2008; 37:768-75. [PMID: 19116261 DOI: 10.1124/dmd.108.025692] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this work was to identify human UDP-glucuronosyltransferases (UGTs) capable of glucuronidating dopamine. Using a sensitive liquid chromatography-tandem mass spectrometry method, we screened all 19 known human UGTs and found that only one enzyme, UGT1A10, catalyzed dopamine glucuronidation at substantial rates, yielding both dopamine-4-O-glucuronide (37.1 pmol/min/mg) and dopamine-3-O-glucuronide (32.7 pmol/min/mg). Much lower (<2 pmol/min/mg) or no dopamine glucuronidation activity was found for all other UGTs tested at 1 mM dopamine. Evaluation of the UGT1A10 expression pattern in human tissues by quantitative reverse transcription-polymerase chain reaction confirmed that it is mainly expressed in small intestine, colon, and adipose tissue, whereas only low levels were found in trachea, stomach, liver, testis, and prostate but not in brain. Dopamine glucuronidation assays using microsomes from human liver and intestine corroborated these findings because activity in intestinal microsomes was markedly higher than that in liver microsomes. Moreover, the glucuronidation regioselectivity in intestinal microsomes was similar to that of recombinant UGT1A10, and both enzyme sources exhibited sigmoidal kinetics with substrate affinity (K(A)) values in the range of 2 to 3 mM. Examination of four UGT1A10 mutants, F90A, F90L, F93A, and F93L, revealed lower dopamine glucuronidation in all of them, particularly in F90A and F93A. Nonetheless, the substrate affinities of the four mutants were similar to that of UGT1A10. It is interesting to note that mutant F93L exhibited regioselectivity, conjugating dopamine at the 4-hydroxyl (OH) position approximately 3 times more efficiently than at the 3-OH position. These results shed new light on the structure and function of UGT1A10 and indicate that dopamine may be a useful probe substrate for this enzyme.
Collapse
Affiliation(s)
- Katriina Itäaho
- CDR, Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5), FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
27
|
Yuan JH, Li YQ, Yang XY. Protective effects of epigallocatechin gallate on colon preneoplastic lesions induced by 2-amino-3-methylimidazo[4,5-f ] quinoline in mice. Mol Med 2008; 14:590-8. [PMID: 18596869 DOI: 10.2119/2007-00050.yuan] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 06/20/2008] [Indexed: 12/30/2022] Open
Abstract
Epigallocatechin gallate (EGCG), a key active ingredient in green tea, has multiple anticarcinogenic effects. The aim of the present study was to investigate if EGCG could prevent the formation of colon aberrant crypt foci (ACF) induced by 2-amino-3-methylimidazo[4,5-f ]quinoline (IQ) and to explore possible mechanisms for resultant effects. Sixty male BALB/cA nude, immunodeficient mice were divided into six groups including a normal unexposed control, mice induced with IQ alone, three groups treated with varying doses of EGCG post-IQ induction, and a EGCG-treated control population. Six weeks later, the mice were killed, and tissues subjected to hematoxylin-eosin (H&E) and 0.2% methylene blue staining to observe histopathological alterations of colon mucus and the formation of ACF, respectively. Protein expression of NF-E2-related factor 2 (Nrf2) was assessed via immunohistochemistry (IHC) and Western analysis, and mRNA levels of Nrf2 and uridine 5'-diphosphate-glucuronosyltransferase (UGT)1A10 were determined in colon tissues. Our results demonstrate that, compared with IQ-induced controls, the degree of atypical hyperplasia decreased and the number of total ACF and total AC also decreased significantly (P < 0.05 and P < 0.01, respectively) in mice belonging to all EGCG dosing groups. At the same time, the protein levels of Nrf2 detected by IHC and Western blotting increased (both P < 0.01 compared with IQ group), and the mRNA levels of Nrf2 and UGT1A10 increased (both P < 0.01 compared with IQ group). In conclusion, EGCG had preventive effects on preneoplastic lesions induced by IQ. Our observations suggest that this effect may be the result of activation of the Nrf2-UGT1A10 signaling pathway.
Collapse
Affiliation(s)
- Jun-Hua Yuan
- Department of Digestive Disease, Provincial Hospital affiliated to Shandong University, Jinan, Shandong Province, People's Republic of China
| | | | | |
Collapse
|
28
|
Magda D, Lecane P, Prescott J, Thiemann P, Ma X, Dranchak PK, Toleno DM, Ramaswamy K, Siegmund KD, Hacia JG. mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 2008; 9:521. [PMID: 18980691 PMCID: PMC2612029 DOI: 10.1186/1471-2164-9-521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 11/03/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interactions between the gene products encoded by the mitochondrial and nuclear genomes play critical roles in eukaryotic cellular function. However, the effects mitochondrial DNA (mtDNA) levels have on the nuclear transcriptome have not been defined under physiological conditions. In order to address this issue, we characterized the gene expression profiles of A549 lung cancer cells and their mtDNA-depleted rho0 counterparts grown in culture and as tumor xenografts in immune-deficient mice. RESULTS Cultured A549 rho0 cells were respiration-deficient and showed enhanced levels of transcripts relevant to metal homeostasis, initiation of the epithelial-mesenchymal transition, and glucuronidation pathways. Several well-established HIF-regulated transcripts showed increased or decreased abundance relative to the parental cell line. Furthermore, growth in culture versus xenograft has a significantly greater influence on expression profiles, including transcripts involved in mitochondrial structure and both aerobic and anaerobic energy metabolism. However, both in vitro and in vivo, mtDNA levels explained the majority of the variance observed in the expression of transcripts in glucuronidation, tRNA synthetase, and immune surveillance related pathways. mtDNA levels in A549 xenografts also affected the expression of genes, such as AMACR and PHYH, involved in peroxisomal lipid metabolic pathways. CONCLUSION We have identified mtDNA-dependent gene expression profiles that are shared in cultured cells and in xenografts. These profiles indicate that mtDNA-depleted cells could provide informative model systems for the testing the efficacy of select classes of therapeutics, such as anti-angiogenesis agents. Furthermore, mtDNA-depleted cells grown culture and in xenografts provide a powerful means to investigate possible relationships between mitochondrial activity and gene expression profiles in normal and pathological cells.
Collapse
Affiliation(s)
- Darren Magda
- Department of Biochemistry and Molecular Biology, University of Southern California, 2250 Alcazar Street, IGM 240, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lewinsky RH, Smith PA, Mackenzie PI. Glucuronidation of bioflavonoids by human UGT1A10: structure–function relationships. Xenobiotica 2008; 35:117-29. [PMID: 16019943 DOI: 10.1080/00498250400028189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The extrahepatic human UDP glucuronosyltransferase 1A10 is found throughout the gastrointestinal tract and is thought to participate in the removal of orally ingested lipophilic chemicals. However, its substrate specificity towards these chemicals has not been fully characterized. The structurally diverse bioflavonoids are present in considerable amounts in fruits, vegetables and plant-derived beverages and have been shown to have many biological functions, including antioxidant properties. This study proposes features of the bioflavonoid structure necessary to confer it as a substrate of UGT1A10. The preferred substrates of UGT1A10 contain the hydroxyl group to be glucuronidated at C6 or C7, but not C5 of the A-ring or on C4' of the B-ring. Up to two additional hydroxyl groups on the A-ring enhance activity, whereas the presence of other groups, notably sugar groups, decreases activity. The high glucuronidation efficiency towards many bioflavonoids observed suggests that the contribution of UGT1A10 in the metabolism of these dietary compounds in the gastrointestinal tract may be significant.
Collapse
Affiliation(s)
- R H Lewinsky
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA, Australia
| | | | | |
Collapse
|
30
|
Starlard-Davenport A, Lyn-Cook B, Radominska-Pandya A. Identification of UDP-glucuronosyltransferase 1A10 in non-malignant and malignant human breast tissues. Steroids 2008; 73:611-20. [PMID: 18374377 PMCID: PMC2408449 DOI: 10.1016/j.steroids.2008.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 01/07/2008] [Accepted: 01/22/2008] [Indexed: 11/26/2022]
Abstract
UGT1A10 was recently identified as the major isoform that conjugates estrogens. In this study, real-time PCR revealed high levels of UGT1A10 and UGT2B7 mRNA in human breast tissues. The expression of UGT1A10 in breast was a novel finding. UGT1A10 and UGT2B7 mRNAs were differentially expressed among normal and malignant specimens. Their overall expression was significantly decreased in breast carcinomas as compared to normal breast specimens (UGT1A10: 68+/-26 vs. 252+/-86, respectively; p<0.05) and (UGT2B7: 1.4+/-0.7 vs. 12+/-4, respectively; p<0.05). Interestingly, in African American women, UGT1A10 expression was significantly decreased in breast carcinomas in comparison to normals (57+/-35 vs. 397+/-152, respectively; p<0.05). Among Caucasian women, UGT2B7 was significantly decreased in breast carcinomas in comparison to normals (1.1+/-0.5 vs. 13.5+/-6, respectively; p<0.05). Glucuronidation of 4-hydroxylated estrone (4-OHE(1)) was significantly reduced in breast carcinomas compared to normals (30+/-15 vs. 106+/-31, respectively; p<0.05). Differential down-regulation of UGT1A10 and UGT2B7 mRNAs, protein, and activity in breast carcinomas compared to the adjacent normal breast specimens from the same donor were also found. These data illustrate the novel finding of UGT1A10 in human breast and confirm the expression of UGT2B7. Significant individual variation and down-regulation of expression in breast carcinomas of both isoforms were also demonstrated. These findings provide evidence that decreased UGT expression and activity could result in the promotion of carcinogenesis.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Beverly Lyn-Cook
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, HFT-100, Jefferson, AR 72079, USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Corresponding author: Anna Radominska-Pandya, Ph.D., Dept. of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham, Slot 516, Little Rock, AR 72205, Tel: (501)-686-5414, Fax: (501)-603-1146,
| |
Collapse
|
31
|
Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008; 46:813-41. [DOI: 10.1016/j.fct.2007.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/25/2007] [Accepted: 12/03/2007] [Indexed: 01/16/2023]
|
32
|
Kay CD. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr Res Rev 2007; 19:137-46. [DOI: 10.1079/nrr2005116] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractInterest in the health-promoting properties of berry anthocyanins is intensifying; however, findings are primarily based onin vitrocharacteristics, leaving mechanisms associated with absorption, metabolism and pharmacokinetics largely unexplored. The present review integrates the available anthocyanin literature with that of similar flavonoids or polyphenols in order to form hypotheses regarding absorption, metabolism and clearance in humans. Of the limited available literature regarding the absorption and clearance kinetics of anthocyanins, maximum plasma concentrations are reported anywhere between 1·4 and 592 nmol/l and occur at 0·5–4 h post-consumption (doses; 68–1300 mg). Average urinary excretion is reported between 0·03 and 4 % of the ingested dose, having elimination half-lives of 1·5–3 h. In addition, much is unknown regarding the metabolism of anthocyanins. The most commonly cited conjugation reactions involved in the metabolism of other flavonoids include glucuronidation, methylation and sulfation. It is reasonable to suspect that anthocyanins are metabolised in much the same manner; however, until recently, there was little evidence to suggest that anthocyanins were metabolised to any significant extent. New evidence now suggests that anthocyanins are absorbed and transported in human serum and urine primarily as metabolites, with recent studies documenting as much as 68–80 % of anthocyanins as metabolised derivatives in human urine. Further research is required to resolve mechanisms associated with the absorption, metabolism and clearance of anthocyanins in order to establish their true biological activities and health effects. The presented evidence will hopefully focus future research, refining study design and propagating a more complete understanding of anthocyanins' biological significance in humans.
Collapse
|
33
|
Hashizume T, Xu Y, Mohutsky MA, Alberts J, Hadden C, Kalhorn TF, Isoherranen N, Shuhart MC, Thummel KE. Identification of human UDP-glucuronosyltransferases catalyzing hepatic 1alpha,25-dihydroxyvitamin D3 conjugation. Biochem Pharmacol 2007; 75:1240-50. [PMID: 18177842 DOI: 10.1016/j.bcp.2007.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/15/2007] [Accepted: 11/15/2007] [Indexed: 11/24/2022]
Abstract
The biological effects of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) are terminated primarily by P450-dependent hydroxylation reactions. However, the hormone is also conjugated in the liver and a metabolite, presumably a glucuronide, undergoes enterohepatic cycling. In this study, the identity of human enzymes capable of catalyzing the 1,25(OH)2D3 glucuronidation reaction was investigated in order to better understand environmental and endogenous factors affecting the disposition and biological effects of vitamin D3. Among 12 different UGT isozymes tested, only UGT1A4 >> 2B4 and 2B7 supported the reaction. Two different 1,25(OH)2D3 monoglucuronide metabolites were generated by recombinant UGT1A4 and human liver microsomes. The most abundant product was identified by mass spectral and NMR analyses as the 25-O-glucuronide isomer. The formation of 25-O-glucuronide by UGT1A4 Supersomes and human liver microsomes followed simple hyperbolic kinetics, yielding respective Km and Vmax values of 7.3 and 11.2 microM and 33.7 +/- 1.4 and 32.9 +/- 1.9 pmol/min/mg protein. The calculated intrinsic 25-O-glucuronide M1 formation clearance for UGT1A4 was 14-fold higher than the next best isozyme, UGT2B7. There was only limited (four-fold) inter-liver variability in the 25-O-glucuronidation rate, but it was highly correlated with the relative rate of formation of the second, minor metabolite. In addition, formation of both metabolites was inhibited >80% by the selective UGT1A4 inhibitor, hecogenin. If enterohepatic recycling of 1,25(OH)2D3 represents a significant component of intestinal and systemic 1,25(OH)2D3 disposition, formation of monoglucuronides by hepatic UGT1A4 constitutes an important initial step.
Collapse
Affiliation(s)
- Takanori Hashizume
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li X, Bratton S, Radominska-Pandya A. Human UGT1A8 and UGT1A10 mRNA are expressed in primary human hepatocytes. Drug Metab Pharmacokinet 2007; 22:152-61. [PMID: 17603215 PMCID: PMC2275121 DOI: 10.2133/dmpk.22.152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is widely believed that the UGT1A isoforms, UGT1A8 and -1A10, are expressed exclusively in extrahepatic tissues. In this work, human primary hepatocytes from six donors were analyzed for UGT1A8 and -1A10 mRNA expression by semi-quantitative RT-PCR. New primers to amplify UGT1A8 mRNA were designed and found to differ from those previously published. We demonstrated that UGT1A8 and -1A10 mRNA are expressed in hepatocytes. Although basal UGT mRNA levels were detected in untreated hepatocytes, significant up-regulation of the levels of mRNA for these isoforms were seen after treatment with 3-methylcholanthrene (3-MC) and rifampicin (Rif). RT-PCR products for all UGTs were sequenced and unambiguously identified as matching the corresponding cDNA. The discovery of these isoforms in hepatocytes is a novel discovery and will stimulate studies on the potential role for these isoforms in hepatic detoxification.
Collapse
Affiliation(s)
- Xin Li
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | |
Collapse
|
35
|
Chen Y, Kuehl GE, Bigler J, Rimorin CF, Schwarz Y, Shen DD, Lampe JW. UGT1A6 polymorphism and salicylic acid glucuronidation following aspirin. Pharmacogenet Genomics 2007; 17:571-9. [PMID: 17622933 DOI: 10.1097/01.fpc.0000236339.79916.07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In vivo, aspirin (acetylsalicylic acid) is rapidly deacetylated to form salicylic acid, which then undergoes primary or secondary glucuronidation catalyzed by UDP-glucuronosyltransferases (UGTs). The variant UGT1A6*2 (T181A, R184S) is associated with altered enzyme function. Our objective was to compare salicylic acid glucuronidation in individuals with different UGT1A6 genotypes. METHODS Following orally dosing with 650 mg aspirin, saliva and urine samples were collected over a period of 24 h from healthy individuals with homozygous wild-type UGT1A6 *1/*1 (n=19) and homozygous variant UGT1A6 *2/*2 (T181A, R184S) (n=9) genotypes. RESULTS No statistically significant differences were observed in salivary pharmacokinetic parameters. Urinary excretion of the sum of aspirin and its metabolites (salicyluric acid, salicyluric acid phenolic glucuronide, salicyl phenolic glucuronide, salicyl acyl glucuronide, salicylic acid) during the early period of 2-4 h of collection was significantly lower in UGT1A6 *1/*1 than in UGT1A6 *2/*2 individuals. Further, UGT1A6 *1/*1 individuals excreted a lower percentage of aspirin and its metabolites in the first 12 h and a greater percentage after 12 h than UGT1A6 *2/*2 individuals. CONCLUSIONS The variant UGT1A6*2 or polymorphisms in other UGTs that are in linkage disequilibrium with UGT1A6*2 may confer more rapid glucuronidation of salicylic acid than the wild-type UGT1A6 *1/*1.
Collapse
Affiliation(s)
- Yu Chen
- University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Yuan JH, Li YQ, Yang XY. Inhibition of epigallocatechin gallate on orthotopic colon cancer by upregulating the Nrf2-UGT1A signal pathway in nude mice. Pharmacology 2007; 80:269-78. [PMID: 17657175 DOI: 10.1159/000106447] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/12/2007] [Indexed: 12/16/2022]
Abstract
Epigallocatechin gallate (EGCG), a key active ingredient in green tea, has many anti-carcinogenic activities. The aim of the present study was to investigate whether EGCG could prevent the occurrence or metastases of orthotopic colon cancer and probe the underlined mechanisms. We observed the inhibition of EGCG on growth and metastases of colon tumor implanted orthotopically in the cecum of nude mice. Immunohistochemistry and Western-blotting analysis were used to detect NF-E2-related factor 2 (Nrf2) protein expressions. RT-PCR was also applied to detect the mRNA levels of Nrf2, uridine 5'-diphosphate-glucuronosyltransferase (UGT) 1A, UGT1A8 and UGT1A10 in colon tumors. As a result, the inhibition rates on tumor growth in the 3 EGCG groups were significantly different (all p < 0.001) compared with the control group. In addition, different doses of EGCG were able to inhibit liver and pulmonary metastases to varying degrees. The protein level of Nrf2 and the mRNA levels of Nrf2, UGT1A, UGT1A8 and UGT1A10 significantly increased in EGCG-treated mice in comparison with the control group (all p < 0.01). The results demonstrated that EGCG has a preventive effect on the growth and liver and pulmonary metastases of orthotopic colon cancer in nude mice, and this anticancer effect could be partly caused by activating the Nrf2-UGT1A signal pathway.
Collapse
Affiliation(s)
- Jun-Hua Yuan
- Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan, PR China
| | | | | |
Collapse
|
37
|
Ritter JK. Intestinal UGTs as potential modifiers of pharmacokinetics and biological responses to drugs and xenobiotics. Expert Opin Drug Metab Toxicol 2007; 3:93-107. [PMID: 17269897 DOI: 10.1517/17425255.3.1.93] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) are the biological catalysts of glucuronidation, a major pathway of conjugative metabolism of drugs and xenobiotics. In addition to the liver and kidney, UGTs are highly expressed in the gastrointestinal tract, where they have the potential to influence the pharmacokinetics and biological effects of ingested drugs and xenobiotics. This paper reviews the current evidence for the contributions of intestinal UGTs to presystemic 'first-pass' metabolism and drug bioavailability, the extent of enterohepatic cycling and the clearance of drugs from plasma, as well as their influence on biological responses to drugs, including drug toxicity. The prediction of the effects of intestinal glucuronidation on these processes depends on knowledge of the types and amounts of UGTs expressed in the small intestine and their specific glucuronidating activities. Whereas the types of UGTs expressed in human gastrointestinal tract are well characterized, further research is needed to understand the absolute amounts of UGTs in the small intestine and the causes of observed high-interindividual variability in the intestinal expression of UGTs.
Collapse
Affiliation(s)
- Joseph K Ritter
- Virginia Commonwealth University, Department of Pharmacology and Toxicology, School of Medicine, Box 980613, Richmond, Virginia 23298-0613, USA.
| |
Collapse
|
38
|
Bowalgaha K, Elliot DJ, Mackenzie PI, Knights KM, Miners JO. The Glucuronidation of Δ4-3-Keto C19- and C21-Hydroxysteroids by Human Liver Microsomal and Recombinant UDP-glucuronosyltransferases (UGTs): 6α- and 21-Hydroxyprogesterone Are Selective Substrates for UGT2B7. Drug Metab Dispos 2006; 35:363-70. [PMID: 17151189 DOI: 10.1124/dmd.106.013052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The stereo- and regioselective glucuronidation of 10 Delta(4)-3-keto monohydroxylated androgens and pregnanes was investigated to identify UDP-glucuronosyltransferase (UGT) enzyme-selective substrates. Kinetic studies were performed using human liver microsomes (HLMs) and a panel of 12 recombinant human UGTs as the enzyme sources. Five of the steroids, which were hydroxylated in the 6beta-, 7alpha-, 11beta- or 17alpha-positions, were not glucuronidated by HLMs. Of the remaining compounds, comparative kinetic and inhibition studies indicated that 6alpha- and 21-hydroxyprogesterone (OHP) were glucuronidated selectively by human liver microsomal UGT2B7. 6alpha-OHP glucuronidation by HLMs and UGT2B7 followed Michaelis-Menten kinetics, whereas 21-OHP glucuronidation by these enzyme sources exhibited positive cooperativity. UGT2B7 was also identified as the enzyme responsible for the high-affinity component of human liver microsomal 11alpha-OHP glucuronidation. In contrast, UGT2B15 and UGT2B17 were the major forms involved in human liver microsomal testosterone 17beta-glucuronidation and the high-affinity component of 16alpha-OHP glucuronidation. Activity of UGT1A subfamily enzymes toward the hepatically glucuronidated substrates was generally low, although UGT1A4 and UGT1A9 contribute to the low-affinity components of microsomal 16alpha- and 11alpha-OHP glucuronidation, respectively. Interestingly, UGT1A10, which is expressed only in the gastrointestinal tract, exhibited activity toward most of the glucuronidated substrates. The results indicate that 6alpha- and 21-OHP may be used as selective "probes" for human liver microsomal UGT2B7 activity and, taken together, provide insights into the regio- and stereoselectivity of hydroxysteroid glucuronidation by human UGTs.
Collapse
Affiliation(s)
- K Bowalgaha
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | | | | | | | | |
Collapse
|
39
|
Buckley DB, Klaassen CD. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice. Drug Metab Dispos 2006; 35:121-7. [PMID: 17050650 DOI: 10.1124/dmd.106.012070] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze phase II biotransformation reactions in which lipophilic substrates are conjugated with glucuronic acid to increase water solubility and enhance excretion. Currently, little information regarding tissue- or gender-specific expression of mouse UGTs is available. Mice are increasingly popular models in biomedical research, and therefore, thorough characterization of murine drug metabolism is desired. The purpose of the present study was to determine both tissue- and gender-specific UGT gene expression profiles in mice. RNA from 14 tissues was isolated from male and female C57BL/6 mice and UGT expression was determined by the branched DNA signal amplification assay. UGTs highly expressed in mouse liver include Ugt1a1, Ugt1a5, Ugt1a6, Ugt1a9, Ugt2a3, Ugt2b1, Ugt2b5/37/38, Ugt2b34, Ugt2b35, and Ugt2b36. Several isoforms were expressed in the gastrointestinal (GI) tract, including Ugt1a6, Ugt1a7c, Ugt2a3, Ugt2b34, and Ugt2b35. In kidney, Ugt1a2, Ugt1a7c, Ugt2b5/37/38, Ugt2b35, and Ugt3a1/2 were expressed. UGT expression was also observed in other tissues: lung (Ugt1a6), brain (Ugt2b35), testis and ovary (Ugt1a6 and Ugt2b35), and nasal epithelia (Ugt2a1/2). Male-predominant expression was observed for Ugt2b1 in liver, Ugt2b5/37/38 in kidney, and Ugt1a6 in lung. Female-predominant expression was observed for Ugt1a1 and Ugt1a5 in liver, Ugt1a2 in kidney, Ugt2b35 in brain, and Ugt2a1/2 in nasal epithelia. UDP-glucose pyrophosphorylase was highly expressed in liver, kidney, and GI tract, whereas UDP-glucose dehydrogenase was highly expressed in the GI tract. In conclusion, marked differences in tissue- and gender-specific expression patterns of UGTs exist in mice, potentially influencing drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- David B Buckley
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
40
|
Lee CM, Chen SY, Lee YCG, Huang CYF, Chen YMA. Benzo[a]pyrene and glycine N-methyltransferse Interactions: Gene expression profiles of the liver detoxification pathway. Toxicol Appl Pharmacol 2006; 214:126-35. [PMID: 16545412 DOI: 10.1016/j.taap.2005.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/22/2005] [Accepted: 12/06/2005] [Indexed: 11/15/2022]
Abstract
Benzo[a]pyrene (BaP) is one of many polycyclic aromatic hydrocarbons that have been identified as major risk factors for developing various cancers. We previously demonstrated that the liver cancer susceptibility gene glycine N-methyltransferase (GNMT) is capable of binding with BaP and protecting cells from BaP-7,8-diol 9,10-epoxide-DNA adduct formation. In this study, we used a cytotoxicity assay to demonstrate that the higher expression level of GNMT, the lower cytotoxicity occurred in the cells treated with BaP. In addition, a cDNA microarray containing 7,597 human genes was used to examine gene expression patterns in BaP-treated HepG2 (a liver cancer cell line that expresses very low levels of GNMT) and SCG2-1-1 (a stable HepG2 clone that expresses high levels of GNMT) cells. The results showed that among 6,018 readable HepG2 genes, 359 (6.0%) were up-regulated more than 1.5-fold and 768 (12.8%) were down-regulated. Overexpression of GNMT in SCG2-1-1 cells resulted in the down-regulation of genes related to the detoxification, kinase/phosphatase pathways, and oncogenes. Furthermore, real-time PCR was used to validate microarray data from 21 genes belonging to the detoxification pathway. Combining both microarray and real-time PCR data, the results showed that among 89 detoxification pathway genes analyzed, 22 (24.7%) were up-regulated and 6 (6.7%) were down-regulated in BaP-treated HepG2 cells, while in the BaP-treated SCG2-1-1 cells, 12 (13.5%) were up-regulated and 26 (29.2%) were down-regulated (P < 0.001). Therefore, GNMT sequesters BaP, diminishes BaP's effects to the liver detoxification pathway and prevents subsequent cytotoxicity.
Collapse
Affiliation(s)
- Cheng-Ming Lee
- Division of Preventive Medicine, Institute of Public Health, National Yang-Ming University, Beitou District, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Kuehl GE, Lampe JW, Potter JD, Bigler J. GLUCURONIDATION OF NONSTEROIDAL ANTI-INFLAMMATORY DRUGS: IDENTIFYING THE ENZYMES RESPONSIBLE IN HUMAN LIVER MICROSOMES. Drug Metab Dispos 2005; 33:1027-35. [PMID: 15843492 DOI: 10.1124/dmd.104.002527] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), used for the treatment of pain and inflammation, are eliminated primarily through conjugation with polar sugar moieties to form glucuronides. Glucuronidation is catalyzed by the UDP-glucuronosyltransferases (UGT) superfamily. An inverse relationship may exist between glucuronidation activity and NSAID efficacy; however, specific UGTs catalyzing conjugation of the structurally diverse NSAIDs have yet to be identified systematically. Therefore, NSAID glucuronidation activity by 12 individually expressed UGTs was investigated by liquid chromatography-tandem mass spectrometry. The relative rates of NSAID glucuronidation varied among UGT enzymes examined, demonstrating specificity of the individual UGTs toward selected NSAIDs. Kinetic parameters were determined for expressed UGT Supersomes and compared with parameters determined in pooled human liver microsomes (HLMs). Comparison of K(m) values suggested roles for UGTs 1A3 and 2B7 in indene glucuronidation and UGTs 1A9, 2B4, and 2B7 in profen glucuronidation. Inhibitory studies in pooled HLMs support the role of UGTs 1A1, 1A3, 1A9, 2B4, and 2B7 in the glucuronidation of ibuprofen, flurbiprofen, and ketoprofen. Bilirubin did not inhibit indomethacin or diclofenac glucuronidation, suggesting that UGT1A1 was not involved in catalysis. Imipramine did not inhibit glucuronidation of sulindac, sulindac sulfone, indomethacin, or naproxen in pooled HLMs, suggesting that UGT1A3 was not a principal hepatic catalyst. Nevertheless, multiple UGT enzymes, most notably UGTs 1A1, 1A9, 2B4, and 2B7, seem to be involved in the hepatic catalysis of NSAID glucuronidation.
Collapse
Affiliation(s)
- Gwendolyn E Kuehl
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
42
|
Barbier O, Girard H, Inoue Y, Duez H, Villeneuve L, Kamiya A, Fruchart JC, Guillemette C, Gonzalez FJ, Staels B. Hepatic Expression of the UGT1A9 Gene Is Governed by Hepatocyte Nuclear Factor 4α. Mol Pharmacol 2004; 67:241-9. [PMID: 15470081 DOI: 10.1124/mol.104.003863] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
UDP-glucuronosyltransferase (UGT) enzymes catalyze the glucuronidation reaction, which is a major pathway in the catabolism and elimination of numerous endo- and xenobiotics. Among the UGT enzyme family members, the UGT1A7, UGT1A8, UGT1A9, and UGT1A10 isoforms are issued from a single gene through differential splicing. However, these enzymes display distinct tissue-specific expression patterns. Indeed, UGT1A7, UGT1A8, and UGT1A10 are exclusively expressed in extrahepatic tissues, whereas UGT1A9 transcripts are found at high concentrations in liver. In the present study, we report that the liver-enriched hepatocyte nuclear factor 4 (HNF4)-alpha controls the hepatic expression of the UGT1A9 enzyme. Liver-specific disruption of the HNF4alpha gene in mice drastically decreases liver UGT1A9 mRNA levels. Furthermore, an HNF4alpha response element (HNF4alpha RE) was identified in the promoter of human UGT1A9 at position -372 to -360 base pairs by transient transfection, electrophoretic mobility shift assays, and chromatin immunoprecipitation experiments. It is interesting that this response element is absent in the proximal UGT1A7, UGT1A8, and UGT1A10 gene promoters. In conclusion, the present study identifies HNF4alpha as a major factor for the control of UGT1A9 hepatic expression and suggests that the absence of UGT1A7, UGT1A8, and UGT1A10 expression in the liver is caused by, at least in part, a few base pair changes in their promoter sequences in the region corresponding to the HNF4alpha RE of the UGT1A9 gene.
Collapse
Affiliation(s)
- Olivier Barbier
- Unité INSERM 545, Institut Pasteur de Lille, 1 rue du Pr Calmette, BP 245, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wells PG, Mackenzie PI, Chowdhury JR, Guillemette C, Gregory PA, Ishii Y, Hansen AJ, Kessler FK, Kim PM, Chowdhury NR, Ritter JK. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos 2004; 32:281-90. [PMID: 14977861 DOI: 10.1124/dmd.32.3.281] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article is an updated report of a symposium held at the June 2000 annual meeting of the American Society for Pharmacology and Experimental Therapeutics in Boston. The symposium was sponsored by the ASPET Divisions for Drug Metabolism and Molecular Pharmacology. The report covers research from the authors' laboratories on the structure and regulation of UDP-glucuronosyltransferase (UGT) genes, glucuronidation of xenobiotics and endobiotics, the toxicological relevance of UGTs, the role of UGT polymorphisms in cancer susceptibility, and gene therapy for UGT deficiencies.
Collapse
Affiliation(s)
- Peter G Wells
- Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dean B, Arison B, Chang S, Thomas PE, King C. Identification of UGT2B9*2 and UGT2B33 isolated from female rhesus monkey liver. Arch Biochem Biophys 2004; 426:55-62. [PMID: 15130782 DOI: 10.1016/j.abb.2004.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Revised: 03/29/2004] [Indexed: 11/18/2022]
Abstract
Two UDP-glucuronosyltransferases (UGT2B9(*)2 and UGT2B33) have been isolated from female rhesus monkey liver. Microsomal preparations of the cell lines expressing the UGTs catalyzed the glucuronidation of the general substrate 7-hydroxy-4-(trifluoromethyl)coumarin in addition to selected estrogens (beta-estradiol and estriol) and opioids (morphine, naloxone, and naltrexone). UGT2B9(*)2 displayed highest efficiency for beta-estradiol-17-glucuronide production and did not catalyze the glucuronidation of naltrexone. UGT2B33 displayed highest efficiency for estriol and did not catalyze the glucuronidation of beta-estradiol. UGT2B9(*)2 was found also to catalyze the glucuronidation of 4-hydroxyestrone, 16-epiestriol, and hyodeoxycholic acid, while UGT2B33 was capable of conjugating 4-hydroxyestrone, androsterone, diclofenac, and hyodeoxycholic acid. Three glucocorticoids (cortisone, cortisol, and corticosterone) were not substrates for glucuronidation by liver or kidney microsomes or any expressed UGTs. Our current data suggest the use of beta-estradiol-3-glucuronidation, beta-estradiol-17-glucuronidation, and estriol-17-glucuronidation to assay UGT1A01, UGT2B9(*)2, and UGT2B33 activity in rhesus liver microsomes, respectively.
Collapse
Affiliation(s)
- Brian Dean
- Merck & Co., Inc., Department of Drug Metabolism, Rahway, NJ, USA.
| | | | | | | | | |
Collapse
|
45
|
Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. THE PHARMACOGENOMICS JOURNAL 2004; 3:136-58. [PMID: 12815363 DOI: 10.1038/sj.tpj.6500171] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UDP-glucuronosyltransferase (UGT) enzymes comprise a superfamily of key proteins that catalyze the glucuronidation reaction on a wide range of structurally diverse endogenous and exogenous chemicals. Glucuronidation is one of the major phase II drug-metabolizing reactions that contributes to drug biotransformation. This biochemical process is also involved in the protection against environmental toxicants, carcinogens, dietary toxins and participates in the homeostasis of numerous endogenous molecules, including bilirubin, steroid hormones and biliary acids. Over the years, significant progress was made in the field of glucuronidation, especially with regard to the identification of human UGTs, study of their tissue distribution and substrate specificities. More recently, the degree of allelic diversity has also been revealed for several human UGT genes. Some polymorphic UGTs have demonstrated a significant pharmacological impact in addition to being relevant to drug-induced adverse reactions and cancer susceptibility. This review focuses on human UGTs, the description of the nature of polymorphic variations and their functional impact. The pharmacogenomic implication of polymorphic UGTs is presented, more specifically the role of UGT polymorphisms in modifying cancer risk and their impact on individual risk to drug-induced toxicities.
Collapse
Affiliation(s)
- C Guillemette
- Oncology and Molecular Endocrinology Research Center, Laval University Medical Center (CHUL) and Faculty of Pharmacy, Laval University, Quebec, Canada.
| |
Collapse
|
46
|
Ehmer U, Vogel A, Schütte JK, Krone B, Manns MP, Strassburg CP. Variation of hepatic glucuronidation: Novel functional polymorphisms of the UDP-glucuronosyltransferase UGT1A4. Hepatology 2004; 39:970-7. [PMID: 15057901 DOI: 10.1002/hep.20131] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UDP-glucuronosyltransferases are a family of drug metabolizing enzymes contributing to hepatic drug metabolism and protection against environmental toxins. The aim of this study was to identify polymorphisms at the human UGT1A gene locus and to characterize their function and potential association with hepatocellular carcinoma (HCC). Genomic DNA from the blood of 363 subjects (128 patients with HCC, 235 blood donors) was analyzed for polymorphisms of the UGT1A3, UGT1A4, UGT1A8, UGT1A9, UGT1A10 genes using polymerase chain reaction, sequencing analysis. Recombinant variant UGT protein was analyzed by activity assays. In the UGT1A8 gene an A173G variant and a conserved G to A exchange at position 765 were detected in 25% and 15%. UGT1A9 exhibited two variants C3Y and M33T in 1% and 3%. UGT1A10 exhibited conserved nucleotide exchanges (128 G-->A and 696 C-->T) in 2% and 13%. In the UGT1A3 gene a W11R, a V47A variant, and a conserved G to A exchange at position 81 with an incidence of 65%, 58%, and 65%, respectively, were identified. UGT1A4 exhibited a P24T and an L48V variant in 8% and 9%. UGT1A SNPs were not associated with HCC. UGT1A4 P24T and L48V exhibited reduced glucuronidation activities: beta-naphthylamine 30% and 50%, and dihydrotestosterone 50% and 0%, respectively. In conclusion, the high prevalence of SNPs throughout the human UGT1A gene locus illustrates a genetic basis of interindividual variations of hepatic metabolism. Two polymorphisms of the hepatic UGT1A4 protein show a differential metabolic activity toward mutagenic amines and endogenous steroids, altering hepatic metabolism and detoxification.
Collapse
Affiliation(s)
- Ursula Ehmer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Gregory PA, Lewinsky RH, Gardner-Stephen DA, Mackenzie PI. Coordinate Regulation of the HumanUDP-Glucuronosyltransferase 1A8, 1A9, and1A10Genes by Hepatocyte Nuclear Factor 1α and the Caudal-Related Homeodomain Protein 2. Mol Pharmacol 2004; 65:953-63. [PMID: 15044625 DOI: 10.1124/mol.65.4.953] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human UDP-glucuronosyltransferases (UGT) -1A8 and -1A10 are exclusively expressed in extrahepatic tissues and primarily in the gastrointestinal tract, whereas UGT1A9 is expressed mainly in the liver and kidneys. We have demonstrated previously that the UGT1A8 and UGT1A10 genes, in contrast to the UGT1A9 gene, are regulated via an initiator-like element in their proximal promoters. To determine the elements that contribute to the gastrointestinal expression of UGT1A8 and -1A10, we conducted deletion analysis of the UGT1A8, -1A9, and -1A10 promoters in the colon-derived cell line Caco2. DNA elements contributing significantly to UGT1A8, -1A9, and -1A10 promoter activity were found to reside primarily within 140 base pairs of the transcription start site. Within this region, putative binding sites for the intestine-specific transcription factor, caudal-related homeodomain protein 2 (Cdx2), and hepatocyte nuclear factor 1 (HNF1) were identified. Using gel shift and functional assays, HNF1alpha was demonstrated to bind to and activate the UGT1A8, -1A9, and -1A10 promoters. In contrast, Cdx2 bound to and activated the UGT1A8 and -1A10 promoters but could not activate the UGT1A9 promoter. A single base pair difference between the UGT1A8 and -1A10 promoters, three base pairs downstream of the consensus Cdx2 site, contributed to the observed difference in Cdx2 binding and Cdx2-mediated promoter activation of these two promoters. In addition, Cdx2 was shown to cooperate with HNF1alpha to synergistically activate the UGT1A8, -1A9, and -1A10 promoters. These studies provide insight into the mechanisms controlling the extrahepatic expression of the UGT1A8, -1A9, and -1A10 genes.
Collapse
Affiliation(s)
- Philip A Gregory
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | | | | | | |
Collapse
|
48
|
Uchaipichat V, Mackenzie PI, Guo XH, Gardner-Stephen D, Galetin A, Houston JB, Miners JO. HUMAN UDP-GLUCURONOSYLTRANSFERASES: ISOFORM SELECTIVITY AND KINETICS OF 4-METHYLUMBELLIFERONE AND 1-NAPHTHOL GLUCURONIDATION, EFFECTS OF ORGANIC SOLVENTS, AND INHIBITION BY DICLOFENAC AND PROBENECID. Drug Metab Dispos 2004; 32:413-23. [PMID: 15039294 DOI: 10.1124/dmd.32.4.413] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glucuronidation kinetics of the prototypic substrates 4-methylumbelliferone (4MU) and 1-naphthol (1NP) by human UDP-glucuronosyltransferases (UGT) 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B7, 2B15, and 2B17 were investigated. Where activity was demonstrated, inhibitory effects of diclofenac, probenecid, and the solvents acetone, acetonitrile, dimethyl sulfoxide, ethanol, and methanol were characterized. All isoforms except UGT1A4 glucuronidated 4MU, whereas all but UGT 1A4, 2B15, and 2B17 metabolized 1NP. However, kinetic models varied with substrate (for the same isoform) and from isoform to isoform (with the same substrate). Hyperbolic (Michaelis-Menten), substrate inhibition, and sigmoidal kinetics were variably observed for both 4MU and 1NP glucuronidation by the various UGTs. K(m) or S(50) (sigmoidal kinetics) and V(max) values varied 525- (8-4204 microM) and 1386-fold, respectively, for 4MU glucuronidation, and 1360- (1.3-1768 microM) and 37-fold, respectively, for 1NP glucuronidation. The use of a two-site model proved useful for those reactions exhibiting non-Michaelis-Menten glucuronidation kinetics. The organic solvents generally had a relatively minor effect on UGT isoform activity. UGT 2B15 and 2B17 were most susceptible to the presence of solvent, although solvent-selective inhibition was occasionally observed with other isoforms. Diclofenac and probenecid inhibited all isoforms, precluding the use of these compounds for the reaction phenotyping of xenobiotic glucuronidation pathways in human tissues. Diclofenac and probenecid K(i) values, determined for selected isoforms, ranged from 11 to 52 microM and 96 to 2452 microM, respectively. Overall, the results emphasize the need for the careful design and interpretation of kinetic and inhibition studies with human UGTs.
Collapse
Affiliation(s)
- Verawan Uchaipichat
- Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Martineau I, Tchernof A, Bélanger A. AMINO ACID RESIDUE ILE211 IS ESSENTIAL FOR THE ENZYMATIC ACTIVITY OF HUMAN UDP-GLUCURONOSYLTRANSFERASE 1A10 (UGT1A10). Drug Metab Dispos 2004; 32:455-9. [PMID: 15039300 DOI: 10.1124/dmd.32.4.455] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conjugation of exogenous and endogenous compounds by uridine diphosphoglucuronosyltransferases (UGTs) is a pathway catalyzing the transfer of a glucuronic acid molecule from UDP glucuronic acid to lipophilic aglycones, which become more polar and more easily excretable in the bile or urine. UGTs are divided into two major families, UGT1 and UGT2. The isoform UGT1A10, along with UGT1A7 and UGT1A8, is expressed exclusively in extrahepatic tissues, notably in the gastrointestinal tract. Here, we report the isolation of a mutant clone of the human UGT1A10, at position 211 of the protein, where a threonine residue replaces an isoleucine residue (allele Thr211). Because the isoleucine is conserved among many UGT1A isoforms, we proceeded to the analysis of the activity of the wild-type UGT1A10 (T211I) and compared it with that of the variant enzyme (I211T(*)). In vitro assays with microsomal extracts from stably expressing human embryonic kidney 293 (HEK293) cells showed that the mutant enzyme lost all detectable activity toward major substrates, which demonstrate that the residue isoleucine at position 211 is essential for UGT1A10 activity. Mutant UGT1A10 (I211T(*)) also lost all detectable activity toward mycophenolic acid. Genomic DNA from 103 unrelated individuals was sequenced for this mutation, and two heterozygous genotypes were detected for this mutation (frequency: 2 per 100 individuals). Because UGT1A10 appears to be expressed in all gastrointestinal tissues and is active toward a wide range of substrates, lack of activity of this isoform may have an impact on individual glucuronidation efficiency.
Collapse
Affiliation(s)
- Isabelle Martineau
- Oncology and Molecular Endocrinology, CHUL Research Center, 2705 Laurier Boulevard, Quebec, Quebec G1V 4G2, Canada
| | | | | |
Collapse
|
50
|
Miners JO, Smith PA, Sorich MJ, McKinnon RA, Mackenzie PI. PREDICTINGHUMANDRUGGLUCURONIDATIONPARAMETERS: Application of In Vitro and In Silico Modeling Approaches. Annu Rev Pharmacol Toxicol 2004; 44:1-25. [PMID: 14744236 DOI: 10.1146/annurev.pharmtox.44.101802.121546] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT), which both exist as enzyme "superfamilies," are together responsible for the metabolism of most hepatically cleared drugs. There is currently intense interest in the development of techniques that permit identification of the CYP and UGT isoform(s) involved in the metabolism of a newly discovered drug, and hence prediction of factors likely to alter elimination in vivo. In addition, the quantitative scaling of kinetic parameters for a metabolic pathway assumes importance for identifying newly discovered drugs with undesirable in vivo pharmacokinetic properties. Although qualitative and quantitative in vitro-in vivo correlation based on data generated using human liver tissue or recombinant enzymes have been applied successfully to many drugs eliminated by CYP, these strategies have proved less definitive for glucuronidated compounds. Computational (in silico) modeling techniques that potentially provide a facile and economic alternative to the in vitro methods are now emerging. This review assesses the utility of in vitro and in silico approaches for the qualitative and quantitative prediction of drug glucuronidation parameters and the challenges facing the development of generalizable models.
Collapse
Affiliation(s)
- John O Miners
- Department of Clinical Pharmacology, Flinders University and Flinders Medical Center, Bedford Park, Adelaide, SA 5042, Australia.
| | | | | | | | | |
Collapse
|