1
|
Eshak D, Arumugam M. Unveiling therapeutic biomarkers and druggable targets in ALS: An integrative microarray analysis, molecular docking, and structural dynamic studies. Comput Biol Chem 2024; 113:108211. [PMID: 39299050 DOI: 10.1016/j.compbiolchem.2024.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Amyotrophic lateral sclerosis (ALS), commonly known as Lou Gehrig's disease, is a debilitating neurodegenerative disorder characterized by the progressive degeneration of nerve cells in the brain and spinal cord. Despite extensive research, its precise etiology remains elusive, and early diagnosis is challenging due to the absence of specific tests. This study aimed to identify potential blood-based biomarkers for early ALS detection and monitoring using datasets from whole blood samples (GSE112680) and oligodendrocytes, astrocytes, and fibroblasts (GSE87385) obtained from the NCBI-GEO repository. Through bioinformatics analysis, including protein-protein interactions and molecular pathway analyses, we identified differentially expressed genes (DEGs) associated with ALS. Notably, ALS2, ADH7, ALDH8A1, ALDH3B1, ABHD2, ABHD17B, ABHD12, ABHD13, PGAM2, AURKB, ANAPC11, VAPA, UNC45B, and TNNT2 emerged as top-ranked DEGs, implicated in drug metabolism, protein depalmytilation, and the AKT/mTOR signaling pathways. Among these, AurKB established as a potential therapeutic biomarker with relevance to various neurological conditions. Consequently, AurKB was selected for identifying potential therapeutic molecules and utilized for in silico structural characterization studies. Exploration of the IMPATT database led to the discovery of a lead compound similar to Fostamatinib, currently used for AurKB. Initial molecular docking and MMGBSA-based binding energy analysis were followed by molecular dynamics simulation (MDS) and free energy landscape (FEL) analysis to validate the ligand's binding efficacy and understand dynamic processes within the biological system. The identified potential biomarkers and lead molecule provide novel insights into the correlation between blood cell transcripts and ALS pathology, paving the way for blood-based diagnostic tools for early ALS detection and ongoing disease monitoring.
Collapse
Affiliation(s)
- Deboral Eshak
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Chen R, Tong Y, Hu X, Wang W, Liao F. circSLTM knockdown attenuates chondrocyte inflammation, apoptosis and ECM degradation in osteoarthritis by regulating the miR-515-5p/VAPB axis. Int Immunopharmacol 2024; 138:112435. [PMID: 38981227 DOI: 10.1016/j.intimp.2024.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration. Circular RNAs (circRNAs) have emerged as pivotal players in OA progression, orchestrating various biological processes such as proliferation, apoptosis, inflammation, and extracellular matrix (ECM) reorganization. Among these circRNAs, circSLTM exhibits aberrant expression in OA, yet its precise regulatory mechanism remains elusive. This study aimed to elucidate the regulatory mechanisms of circSLTM in OA pathogenesis, with a focus on its role as a competing endogenous RNA (ceRNA). Human cartilage tissues were procured from both OA patients and non-OA individuals, while human chondrocyte cells were subjected to lipopolysaccharide (LPS) treatment to mimic OA-like conditions. Our findings revealed upregulation of circSLTM in OA patients and LPS-treated chondrocytes. Loss-of-function assays were conducted, demonstrating that silencing circSLTM via shRNAs mitigated LPS-induced effects on chondrocytes, as evidenced by enhanced proliferation, reduced apoptosis, and inflammatory factors, and altered expression of extracellular matrix proteins. Further exploration into the regulatory mechanism of circSLTM unveiled its interaction with microRNA-515-5p (miR-515-5p) to modulate vesicle-associated membrane protein (VAPB) expression in chondrocytes. VAPB, also upregulated in OA, was positively regulated by circSLTM. Rescue assays corroborated that VAPB overexpression reinstated the protective effects of circSLTM knockdown on LPS-treated chondrocytes. Moreover, concurrent knockdown of both circSLTM and VAPB demonstrated synergistic protection against LPS-induced chondrocyte injury. Additionally, we delineated that LPS triggered the activation of the NF-κB pathway in chondrocytes, which was counteracted by circSLTM silencing. To assess the effects of circSLTM on OA in vivo, anterior cruciate ligament transection (ACLT) mouse models were established, revealing that circSLTM deficiency ameliorated cartilage defects in vivo. In conclusion, circSLTM exacerbates osteoarthritis progression by orchestrating the miR-515-5p/VAPB axis and activating the NF-κB pathway, providing novel insights for targeted therapy in OA management.
Collapse
Affiliation(s)
- Rijiang Chen
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Yan Tong
- Department of Endocrine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Xiunian Hu
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Wantao Wang
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Fake Liao
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| |
Collapse
|
3
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Thulasidharan A, Garg L, Tendulkar S, Ratnaparkhi GS. Age-dependent dynamics of neuronal VAPB ALS inclusions in the adult brain. Neurobiol Dis 2024; 196:106517. [PMID: 38679111 DOI: 10.1016/j.nbd.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive and fatal disease, caused by the degeneration of upper and lower motor neurons within the brain and spinal cord in the ageing human. The dying neurons contain cytoplasmic inclusions linked to the onset and progression of the disease. Here, we use a Drosophila model of ALS8 (VAPP58S) to understand the modulation of these inclusions in the ageing adult brain. The adult VAPP58S fly shows progressive deterioration in motor function till its demise 25 days post-eclosion. The density of VAPP58S-positive brain inclusions is stable for 5-15 days of age. In contrast, adding a single copy of VAPWT to the VAPP58S animal leads to a large decrease in inclusion density with concomitant rescue of motor function and lifespan. ER stress, a contributing factor in disease, shows reduction with ageing for the disease model. Autophagy, rather than the Ubiquitin Proteasome system, is the dominant mechanism for aggregate clearance. We explored the ability of Drosophila Valosin-containing protein (VCP/TER94), the ALS14 locus, which is involved in cellular protein clearance, to regulate age-dependent aggregation. Contrary to expectation, TER94 overexpression increased VAPP58S punctae density, while its knockdown led to enhanced clearance. Expression of a dominant positive allele, TER94R152H, further stabilised VAPP58S puncta, cementing roles for an ALS8-ALS14 axis. Our results are explained by a mechanism where autophagy is modulated by TER94 knockdown. Our study sheds light on the complex regulatory events involved in the neuronal maintenance of ALS8 aggregates, suggesting a context-dependent switch between proteasomal and autophagy-based mechanisms as the larvae develop into an adult. A deeper understanding of the nucleation and clearance of the inclusions, which affect cellular stress and function, is essential for understanding the initiation and progression of ALS.
Collapse
Affiliation(s)
- Aparna Thulasidharan
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Lovleen Garg
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Shweta Tendulkar
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education & Research (IISER), Pune 411008, India.
| |
Collapse
|
5
|
Murage B, Tan H, Mashimo T, Jackson M, Skehel PA. Spinal cord neurone loss and foot placement changes in a rat knock-in model of amyotrophic lateral sclerosis Type 8. Brain Commun 2024; 6:fcae184. [PMID: 38846532 PMCID: PMC11154649 DOI: 10.1093/braincomms/fcae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/10/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Amyotrophic lateral sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that amyotrophic lateral sclerosis is part of a spectrum of disorders, ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic lateral sclerosis Type 8 is a familial disease caused by mis-sense mutations in VAPB. VAPB is localized to the cytoplasmic surface of the endoplasmic reticulum, where it serves as a docking point for cytoplasmic proteins and mediates inter-organelle interactions with the endoplasmic reticulum membrane. A gene knock-in model of amyotrophic lateral sclerosis Type 8 based on the VapBP56S mutation and VapB gene deletion has been generated in rats. These animals display a range of age-dependent phenotypes distinct from those previously reported in mouse models of amyotrophic lateral sclerosis Type 8. A loss of motor neurones in VapBP56S/+ and VapBP56S/P56S animals is indicated by a reduction in the number of large choline acetyl transferase-staining cells in the spinal cord. VapB-/- animals exhibit a relative increase in cytoplasmic TDP-43 levels compared with the nucleus, but no large protein aggregates. Concomitant with these spinal cord pathologies VapBP56S/+ , VapBP56S/P56S and VapB-/- animals exhibit age-dependent changes in paw placement and exerted pressures when traversing a CatWalk apparatus, consistent with a somatosensory dysfunction. Extramotor dysfunction is reported in half the cases of motor neurone disease, and this is the first indication of an associated sensory dysfunction in a rodent model of amyotrophic lateral sclerosis. Different rodent models may offer complementary experimental platforms with which to understand the human disease.
Collapse
Affiliation(s)
- Brenda Murage
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre for MND Research, Edinburgh University, Edinburgh EH16 4SB, UK
| | - Han Tan
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Mandy Jackson
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre for MND Research, Edinburgh University, Edinburgh EH16 4SB, UK
| | - Paul A Skehel
- Centre for Discovery Brain Sciences, Edinburgh University, Edinburgh EH8 9XD, UK
- Euan MacDonald Centre for MND Research, Edinburgh University, Edinburgh EH16 4SB, UK
| |
Collapse
|
6
|
James C, Möller U, Spillner C, König S, Dybkov O, Urlaub H, Lenz C, Kehlenbach RH. Phosphorylation of ELYS promotes its interaction with VAPB at decondensing chromosomes during mitosis. EMBO Rep 2024; 25:2391-2417. [PMID: 38605278 PMCID: PMC11094025 DOI: 10.1038/s44319-024-00125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
ELYS is a nucleoporin that localizes to the nuclear side of the nuclear pore complex (NPC) in interphase cells. In mitosis, it serves as an assembly platform that interacts with chromatin and then with nucleoporin subcomplexes to initiate post-mitotic NPC assembly. Here we identify ELYS as a major binding partner of the membrane protein VAPB during mitosis. In mitosis, ELYS becomes phosphorylated at many sites, including a predicted FFAT (two phenylalanines in an acidic tract) motif, which mediates interaction with the MSP (major sperm protein)-domain of VAPB. Binding assays using recombinant proteins or cell lysates and co-immunoprecipitation experiments show that VAPB binds the FFAT motif of ELYS in a phosphorylation-dependent manner. In anaphase, the two proteins co-localize to the non-core region of the newly forming nuclear envelope. Depletion of VAPB results in prolonged mitosis, slow progression from meta- to anaphase and in chromosome segregation defects. Together, our results suggest a role of VAPB in mitosis upon recruitment to or release from ELYS at the non-core region of the chromatin in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Christina James
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Ulrike Möller
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Christiane Spillner
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Sabine König
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christof Lenz
- Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, GZMB, Georg-August-University Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
7
|
Obara CJ, Nixon-Abell J, Moore AS, Riccio F, Hoffman DP, Shtengel G, Xu CS, Schaefer K, Pasolli HA, Masson JB, Hess HF, Calderon CP, Blackstone C, Lippincott-Schwartz J. Motion of VAPB molecules reveals ER-mitochondria contact site subdomains. Nature 2024; 626:169-176. [PMID: 38267577 PMCID: PMC10830423 DOI: 10.1038/s41586-023-06956-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/08/2023] [Indexed: 01/26/2024]
Abstract
To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.
Collapse
Affiliation(s)
| | - Jonathon Nixon-Abell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Cambridge Institute for Medical Research (CIMR), Cambridge, UK
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Federica Riccio
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London, UK
| | - David P Hoffman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kathy Schaefer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, Neuroscience, & Computational Biology Departments, CNRS UMR 3751, Institut Pasteur, Université de Paris, Paris, France
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- Ursa Analytics, Inc., Denver, CO, USA
| | - Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
8
|
Cala SE, Carruthers NJ, Stemmer PM, Chen Z, Chen X. Activation of Ca 2+ transport in cardiac microsomes enriches functional sets of ER and SR proteins. Mol Cell Biochem 2024; 479:85-98. [PMID: 37036634 PMCID: PMC10786961 DOI: 10.1007/s11010-023-04708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/12/2023] [Indexed: 04/11/2023]
Abstract
The importance of sarcoplasmic reticulum (SR) Ca2+-handling in heart has led to detailed understanding of Ca2+-release and re-uptake protein complexes, while less is known about other endoplasmic reticulum (ER) functions in the heart. To more fully understand cardiac SR and ER functions, we analyzed cardiac microsomes based on their increased density through the actions of the SR Ca2+-ATPase (SERCA) and the ryanodine receptor that are highly active in cardiomyocytes. Crude cardiac microsomal vesicles loaded with Ca oxalate produced two higher density subfractions, MedSR and HighSR. Proteins from 20.0 μg of MV, MedSR, and HighSR protein were fractionated using SDS-PAGE, then trypsinized from 20 separate gel pieces, and analyzed by LC-MS/MS to determine protein content. From 62,000 individual peptide spectra obtained, we identified 1105 different proteins, of which 354 were enriched ≥ 2.0-fold in SR fractions compared to the crude membrane preparation. Previously studied SR proteins were all enriched, as were proteins associated with canonical ER functions. Contractile, mitochondrial, and sarcolemmal proteins were not enriched. Comparing the levels of SERCA-positive SR proteins in MedSR versus HighSR vesicles produced a range of SR subfraction enrichments signifying differing levels of Ca2+ leak co-localized in the same membrane patch. All known junctional SR proteins were more enriched in MedSR, while canonical ER proteins were more enriched in HighSR membrane. Proteins constituting other putative ER/SR subdomains also exhibited average Esub enrichment values (mean ± S.D.) that spanned the range of possible Esub values, suggesting that functional sets of proteins are localized to the same areas of the ER/SR membrane. We conclude that active Ca2+ loading of cardiac microsomes, reflecting the combined activities of Ca2+ uptake by SERCA, and Ca2+ leak by RyR, permits evaluation of multiple functional ER/SR subdomains. Sets of proteins from these subdomains exhibited similar enrichment patterns across membrane subfractions, reflecting the relative levels of SERCA and RyR present within individual patches of cardiac ER and SR.
Collapse
Affiliation(s)
- Steven E Cala
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA.
| | | | - Paul M Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, USA
| | - Zhenhui Chen
- Krannert Institute of Cardiology, Indiana University, Indianapolis, IN, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
9
|
Stump AL, Rioux DJ, Albright R, Melki GL, Prosser DC. Yeast Models of Amyotrophic Lateral Sclerosis Type 8 Mimic Phenotypes Seen in Mammalian Cells Expressing Mutant VAPB P56S. Biomolecules 2023; 13:1147. [PMID: 37509182 PMCID: PMC10377116 DOI: 10.3390/biom13071147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease that results in the loss of motor neurons and can occur sporadically or due to genetic mutations. Among the 30 genes linked to familial ALS, a P56S mutation in VAPB, an ER-resident protein that functions at membrane contact sites, causes ALS type 8. Mammalian cells expressing VAPBP56S have distinctive phenotypes, including ER collapse, protein and/or membrane-containing inclusions, and sensitivity to ER stress. VAPB is conserved through evolution and has two homologs in budding yeast, SCS2 and SCS22. Previously, a humanized version of SCS2 bearing disease-linked mutations was described, and it caused Scs2-containing inclusions when overexpressed in yeast. Here, we describe a yeast model for ALS8 in which the two SCS genes are deleted and replaced with a single chromosomal copy of either wild-type or mutant yeast SCS2 or human VAPB expressed from the SCS2 promoter. These cells display ER collapse, the formation of inclusion-like structures, and sensitivity to tunicamycin, an ER stress-inducing drug. Based on the phenotypic similarity to mammalian cells expressing VAPBP56S, we propose that these models can be used to study the molecular basis of cell death or dysfunction in ALS8. Moreover, other conserved ALS-linked genes may create opportunities for the generation of yeast models of disease.
Collapse
Affiliation(s)
- AnnaMari L. Stump
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- VCU Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Daniel J. Rioux
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- VCU Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Richard Albright
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Guiliano L. Melki
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
10
|
Cala SE, Carruthers NJ, Stemmer PM, Chen Z, Chen X. Activation of Ca transport in cardiac microsomes enriches functional sets of ER and SR proteins. RESEARCH SQUARE 2023:rs.3.rs-2557992. [PMID: 36798315 PMCID: PMC9934757 DOI: 10.21203/rs.3.rs-2557992/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The importance of sarcoplasmic reticulum (SR) Ca-handling in heart has led to detailed understanding of Ca-release and re-uptake protein complexes, while less is known about other endoplasmic reticulum (ER) functions in the heart. To more fully understand cardiac SR and ER functions, we analyzed cardiac microsomes based on their increased density through the actions of the SR Ca-ATPase (SERCA) and the ryanodine receptor that are highly active in cardiomyocytes. Crude cardiac microsomal vesicles loaded with Ca oxalate produced two higher density subfractions, MedSR and HighSR. Analyses of protein enrichments from the 3 membrane preparations (crude microsomes, MedSR, and HighSR), showed that only a third of microsomal proteins in heart, or 354 proteins, were enriched ≥2.0-fold in SR. Previously studied SR proteins were all enriched, as were proteins associated with canonical ER functions. Contractile, mitochondrial, and sarcolemmal proteins were not enriched. Comparing the levels of SERCA-positive SR proteins in MedSR versus HighSR vesicles produced a range of SR subfraction enrichments signifying differing levels of Ca leak (ryanodine receptor) co-localized in the same membrane patch. All known junctional SR proteins were more enriched in MedSR, while canonical ER proteins were more enriched in HighSR membrane. Proteins from other putative ER/SR subdomains also showed characteristic distributions among SR subpopulations. We conclude that active Ca loading of cardiac microsomes, reflecting the combined activities of Ca uptake by SERCA, and Ca leak by RyR, permits evaluation of multiple functional ER/SR subdomains. Sets of proteins from these subdomains exhibited similar enrichment patterns across membrane subfractions, reflecting the relative levels of SERCA and RyR present within individual patches of cardiac ER and SR.
Collapse
|
11
|
Vullhorst D, Bloom MS, Akella N, Buonanno A. ER-PM Junctions on GABAergic Interneurons Are Organized by Neuregulin 2/VAP Interactions and Regulated by NMDA Receptors. Int J Mol Sci 2023; 24:2908. [PMID: 36769244 PMCID: PMC9917868 DOI: 10.3390/ijms24032908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Neuregulins (NRGs) signal via ErbB receptors to regulate neural development, excitability, synaptic and network activity, and behaviors relevant to psychiatric disorders. Bidirectional signaling between NRG2/ErbB4 and NMDA receptors is thought to homeostatically regulate GABAergic interneurons in response to increased excitatory neurotransmission or elevated extracellular glutamate levels. Unprocessed proNRG2 forms discrete clusters on cell bodies and proximal dendrites that colocalize with the potassium channel Kv2.1 at specialized endoplasmic reticulum-plasma membrane (ER-PM) junctions, and NMDA receptor activation triggers rapid dissociation from ER-PM junctions and ectodomain shedding by ADAM10. Here, we elucidate the mechanistic basis of proNRG2 clustering at ER-PM junctions and its regulation by NMDA receptors. Importantly, we demonstrate that proNRG2 promotes the formation of ER-PM junctions by directly binding the ER-resident membrane tether VAP, like Kv2.1. The proNRG2 intracellular domain harbors two non-canonical, low-affinity sites that cooperatively mediate VAP binding. One of these is a cryptic and phosphorylation-dependent VAP binding motif that is dephosphorylated following NMDA receptor activation, thus revealing how excitatory neurotransmission promotes the dissociation of proNRG2 from ER-PM junctions. Therefore, proNRG2 and Kv2.1 can independently function as VAP-dependent organizers of neuronal ER-PM junctions. Based on these and prior studies, we propose that proNRG2 and Kv2.1 serve as co-regulated downstream effectors of NMDA receptors to homeostatically regulate GABAergic interneurons.
Collapse
Affiliation(s)
- Detlef Vullhorst
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
12
|
Subra M, Grimanelli Z, Gautier R, Mesmin B. Stranger Twins: A Tale of Resemblance and Contrast Between VAP Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231183897. [PMID: 37455812 PMCID: PMC10345920 DOI: 10.1177/25152564231183897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023]
Abstract
When considering the vesicle-associated membrane protein-associated protein (VAP) family, major receptors at the surface of the endoplasmic reticulum (ER), it appears that VAP-A and VAP-B paralogs largely overlap in structure and function, and that specific features to distinguish these two proteins hardly exist or are poorly documented. Here, we question the degree of redundancy between VAP-A and VAP-B: is one simply a backup plan, in case of loss of function of one of the two genes, or are there molecular and functional divergences that would explain their maintenance during evolution?
Collapse
Affiliation(s)
- Mélody Subra
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| | - Zoé Grimanelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| | - Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, Inserm, CNRS, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
13
|
Kors S, Kurian SM, Costello JL, Schrader M. Controlling contacts-Molecular mechanisms to regulate organelle membrane tethering. Bioessays 2022; 44:e2200151. [PMID: 36180400 DOI: 10.1002/bies.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently hypothetical concepts, including the idea of tether oligomerization and redox regulation playing a role in MCS formation. We identify gaps in our current understanding, such as the identity of the majority of kinases/phosphatases involved in tether modification and conclude that a holistic approach-incorporating the formation of multiple MCS, regulated by interconnected regulatory modulators-may be required to fully appreciate the true complexity of these fascinating intracellular communication systems.
Collapse
Affiliation(s)
- Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Smija M Kurian
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
14
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
15
|
Hwang J, Thurmond DC. Exocytosis Proteins: Typical and Atypical Mechanisms of Action in Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:915509. [PMID: 35774142 PMCID: PMC9238359 DOI: 10.3389/fendo.2022.915509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
16
|
Milanini J, Magdeleine M, Fuggetta N, Ikhlef S, Brau F, Abelanet S, Alpy F, Tomasetto C, Drin G. In situ artificial contact sites (ISACS) between synthetic and endogenous organelle membranes allow for quantification of protein-tethering activities. J Biol Chem 2022; 298:101780. [PMID: 35231443 PMCID: PMC9052148 DOI: 10.1016/j.jbc.2022.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane contact sites are specialized areas where the membranes of two distinct organelles are physically connected and allow for the exchange of molecules and for signaling processes. Understanding the mechanisms whereby proteins localize to and function in these structures is of special interest; however, methods allowing for reconstitution of these contact sites are few and only based on synthetic membranes and recombinant proteins. Here, we devised a strategy to create in situ artificial contact sites between synthetic and endogenous organelle membranes. Liposomes functionalized with a peptide containing a two phenylalanines in an acidic tract (FFAT) motif were added to adherent cells whose plasma membrane was perforated. Confocal and super-resolution microscopy revealed that these liposomes associated with the endoplasmic reticulum via the specific interaction of the FFAT motif with endoplasmic reticulum–resident vesicle-associated membrane protein–associated proteins. This approach allowed for quantification of the attachment properties of peptides corresponding to FFAT motifs derived from distinct proteins and of a protein construct derived from steroidogenic acute regulatory protein–related lipid transfer domain-3. Collectively, these data indicate that the creation of in situ artificial contact sites represents an efficient approach for studying the membrane-tethering activity of proteins and for designing membrane contact site reconstitution assays in cellular contexts.
Collapse
Affiliation(s)
- Julie Milanini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Maud Magdeleine
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Nicolas Fuggetta
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Souade Ikhlef
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Frédéric Brau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Sophie Abelanet
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U1258, Université de Strasbourg, Illkirch, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France.
| |
Collapse
|
17
|
Kors S, Costello JL, Schrader M. VAP Proteins - From Organelle Tethers to Pathogenic Host Interactors and Their Role in Neuronal Disease. Front Cell Dev Biol 2022; 10:895856. [PMID: 35756994 PMCID: PMC9213790 DOI: 10.3389/fcell.2022.895856] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022] Open
Abstract
Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are ubiquitous ER-resident tail-anchored membrane proteins in eukaryotic cells. Their N-terminal major sperm protein (MSP) domain faces the cytosol and allows them to interact with a wide variety of cellular proteins. Therefore, VAP proteins are vital to many cellular processes, including organelle membrane tethering, lipid transfer, autophagy, ion homeostasis and viral defence. Here, we provide a timely overview of the increasing number of VAPA/B binding partners and discuss the role of VAPA/B in maintaining organelle-ER interactions and cooperation. Furthermore, we address how viruses and intracellular bacteria hijack VAPs and their binding partners to induce interactions between the host ER and pathogen-containing compartments and support pathogen replication. Finally, we focus on the role of VAP in human disease and discuss how mutated VAPB leads to the disruption of cellular homeostasis and causes amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Suzan Kors
- *Correspondence: Suzan Kors, ; Michael Schrader,
| | | | | |
Collapse
|
18
|
Furuita K, Hiraoka M, Hanada K, Fujiwara T, Kojima C. Sequence requirements of the FFAT-like motif for specific binding to VAP-A are revealed by NMR. FEBS Lett 2021; 595:2248-2256. [PMID: 34312846 DOI: 10.1002/1873-3468.14166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023]
Abstract
The endoplasmic reticulum transmembrane protein vesicle-associated membrane protein-associated protein (VAP) plays a central role in the formation and function of membrane contact sites (MCS) through its interactions with proteins. The major sperm protein (MSP) domain of VAP binds to a variety of sequences which are referred to as FFAT-like motifs. In this study, we investigated the interactions of eight peptides containing FFAT-like motifs with the VAP-A MSP domain (VAP-AMSP ) by solution NMR. Six of eight peptides are specifically bound to VAP-A. Furthermore, we found that the RNA-dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2 has an FFAT-like motif which specifically binds to VAP-AMSP as well as other FFAT-like motifs. Our results will contribute to the discovery of new VAP interactors.
Collapse
Affiliation(s)
- Kyoko Furuita
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Marina Hiraoka
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Suita, Japan.,Graduate School of Engineering Science, Yokohama National University, Yokohama, Japan
| |
Collapse
|
19
|
Borgese N, Iacomino N, Colombo SF, Navone F. The Link between VAPB Loss of Function and Amyotrophic Lateral Sclerosis. Cells 2021; 10:1865. [PMID: 34440634 PMCID: PMC8392409 DOI: 10.3390/cells10081865] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) membrane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the VAPs mediate a large number of processes, notably the generation of membrane contact sites between the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation (p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable, and its expression from a single allele appears to be insufficient to support toxic gain-of-function effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several basic cell physiological processes are affected by downregulation or complete depletion of VAPB, impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8 patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| | | | | | - Francesca Navone
- CNR Institute of Neuroscience, Via Follereau 3, Bldg U28, 20854 Vedano al Lambro, Italy; (N.I.); (S.F.C.)
| |
Collapse
|
20
|
James C, Kehlenbach RH. The Interactome of the VAP Family of Proteins: An Overview. Cells 2021; 10:cells10071780. [PMID: 34359948 PMCID: PMC8306308 DOI: 10.3390/cells10071780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Membrane contact sites (MCS) are sites of close apposition of two organelles that help in lipid transport and synthesis, calcium homeostasis and several other biological processes. The VAMP-associated proteins (VAPs) VAPA, VAPB, MOSPD2 and the recently described MOSPD1 and MOSPD3 are tether proteins of MCSs that are mainly found at the endoplasmic reticulum (ER). VAPs interact with various proteins with a motif called FFAT (two phenylalanines in an acidic tract), recruiting the associated organelle to the ER. In addition to the conventional FFAT motif, the recently described FFNT (two phenylalanines in a neutral tract) and phospho-FFAT motifs contribute to the interaction with VAPs. In this review, we summarize and compare the recent interactome studies described for VAPs, including in silico and proximity labeling methods. Collectively, the interaction repertoire of VAPs is very diverse and highlights the complexity of interactions mediated by the different FFAT motifs to the VAPs.
Collapse
|
21
|
Dorsch AD, Hölper JE, Franzke K, Zaeck LM, Mettenleiter TC, Klupp BG. Role of Vesicle-Associated Membrane Protein-Associated Proteins (VAP) A and VAPB in Nuclear Egress of the Alphaherpesvirus Pseudorabies Virus. Viruses 2021; 13:v13061117. [PMID: 34200728 PMCID: PMC8229525 DOI: 10.3390/v13061117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanism affecting translocation of newly synthesized herpesvirus nucleocapsids from the nucleus into the cytoplasm is still not fully understood. The viral nuclear egress complex (NEC) mediates budding at and scission from the inner nuclear membrane, but the NEC is not sufficient for efficient fusion of the primary virion envelope with the outer nuclear membrane. Since no other viral protein was found to be essential for this process, it was suggested that a cellular machinery is recruited by viral proteins. However, knowledge on fusion mechanisms involving the nuclear membranes is rare. Recently, vesicle-associated membrane protein-associated protein B (VAPB) was shown to play a role in nuclear egress of herpes simplex virus 1 (HSV-1). To test this for the related alphaherpesvirus pseudorabies virus (PrV), we mutated genes encoding VAPB and VAPA by CRISPR/Cas9-based genome editing in our standard rabbit kidney cells (RK13), either individually or in combination. Single as well as double knockout cells were tested for virus propagation and for defects in nuclear egress. However, no deficiency in virus replication nor any effect on nuclear egress was obvious suggesting that VAPB and VAPA do not play a significant role in this process during PrV infection in RK13 cells.
Collapse
Affiliation(s)
- Anna D. Dorsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
| | - Barbara G. Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany; (A.D.D.); (J.E.H.); (L.M.Z.); (T.C.M.)
- Correspondence:
| |
Collapse
|
22
|
Neefjes J, Cabukusta B. What the VAP: The Expanded VAP Family of Proteins Interacting With FFAT and FFAT-Related Motifs for Interorganellar Contact. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211012246. [PMID: 34036242 PMCID: PMC7610837 DOI: 10.1177/25152564211012246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane contact sites are formed by tether proteins that have the ability to bring two organellar membranes together. VAP proteins are a family of endoplasmic reticulum (ER)-resident tether proteins specialized in interacting with FFAT (two phenylalanines in an acidic tract) peptide motifs in other proteins. If the FFAT-motif-containing proteins reside on other organelles, VAP proteins form contact sites between these organelles and the ER. The role of VAPA and VAPB, the two founding members of the VAP family in recruiting proteins to the ER and forming membrane contact sites is well appreciated as numerous interaction partners of VAPA and VAPB at different intracellular contact sites have been characterized. Recently, three new proteins -MOSPD1, MOSPD2 and MOSPD3-have been added to the VAP family. While MOSPD2 has a motif preference similar to VAPA and VAPB, MOSPD1 and MOSPD3 prefer to interact with proteins containing FFNT (two phenylalanines in a neutral tract) motifs. In this review, we discuss the recent advances in motif binding by VAP proteins along with the other biological processes VAP proteins are involved in.
Collapse
Affiliation(s)
- Jacques Neefjes
- Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Birol Cabukusta
- Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Hewlett B, Singh NP, Vannier C, Galli T. ER-PM Contact Sites - SNARING Actors in Emerging Functions. Front Cell Dev Biol 2021; 9:635518. [PMID: 33681218 PMCID: PMC7928305 DOI: 10.3389/fcell.2021.635518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The compartmentalisation achieved by confining cytoplasm into membrane-enclosed organelles in eukaryotic cells is essential for maintaining vital functions including ATP production, synthetic and degradative pathways. While intracellular organelles are highly specialised in these functions, the restricting membranes also impede exchange of molecules responsible for the synchronised and responsive cellular activities. The initial identification of contact sites between the ER and plasma membrane (PM) provided a potential candidate structure for communication between organelles without mixing by fusion. Over the past decades, research has revealed a far broader picture of the events. Membrane contact sites (MCSs) have been recognized as increasingly important actors in cell differentiation, plasticity and maintenance, and, upon dysfunction, responsible for pathological conditions such as cancer and neurodegenerative diseases. Present in multiple organelles and cell types, MCSs promote transport of lipids and Ca2+ homoeostasis, with a range of associated protein families. Interestingly, each MCS displays a unique molecular signature, adapted to organelle functions. This review will explore the literature describing the molecular components and interactions taking place at ER-PM contact sites, their functions, and implications in eukaryotic cells, particularly neurons, with emphasis on lipid transfer proteins and emerging function of SNAREs.
Collapse
Affiliation(s)
- Bailey Hewlett
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Neha Pratap Singh
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Christian Vannier
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Thierry Galli
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,GHU PARIS Psychiatrie and Neurosciences, Paris, France
| |
Collapse
|
24
|
Dudás EF, Huynen MA, Lesk AM, Pastore A. Invisible leashes: The tethering VAPs from infectious diseases to neurodegeneration. J Biol Chem 2021; 296:100421. [PMID: 33609524 PMCID: PMC8005810 DOI: 10.1016/j.jbc.2021.100421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Intracellular organelles do not, as thought for a long time, act in isolation but are dynamically tethered together by entire machines responsible for interorganelle trafficking and positioning. Among the proteins responsible for tethering is the family of VAMP-associated proteins (VAPs) that appear in all eukaryotes and are localized primarily in the endoplasmic reticulum. The major functional role of VAPs is to tether the endoplasmic reticulum with different organelles and regulate lipid metabolism and transport. VAPs have gained increasing attention because of their role in human pathology where they contribute to infections by viruses and bacteria and participate in neurodegeneration. In this review, we discuss the structure, evolution, and functions of VAPs, focusing more specifically on VAP-B for its relationship with amyotrophic lateral sclerosis and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Erika F Dudás
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Centre, GA Nijmegen, Netherlands
| | - Arthur M Lesk
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Annalisa Pastore
- UK Dementia Research Institute at King's College London, The Maurice Wohl Institute, London, UK.
| |
Collapse
|
25
|
Borgese N, Navone F, Nukina N, Yamanaka T. Mutant VAPB: Culprit or Innocent Bystander of Amyotrophic Lateral Sclerosis? CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211022515. [PMID: 37366377 PMCID: PMC10243577 DOI: 10.1177/25152564211022515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 06/28/2023]
Abstract
Nearly twenty years ago a mutation in the VAPB gene, resulting in a proline to serine substitution (p.P56S), was identified as the cause of a rare, slowly progressing, familial form of the motor neuron degenerative disease Amyotrophic Lateral Sclerosis (ALS). Since then, progress in unravelling the mechanistic basis of this mutation has proceeded in parallel with research on the VAP proteins and on their role in establishing membrane contact sites between the ER and other organelles. Analysis of the literature on cellular and animal models reviewed here supports the conclusion that P56S-VAPB, which is aggregation-prone, non-functional and unstable, is expressed at levels that are insufficient to support toxic gain-of-function or dominant negative effects within motor neurons. Instead, insufficient levels of the product of the single wild-type allele appear to be required for pathological effects, and may be the main driver of the disease. In light of the multiple interactions of the VAP proteins, we address the consequences of specific VAPB depletion and highlight various affected processes that could contribute to motor neuron degeneration. In the future, distinction of specific roles of each of the two VAP paralogues should help to further elucidate the basis of p.P56S familial ALS, as well as of other more common forms of the disease.
Collapse
Affiliation(s)
- Nica Borgese
- CNR Institute of
Neuroscience, Vedano al Lambro (MB), Italy
| | | | - Nobuyuki Nukina
- Laboratory of Structural
Neuropathology, Doshisha University Graduate School of Brain Science,
Kyoto, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural
Neuropathology, Doshisha University Graduate School of Brain Science,
Kyoto, Japan
| |
Collapse
|
26
|
Human VAPome Analysis Reveals MOSPD1 and MOSPD3 as Membrane Contact Site Proteins Interacting with FFAT-Related FFNT Motifs. Cell Rep 2020; 33:108475. [DOI: 10.1016/j.celrep.2020.108475] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/05/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
|
27
|
Zein-Sabatto H, Cole T, Hoang HD, Tiwary E, Chang C, Miller MA. The type II integral ER membrane protein VAP-B homolog in C. elegans is cleaved to release the N-terminal MSP domain to signal non-cell-autonomously. Dev Biol 2020; 470:10-20. [PMID: 33160939 DOI: 10.1016/j.ydbio.2020.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022]
Abstract
VAMP/synaptobrevin-associated protein B (VAP-B) is a type II ER membrane protein, but its N-terminal MSP domain (MSPd) can be cleaved and secreted. Mutations preventing the cleavage and secretion of MSPd have been implicated in cases of human neurodegenerative diseases. The site of VAP cleavage and the tissues capable in releasing the processed MSPd are not understood. In this study, we analyze the C. elegans VAP-B homolog, VPR-1, for its processing and secretion from the intestine. We show that intestine-specific expression of an N-terminally FLAG-tagged VPR-1 rescues underdeveloped gonad and sterility defects in vpr-1 null hermaphrodites. Immunofluorescence studies reveal that the tagged intestinal expressed VPR-1 is present at the distal gonad. Mass spectrometry analysis of a smaller product of the N-terminally tagged VPR-1 identifies a specific cleavage site at Leu156. Mutation of the leucine results in loss of gonadal MSPd signal and reduced activity of the mutant VPR-1. Thus, we report for the first time the cleavage site of VPR-1 and provide direct evidence that intestinally expressed VPR-1 can be released and signal in the distal gonad. These results establish the foundation for further exploration of VAP cleavage, MSPd secretion, and non-cell-autonomous signaling in development and diseases.
Collapse
Affiliation(s)
- Hala Zein-Sabatto
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA.
| | - Tim Cole
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Hieu D Hoang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Ekta Tiwary
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Chenbei Chang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| | - Michael A Miller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1900 University Blvd, Birmingham, AL, 35294-0006, USA
| |
Collapse
|
28
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
29
|
ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Cell Mol Life Sci 2020; 78:1689-1708. [PMID: 32734583 PMCID: PMC7904734 DOI: 10.1007/s00018-020-03604-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.
Collapse
|
30
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
31
|
Martello A, Platt FM, Eden ER. Staying in touch with the endocytic network: The importance of contacts for cholesterol transport. Traffic 2020; 21:354-363. [PMID: 32129938 PMCID: PMC8650999 DOI: 10.1111/tra.12726] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Cholesterol homeostasis is critical for cell function and human health. Cholesterol is heterogeneously distributed among cellular membranes, with the redistribution of endocytosed dietary cholesterol playing a pivotal role in the regulation of cholesterol homeostasis. While gaps remain in our understanding of intracellular dietary cholesterol transport, a highly complex network of pathways is starting to emerge, often involving inter‐dependent vesicular and non‐vesicular transport mechanisms. The last decade has seen a surge in interest in non‐vesicular transport and inter‐organellar communication at membrane contact sites. By providing platforms for protein interactions, signalling events, lipid exchange and calcium flux, membrane contact sites (MCS) are now appreciated as controlling the fate of large amounts of lipid and play central roles in the regulation and co‐ordination of endocytic trafficking. Here, we review the role of MCS in multiple pathways for cholesterol export from the endocytic pathway and highlight the intriguing interplay between vesicular and non‐vesicular transport mechanisms and relationship with neurodegenerative disease.
Collapse
Affiliation(s)
| | - Fran M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
32
|
Kirmiz M, Gillies TE, Dickson EJ, Trimmer JS. Neuronal ER-plasma membrane junctions organized by Kv2-VAP pairing recruit Nir proteins and affect phosphoinositide homeostasis. J Biol Chem 2019; 294:17735-17757. [PMID: 31594866 DOI: 10.1074/jbc.ra119.007635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 10/02/2019] [Indexed: 12/21/2022] Open
Abstract
The association of plasma membrane (PM)-localized voltage-gated potassium (Kv2) channels with endoplasmic reticulum (ER)-localized vesicle-associated membrane protein-associated proteins VAPA and VAPB defines ER-PM junctions in mammalian brain neurons. Here, we used proteomics to identify proteins associated with Kv2/VAP-containing ER-PM junctions. We found that the VAP-interacting membrane-associated phosphatidylinositol (PtdIns) transfer proteins PYK2 N-terminal domain-interacting receptor 2 (Nir2) and Nir3 specifically associate with Kv2.1 complexes. When coexpressed with Kv2.1 and VAPA in HEK293T cells, Nir2 colocalized with cell-surface-conducting and -nonconducting Kv2.1 isoforms. This was enhanced by muscarinic-mediated PtdIns(4,5)P2 hydrolysis, leading to dynamic recruitment of Nir2 to Kv2.1 clusters. In cultured rat hippocampal neurons, exogenously expressed Nir2 did not strongly colocalize with Kv2.1, unless exogenous VAPA was also expressed, supporting the notion that VAPA mediates the spatial association of Kv2.1 and Nir2. Immunolabeling signals of endogenous Kv2.1, Nir2, and VAP puncta were spatially correlated in cultured neurons. Fluorescence-recovery-after-photobleaching experiments revealed that Kv2.1, VAPA, and Nir2 have comparable turnover rates at ER-PM junctions, suggesting that they form complexes at these sites. Exogenous Kv2.1 expression in HEK293T cells resulted in significant differences in the kinetics of PtdIns(4,5)P2 recovery following repetitive muscarinic stimulation, with no apparent impact on resting PtdIns(4,5)P2 or PtdIns(4)P levels. Finally, the brains of Kv2.1-knockout mice had altered composition of PtdIns lipids, suggesting a crucial role for native Kv2.1-containing ER-PM junctions in regulating PtdIns lipid metabolism in brain neurons. These results suggest that ER-PM junctions formed by Kv2 channel-VAP pairing regulate PtdIns lipid homeostasis via VAP-associated PtdIns transfer proteins.
Collapse
Affiliation(s)
- Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - Taryn E Gillies
- Department of Bioengineering, Stanford University, Stanford, California 94305
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616 .,Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California 95616
| |
Collapse
|
33
|
Johnson B, Leek AN, Tamkun MM. Kv2 channels create endoplasmic reticulum / plasma membrane junctions: a brief history of Kv2 channel subcellular localization. Channels (Austin) 2019; 13:88-101. [PMID: 30712450 PMCID: PMC6380216 DOI: 10.1080/19336950.2019.1568824] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The potassium channels Kv2.1 and Kv2.2 are widely expressed throughout the mammalian brain. Kv2.1 provides the majority of delayed rectifying current in rat hippocampus while both channels are differentially expressed in cortex. Particularly unusual is their neuronal surface localization pattern: while half the channel population is freely-diffusive on the plasma membrane as expected from the generalized Singer & Nicolson fluid mosaic model, the other half localizes into micron-sized clusters on the soma, dendrites, and axon initial segment. These clusters contain hundreds of channels, which for Kv2.1, are largely non-conducting. Competing theories of the mechanism underlying Kv2.1 clustering have included static tethering to being corralled by an actin fence. Now, recent work has demonstrated channel clustering is due to formation of endoplasmic reticulum/plasma membrane (ER/PM) junctions through interaction with ER-resident VAMP-associated proteins (VAPs). Interaction between surface Kv2 channels and ER VAPs groups channels together in clusters. ER/PM junctions play important roles in inter-organelle communication: they regulate ion flux, are involved in lipid transfer, and are sites of endo- and exocytosis. Kv2-induced ER/PM junctions are regulated through phosphorylation of the channel C-terminus which in turn regulates VAP binding, providing a rapid means to create or dismantle these microdomains. In addition, insults such as hypoxia or ischemia disrupt this interaction resulting in ER/PM junction disassembly. Kv2 channels are the only known plasma membrane protein to form regulated, injury sensitive junctions in this manner. Furthermore, it is likely that concentrated VAPs at these microdomains sequester additional interactors whose functions are not yet fully understood.
Collapse
Affiliation(s)
- Ben Johnson
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Ashley N Leek
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Michael M Tamkun
- a Molecular, Cellular and Integrative Neurosciences Graduate Program , Colorado State University , Fort Collins , CO , USA.,b Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA.,c Department of Biochemistry and Molecular Biology , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
34
|
Zhao J, Chi Y, Zhang XJ, Wang XW, Liu SS. Implication of whitefly vesicle associated membrane protein-associated protein B in the transmission of Tomato yellow leaf curl virus. Virology 2019; 535:210-217. [PMID: 31319278 DOI: 10.1016/j.virol.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) poses serious threat to tomato production worldwide, and the vector, Bemisia tabaci, plays a key role in the transmission of this virus. However, the molecular mechanisms underlying the transmission remain poorly understood. In this study, firstly, we identified the whitefly proteins that presumably interact with TYLCV coat protein (CP) using split-ubiquitin yeast two-hybrid system. Next, we conducted GST pull-down and immunofluorescence to examine the potential interaction between TYLCV CP and one of the proteins identified, namely vesicle associated membrane protein-associated protein B (VAPB), an protein abundantly expressed in whitefly midgut. Further experiments demonstrated that VAPB was significantly up-regulated upon virus acquisition, and silencing VAPB led to a significant increase of relative virus quantity in whitefly haemolymph and salivary glands, as well as an increase of TYLCV transmission efficiency. These findings indicate an important role of VAPB in the transmission of TYLCV by whiteflies.
Collapse
Affiliation(s)
- Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xin-Jia Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
35
|
Kumagai K, Hanada K. Structure, functions and regulation of CERT, a lipid-transfer protein for the delivery of ceramide at the ER-Golgi membrane contact sites. FEBS Lett 2019; 593:2366-2377. [PMID: 31254361 DOI: 10.1002/1873-3468.13511] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022]
Abstract
The inter-organelle transport of lipids must be regulated to ensure appropriate lipid composition of each organelle. In mammalian cells, ceramide synthesised in the endoplasmic reticulum (ER) is transported to the trans-Golgi regions, where ceramide is converted to sphingomyelin (SM) with the concomitant production of diacylglycerol. Ceramide transport protein (CERT) transports ceramide from the ER to the trans-Golgi regions at the ER-Golgi membrane contact sites (MCS). The function of CERT is down-regulated by multisite phosphorylation of a serine-repeat motif (SRM) and up-regulated by phosphorylation of serine 315 in CERT. Multisite phosphorylation of the SRM is primed by protein kinase D, which is activated by diacylglycerol. The function of CERT is regulated by a phosphorylation-dependent feedback mechanism in response to cellular requirements of SM. CERT-dependent ceramide transport is also affected by the pool of phosphatidylinositol (PtdIns)-4-phosphate (PtdIns(4)P) in the trans-Golgi regions, while the PtdIns(4)P pool is regulated by PtdIns-4-kinases and oxysterol-binding protein. The ER-Golgi MCS may serve as inter-organelle communication zones, in which many factors work in concert to serve as an extensive rheostat of SM, diacylglycerol, cholesterol and PtdIns(4)P.
Collapse
Affiliation(s)
- Keigo Kumagai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
36
|
Kamemura K, Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J Biochem 2019; 165:391-400. [PMID: 30726905 DOI: 10.1093/jb/mvz011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
VAP (VAMP-associated protein) is a type II integral membrane protein of the endoplasmic reticulum (ER), and its N-terminal major sperm protein (MSP) domain faces the cytoplasmic side. VAP functions as a tethering molecule at the membrane contact sites between the ER and intracellular organelles and regulates a wide variety of cellular functions, including lipid transport, membrane trafficking, microtubule reorganization and unfolded protein response. VAP-point mutations in human vapb are strongly associated with amyotrophic lateral sclerosis. Importantly, the MSP domain of VAP is cleaved, secreted and interacts with the axon growth cone guidance receptors (Eph, Robo, Lar), suggesting that VAP could function as a circulating hormone similar to the Caenorhabditis elegans MSP protein. In this review, we discuss not only the intracellular functions of VAP but also the recently discovered extracellular functions and their implications for neurodegenerative disease.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
37
|
Oncogenic Effect of the Novel Fusion Gene VAPA-Rab31 in Lung Adenocarcinoma. Int J Mol Sci 2019; 20:ijms20092309. [PMID: 31083279 PMCID: PMC6539523 DOI: 10.3390/ijms20092309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Fusion genes have been identified as oncogenes in several solid tumors including lung, colorectal, and stomach cancers. Here, we characterized the fusion gene, VAPA-Rab31, discovered from RNA-sequencing data of a patient with lung adenocarcinoma who did not harbor activating mutations in EGFR, KRAS and ALK. This fusion gene encodes a protein comprising the N-terminal region of vesicle-associated membrane protein (VAMP)-associated protein A (VAPA) fused to the C-terminal region of Ras-related protein 31 (Rab31). Exogenous expression of VAPA-Rab31 in immortalized normal bronchial epithelial cells demonstrated the potential transforming effects of this fusion gene, including increased colony formation and cell proliferation in vitro. Also, enhanced tumorigenicity upon VAPA-Rab31 was confirmed in vivo using a mouse xenograft model. Metastatic tumors were also detected in the liver and lungs of xenografted mice. Overexpression of VAPA-Rab31 upregulated anti-apoptotic protein Bcl-2 and phosphorylated CREB both in cells and xenograft tumors. Reduced apoptosis and increased phosphorylation of CREB and Erk were observed in VAPA-Rab31-overexpressing cells after bortezomib treatment. Elevated Bcl-2 level via activated CREB contributed to the resistance to the bortezomib-induced apoptosis. Our data suggest the oncogenic function of the novel fusion gene VAPA-Rab31 via upregulated Bcl-2 and activated CREB in lung cancer.
Collapse
|
38
|
Mao D, Lin G, Tepe B, Zuo Z, Tan KL, Senturk M, Zhang S, Arenkiel BR, Sardiello M, Bellen HJ. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019; 15:1214-1233. [PMID: 30741620 DOI: 10.1080/15548627.2019.1580103] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).
Collapse
Affiliation(s)
- Dongxue Mao
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Guang Lin
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Burak Tepe
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Zhongyuan Zuo
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Kai Li Tan
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Mumine Senturk
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Sheng Zhang
- c The Brown Foundation Institute of Molecular Medicine , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,d Department of Neurobiology and Anatomy , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,e Programs in Genetics & Epigenetics and Neuroscience , University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS) , Houston , TX , USA
| | - Benjamin R Arenkiel
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA
| | - Marco Sardiello
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA
| | - Hugo J Bellen
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,h Baylor College of Medicine , Howard Hughes Medical Institute , Houston , TX , USA
| |
Collapse
|
39
|
Host Vesicle Fusion Protein VAPB Contributes to the Nuclear Egress Stage of Herpes Simplex Virus Type-1 (HSV-1) Replication. Cells 2019; 8:cells8020120. [PMID: 30717447 PMCID: PMC6406291 DOI: 10.3390/cells8020120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
The primary envelopment/de-envelopment of Herpes viruses during nuclear exit is poorly understood. In Herpes simplex virus type-1 (HSV-1), proteins pUL31 and pUL34 are critical, while pUS3 and some others contribute; however, efficient membrane fusion may require additional host proteins. We postulated that vesicle fusion proteins present in the nuclear envelope might facilitate primary envelopment and/or de-envelopment fusion with the outer nuclear membrane. Indeed, a subpopulation of vesicle-associated membrane protein-associated protein B (VAPB), a known vesicle trafficking protein, was present in the nuclear membrane co-locating with pUL34. VAPB knockdown significantly reduced both cell-associated and supernatant virus titers. Moreover, VAPB depletion reduced cytoplasmic accumulation of virus particles and increased levels of nuclear encapsidated viral DNA. These results suggest that VAPB is an important player in the exit of primary enveloped HSV-1 virions from the nucleus. Importantly, VAPB knockdown did not alter pUL34, calnexin or GM-130 localization during infection, arguing against an indirect effect of VAPB on cellular vesicles and trafficking. Immunogold-labelling electron microscopy confirmed VAPB presence in nuclear membranes and moreover associated with primary enveloped HSV-1 particles. These data suggest that VAPB could be a cellular component of a complex that facilitates UL31/UL34/US3-mediated HSV-1 nuclear egress.
Collapse
|
40
|
Glucosylceramide acyl chain length is sensed by the glycolipid transfer protein. PLoS One 2018; 13:e0209230. [PMID: 30550553 PMCID: PMC6294359 DOI: 10.1371/journal.pone.0209230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/30/2018] [Indexed: 12/02/2022] Open
Abstract
The glycolipid transfer protein, GLTP, can be found in the cytoplasm, and it has a FFAT-like motif (two phenylalanines in an acidic tract) that targets it to the endoplasmic reticulum (ER). We have previously shown that GLTP can bind to a transmembrane ER protein, vesicle-associated membrane protein-associated protein A (VAP-A), which is involved in a wide range of ER functions. We have addressed the mechanisms that might regulate the association between GLTP and the VAP proteins by studying the capacity of GLTP to recognize different N-linked acyl chain species of glucosylceramide. We used surface plasmon resonance and a lipid transfer competition assay to show that GLTP prefers shorter N-linked fully saturated acyl chain glucosylceramides, such as C8, C12, and C16, whereas long C18, C20, and C24-glucosylceramides are all bound more weakly and transported more slowly than their shorter counterparts. Changes in the intrinsic GLTP tryptophan fluorescence blueshifts, also indicate a break-point between C16- and C18-glucosylceramide in the GLTP sensing ability. It has long been postulated that GLTP would be a sensor in the sphingolipid synthesis machinery, but how this mechanistically occurs has not been addressed before. It is unclear what proteins the GLTP VAP association would influence. Here we found that if GLTP has a bound GlcCer the association with VAP-A is weaker. We have also used a formula for identifying putative FFAT-domains, and we identified several potential VAP-interactors within the ceramide and sphingolipid synthesis pathways that could be candidates for regulation by GLTP.
Collapse
|
41
|
Di Mattia T, Wilhelm LP, Ikhlef S, Wendling C, Spehner D, Nominé Y, Giordano F, Mathelin C, Drin G, Tomasetto C, Alpy F. Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Rep 2018; 19:e45453. [PMID: 29858488 PMCID: PMC6030701 DOI: 10.15252/embr.201745453] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 11/09/2022] Open
Abstract
Membrane contact sites are cellular structures that mediate interorganelle exchange and communication. The two major tether proteins of the endoplasmic reticulum (ER), VAP-A and VAP-B, interact with proteins from other organelles that possess a small VAP-interacting motif, named FFAT [two phenylalanines (FF) in an acidic track (AT)]. In this study, using an unbiased proteomic approach, we identify a novel ER tether named motile sperm domain-containing protein 2 (MOSPD2). We show that MOSPD2 possesses a Major Sperm Protein (MSP) domain which binds FFAT motifs and consequently allows membrane tethering in vitro MOSPD2 is an ER-anchored protein, and it interacts with several FFAT-containing tether proteins from endosomes, mitochondria, or Golgi. Consequently, MOSPD2 and these organelle-bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi. Thus, we characterized here MOSPD2, a novel tethering component related to VAP proteins, bridging the ER with a variety of distinct organelles.
Collapse
Affiliation(s)
- Thomas Di Mattia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Léa P Wilhelm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Souade Ikhlef
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Corinne Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Danièle Spehner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Yves Nominé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Francesca Giordano
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Paris-Sud University Paris-Saclay University, Gif-sur-Yvette Cedex 91198, France
| | - Carole Mathelin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Senology Unit, Strasbourg University Hospital (CHRU), Hôpital de Hautepierre, Strasbourg, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
| | - Catherine Tomasetto
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France
- Université de Strasbourg, Illkirch, France
| |
Collapse
|
42
|
Silbernagel N, Walecki M, Schäfer MKH, Kessler M, Zobeiri M, Rinné S, Kiper AK, Komadowski MA, Vowinkel KS, Wemhöner K, Fortmüller L, Schewe M, Dolga AM, Scekic-Zahirovic J, Matschke LA, Culmsee C, Baukrowitz T, Monassier L, Ullrich ND, Dupuis L, Just S, Budde T, Fabritz L, Decher N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function. FASEB J 2018; 32:6159-6173. [PMID: 29879376 PMCID: PMC6629115 DOI: 10.1096/fj.201800246r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.
Collapse
Affiliation(s)
- Nicole Silbernagel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Magdalena Walecki
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Martin K-H Schäfer
- Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Mirjam Kessler
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | | | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Marlene A Komadowski
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany.,Institute of Anatomy and Cell Biology, Philipps University, Marburg, Germany
| | - Kirsty S Vowinkel
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Konstantin Wemhöner
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Lisa Fortmüller
- Department of Cardiology II - Electrophysiology, University Hospital Münster, University of Münster, Munster, Germany
| | - Marcus Schewe
- Institute of Physiology, Christian-Albrechts University, Kiel, Germany
| | - Amalia M Dolga
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - Jelena Scekic-Zahirovic
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Lina A Matschke
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Phillips University, Marburg, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University, Kiel, Germany
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Nina D Ullrich
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
| | - Luc Dupuis
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,INSERM, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University Hospital Ulm, Ulm, Germany
| | - Thomas Budde
- Institute for Physiology I, University of Münster, Munster, Germany
| | - Larissa Fabritz
- Department of Cardiology II - Electrophysiology, University Hospital Münster, University of Münster, Munster, Germany.,Institute of Cardiovascular Sciences, University Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom.,Department of Cardiology, University Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom.,Division of Rhythmology, Department of Genetic Epidemiology, University Hospital Münster, University of Münster, Munster, Germany.,Institute of Human Genetics, Department of Genetic Epidemiology, University Hospital Münster, University of Münster, Munster, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Phillips University, Marburg, Germany
| |
Collapse
|
43
|
Portela M, Yang L, Paul S, Li X, Veraksa A, Parsons LM, Richardson HE. Lgl reduces endosomal vesicle acidification and Notch signaling by promoting the interaction between Vap33 and the V-ATPase complex. Sci Signal 2018; 11:11/533/eaar1976. [PMID: 29871910 DOI: 10.1126/scisignal.aar1976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cell polarity is linked to the control of tissue growth and tumorigenesis. The tumor suppressor and cell polarity protein lethal-2-giant larvae (Lgl) promotes Hippo signaling and inhibits Notch signaling to restrict tissue growth in Drosophila melanogaster Notch signaling is greater in lgl mutant tissue than in wild-type tissue because of increased acidification of endosomal vesicles, which promotes the proteolytic processing and activation of Notch by γ-secretase. We showed that the increased Notch signaling and tissue growth defects of lgl mutant tissue depended on endosomal vesicle acidification mediated by the vacuolar adenosine triphosphatase (V-ATPase). Lgl promoted the activity of the V-ATPase by interacting with Vap33 (VAMP-associated protein of 33 kDa). Vap33 physically and genetically interacted with Lgl and V-ATPase subunits and repressed V-ATPase-mediated endosomal vesicle acidification and Notch signaling. Vap33 overexpression reduced the abundance of the V-ATPase component Vha44, whereas Lgl knockdown reduced the binding of Vap33 to the V-ATPase component Vha68-3. Our data indicate that Lgl promotes the binding of Vap33 to the V-ATPase, thus inhibiting V-ATPase-mediated endosomal vesicle acidification and thereby reducing γ-secretase activity, Notch signaling, and tissue growth. Our findings implicate the deregulation of Vap33 and V-ATPase activity in polarity-impaired epithelial cancers.
Collapse
Affiliation(s)
- Marta Portela
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | - Liu Yang
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Linda M Parsons
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia. .,Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, Department of Anatomy and Neuroscience, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
44
|
Singh B, Khurana P, Khurana JP, Singh P. Gene encoding vesicle-associated membrane protein-associated protein from Triticum aestivum (TaVAP) confers tolerance to drought stress. Cell Stress Chaperones 2018; 23:411-428. [PMID: 29116579 PMCID: PMC5904086 DOI: 10.1007/s12192-017-0854-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Abiotic stresses like drought, salinity, high and low temperature, and submergence are major factors that limit the crop productivity. Hence, identification of genes associated with stress response in crops is a prerequisite for improving their tolerance to adverse environmental conditions. In an earlier study, we had identified a drought-inducible gene, vesicle-associated membrane protein-associated protein (TaVAP), in developing grains of wheat. In this study, we demonstrate that TaVAP is able to complement yeast and Arabidopsis mutants, which are impaired in their respective orthologs, signifying functional conservation. Constitutive expression of TaVAP in Arabidopsis imparted tolerance to water stress conditions without any apparent yield penalty. Enhanced tolerance to water stress was associated with maintenance of higher relative water content, photosynthetic efficiency, and antioxidant activities. Compared to wild type, the TaVAP-overexpressing plants showed enhanced lateral root proliferation that was attributed to higher endogenous levels of IAA. These studies are the first to demonstrate that TaVAP plays a critical role in growth and development in plants, and is a potential candidate for improving the abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Brinderjit Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
45
|
Antonny B, Bigay J, Mesmin B. The Oxysterol-Binding Protein Cycle: Burning Off PI(4)P to Transport Cholesterol. Annu Rev Biochem 2018; 87:809-837. [PMID: 29596003 DOI: 10.1146/annurev-biochem-061516-044924] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To maintain an asymmetric distribution of ions across membranes, protein pumps displace ions against their concentration gradient by using chemical energy. Here, we describe a functionally analogous but topologically opposite process that applies to the lipid transfer protein (LTP) oxysterol-binding protein (OSBP). This multidomain protein exchanges cholesterol for the phosphoinositide phosphatidylinositol 4-phosphate [PI(4)P] between two apposed membranes. Because of the subsequent hydrolysis of PI(4)P, this counterexchange is irreversible and contributes to the establishment of a cholesterol gradient along organelles of the secretory pathway. The facts that some natural anti-cancer molecules block OSBP and that many viruses hijack the OSBP cycle for the formation of intracellular replication organelles highlight the importance and potency of OSBP-mediated lipid exchange. The architecture of some LTPs is similar to that of OSBP, suggesting that the principles of the OSBP cycle-burning PI(4)P for the vectorial transfer of another lipid-might be general.
Collapse
Affiliation(s)
- Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Joëlle Bigay
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| | - Bruno Mesmin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, 06560 Valbonne, France;
| |
Collapse
|
46
|
Yadav S, Thakur R, Georgiev P, Deivasigamani S, Krishnan H, Ratnaparkhi G, Raghu P. RDGBα localization and function at membrane contact sites is regulated by FFAT-VAP interactions. J Cell Sci 2018; 131:jcs.207985. [PMID: 29180517 DOI: 10.1242/jcs.207985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Phosphatidylinositol transfer proteins (PITPs) are essential regulators of PLC signalling. The PI transfer domain (PITPd) of multi-domain PITPs is reported to be sufficient for in vivo function, questioning the relevance of other domains in the protein. In Drosophila photoreceptors, loss of RDGBα, a multi-domain PITP localized to membrane contact sites (MCSs), results in multiple defects during PLC signalling. Here, we report that the PITPd of RDGBα does not localize to MCSs and fails to support function during strong PLC stimulation. We show that the MCS localization of RDGBα depends on the interaction of its FFAT motif with dVAP-A. Disruption of the FFAT motif (RDGBFF/AA) or downregulation of dVAP-A, both result in mis-localization of RDGBα and are associated with loss of function. Importantly, the ability of the PITPd in full-length RDGBFF/AA to rescue mutant phenotypes was significantly worse than that of the PITPd alone, indicating that an intact FFAT motif is necessary for PITPd activity in vivo Thus, the interaction between the FFAT motif and dVAP-A confers not only localization but also intramolecular regulation on lipid transfer by the PITPd of RDGBα. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shweta Yadav
- Cellular Organization and Signalling, National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Rajan Thakur
- Cellular Organization and Signalling, National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.,Shanmugha Arts, Science, Technology & Research Academy, Thanjavur 613401, India
| | - Plamen Georgiev
- Inositide Laboratory, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Harini Krishnan
- Cellular Organization and Signalling, National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Girish Ratnaparkhi
- Department of Biology, Indian Institute of Science Education and Research, Pune 411021, India
| | - Padinjat Raghu
- Cellular Organization and Signalling, National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
47
|
Deng Q, Zhang J, Wang Z, Zhang S, Zhi F, Liang H. Vesicle-Associated Membrane Protein-Associated Protein A Is Involved in Androgen Receptor Trafficking in Mouse Sertoli Cells. Int J Endocrinol 2018; 2018:4537214. [PMID: 29686703 PMCID: PMC5857304 DOI: 10.1155/2018/4537214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/18/2018] [Accepted: 02/05/2018] [Indexed: 11/23/2022] Open
Abstract
Androgen and its receptor (AR) play an important role in maintaining spermatogenesis and male fertility. The nonclassical androgen signaling pathway is proposed to be mediated by an AR in plasma membrane in Sertoli cells. Our previous studies showed that testosterone induces cytoplasmic AR translocation to plasma membrane by binding with caveolin-1. This study was conducted to the underlying molecular mechanism mediating AR trafficking. Data from mass spectrometry using membrane coimmunoprecipitation sample by anti-AR antibody indicated VAPA is a candidate protein. Knockdown of VAPA by shRNA decreased the amount of AR localized to membrane and nuclear fraction and prevented AR trafficking after being exposed to testosterone. Further studies indicated AR trafficking in Sertoli cells might be mediated by VAPA via association with vesicle transport protein OSBP. This study can enrich the mechanism of the androgen actions and will be helpful for further clarifying the nonclassical signaling pathway of androgens in Sertoli cells.
Collapse
Affiliation(s)
- Qiong Deng
- Department of Urology, The People's Hospital of Longhua, Shenzhen, China
| | - Jianwen Zhang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, China
| | - Zhu Wang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, China
| | - Shengping Zhang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, China
| | - Fan Zhi
- Department of Urology, The People's Hospital of Longhua, Shenzhen, China
| | - Hui Liang
- Department of Urology, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
48
|
Atabekova AK, Lazareva EA, Strelkova OS, Solovyev AG, Morozov SY. Mechanical stress-induced subcellular re-localization of N-terminally truncated tobacco Nt-4/1 protein. Biochimie 2018; 144:98-107. [PMID: 29097279 DOI: 10.1016/j.biochi.2017.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
The Nicotiana tabacum 4/1 protein (Nt-4/1) of unknown function expressed in plant vasculature has been shown to localize to cytoplasmic bodies associated with endoplasmic reticulum. Here, we analyzed molecular interactions of an Nt-4/1 mutant with a deletion of 90 N-terminal amino acid residues (Nt-4/1d90) having a diffuse GFP-like localization. Upon transient co-expression with VAP27, a membrane protein known to localize to the ER, ER-plasma membrane contact sites and plasmodesmata, Nt-4/1d90 was concentrated around the cortical ER tubules, forming a network matching the shape of the cortical ER. Additionally, in response to mechanical stress, Nt-4/1d90 was re-localized to small spherical bodies, whereas the subcellular localization of VAP27 remained essentially unaffected. The Nt-4/1d90-containing bodies associated with microtubules, which underwent noticeable bundling under the conditions of mechanical stress. The Nt-4/1d90 re-localization to spherical bodies could also be induced by incubation at an elevated temperature, although under heat shock conditions the re-localization was less efficient and incomplete. An Nt-4/1d90 mutant, which had phosphorylation-mimicking mutations in a predicted cluster of four potentially phosphorylated residues, was found to both inefficiently re-localize to spherical bodies and tend to revert back to the initial diffuse localization. The presented data show that Nt-4/1 has a potential for response to stresses that is manifested by its deletion mutant Nt-4/1d90, and this response can be mediated by protein dephosphorylation.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Ekaterina A Lazareva
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia
| | - Olga S Strelkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Andrey G Solovyev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
49
|
Hoffmann PC, Kukulski W. Perspective on architecture and assembly of membrane contact sites. Biol Cell 2017; 109:400-408. [PMID: 28960356 DOI: 10.1111/boc.201700031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 01/25/2023]
Abstract
Membrane contact sites (MCS) are platforms of physical contact between different organelles. They are formed through interactions involving lipids and proteins, and function in processes such as calcium and lipid exchange, metabolism and organelle biogenesis. In this article, we discuss emerging questions regarding the architecture, organisation and assembly of MCS, such as: What is the contribution of different components to the interaction between organelles? How is the specific composition of different types of membrane contacts sites established and maintained? How are proteins and lipids spatially organised at MCS and how does that influence their function? How dynamic are MCS on the molecular and ultrastructural level? We highlight current state of research and point out experimental approaches that promise to contribute to a spatiomechanistic understanding of MCS functions.
Collapse
Affiliation(s)
- Patrick C Hoffmann
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Wanda Kukulski
- Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
50
|
Sun YM, Dong Y, Wang J, Lu JH, Chen Y, Wu JJ. A novel mutation of VAPB in one Chinese familial amyotrophic lateral sclerosis pedigree and its clinical characteristics. J Neurol 2017; 264:2387-2393. [PMID: 28993872 DOI: 10.1007/s00415-017-8628-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022]
Abstract
The mutation of vesicle-associated membrane protein-associated protein B (VAPB) was proved to cause family amyotrophic lateral sclerosis (FALS). Only two mutations of VAPB associated with ALS have been reported (p.Pro56Ser and p.Thr46Ile). Here we reported a Chinese Han FALS family caused by a novel VAPB point mutation. The clinical materials of one Chinese Han FALS family were collected. The genetic analysis was carried out by target sequencing and further verified by Sanger sequencing. One novel mutation of c.167C>A (p.Pro56His) on VAPB was found in the proband. The age at onset of the proband was 48 with the onset symptoms of weakness in the right arm, followed by progressive limb and trunk weakness with decreased deep-tendon reflexes, muscular cramps and fasciculation. But the disease duration was more than 15 years. He was under the tracheotomy for 1 year at last visit. Electromyography showed widespread acute and chronic neurogenic damages. His mother presented weakness in her limbs in 50 s and died 15 years later. One of his younger sisters diagnosed as ALS for 6 years also carried the same mutation. She presented the similar symptoms on 41. No dominant upper motor neuron sign was showed. The clinical features were similar to the patients carrying the known mutation of p.Pro56Ser. A novel mutation of VAPB was found in one Chinese Han FALS pedigree. The affected patients presented a much slower progression and the lesions were limited in lower motor neurons.
Collapse
Affiliation(s)
- Yi-Min Sun
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yi Dong
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jian Wang
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jia-Hong Lu
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yan Chen
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Jian-Jun Wu
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|