1
|
Xing R, Fang Z, Zhou Y, Liu R, Wang Y, Wang D, Xu S, Wang X, Guo C. The effects of different MT treatment methods on the ovarian transcriptome of Pampus argenteus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101496. [PMID: 40164020 DOI: 10.1016/j.cbd.2025.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
17α-methyltestosterone (MT) is a synthetic androgen that is commonly used to induce sex reversal in teleost fish. In this study, MT treatment of Pampus argenteus was carried out by different methods to find the best treatment method and potential mechanism. The results showed that compared with the control group, low concentration of MT (50 mg/kg) could improve the growth performance of P. argenteus in 30 days. Gonadal histology showed that different treatments of MT had different inhibition on the ovarian development, and the number of oocytes decreased in the ovaries. The ovaries of the immersing treatment groups (10 μg/l) showed ovotestis state, but the male germ cells were in the spermatogonia stage. The E2 levels of the mixed feeding and immersing treatment groups was significantly higher than that of the control group (P < 0.05). The 11-KT levels in the 100 mg/kg group was significantly higher than that in the control group (P < 0.05). For the gonadal transcriptome analysis after MT treatment, 460, 568 and 381 DEGs were screened in the 50MT group, 100MT group and MT immersing group, respectively. The DEGs in 50 MT group were enriched in calcium signaling pathway and MAPK signaling pathway affecting gonadal development and differentiation. In 100 MT group, DEGs were mainly enriched in neuroactive ligand-receptor interaction, purine metabolism, vascular smooth muscle contraction and other pathways. The differential gene enrichment p53 signaling pathway and PPAR signaling pathway in the immersing group had an effect on the gonads. In this study, genes showing significant changes in expression after MT treatment were identified. The possible regulatory mechanism of 17α-methyltestosterone on gonadal development of Pampus argenteus was speculated. It provides a theoretical basis for exploring effective ways to improve the fertilization rate of P. argenteus.
Collapse
Affiliation(s)
- Ruixue Xing
- School of Marine Science, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Zengbing Fang
- School of Marine Science, Ningbo University, Ningbo, China; Ningbo Institute of Oceanography, Ningbo, Zhejiang, China
| | - Yu Zhou
- School of Marine Science, Ningbo University, Ningbo, China
| | - Rui Liu
- School of Marine Science, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Yajun Wang
- School of Marine Science, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Danli Wang
- School of Marine Science, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Shanliang Xu
- School of Marine Science, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.
| | - Xubo Wang
- School of Marine Science, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.
| | - Chunyang Guo
- School of Marine Science, Ningbo University, Ningbo, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Ferrão L, Morini M, González-Lopéz WA, Gallego V, Felip A, Pérez L, Asturiano JF. Effects of cold seawater pre-treatments on induction of early sexual maturation and sperm production in European eel (Anguilla anguilla). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2489-2503. [PMID: 39235533 PMCID: PMC11573872 DOI: 10.1007/s10695-024-01402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
To induce sexual maturation in captivity, eels rely on hormonal treatments, but this process is costly and time-consuming. As an alternative, different types of conditioning, also referred as pre-treatment, have been assessed to ease hormonal treatment response. Recent studies have shown that migrating eels experience a wide range of temperatures, varying from 12 °C at night to as low as to 8 °C during the day. Therefore, this study evaluates the effects of low-temperature (10 °C) seawater pre-treatments of different durations (2 and 4 weeks) on male eel reproduction. The eye, gonadosomatic and hepatosomatic indexes from control (without thermic seawater pre-treatment) and pre-treated fish were measured. Blood and testis samples were also collected for sex steroid and histology analysis, respectively. Eels pre-treated for 2 weeks demonstrated increased progestin levels, comparing with the control group. Eels pre-treated for 4 weeks showed significantly higher gonadosomatic index and elevated androgens and estradiol levels in comparison with the remaining groups. In eels pre-treated for 2 and 4 weeks, there was an increase in the proportion of spermatogonia type B cells compared to undifferentiated spermatogonia type A, a differentiation process that was not observed in the control group. Cold seawater pre-treatment induced early sexual maturation, including steroid production, which consequently stimulated biometric changes and increased spermatogonia differentiation. Following the pre-treatments, eels started receiving standard hormonal treatment (with recombinant human chorionic gonadotropin at 20 °C). Pre-treated males started to spermiate earlier than the control group. In some treatment weeks, pre-treated individuals registered higher values of sperm density, motility, and kinetic parameters. Moreover, an economic evaluation was carried out relating the investment made in terms of hormone injections with the volume of high-quality sperm obtained from each experimental group. The low temperature pre-treatments demonstrated their economic effectiveness in terms of hormone treatment profitability, increasing the production of high-quality sperm in the European eel. Thus, this in vivo study suggests that cold seawater pre-treatment may increase sensitivity to the hormone applied during standard maturation treatment.
Collapse
Affiliation(s)
- L Ferrão
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - M Morini
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - W A González-Lopéz
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - V Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - A Felip
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de La Sal (IATS), CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | - L Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València. Camino de Vera S/N, 46022, Valencia, Spain.
| |
Collapse
|
3
|
Souza VVD, Moreira DP, Braz-Mota S, Valente W, Cotta GC, Rodrigues MDS, Nóbrega RH, Corrêa RDS, Hoyos DCDM, Sanches EA, Val AL, Lacerda SMDSN. Simulated climate change and atrazine contamination can synergistically impair zebrafish testicular function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174173. [PMID: 38925398 DOI: 10.1016/j.scitotenv.2024.174173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Elements that interfere with reproductive processes can have profound impacts on population and the equilibrium of ecosystems. Global warming represents the major environmental challenge of the 21st century, as it will affect all forms of life in the coming decades. Another coexisting concern is the persistent pollution by pesticides, particularly the herbicide Atrazine (ATZ), which is responsible for a significant number of contamination incidents in surface waters worldwide. While it is hypothesized that climate changes will significantly enhance the toxic effects of pesticides, the actual impact of these phenomena remain largely unexplored. Here, we conducted a climate-controlled room experiment to assess the interactive effects of the projected 2100 climate scenario and environmentally realistic ATZ exposures on the reproductive function of male zebrafish. The gonadosomatic index significantly decreased in fish kept in the extreme scenario. Cellular alterations across spermatogenesis phases led to synergic decreased sperm production and increased germ cell sloughing and death. ATZ exposure alone or combined with climate change effects, disrupted the transcription levels of key genes involved in steroidogenesis, hormone signaling and spermatogenesis regulation. An additive modulation with decreased 11-KT production and increased E2 levels was also evidenced, intensifying the effects of androgen/estrogen imbalance. Moreover, climate change and ATZ independently induced oxidative stress, upregulation of proapoptotic gene and DNA damage in post-meiotic germ cell, but the negative effects of ATZ were greater at extreme scenario. Ultimately, exposure to simulated climate changes severely impaired fertilization capacity, due to a drastic reduction in sperm motility and/or viability. These findings indicate that the future climate conditions have the potential to considerably enhance the toxicity of ATZ at low concentrations, leading to significant deleterious consequences for fish reproductive function and fertility. These may provide relevant information to supporting healthcare and environmental managers in decision-making related to climate changes and herbicide regulation.
Collapse
Affiliation(s)
- Victor Ventura de Souza
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Davidson Peruci Moreira
- Laboratory of Ichthiohistology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Susana Braz-Mota
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | - Wanderson Valente
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Caldeira Cotta
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Maira da Silva Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rafael Henrique Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Rebeca Dias Serafim Corrêa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Eduardo Antônio Sanches
- Faculty of Agricultural Sciences of Vale do Ribeira, São Paulo State University (UNESP), Brazil
| | - Adalberto Luís Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research in the Amazon, Manaus, Amazonas, Brazil
| | | |
Collapse
|
4
|
Liu Q, Hu J, Lin Y, Wu X, Feng Y, Ye J, Zhang K, Zheng S. Effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:449-461. [PMID: 38079050 DOI: 10.1007/s10695-023-01275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 04/17/2024]
Abstract
To investigate the effects of exogenous steroid hormones on growth, body color, and gonadal development in the Opsariichthys bidens (O. bidens), synthetic methyltestosterone (MT) and 17β-estradiol (E2) were used for 28 days' treatment of 4-month-old O. bidens before the breeding season. Our results suggested that MT had a significant growth-promoting effect (P < 0.05), whereas E2 played an inhibitory role. On the body surface, the females in the MT group showed gray stripes, and the fish in other groups showed no obvious stripes. The males with MT treatment displayed brighter blue-green stripes compared to the CK and E2 groups. The histological analysis showed that the MT significantly promoted testes development in males, blocked oocyte development, and caused massive apoptosis in females, whereas the E2 group promoted ovarian development and inhibited testes development. Based on qRT-PCR analysis, in females, the expression of igf-1, dmrt1, and cyp19a1a genes revealed that E2 treatment resulted in down-regulation of igf-1 expression and up-regulation of cyp19a1a expression. In males, igf-1 and dmrt1 were significantly up-regulated after MT treatment, and E2 treatment led to down-regulation of igf-1. Therefore, this study demonstrates that MT and E2 play an important role in reversing the morphological sex characteristics of females and males.
Collapse
Affiliation(s)
- Qingyuan Liu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jinchun Hu
- Quzhou Aquatic Technology Promotion Station, Quzhou, China
| | - Yurui Lin
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Xinrui Wu
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Yujun Feng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Jiazheng Ye
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Kai Zhang
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China
| | - Shanjian Zheng
- College of Life Sciences, Zhejiang Normal University, Room 203, 10 teaching buildings, 688 Yingbin Avenue, Jinhua, 321004, China.
| |
Collapse
|
5
|
Li X, Brighton Ndandala C, Zhou Q, Huang C, Li G, Chen H. Molecular cloning of estrogen receptor and its function on vitellogenesis in pompano (Trachinotus ovatus). Gen Comp Endocrinol 2024; 346:114403. [PMID: 37923147 DOI: 10.1016/j.ygcen.2023.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Estrogen receptors (ERs) play a critical role in vitellogenesis (Vtgs). However, the contribution of each ER for the regulation of vtgs expression was not analyzed clearly in teleosts. In the present study, three ers isoforms (erα, erβ1, and erβ2) were cloned in pompano (Trachinotus ovatus). Real-time PCR and enzyme-linked immunosorbent assay (ELISA) was used to detect the effects of 17β-estradiol (E2) on ERs and Vtgs in the liver of pompano. In vivo injection experiments showed that E2 significantly increased the expressions of ers and vtgs. ER broad spectrum antagonist Fulvestrant significantly attenuated the E2- induced up-regulation of ers and vtgs in a dose-dependent manner. ERα antagonist Methyl-piperidino pyrazole (MPP) significantly attenuated the up-regulation of erα, erβ2, vtg-B and vtg-C, and promoted the expressions of erβ1 and vtg-A. ERβ antagonist Cyclofenil significantly inhibited the expressions of erβ1, erβ2, vtg-A and vtg-C, and promoted the expressions of erα and vtg-B. In addition, E2 significantly increased the protein level of Vtg, while Fulvestrant, MPP and Cyclofenil significantly inhibited the protein level of Vtg in a dose-dependent manner. Our results indicate that E2 may regulate the expression of each vtg with different subtypes of ERs, and shows a distinct compensatory expression effect on the regulation for ers and vtgs, which provides a theoretical basis for reproductive endocrinology study in pompano.
Collapse
Affiliation(s)
- Xiaomeng Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China
| | - Charles Brighton Ndandala
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Qi Zhou
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunyan Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Sanya 572022, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China.
| |
Collapse
|
6
|
Fernini M, Menad R, Belhocine M, Lakabi L, Smaï S, Gernigon-Spychalowicz T, Khammar F, Bonnet X, Exbrayat JM, Moudilou E. Seasonal variations of testis anatomy and of G-coupled oestrogen receptor 1 expression in Gerbillus gerbillus. Anat Histol Embryol 2023; 52:1016-1028. [PMID: 37661709 DOI: 10.1111/ahe.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The gerbil, Gerbillus gerbillus, a nocturnal desert rodent of northern Africa, exhibits a seasonal reproductive cycle with marked anatomical and behavioural shifts between breeding season and resting season. The aim of this study is to investigate key elements involved in these seasonal changes, specifically in males: the histology of the testis as well as the expression of the G-protein-coupled oestrogen receptor 1 (GPER1) in the testis. During the breeding season, the seminiferous tubules were full of spermatozoa, and their epithelium contained germinal cells embedded in Sertoli cells. Amidst tubules, well-developed Leydig cells were observed around blood vessels, with peritubular myoid cells providing structural and dynamic support to the tubules. GPER1 was largely expressed throughout the testis. Notably, Leydig cells, spermatogonia and spermatocytes showed strong immunohistochemical signals. Sertoli cells, spermatozoa and peritubular myoid cells were moderately stained. During the resting season, spermatogenesis was blocked at the spermatocyte stage, spermatids and spermatozoa were absent and the interstitial space was reduced. The weight of the testis decreased significantly. At this stage, GPER1 was found in Leydig cells, spermatocytes and peritubular myoid cells. Sertoli cells and spermatogonia were not marked. Overall, the testis of the gerbil, Gerbillus gerbillus, has undergone noticeable histological, cellular and weight changes between seasons. In addition, the seasonal expression pattern of GPER1, with pronounced differences between resting season and breeding season, indicates that this receptor is involved in the regulation of the reproductive cycle.
Collapse
Affiliation(s)
- Meriem Fernini
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Rafik Menad
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
- Department of Natural and Life Sciences, Faculty of Sciences, Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
| | - Mansouria Belhocine
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Lynda Lakabi
- Natural Resources Laboratory, University Mouloud Mammeri, Tizi-Ouzou, Algeria
| | - Souaâd Smaï
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Thérèse Gernigon-Spychalowicz
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Farida Khammar
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Mammal Ecophysiology, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | | | - Jean-Marie Exbrayat
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| | - Elara Moudilou
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| |
Collapse
|
7
|
Celino-Brady FT, Breves JP, Seale AP. Sex-specific responses to growth hormone and luteinizing hormone in a model teleost, the Mozambique tilapia. Gen Comp Endocrinol 2022; 329:114119. [PMID: 36029822 DOI: 10.1016/j.ygcen.2022.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Across the vertebrate lineage, sexual dimorphism in body size is a common phenomenon that results from trade-offs between growth and reproduction. To address how key hormones that regulate growth and reproduction interact in teleost fishes, we studied Mozambique tilapia (Oreochromis mossambicus) to determine whether the activities of luteinizing hormone (Lh) are modulated by growth hormone (Gh), and conversely, whether targets of Gh are affected by the presence of Lh. In particular, we examined how gonadal morphology and specific gene transcripts responded to ovine GH (oGH) and/or LH (oLH) in hypophysectomized male and female tilapia. Hypophysectomized females exhibited a diminished gonadosomatic index (GSI) concomitant with ovarian follicular atresia. The combination of oGH and oLH restored GSI and ovarian morphology to conditions observed in sham-operated controls. A similar pattern was observed for GSI in males. In control fish, gonadal gh receptor (ghr2) and estrogen receptor β (erβ) expression was higher in females versus males. A combination of oGH and oLH restored erβ and arβ in females. In males, testicular insulin-like growth factor 3 (igf3) expression was reduced following hypophysectomy and subsequently restored to control levels by either oGH or oLH. By contrast, the combination of both hormones was required to recover ovarian igf3 expression in females. In muscle, ghr2 expression was more responsive to oGH in males versus females. In the liver of hypophysectomized males, igf2 expression was diminished by both oGH and oLH; there was no effect of hypophysectomy, oGH, or oLH on igf2 expression in females. Collectively, our results indicate that gene transcripts associated with growth and reproduction exhibit sex-specific responses to oGH and oLH. These responses reflect, at least in part, how hormones mediate trade-offs between growth and reproduction, and thus sexual dimorphism, in teleost fishes.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
8
|
Fan M, Yang W, Zhang W, Zhang L. The ontogenic gonadal transcriptomes provide insights into sex change in the ricefield eel Monopterus albus. BMC ZOOL 2022; 7:56. [PMID: 37170354 PMCID: PMC10127409 DOI: 10.1186/s40850-022-00155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The ricefield eel is a freshwater protogynous hermaphrodite fish and has become an important aquaculture species in China. The sex change of ricefield eel is impeding its aquaculture practice, particularly the large-scale artificial breeding. Many studies including transcriptomes of mixed gonadal samples from different individuals have been aimed to elucidate mechanisms underlying the sex change. However, the key physiological factors involved in the initiation of sex change remain to be identified. RESULTS: The present study performed transcriptomic analysis on gonadal samples of different sexual stages obtained through biopsy from the same fish undergoing sex change. A total of 539,764,816 high-quality reads were generated from twelve cDNA libraries of gonadal tissues at female (F), early intersexual (EI), mid-intersexual (MI), and late intersexual (LI) stages of three individual sex-changing fish. Pairwise comparisons between EI and F, MI and EI, and LI and MI identified 886, 319, and 10,767 differentially expressed genes (DEGs), respectively. Realtime quantitative PCR analysis of 12 representative DEGs showed similar expression profiles to those inferred from transcriptome data, suggesting the reliability of RNA-seq data for gene expression analysis. The expression of apoeb, csl2, and enpp2 was dramatically increased and peaked at EI while that of cyp19a1a, wnt4a, fgf16, and foxl2a significantly downregulated from F to EI and remained at very low levels during subsequent development until LI, which suggests that apoeb, csl2, enpp2, cyp19a1a, wnt4a, fgf16, and foxl2a may be closely associated with the initiation of sex change of ricefield eels. CONCLUSIONS Collectively, results of the present study confirmed that the down-regulation of female-related genes, such as cyp19a1a, wnt4a, fgf16, and foxl2a, is important for the sex change of ricefield eels. More importantly, some novel genes, including apoeb, csl2, and enpp2, were shown to be expressed with peak values at EI, which are potentially involved in the initiation of sex change. The present transcriptomic data may provide an important research resource for further unraveling the mechanisms underlying the sex change and testicular development in ricefield eels as well as other teleosts.
Collapse
Affiliation(s)
- Miao Fan
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wei Yang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Present address: Institute of Biomedical Engineering, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, People's Republic of China
| | - Weimin Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Lihong Zhang
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biology Department, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
9
|
Roosta Z, Falahatkar B, Sajjadi M, Paknejad H, Mandiki SNM, Kestemont P. Comparative study on accuracy of mucosal estradiol-17β, testosterone and 11-ketotestosterone, for maturity, and cutaneous vitellogenin gene expression in goldfish (Carassius auratus). JOURNAL OF FISH BIOLOGY 2022; 100:532-542. [PMID: 34822181 DOI: 10.1111/jfb.14963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Providing a non-invasive procedure to track fish maturity remains a priority in broodstocks' management. In the present study, the main goal was to assess reproduction status by measuring sex steroids and vitellogenin (VTG) in the skin mucosa, as a non-invasive method. For this purpose, the present study compared the levels of estradiol-17β (E2 ), testosterone (T), 11-ketotestosterone (11-KT), VTG and calcium (Ca) in skin mucosa and blood plasma of goldfish (Carassius auratus). Skin mucosal and blood samples were collected, as well as gonad tissues, from goldfish, as a seasonal spawner. Histological analysis confirmed the gender and maturity status from females' ovaries (as primary-growth, cortical-alveoli, initial and late-vitellogenesis) and males' testes (as spermatogenesis and spermiation). Furthermore, vitellogenin (vtg) expression was observed in skin, liver and gonads. The results indicate that mucosal E2 concentrations were significantly higher during initial and late vitellogenesis than the other stages. Mucosal 11-KT concentrations significantly increased at spermiation (P < 0.05). E2 /T and 11-KT/E2 ratios significantly increased at early vitellogenesis and spermatogenesis, respectively (P < 0.05). Females' mucosal VTG levels were significantly fluctuated according to the maturity stage. Ca showed a similar trend, but Ca was more accurate for sex identification than the VTG. Although mucus showed high levels of VTG, ovarian vtg expression was strongest while liver and skin had the similar results. These results show that measuring the mucosal androgens could be considered as an accurate, non-invasive method to monitor fish maturity.
Collapse
Affiliation(s)
- Zahra Roosta
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Mirmasoud Sajjadi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Hamed Paknejad
- Department of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Syaghalirwa N M Mandiki
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Institute of Life, Earth and Environment (ILEE), Research Unit in Environmental and Evolutionary Biology, University of Namur, Namur, Belgium
| |
Collapse
|
10
|
Evaluation of the Toxicity of Bisphenol A in Reproduction and Its Effect on Fertility and Embryonic Development in the Zebrafish ( Danio rerio). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020962. [PMID: 35055782 PMCID: PMC8775542 DOI: 10.3390/ijerph19020962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a chemical substance commonly used in the manufacture of plastic products. Its inhalation or ingestion from particles in suspension, water, and/or polluted foods can trigger toxic effects related to endocrine disruption, resulting in hormonal, reproduction, and immunological alterations in humans and animals. The zebrafish (Danio rerio) is an ideal experimental model frequently used in toxicity studies. In order to assess the toxic effects of BPA on reproduction and embryonic development in one generation after parental exposure to it, a total of 80 zebrafish, males and females, divided into four groups in duplicate (n = 20) were exposed to BPA concentrations of 500, 50, and 5 µg L-1, along with a control group. The fish were kept in reproduction aquariums for 21 days. The embryos obtained in the crosses were incubated in a BPA-free medium and observed for signs of embryotoxicity. A histopathological study (under optical and electron microscopes) was performed of adult fish gonads. The embryos of reproducers exposed to BPA were those most frequently presenting signs of embryotoxicity, such as mortality and cardiac and musculoskeletal malformations. In the histopathological studies of adult individuals, alterations were found in ovocyte maturation and in spermatazoid formation in the groups exposed to the chemical. Those alterations were directly related to BPA action, affecting fertility in both sexes, as well as the viability of their offspring, proportionally to the BPA levels to which they were exposed, so that our results provide more information by associating toxic effects on the offspring and on the next generation.
Collapse
|
11
|
Ribeiro DLS, Ribeiro LSS, Bezerra NPC, Silva JM, Noleto KS, Souza FA, Carvalho-Neta AV, Almeida ZS, Chaves DP, Torres Junior JRS. Differential gene expression pattern and plasma sex steroids during testicular development in Genyatremus luteus (Perciforme: Haemulidae) (Bloch, 1790). BRAZ J BIOL 2022; 82:e262017. [DOI: 10.1590/1519-6984.262017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract The aim of the current study is to evaluate gene expression patterns of LH (lhr) and estrogen (er) receptors and plasma steroid levels during testicular development in Genyatremus luteus. Males were histologically classified as immature (n=7), maturing (n=7) and mature (n=7), based on the cellular structure of their testes. Plasma 11-KT concentration recorded peak at the final maturation stage. The highest plasma 17α-OHP concentrations were observed at the immature stage; they decreased at the maturation and mature stages. On the other hand, 17β-estradiol (E2) recorded higher concentrations at the maturation stage. Er expression has significantly increased along the maturational development of animals’ testes. The mRNA observed for the LH receptor has decreased from immature to maturing stage; it presented expression peak at the mature stage. There was high association between receptor gene expression and plasma steroid levels, mainly E2. The current study was the first to feature different reproductive maturation stages in male G. luteus specimens, based on cellular, endocrine and molecular aspects. In addition, it has shown that the gene expression profile for er and lhr receptors, as well as plasma 11-KT and E2 concentrations, are directly linked to testicular maturation, although they are not necessarily associated with the gonadosomatic index.
Collapse
|
12
|
Shi H, Ru X, Pan S, Jiang D, Huang Y, Zhu C, Li G. Transcriptomic analysis of pituitary in female and male spotted scat (Scatophagus argus) after 17β-estradiol injection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 41:100949. [PMID: 34942522 DOI: 10.1016/j.cbd.2021.100949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Spotted scat (Scatophagus argus) is a popular species of marine fish cultured in China. It shows normal sexual growth dimorphism. Female spotted scat grows quicker and bigger than males. Growth and reproduction are the most important traits in aquaculture. In vertebrates, the pituitary gland occupies an important position in the growth and reproduction axis. Estrogen is involved in regulating growth and reproduction in the pituitary gland in an endocrine fashion. Transcriptome sequencing of the pituitary was performed in female and male fish at 6 h after 17β-estradiol injection (4.0 μg E2/g body weight, BW). Compared with the pituitary of female and male groups, 144 and 64 genes [|log2(fold change)| ≥ 1.0 and false discovery rate (FDR) < 0.05] were significantly differentially expressed in E2-injected females and males, respectively (p < 0.05). Of these, 59 and 48 were up-regulated, and 85 and 16 were down-regulated. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analyses, DEGs were involved in signal pathways, such as growth, reproduction, oocyte meiosis and steroid biosynthesis. Of these, estrogen affected the expression of some sex steroid synthesis and receptor genes in the pituitary gland through feedback, such as hsd17b7, pgr and cyp19a1b, regulating the reproductive activities. Besides, some growth-related genes, such as gap43, junbb, mstn2 and insm1a responded to estrogen. E2 might affect the expression level of gh mRNA by regulating the expression levels of growth-related genes. Our results provide a theoretical basis for studying the molecular mechanism of growth and reproduction regulation at the pituitary level of spotted scat responded to E2.
Collapse
Affiliation(s)
- Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoying Ru
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Southern Marine Science and Engineering Guangdong Laboratory-Zhanjiang, Zhanjiang 524088, China
| | - Shuhui Pan
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
13
|
Sokouti Nasimi F, Zahri S, Ahmadian S, Bagherzadeh A, Nazdikbin Yamchi N, Haghighi L, Bedate AM, Khalilzadeh B, Rahbarghazi R, Mahdipour M. Estradiol modulated differentiation and dynamic growth of CD90 + spermatogonial stem cells toward Sertoli-like cells. Life Sci 2021; 286:120041. [PMID: 34637796 DOI: 10.1016/j.lfs.2021.120041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
Mouse CD90+ SSCs were enriched using the MACS technique and incubated with different doses of estradiol, ranging from 0.01 ng/mL to 500 μg/mL, for 7 days. The viability of SSCs was determined using an MTT assay. The combined effects of estradiol plus Sertoli cell differentiation medium on the orientation of SSCs toward Sertoli-like cells were also assessed. Using immunofluorescence imaging, we monitored protein levels of Oct3/4 after being exposed to estradiol. In addition, protein levels of testosterone, TF, and ABP were measured using ELISA. The expression of Sertoli cell-specific genes such as SOX9, GATA4, FSHR, TF, and ESR-1 and -2 was monitored using real-time PCR assay, and the effects of 14-day injection of estradiol on sperm parameters and Oct3/4 positive progenitor cells in a model of mouse were determined. Data showed that estradiol increased the viability of mouse SSCs in a dose-dependent manner compared to the control (p < 0.05). Along with these changes, cells displayed morphological changes and reduced Oct3/4 transcription factor levels compared to the control SSCs. 7-day incubation of SSCs with estradiol led to the up-regulation of SOX9, GATA4, FSHR, TF, and ESR-1 and -2, and levels of testosterone, TF, and ABP were increased compared to the control group (p < 0.05). The in-vivo examination noted that estradiol reduced sperm parameters coincided with morphological abnormalities (p < 0.05). Histological examination revealed pathological changes in seminiferous tubules and reduction of testicular Oct3/4+ progenitor cells. In conclusion, estradiol treatment probably can induce Sertoli cell differentiation of SSCs while exogenous administration leads to testicular progenitor cell depletion and infertility in long term.
Collapse
Affiliation(s)
- Fatemeh Sokouti Nasimi
- Department of Biology, Faculty of Basic Sciences, Mohaghegh Ardabili University, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Basic Sciences, Mohaghegh Ardabili University, Ardabil, Iran
| | - Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Bagherzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Leila Haghighi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alberto Miranda Bedate
- Department of Immune Mechanisms (IMM), Center for Immunology of Infectious Diseases and Vaccines (IIV), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Ribeiro YM, Weber AA, Paschoalini AL, Moreira DP, Sales CF, Almeida TVPD, Neres MA, Bazzoli N, Rizzo E. Biomarker responses induced by bisphenol A on spermatogenesis in a Neotropical teleost fish are temperature-dependent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112670. [PMID: 34418853 DOI: 10.1016/j.ecoenv.2021.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is an organic synthetic compound used in the plastic industry with endocrine disrupting activity. Although it is frequently found in surface waters, few studies have investigated its impact on fish gametogenesis, particularly when associated with natural stressors. In this regard, the present study evaluated BPA toxicity on spermatogenesis in the lambari Astyanax bimaculatus under controlled conditions and its interactive effects with water temperature. Adult specimens were exposed in duplicate to 40 μg/L and 400 μg/L BPA at 23 °C and 28 °C for 21 days; the control group did not receive BPA. Testicular samples were collected and analyzed using different cellular and molecular techniques. The results showed a significant reduction in the gonadosomatic index in the BPA-treated groups at both temperatures. A decrease in the testicular levels of 11-ketotestosterone was observed in the 400 μg/L BPA group at 23 °C, 17β-estradiol increased significantly in the treated groups at 28 °C, and vitellogenin showed no difference between the treatments. The morphometric analysis of spermatogenesis revealed a significant increase in the proportion of spermatogonia, spermatocytes, and Sertoli cells in the treated groups, with a higher proportion at 23 °C than at 28 °C. Otherwise, the proportion of spermatozoa was significantly lower in the BPA-treated groups, with a greater reduction at 23 °C. In addition, BPA also stimulated spermatogonial proliferation in the treated groups, but apoptosis was significantly increased in spermatids at 23 °C. Testis-ova, cell degeneration, and chromatin alterations in spermatids and Sertoli cells were observed in the germinal epithelium of the BPA-treated groups. The integrated biomarker response (IBR) index revealed that the analyzed endpoints are suitable for assessing estrogenic contamination. Taken together, our results indicate that the interactive effects of BPA and temperature contribute to the impairment of spermatogenesis in A. bimaculatus with more severe effects observed on sperm production at 23 °C than at 28 °C.
Collapse
Affiliation(s)
- Yves Moreira Ribeiro
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandro Loureiro Paschoalini
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Ferreira Sales
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Thais Victória Pires de Almeida
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Mirra Angelina Neres
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Suzuki H, Ozaki Y, Gen K, Kazeto Y. Japanese eel retinol dehydrogenases 11/12-like are 17-ketosteroid reductases involved in sex steroid synthesis. Gen Comp Endocrinol 2021; 305:113685. [PMID: 33271196 DOI: 10.1016/j.ygcen.2020.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022]
Abstract
The synthesis of 11-ketotestosterone (11KT) and estradiol-17β (E2), which play important roles in the regulation of gametogenesis in teleost fishes, is catalyzed by several steroidogenic enzymes. In particular, 17β-hydroxysteroid dehydrogenases (Hsd17bs) with 17-ketosteroid reducing activity (17KSR activity) are essential enzymes in the formation of these sex steroid hormones in the gonads and other tissues. Retinol dehydrogenase 11 (RDH11) has been suggested to be a novel tentative HSD17B (HSD17B15) in humans for a decade, however no definitive proof has been provided yet. In this study, three cDNAs related to human RDH11 were isolated from Japanese eel testis and characterized. Sequence similarity and phylogenetic analyses revealed their close relationship to human rdh11 and rdh12 gene products and they were designated as rdh11/12-like 1, rdh11/12-like 2, and rdh11/12-like 3. Three recombinant Rdh11/12-like proteins expressed in HEK293T cells catalyzed the transformation of estrone into E2 and androstenedione into testosterone. Only Rdh11/12-like 1 catalyzed the conversion of 11-ketoandrostenedione into 11KT. Tissue-distribution analysis by quantitative real-time polymerase chain reaction revealed, in immature male Japanese eel, that rdh11/12-like 1 and rdh11/12-like 2 are predominantly expressed in testis and brain, while rdh11/12-like 3 is expressed ubiquitously. Moreover, we analyzed the effects of gonadotropins and 11KT on the expression of the three rdh11/12-like mRNAs in the immature testis. In vitro incubation of immature testes with various doses of recombinant Japanese eel follicle stimulating hormone, luteinizing hormone, and 11KT indicated that the expression of rdh11/12-like 1 mRNA, rdh11/12-like 2, and rdh11/12-like 3 did not change. These findings suggest that the three Rdh11/12-like proteins metabolize sex steroids. Rdh11/12-like 1 may be one of the enzymes with 17KSR activity involved in the production of 11KT in the testis.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan; National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Yuichi Ozaki
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| | - Koichiro Gen
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 1551-8 Taira-machi, Nagasaki 851-2213, Japan.
| | - Yukinori Kazeto
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan.
| |
Collapse
|
16
|
Tenugu S, Pranoty A, Mamta SK, Senthilkumaran B. Development and organisation of gonadal steroidogenesis in bony fishes - A review. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Lin G, Gao D, Lu J, Sun X. Transcriptome Profiling Reveals the Sexual Dimorphism of Gene Expression Patterns during Gonad Differentiation in the Half-Smooth Tongue Sole (Cynoglossus semilaevis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:18-30. [PMID: 32996005 DOI: 10.1007/s10126-020-09996-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The half-smooth tongue sole (Cynoglossus semilaevis), one of the most economically-important fish species in China, exhibits sexually dimorphic growth. An understanding of sex-related gene expression patterns in the tongue sole may inform sex regulation and breeding processes that increase fish production. However, the gene expression patterns during gonad development in the tongue sole remain unknown. In this study, transcriptome sequencing analyses were performed during gonad differentiation in the tongue sole, namely, at 62 days post-hatching (dph), 100 dph, 120 dph, and 150 dph. Differentially expressed genes associated with sex differentiation and gonad development were identified at each time point. Trend analysis showed that gene expression patterns varied over time. These expression patterns either explained common, non-sexually-dimorphic features or indicated significant sexual dimorphism. Transcript structure analyses identified both sex and time differences among samples. This study investigated the time-dependent expression patterns of several sex-related genes, including Dmrt1, Amh, Foxl2, aromatase encoding gene, Esr, and the Sox gene family, during gonad differentiation in the tongue sole. These results might clarify the significant sexual differences during early development in the tongue sole and might provide insight into the mechanisms controlling sex differentiation and development.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
18
|
Li M, Liu X, Dai S, Xiao H, Qi S, Li Y, Zheng Q, Jie M, Cheng CHK, Wang D. Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia. Cell Mol Life Sci 2020; 77:4921-4938. [PMID: 31955242 PMCID: PMC11104970 DOI: 10.1007/s00018-019-03439-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/11/2019] [Accepted: 12/23/2019] [Indexed: 02/01/2023]
Abstract
A novel insulin-like growth factor (igf3), which is exclusively expressed in the gonads, has been widely identified in fish species. Recent studies have indicated that Igf3 regulates spermatogonia proliferation and differentiation in zebrafish; however, detailed information on the role of this Igf needs further in vivo investigation. Here, using Nile tilapia (Oreochromis niloticus) as an animal model, we report that igf3 is required for spermatogenesis and reproduction. Knockout of igf3 by CRISPR/Cas9 severely inhibited spermatogonial proliferation and differentiation at 90 days after hatching, the time critical for meiosis initiation, and resulted in less spermatocytes in the mutants. Although spermatogenesis continued to occur later, more spermatocytes and less spermatids were observed in the igf3-/- testes when compared with wild type of testes at adults, indicating that Igf3 regulates spermatocyte to spermatid transition. Importantly, a significantly increased occurrence of apoptosis in spermatids was observed after loss of Igf3. Therefore, igf3-/- males were subfertile with drastically reduced semen volume and sperm count. Conversely, the overexpression of Igf3 in XY tilapia enhanced spermatogenesis leading to more spermatids and sperm count. Transcriptomic analysis revealed that the absence of Igf3 resulted in dysregulation of many genes involved in cell cycle, meiosis and pluripotency regulators that are critical for spermatogenesis. In addition, in vitro gonadal culture with 17α-methyltetosterone (MT) and 11-ketotestosterone (11-KT) administration and in vivo knockout of cyp11c1 demonstrated that igf3 expression is regulated by androgens, suggesting that Igf3 acts downstream of androgens in fish spermatogenesis. Notably, the igf3 knockout did not affect body growth, indicating that this Igf specifically functions in reproduction. Taken together, our data provide genetic evidence for fish igf3 in the regulation of reproductive capacity by controlling spermatogenesis.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shengfei Dai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hesheng Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuangshuang Qi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yibing Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiaoyuan Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Mimi Jie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Duangkaew R, Kezuka F, Ichida K, Boonanuntanasarn S, Yoshizaki G. Aging- and temperature-related activity of spermatogonial stem cells for germ cell transplantation in medaka. Theriogenology 2020; 155:213-221. [PMID: 32726705 DOI: 10.1016/j.theriogenology.2020.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/15/2023]
Abstract
Spermatogonial transplantation can contribute to developing a novel method of producing seedlings for both aquaculture and biotic conservation. This study's purpose was to investigate aging- and temperature-related changes in the numbers and stem cell functions of type-A spermatogonia (ASG) in the model fish medaka (Oryzias latipes). The ASG numbers in medaka of different ages were quantified via histological observation and enzymatic dissociation of vasa-Gfp medaka testes. The ASG numbers were higher in eight-month-old medaka (maturation) than in four-month-old medaka (the onset of maturation). However, ASG numbers decreased in 18-month-old medaka (senescence). Low water temperature appeared to slow down both testis development and aging processes. To study the effects of aging on ASG stem cell activity, testicular cell suspensions containing GFP-expressed ASG were prepared from vasa-Gfp medaka donors at 4 and 18 months of age and transplanted into recipient hybrid larvae of medaka (O. latipes x O. curvinotus), which provided young stem-cell-niches. The findings revealed no significant differences in ASG colonization rates isolated from medaka of different ages. Each group displayed similar rates of germ-line transmission. Furthermore, water temperature had no significant effects on each ASG's stem cell activity. Taken together, these results indicated that aging and temperature affect ASG numbers. However, ASG isolated from medaka with different ages were transplanted into gonads with a young niche microenvironment, and there was no evidence of donor aging on stem cell activity.
Collapse
Affiliation(s)
- Rungsun Duangkaew
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand
| | - Fumi Kezuka
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-Ku, Tokyo, 108-8477, Japan
| | - Kensuke Ichida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-Ku, Tokyo, 108-8477, Japan
| | - Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Muang, Nakhon Ratchasima, 30000, Thailand.
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-Ku, Tokyo, 108-8477, Japan
| |
Collapse
|
20
|
Tucker EK, Zurliene ME, Suski CD, Nowak RA. Gonad development and reproductive hormones of invasive silver carp (Hypophthalmichthys molitrix) in the Illinois River. Biol Reprod 2020; 102:647-659. [PMID: 31711164 DOI: 10.1093/biolre/ioz207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Reproduction is a major component of an animal's life history strategy. Species with plasticity in their reproductive biology are likely to be successful as an invasive species, as they can adapt their reproductive effort during various phases of a biological invasion. Silver carp (Hypophthalmicthys molitrix), an invasive cyprinid in North America, display wide variation in reproductive strategies across both their native and introduced ranges, though the specifics of silver carp reproduction in the Illinois River have not been established. We assessed reproductive status using histological and endocrinological methods in silver carp between April and October 2018, with additional histological data from August to October 2017. Here, we show that female silver carp are batch spawners with asynchronous, indeterminate oocyte recruitment, while male silver carp utilize a determinate pattern of spermatogenesis which ceases in the early summer. High plasma testosterone levels in females could be responsible for regulating oocyte development. Our results suggest that silver carp have high spawning activity in the early summer (May-June), but outside of the peak spawning period, female silver carp can maintain spawning-capable status by adjusting rates of gametogenesis and atresia in response to environmental conditions, while males regress their gonads as early as July. The results of this study are compared to reports of silver carp reproduction in other North American rivers as well as in Asia.
Collapse
Affiliation(s)
- Emily K Tucker
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Megan E Zurliene
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Cory D Suski
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Romana A Nowak
- Department of Animal Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Wu X, Yang Y, Zhong C, Guo Y, Li S, Lin H, Liu X. Transcriptome profiling of laser-captured germ cells and functional characterization of zbtb40 during 17alpha-methyltestosterone-induced spermatogenesis in orange-spotted grouper (Epinephelus coioides). BMC Genomics 2020; 21:73. [PMID: 31973692 PMCID: PMC6979330 DOI: 10.1186/s12864-020-6477-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spermatogenesis is an intricate process regulated by a finely organized network. The orange-spotted grouper (Epinephelus coioides) is a protogynous hermaphroditic fish, but the regulatory mechanism of its spermatogenesis is not well-understood. In the present study, transcriptome sequencing of the male germ cells isolated from orange-spotted grouper was performed to explore the molecular mechanism underlying spermatogenesis. RESULTS In this study, the orange-spotted grouper was induced to change sex from female to male by 17alpha-methyltestosterone (MT) implantation. During the spermatogenesis, male germ cells (spermatogonia, spermatocytes, spermatids, and spermatozoa) were isolated by laser capture microdissection. Transcriptomic analysis for the isolated cells was performed. A total of 244,984,338 clean reads were generated from four cDNA libraries. Real-time PCR results of 13 genes related to sex differentiation and hormone metabolism indicated that transcriptome data are reliable. RNA-seq data showed that the female-related genes and genes involved in hormone metabolism were highly expressed in spermatogonia and spermatozoa, suggesting that these genes participate in the spermatogenesis. Interestingly, the expression of zbtb family genes showed significantly changes in the RNA-seq data, and their expression patterns were further examined during spermatogenesis. The analysis of cellular localization of Eczbtb40 and the co-localization of Eczbtb40 and Eccyp17a1 in different gonadal stages suggested that Eczbtb40 might interact with Eccyp17a1 during spermatogenesis. CONCLUSIONS Our study, for the first time, investigated the transcriptome of the male germ cells from orange-spotted grouper, and identified functional genes, GO terms, and KEGG pathways involved in spermatogenesis. Furthermore, Eczbtb40 was first characterized and its role during spermatogenesis was predicted. These data will contribute to future studies on the molecular mechanism of spermatogenesis in teleosts.
Collapse
Affiliation(s)
- Xi Wu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Yang Yang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Chaoyue Zhong
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory for Improved Variety Reproduction of Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000 People’s Republic of China
| |
Collapse
|
22
|
Ma Y, Ladisa C, Chang JP, Habibi HR. Multifactorial control of reproductive and growth axis in male goldfish: Influences of GnRH, GnIH and thyroid hormone. Mol Cell Endocrinol 2020; 500:110629. [PMID: 31678419 DOI: 10.1016/j.mce.2019.110629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Reproduction and growth are under multifactorial control of neurohormones and peripheral hormones. This study investigated seasonally related effects of GnIH, GnRH, and T3 on the reproductive and growth axis in male goldfish at three stages of gonadal recrudescence. The effects of injection treatments with GnRH, GnIH and/or T3 were examined by measuring serum LH and GH levels, as well as peripheral transcript levels, using a factorial design. As expected, GnRH elevated serum LH and GH levels in a seasonally dependant manner, with maximal elevations of LH in late stages of gonadal recrudescence (Spring) and maximal increases in GH in the regressed gonadal stage (Summer). GnIH injection increased serum LH and GH levels only in fish at the regressed stage but exerted both stimulatory and inhibitory effects on GnRH-induced LH responses depending on season. T3 treatment mainly had stimulatory effects on circulating LH levels and inhibitory effects on serum GH concentrations. In the liver and testes, we observed seasonal differences in thyroid receptors, estrogen receptors, vitellogenin, follicle-stimulating hormone receptor, aromatase and IGF-I transcript levels that were tissue- and sex-specific. Generally, there were no clear correlation between circulating LH and GH levels and peripheral transcript levels, presumably due to time-related response and possible direct interaction of GnRH and GnIH at the level of liver and testis. The results support the hypothesis that GnRH and GnIH are important components of multifactorial mechanisms that work in concert with T3 to regulate reciprocal control of reproduction and growth in goldfish.
Collapse
Affiliation(s)
- Y Ma
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - C Ladisa
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - J P Chang
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Department of Biological Sciences University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - H R Habibi
- Department of Biological Sciences University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.
| |
Collapse
|
23
|
Ma Y, Ladisa C, Chang JP, Habibi HR. Seasonal Related Multifactorial Control of Pituitary Gonadotropin and Growth Hormone in Female Goldfish: Influences of Neuropeptides and Thyroid Hormone. Front Endocrinol (Lausanne) 2020; 11:175. [PMID: 32318022 PMCID: PMC7154077 DOI: 10.3389/fendo.2020.00175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Female reproduction is under multifactorial control of brain-pituitary-peripheral origin. The present study provides information on seasonal changes in circulating LH and GH concentrations, as well as transcript levels for a number of genes involved in the regulation of reproduction and growth in female goldfish. We also provide information on the effects of treatments with GnRH and/or GnIH, and their interaction with T3, at three stages of gonadal recrudescence. Maximum basal concentration of LH was observed at late recrudescence (Spring) while no seasonal changes in basal serum GH levels was detected. Serum LH and GH levels were stimulated by GnRH as expected, depending on the season. GnIH stimulated basal GH concentrations in gonadally regressed fish. GnIH inhibitory action on GnRH-induced LH response was observed in late, but not in mid recrudescence. T3 actions on basal and GnRH- or GnIH-induced GH secretion were generally inhibitory, depending on season. Administration of T3 attenuated GnRH-induced LH responses in mid and late stages of gonadal recrudescence, and the presence of GnIH abolished inhibitory actions of T3 in fish at mid recrudescence. Our results also demonstrated seasonal patterns in basal and GnRH- and/or GnIH-induced transcript levels for ERα, ERβI, FSHR, aromatase, TRαI, TRβ, IGF-I, and Vtg in the liver and ovary. However, there were no clear correlations between changes in transcript levels and circulating levels of LH and GH. The results support the hypothesis that GnRH, GnIH, and T3 are contributing factors in complex reciprocal control of reproduction and growth in goldfish.
Collapse
Affiliation(s)
- Yifei Ma
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - John P. Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: Hamid R. Habibi
| |
Collapse
|
24
|
Celino-Brady FT, Petro-Sakuma CK, Breves JP, Lerner DT, Seale AP. Early-life exposure to 17β-estradiol and 4-nonylphenol impacts the growth hormone/insulin-like growth-factor system and estrogen receptors in Mozambique tilapia, Oreochromis mossambicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105336. [PMID: 31733503 PMCID: PMC6935514 DOI: 10.1016/j.aquatox.2019.105336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 05/31/2023]
Abstract
It is widely recognized that endocrine disrupting chemicals (EDCs) released into the environment through anthropogenic activities can have short-term impacts on physiological and behavioral processes and/or sustained or delayed long-term developmental effects on aquatic organisms. While numerous studies have characterized the effects of EDCs on temperate fishes, less is known on the effects of EDCs on the growth and reproductive physiology of tropical species. To determine the long-term effects of early-life exposure to common estrogenic chemicals, we exposed Mozambique tilapia (Oreochromis mossambicus) yolk-sac fry to 17β-estradiol (E2) and nonylphenol (NP) and subsequently characterized the expression of genes involved in growth and reproduction in adults. Fry were exposed to waterborne E2 (0.1 and 1 μg/L) and NP (10 and 100 μg/L) for 21 days. After the exposure period, juveniles were reared for an additional 112 days until males were sampled. Gonadosomatic index was elevated in fish exposed to E2 (0.1 μg/L) while hepatosomatic index was decreased by exposure to NP (100 μg/L). Exposure to E2 (0.1 μg/L) induced hepatic growth hormone receptor (ghr) mRNA expression. The high concentration of E2 (1 μg/L), and both concentrations of NP, increased hepatic insulin-like growth-factor 1 (igf1) expression; E2 and NP did not affect hepatic igf2 and pituitary growth hormone (gh) levels. Both E2 (1 μg/L) and NP (10 μg/L) induced hepatic igf binding protein 1b (igfbp1b) levels while only NP (100 μg/L) induced hepatic igfbp2b levels. By contrast, hepatic igfbp6b was reduced in fish exposed to E2 (1 μg/L). There were no effects of E2 or NP on hepatic igfbp4 and igfbp5a expression. Although the expression of three vitellogenin transcripts was not affected, E2 and NP stimulated hepatic estrogen receptor (erα and erβ) mRNA expression. We conclude that tilapia exposed to E2 and NP as yolk-sac fry exhibit subsequent changes in the endocrine systems that control growth and reproduction during later life stages.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Cody K Petro-Sakuma
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Darren T Lerner
- University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, 2525 Correa Road, Honolulu, HI 96822, USA.
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
25
|
Carnevali O, Maradonna F, Sagrati A, Candelma M, Lombardo F, Pignalosa P, Bonfanti E, Nocillado J, Palma P, Gioacchini G, Elizur A. Insights on the seasonal variations of reproductive features in the Eastern Atlantic Bluefin Tuna. Gen Comp Endocrinol 2019; 282:113216. [PMID: 31278920 DOI: 10.1016/j.ygcen.2019.113216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
The Atlantic Bluefin Tuna (ABFT, Thunnus thynnus) is one of the most intensely exploited fisheries resources in the world. In spite of the years of studies on ABFT, basic aspects of its reproductive biology remain uncertain. To gain insight regarding the seasonal changes of the reproductive characteristics of the eastern stock of ABFT, blood and tissue samples were collected from mature specimens caught in the Mediterranean basin during the reproductive (May-June) and non-reproductive season (Oct-Nov). Histological analysis of the gonads of May-June samples indicated that there were females which were actively spawning (contained post-ovulatory follicles) and females that were not actively spawning that had previtellogenic and fully vitellogenic oocytes. In males, testis were at early or late stage of spermatogenesis during the reproductive season. In Oct-Nov, ovaries contained mostly previtellogenic oocytes as well as β and α atretic follicles while the testis predominantly contained spermatogonia and few cysts with spermatocytes and spermatozoa. Gonadosomatic index (GSI) in females was highest among the actively spawning individuals while in males GSI was higher in early and late spermatogenic individuals compared to those that were spent. Plasma sex steroids levels varied with the reproductive season. In females, estradiol (E2), was higher in May-June while testosterone (T) and progesterone (P) did not vary. In males, E2 and T were higher in May-June while P levels were similar at the two sampling points. Circulating follicle stimulating hormone (FSH) was higher in Oct-Nov than in May-June both in males and females. Vitellogenin (VTG) was detected in plasma from both males and females during the reproductive season with levels in females significantly higher than in males. VTG was undetected in Oct-Nov samples. Since choriogenesis is an important event during follicle growth, the expression of three genes involved in vitelline envelope formation and hardening was measured and results showed significantly higher levels in ovaries in fish caught in May-June with respect to those sampled in Oct-Nov. In addition, a set of genes encoding for ion channels that are responsible for oocyte hydration and buoyancy, as well as sperm viability, were characterized at the two time points, and these were found to be more highly expressed in females during the reproductive season. Finally, the expression level of three mRNAs encoding for different lipid-binding proteins was analyzed with significantly higher levels detected in males, suggesting sex-specific expression. Our findings provide additional information on the reproductive biology of ABFT, particularly on biomarkers for the assessment of the state of maturation of the gonad, highlighting gender-specific signals and seasonal differences.
Collapse
Affiliation(s)
- Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Andrea Sagrati
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Michela Candelma
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Francesco Lombardo
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | - Erica Bonfanti
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Josephine Nocillado
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| | - Peter Palma
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia; Aquaculture Department, Southeast Asian Fisheries Development Center, 5021 Tigbauan, Iloilo, Philippines
| | - Giorgia Gioacchini
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Abigail Elizur
- Genecology Research Centre, University of the Sunshine Coast, Qld, Australia
| |
Collapse
|
26
|
Liu M, Feng Q, Francis DS, Turchini GM, Zeng C, Wu X. Tamoxifen affects the histology and hepatopancreatic lipid metabolism of swimming crab Portunus trituberculatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105220. [PMID: 31202166 DOI: 10.1016/j.aquatox.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Tamoxifen (TAM) is an antiestrogenic agent and can enter the aquatic environment in wastewater. It has been reported that TAM can induce hepatic steatosis in vertebrates, however, the effects of TAM exposure on lipid metabolism of hepatopancreas in crustaceans remains unclear. In this study, four TAM concentrations (0, 6.7, 13.4 and 20 μg g-1 crab body weight) were injected into the swimming-leg of swimming crabs Portunus trituberculatus, as a means of evaluating the effects of TAM on the expression levels of lipid metabolism-related genes, lipid composition, and hepatopancreas histology. The results showed that the mRNA levels of three lipogenic related genes (diacylglycerol acyltransferase 1 (DGAT1), acetyl-CoA carboxylase (ACC) and fatty acyl desaturase (FAD)) decreased significantly in the 6.7 μg g-1 and 20 μg g-1 TAM treatments compare to the control. The mRNA levels of fatty acid synthase (FAS) decreased significantly in a dose-dependent manner as TAM concentration increased. The mRNA levels of two lipid catabolism-related genes (acyl-CoA oxidase (ACOX) and fatty acid transport protein (FATP)) were down-regulated among the three TAM treatments, while the enzyme activity and mRNA level of carnitine palmitoyltransferase I (CPT-I) was up-regulated by TAM treatments. Compared to the control, the lowest levels of total lipids and phospholipids were detected in the 6.7 μg g-1 TAM treatment, while the 20 μg g-1 TAM treatment had the lowest free fatty acids concentration. The 6.7 μg g-1 TAM treatment had the lowest percentages of 16:1n-7, 18:1n-9, 18:1n-7 and total monounsaturated fatty acids (∑MUFA), whilst simultaneously recording the highest percentages of 18:2n-6 and 20:2n-6 in this treatment. Moreover, histological observations indicated that TAM caused the walls of the hepatopancreatic tubules to become brittle, with a concurrent increase in the number of blister-like cells. These results suggest that TAM damages the hepatopancreas and leads to a reduction in hepatopancreatic lipid deposition in P. trituberculatus.
Collapse
Affiliation(s)
- Meimei Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiangmei Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - David S Francis
- Deakin University, School of Life and Environmental Sciences, Geelong, 3220, VIC, Australia
| | - Giovanni M Turchini
- Deakin University, School of Life and Environmental Sciences, Geelong, 3220, VIC, Australia
| | - Chaoshu Zeng
- College of Science & Engineering, James Cook University, Townsville, QLD, Australia.
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
27
|
Guellard T, Kalamarz-Kubiak H, Kulczykowska E. Concentrations of melatonin, thyroxine, 17β-estradiol and 11-ketotestosterone in round goby (Neogobius melanostomus) in different phases of the reproductive cycle. Anim Reprod Sci 2019; 204:10-21. [DOI: 10.1016/j.anireprosci.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
|
28
|
Lacerda SMSN, Martinez ERM, Mura ILDD, Doretto LB, Costa GMJ, Silva MA, Digmayer M, Nóbrega RH, França LR. Duration of spermatogenesis and identification of spermatogonial stem cell markers in a Neotropical catfish, Jundiá (Rhamdia quelen). Gen Comp Endocrinol 2019; 273:249-259. [PMID: 30391241 DOI: 10.1016/j.ygcen.2018.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022]
Abstract
Spermatogenesis is a process driven by stem cell, where germ cell cycle is under the control of a specific genotype species. Considering that Jundiá (Rhamdia quelen) is a Neotropical catfish with great economical importance and useful experimental model, little information is available on basic aspects of its reproductive biology, especially on spermatogenesis. As a result, this study aimed to characterize the male germ cells, estimate the duration of spermatogenesis and evaluate the expression of selected stem cell genes in Jundiá testis. Similar to other fish species, our results showed a remarkable decrease of germ cell nuclear volume during Jundiá spermatogenesis, particularly from type A undifferentiated to late type B spermatogonia and from diplotene to late spermatids. Using a S-phase marker, bromodeoxyuridine (BrdU), the combined duration of meiotic and spermiogenic phases in this species was estimated in approximately 7 days. This is considered very short when compared to mammals, where spermatogenesis last from 30 to 74 days. Selected stem cell genes were partially sequenced and characterized in Jundiá testis. Expression analysis showed higher plzf and pou5f3 mRNA levels in the cell fractions enriched by type A undifferentiated spermatogonia. These results were further confirmed by in situ hybridization that showed strong signal of plzf and pou5f3 mRNA in type A undifferentiated spermatogonia. Altogether, these information will expand our knowledge of the reproductive biology of this species, contributing to improve its production and management, and also for biotechnological applications, such as germ cell transplantation.
Collapse
Affiliation(s)
- S M S N Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - E R M Martinez
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - I L D D Mura
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - L B Doretto
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M A Silva
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M Digmayer
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - R H Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil.
| | - L R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; National Institute for Amazonian Research, Manaus, AM, Brazil.
| |
Collapse
|
29
|
Weber AA, Moreira DP, Melo RMC, Vieira ABC, Bazzoli N, Rizzo E. Stage-specific testicular protein levels of the oestrogen receptors (ERα and ERβ) and Cyp19 and association with oestrogenic contamination in the lambari Astyanax rivularis (Pisces: Characidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34403-34413. [PMID: 30306442 DOI: 10.1007/s11356-018-3392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Oestrogens participate in various biological processes such as oogenesis, vitellogenesis and testicular development, but studies regarding the distribution and protein levels of oestrogen receptors (ERα and ERβ) and aromatase (Cyp19) in testis are rarely investigated in fish species. The aim of the present study was to analyse the expression pattern of ERα, ERβ and Cyp19 in testis of Astyanax rivularis and, in addition, to verify if oestrogenic contamination interferes in the expression levels of these proteins. Quarterly, field samplings were carried out during a reproductive cycle in a stream of the Upper Velhas River with a good conservation status (site S1). In the gonadal maturation peak (June), when ripe stage was most abundant, fish collection was made in three streams: S1, reference site, and S2 and S3, sites contaminated by untreated sewage. The results of immunohistochemistry demonstrated labelling of Cyp19 in Leydig cells and acidophilic granulocytes, but spermatogonia, Sertoli cells, spermatids and spermatozoa were also labelled. ERα was more widely distributed than ERβ being found in all developmental germ cell phases. On the other hand, ERβ was found only in spermatogonia and spermatocytes. During testicular maturation, ELISA levels for Cyp19, ERα and ERβ followed the gonadosomatic index (GSI) with significant higher values in the ripe stage. Regarding to endocrine disruption, the males exposed to domestic sewage presented significant higher expression of Cyp19 and ERα when compared to the non-exposed fish. Together, our results demonstrate expression patterns of Cyp19, ERα and ERβ in the testis of A. rivularis. In addition, we indicate ERα and Cyp19 as sensitive biomarkers for monitoring of oestrogenic contamination in freshwater environments.
Collapse
Affiliation(s)
- André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Augusto Bicalho Cruz Vieira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|
30
|
Role of estrogen receptors, P450 aromatase, PCNA and p53 in high-fat-induced impairment of spermatogenesis in rats. C R Biol 2018; 341:371-379. [PMID: 30150094 DOI: 10.1016/j.crvi.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022]
Abstract
Obesity and overweight are frequently associated with male subfertility. To address new findings on the players involved in the obesity-induced impairment of spermatogenesis, we used a high-fat diet-induced overweight-rat model. Following four weeks of high-fat diet, the organization of seminiferous epithelium was affected, and tubules lumen showed immature/degenerated cells, typical signs of hormonal imbalance and testicular damage. Real-time PCR analysis allowed us to detect increased levels of ERα and decreased levels of aromatase CYP19 transcripts in testis, suggesting an increase in circulating estrogens derived from the accumulating adipose tissue rather than the induction of testicular estrogen synthesis. Moreover, in situ hybridization analysis showed an increased susceptibility towards estrogens in testis from high-fat fed rats, being ERs expressed not only in spermatogonia, as in control testis, but also in spermatids. Western blot and immunohistochemical analyses revealed an increase in the amount of p53 and PCNA, together with a change in their immunodetection, being the proteins localised on germ cells at different stages of maturation. Differences in p53 and PCNA expression may give evidence and be part of a cellular response to stress conditions and damage caused by the excessive intake of saturated fatty acids.
Collapse
|
31
|
Verderame M, Scudiero R. A comparative review on estrogen receptors in the reproductive male tract of non mammalian vertebrates. Steroids 2018; 134:1-8. [PMID: 29627338 DOI: 10.1016/j.steroids.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 01/04/2023]
Abstract
Estrogen receptors alpha (ERα) and beta (ERβ) are transcription factors known to be involved in the regulation of many complex physiological processes in mammals. They are expressed primarily in the reproductive tract of all vertebrates females, thus indicating important and conserved functions in female reproductive success. ERs are also present in physiological different tissues as bone, brain, liver, skin and adipose tissues, in both females and males. In the latter, ERs have been found also in the genital tract, supporting the findings of a complex role for estrogen in spermatogenesis and, more generally, in male reproduction. This review provides an overview and update on ERα and ERβ expression and synthesis in male reproductive tract of non-mammalian vertebrates, with focus on their role in germ cells proliferation, maturation and survival. Data from studies on fish, amphibians, reptiles and birds were collated and common or species-specific distribution highlighted. The widespread distribution of estrogen receptors in testicular cells and ducts of all vertebrates so far investigated suggests that whatever are the roles that estrogens may exert on these structures, they are phylogenetically conserved and are possibly related to the physiological support given to achieve male reproductive success.
Collapse
Affiliation(s)
- Mariailaria Verderame
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy.
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Mezzocannone 8, 80134 Napoli, Italy
| |
Collapse
|
32
|
Hinfray N, Sohm F, Caulier M, Chadili E, Piccini B, Torchy C, Porcher JM, Guiguen Y, Brion F. Dynamic and differential expression of the gonadal aromatase during the process of sexual differentiation in a novel transgenic cyp19a1a-eGFP zebrafish line. Gen Comp Endocrinol 2018. [PMID: 28648994 DOI: 10.1016/j.ygcen.2017.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In zebrafish, there exists a clear need for new tools to study sex differentiation dynamic and its perturbation by endocrine disrupting chemicals. In this context, we developed and characterized a novel transgenic zebrafish line expressing green fluorescent protein (GFP) under the control of the zebrafish cyp19a1a (gonadal aromatase) promoter. In most gonochoristic fish species including zebrafish, cyp19a1a, the enzyme responsible for the synthesis of estrogens, has been shown to play a critical role in the processes of reproduction and sexual differentiation. This novel cyp19a1a-eGFP transgenic line allowed a deeper characterization of expression and localization of cyp19a1a gene in zebrafish gonads both at the adult stage and during development. At the adult stage, GFP expression was higher in ovaries than in testis. We showed a perfect co-expression of GFP and endogenous Cyp19a1a protein in gonads that was mainly localized in the cytoplasm of peri-follicular cells in the ovary and of Leydig and germ cells in the testis. During development, GFP was expressed in all immature gonads of 20 dpf-old zebrafish. Then, GFP expression increased in early differentiated female at 30 and 35dpf to reach a high GFP intensity in well-differentiated ovaries at 40dpf. On the contrary, males consistently displayed low GFP expression as compared to female whatever their stage of development, resulting in a clear dimorphic expression between both sexes. Interestingly, fish that undergoes ovary-to-testis transition (35 and 40dpf) presented GFP levels similar to males or intermediate between females and males. In this transgenic line our results confirm that cyp19a1a is expressed early during development, before the histological differentiation of the gonads, and that the down-regulation of cyp19a1a expression is likely responsible for the testicular differentiation. Moreover, we show that although cyp19a1a expression exhibits a clear dimorphic expression pattern in gonads during sexual differentiation, its expression persists whatever the sex suggesting that estradiol synthesis is important for gonadal development of both sexes. Monitoring the expression of GFP in control and exposed-fish will help determine the sensitivity of this transgenic line to EDCs and to refine mechanistic based-assays for the study of EDCs. In fine, this transgenic zebrafish line will be a useful tool to study physiological processes such as reproduction and sexual differentiation, and their perturbations by EDCs.
Collapse
Affiliation(s)
- Nathalie Hinfray
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| | - Frédéric Sohm
- UMS AMAGEN, CNRS, INRA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Morgane Caulier
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Edith Chadili
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Benjamin Piccini
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Camille Torchy
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France
| | - Yann Guiguen
- INRA, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), IFR140, Ouest-Genopole, F-35000 Rennes, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, 60550 Verneuil-en-Halatte, France.
| |
Collapse
|
33
|
Graziano M, Benito R, Planas JV, Palstra AP. Swimming exercise to control precocious maturation in male seabass (Dicentrarchus labrax). BMC DEVELOPMENTAL BIOLOGY 2018; 18:10. [PMID: 29649968 PMCID: PMC5897932 DOI: 10.1186/s12861-018-0170-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/08/2018] [Indexed: 01/19/2023]
Abstract
Background Male European seabass, already predominant (~ 70%) in cultured stocks, show a high incidence (20–30%) of precocious sexual maturation under current aquaculture practices, leading to important economic losses for the industry. In view of the known modulation of reproductive development by swimming exercise in other teleost species, we aimed at investigating the effects of sustained swimming on reproductive development in seabass males during the first year of life in order to determine if swimming could potentially reduce precocious sexual maturation. Methods Pre-pubertal seabass (3.91 ± 0.22 g of body weight (BW)) were subjected to a 10 week swimming regime at their optimal swimming speed (Uopt) in an oval-shaped Brett-type flume or kept at rest during this period. Using Blazka-type swim tunnels, Uopt was determined three times during the course of the experiment: 0.66 m s− 1 at 19 ± 1 g BW, 10.2 ± 0.2 cm of standard length (SL) (week 1); 0.69 m s− 1 at 38 ± 3 g BW, 12.7 ± 0.3 cm SL (week 5), and also 0.69 m s− 1 at 77 ± 7 g BW, 15.7 ± 0.5 cm SL (week 9). Every 2 weeks, size and gonadal weight were monitored in the exercised (N = 15) and non-exercised fish (N = 15). After 10 weeks, exercised and non-exercised males were sampled to determine plasma 11-ketotestosterone levels, testicular mRNA expression levels of genes involved in steroidogenesis and gametogenesis by qPCR, as well as the relative abundance of germ cells representing the different spermatogenic stages by histological examination. Results Our results indicate that sustained swimming exercise at Uopt delays testicular development in male European seabass as evidenced by decreased gonado-somatic index, slower progression of testicular development and by reduced mRNA expression levels of follicle stimulating hormone receptor (fshR), 3-beta-hydroxysteroid dehydrogenase (3βhsd), 11-beta hydroxysteroid dehydrogenase (11βhsd), estrogen receptor-beta (erβ2), anti-mullerian hormone (amh), structural maintenance of chromosomes protein 1B (smc1β), inhibin beta A (inhba) and gonado-somal derived factor 1 (gsdf1) in exercised males as compared with the non-exercised males. Conclusions Swimming exercise may represent a natural and non-invasive tool to reduce the incidence of sexually precocious males in seabass aquaculture.
Collapse
Affiliation(s)
- Marco Graziano
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands
| | - Raul Benito
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain.,Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands
| | - Josep V Planas
- Department of Physiology and Immunology, School of Biology, University of Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - Arjan P Palstra
- Wageningen Marine Research, Wageningen University & Research, Korringaweg 5, 4401, NT, Yerseke, The Netherlands. .,Wageningen Livestock Research, Wageningen University & Research Animal Breeding and Genomics, PO Box 338, 6700, AH, Wageningen, The Netherlands.
| |
Collapse
|
34
|
Shappell NW, Feifarek DJ, Rearick DC, Bartell SE, Schoenfuss HL. Do environmental factors affect male fathead minnow (Pimephales promelas) response to estrone? Part 2. Temperature and food availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:32-43. [PMID: 28802108 DOI: 10.1016/j.scitotenv.2017.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Fish are subject to constantly changing environmental conditions and food availability, factors that may impact their response to endocrine disruptors (EDs). This may, in part, explain outcome discrepancies between field studies and laboratory exposures to EDs. This study assessed whether standard laboratory conditions for fish exposures adequately represent effects of ED exposure at two environmentally realistic temperatures. The impact of temperature and food availability on male fathead minnow response to estrone (E1) exposure was studied in two experiments (3×2×2 factorial design) with three E1 concentrations (range 0-135ng/L); two temperatures (18°C and 26°C, the latter the prescribed laboratory temperature), and two feeding treatments (full fed vs. 25% of full fed) in a 21-day flow-through system. Morphometric endpoints [including body condition factor, somatic index of gonad (GSI) and liver (HSI), and secondary sex characteristics (SSC)], blood parameters [hematocrit (HCT), blood glucose, cortisol, and vitellogenin (VTG) concentrations], and histology of liver and testis were determined on day 22. High E1 consistently increased VTG, though interactions among E1, temperature and/or food on liver weight, HSI, and HCT were inconsistent between experiments. High temperature impacted the greatest number of parameters, independent of E1 treatment. Three sex-linked parameters were lower at high temperature (testis weight, GSI and VTG), and in Exp. 2SSC and gonad maturity rating were lower. At 26°C, in Exp. 1 HSI and HCT decreased, and in Exp. 2 length, body and liver weight, and body condition factor were lower. Food restriction decreased GSI in Exp. 1, and blood glucose and liver weight in Exp. 2. At 26°C several parameters were altered independent of E1 exposure, including three out of four measurements of sperm differentiation. Concordance between laboratory and field investigations of the biological effects of EDs may improve if environmentally-relevant exposure conditions, especially temperature, are employed.
Collapse
Affiliation(s)
- N W Shappell
- USDA, Agricultural Research Service, Red River Valley Agricultural Research Center, Biosciences Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58102, United States.
| | - D J Feifarek
- Aquatic Toxicology Laboratory, Saint Cloud State University, WSB-273, 270 Fourth Avenue South, St. Cloud, MN 56301, United States
| | - D C Rearick
- Aquatic Toxicology Laboratory, Saint Cloud State University, WSB-273, 270 Fourth Avenue South, St. Cloud, MN 56301, United States
| | - S E Bartell
- Aquatic Toxicology Laboratory, Saint Cloud State University, WSB-273, 270 Fourth Avenue South, St. Cloud, MN 56301, United States; Normandale Community College, Bloomington, MN 55431, United States
| | - H L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, WSB-273, 270 Fourth Avenue South, St. Cloud, MN 56301, United States
| |
Collapse
|
35
|
Ribeiro YM, Matos SAD, Domingos FFT, Santos HBD, Cruz Vieira AB, Bazzoli N, Rizzo E. Germ cell proliferation and apoptosis during testicular regression in a seasonal breeding fish kept in captivity. Tissue Cell 2017; 49:664-671. [DOI: 10.1016/j.tice.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/27/2017] [Accepted: 09/11/2017] [Indexed: 01/19/2023]
|
36
|
Tang H, Chen Y, Liu Y, Yin Y, Li G, Guo Y, Liu X, Lin H. New Insights Into the Role of Estrogens in Male Fertility Based on Findings in Aromatase-Deficient Zebrafish. Endocrinology 2017; 158:3042-3054. [PMID: 28911176 DOI: 10.1210/en.2017-00156] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
It has been demonstrated that estrogens are indispensable for male fertility in mammals. Aromatase (encoded by CYP19) catalyzes the final step of estradiol biosynthesis. However, less is known about the role of aromatase in male fertility in nonmammalian species. Fish aromatase is encoded by two separate genes: the gonad-specific cyp19a1a and the brain-specific cyp19a1b. In a recent study, we used transcription activatorlike effector nucleases to systematically generate cyp19a1a and cyp19a1b mutant lines and a cyp19a1a;cyp19a1b double-mutant line in zebrafish and demonstrated that cyp19a1a was indispensable for sex differentiation. In this study, we focused on male fertility in these aromatase-deficient zebrafish. Our results showed that all aromatase-deficient male fish had normal fertility even at 1 year after fertilization. Interestingly, we observed more spermatozoa in the cyp19a1a and double-mutant males than in the wild-type and cyp19a1b mutant males. The whole-body androgen levels, follicle-stimulating hormone β and luteinizing hormone β protein levels in the pituitary, and transcript levels of genes known to be involved in spermatogenesis and steroidogenesis in the testes were significantly higher in the cyp19a1a mutant and aromatase double-mutant males than in the wild-type and cyp19a1b mutant males. These results might explain why more spermatozoa were observed in these fish. Collectively, our findings indicate that estrogens are not needed to achieve and maintain normal fertility in male zebrafish. This finding challenges the traditional view that estrogens are indispensable for male fertility.
Collapse
Affiliation(s)
- Haipei Tang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yu Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yike Yin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Gaofei Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
37
|
Yadav H, Lal B. BMP15 in catfish testis: Cellular distribution, seasonal variation, and its role in steroidogenesis. Steroids 2017; 125:114-123. [PMID: 28711705 DOI: 10.1016/j.steroids.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022]
Abstract
Considering the absence of information on testicular growth factors in fishes, present study was aimed to elucidate the existence of BMP15, an important member of TGF-β superfamily, in the testis of a seasonally breeding freshwater catfish, Clarias batrachus and its role in regulation of testicular activities. The study demonstrated the expression of BMP15 in the somatic cells (Sertoli and interstitial cells) in fish testis. The expression varied with changing testicular activity; the expression was very high in the quiescent and early recrudescing testis coinciding with the renewal of spermatogonial cells. Expression then declined gradually with progression of spermatogenesis and steroidogenesis. Expression of BMP15 showed positive correlation with seasonally changing testicular 17β-estradiol but negatively with testicular testosterone and 11-ketotestosterone. In vitro treatment of testis with recombinant human BMP15 enhanced the production of estradiol-17β but concurrently suppressed the production of testosterone and 11-ketotestosterone in testis. Though BMP15 did not alter the expression of StAR protein in the testis, it promoted the expression of 3β-hydroxysteroid dehydrogenase and aromatase in fish testis. Thus the present study for the first time demonstrates that fish testis is capable of producing BMP15 and is expressed by the somatic cells unlike mammals wherein it is produced exclusively by germ cells. Study also suggests that BMP15 may modulate the testicular steroidogenesis by altering the expression of steroidogenic enzymes. BMP15 also appears to play crucial role in renewal of spermatogial cells by augmenting the testicular production of 17β-estradiol.
Collapse
Affiliation(s)
- Himanshu Yadav
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
38
|
Zupa R, Fauvel C, Mylonas CC, Pousis C, Santamaria N, Papadaki Μ, Fakriadis I, Cicirelli V, Mangano S, Passantino L, Lacalandra GM, Corriero A. Rearing in captivity affects spermatogenesis and sperm quality in greater amberjack, Seriola dumerili (Risso, 1810)1. J Anim Sci 2017. [DOI: 10.2527/jas.2017.1708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Yu M, Feng Y, Zhang X, Wang J, Tian H, Wang W, Ru S. Semicarbazide disturbs the reproductive system of male zebrafish (Danio rerio) through the GABAergic system. Reprod Toxicol 2017; 73:149-157. [PMID: 28834696 DOI: 10.1016/j.reprotox.2017.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022]
Abstract
Semicarbazide (SMC), an emerging water contaminant, exerts anti-estrogenic effects in female zebrafish. However, the exact influence of SMC on male reproduction remains unclear. In this study, adult male zebrafish were exposed to 1-1000μg/L SMC in a semi-static system for 28 d prior to examining the testicular somatic index (TSI), testis histology, plasma sex hormone levels, and the transcription of genes involved in reproduction. The results showed that testicular morphology was altered and TSI was down-regulated by high concentrations of SMC (≥100μg/L and 1000μg/L, respectively). Plasma testosterone and 17β-estradiol concentrations were significantly decreased by all of the SMC treatments, along with down-regulation of the corresponding steroidogenic gene transcripts. These changes were associated with the inhibition of gamma-aminobutyric acid synthesis and function, in addition to the decreased expression of reproductive regulators. Our results contribute to elucidating the mechanisms underlying the adverse reproductive effects of SMC in male zebrafish.
Collapse
Affiliation(s)
- Miao Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yongliang Feng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
40
|
Weber AA, Moreira DP, Melo RMC, Vieira ABC, Prado PS, da Silva MAN, Bazzoli N, Rizzo E. Reproductive effects of oestrogenic endocrine disrupting chemicals in Astyanax rivularis inhabiting headwaters of the Velhas River, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:693-703. [PMID: 28341464 DOI: 10.1016/j.scitotenv.2017.02.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/20/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
The Velhas River is the most polluted river in the state of Minas Gerais, south-eastern Brazil. Due to its historical and environmental relevance, the aim of this study was to evaluate the effects of oestrogenic endocrine disruptors on the reproduction of the lambari Astyanax rivularis, a small-sized species found in headwaters of the São Francisco River basin. Quarterly field samplings were carried out during a reproductive cycle in three streams of the upper Velhas River: S1 (reference site) and S2 and S3 (sites contaminated by untreated sewage). The main oestrogenic compounds were evaluated in water using HPLC/MS. Molecular, histological and reproductive biomarkers were assessed in liver and gonad. The results showed higher average concentrations of oestradiol (>200ng/l) in S2 and S3, oestrone (>250ng/l) in S2 as well as oestriol (>200ng/l), bisphenol A (>190ng/l), and nonylphenol (>600ng/l) in S3 compared to S1 (<70ng/l for all compounds). In S2 and S3, there was an increase in the proportion of females, higher ELISA levels of vitellogenin (Vtg) and proteins of the zona radiata (Zrp) in liver males. Insulin-like growth factor (IGF-I) levels were lower in S2 males, which also had a smaller body size, a smaller seminiferous tubule diameter, a higher proportion of spermatogonia, and lower proportion of spermatozoa in relation to S1. Histopathological analyses detected an increase in yolk deficient oocytes and over-ripening in the contaminated sites, and these alterations were associated to a reduction of hepatic Vtg levels and a delay in spawning, respectively. Intersex specimens with perinucleolar follicles in a multifocal distribution in the testis were detected in S2 and S3. These results indicate that chronic exposure to oestrogenic compounds induced endocrine disruption that may affect wild populations of A. rivularis in the Velhas River.
Collapse
Affiliation(s)
- André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Augusto Bicalho Cruz Vieira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Paula Suzanna Prado
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Mirra Angelina Neres da Silva
- Departamento of Química, Universidade Federal de Minas Gerais, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte 30535-610, Minas Gerais, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P. 486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
41
|
Sato M, Hayashi M, Yoshizaki G. Stem cell activity of type A spermatogonia is seasonally regulated in rainbow trout†. Biol Reprod 2017; 96:1303-1316. [DOI: 10.1093/biolre/iox049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/27/2017] [Indexed: 01/15/2023] Open
|
42
|
Menad R, Smaï S, Bonnet X, Gernigon-Spychalowicz T, Moudilou E, Khammar F, Exbrayat JM. Seasonal variations of aromatase and estrogen receptors expression in the testis of free-ranging sand rats. Acta Histochem 2017; 119:382-391. [PMID: 28427772 DOI: 10.1016/j.acthis.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
An increasing number of studies revealed the importance of estrogen in male reproduction. However, most research was conducted in laboratory rodents subjected to standardized environmental conditions. Therefore, seasonal regulations of estrogen pathways remain poorly understood under natural conditions. Using immunohistochemistry, the expression of several molecules involved in the functioning of testis (i.e. 17-β estradiol [E2], P450 aromatase, estrogen receptors ESR1, ESR2, and GPER1 [also known as GPR30]) were investigated in free-ranging fat sand rats, Psammomys obesus, during the breeding and resting seasons. Leydig cells showed a strong immunoreactivity for aromatase in the testis sampled during the breeding season only; however, E2, ESR1, ESR2 and GPER1 were present during both seasons. Sertoli cells showed a positive signal for E2 and ESR2 during the breeding season; though, all molecules, except GPER1, were present during the resting season. Spermatogonia were reactive for E2, ESR2 and GPER1 during the breeding season and for ESR1 and GPER1 during the resting season. During both seasons, spermatocytes-I presented a moderate reactivity for E2, ESR1, ESR2 and a strong reactivity for GPER1; aromatase was detected during the resting season only. Spermatids and spermatozoa were present exclusively during breeding season and were reactive for all molecules; except round spermatids that were negative for aromatase. The functioning of the testis depends on finely tuned stimulation and inhibition systems. Our results suggest that differential expression of aromatase, ESR1, ESR2, and GPER1 across cells types is involved in the seasonal activation/inactivation cycle of spermatogenesis in a free-ranging species.
Collapse
|
43
|
Chauvigné F, Parhi J, Ollé J, Cerdà J. Dual estrogenic regulation of the nuclear progestin receptor and spermatogonial renewal during gilthead seabream (Sparus aurata) spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2017; 206:36-46. [DOI: 10.1016/j.cbpa.2017.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
|
44
|
Chauvigné F, Ollé J, González W, Duncan N, Giménez I, Cerdà J. Toward developing recombinant gonadotropin-based hormone therapies for increasing fertility in the flatfish Senegalese sole. PLoS One 2017; 12:e0174387. [PMID: 28329024 PMCID: PMC5362233 DOI: 10.1371/journal.pone.0174387] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/08/2017] [Indexed: 11/18/2022] Open
Abstract
Captive flatfishes, such as the Senegalese sole, typically produce very low volumes of sperm. This situation is particularly prevalent in the first generation (F1) of reared sole males, which limits the development of artificial fertilization methods and the implementation of selective breeding programs. In this study, we investigated whether combined treatments with homologous recombinant follicle-stimulating (rFsh) and luteinizing (rLh) hormones, produced in a mammalian host system, could stimulate spermatogenesis and enhance sperm production in Senegalese sole F1 males. In an initial autumn/winter experiment, weekly intramuscular injections with increasing doses of rFsh over 9 weeks resulted in the stimulation of gonad weight, androgen release, germ cell proliferation and entry into meiosis, and the expression of different spermatogenesis-related genes, whereas a subsequent single rLh injection potentiated spermatozoa differentiation. In a second late winter/spring trial corresponding to the sole’s natural prespawning and spawning periods, we tested the effect of repeated rLh injections on the amount and quality of sperm produced by males previously treated with rFsh for 4, 6, 8 or 10 weeks. These latter results showed that the combination of rFsh and rLh treatments could increase sperm production up to 7 times, and slightly improve the motility of the spermatozoa, although a high variability in the response was found. However, sustained administration of rFsh during spawning markedly diminished Leydig cell survival and the steroidogenic potential of the testis. These data suggest that in vivo application of rFsh and rLh is effective at stimulating spermatogenesis and sperm production in Senegalese sole F1 males, setting the basis for the future establishment of recombinant gonadotropin-based hormone therapies to ameliorate reproductive dysfunctions of this species.
Collapse
Affiliation(s)
- François Chauvigné
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail: (FC); (IG); (JC)
| | - Judith Ollé
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | | | - Neil Duncan
- IRTA, Sant Carles de la Ràpita, Tarragona, Spain
| | - Ignacio Giménez
- Rara Avis Biotec, S. L., Valencia, Spain
- * E-mail: (FC); (IG); (JC)
| | - Joan Cerdà
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA)-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail: (FC); (IG); (JC)
| |
Collapse
|
45
|
ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice. Sci Rep 2017; 7:43459. [PMID: 28266530 PMCID: PMC5339920 DOI: 10.1038/srep43459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/25/2017] [Indexed: 11/08/2022] Open
Abstract
Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation.
Collapse
|
46
|
De novo sequencing and comparative analysis of testicular transcriptome from different reproductive phases in freshwater spotted snakehead Channa punctatus. PLoS One 2017; 12:e0173178. [PMID: 28253373 PMCID: PMC5333912 DOI: 10.1371/journal.pone.0173178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/16/2017] [Indexed: 12/14/2022] Open
Abstract
The spotted snakehead Channa punctatus is a seasonally breeding teleost widely distributed in the Indian subcontinent and economically important due to high nutritional value. The declining population of C. punctatus prompted us to focus on genetic regulation of its reproduction. The present study carried out de novo testicular transcriptome sequencing during the four reproductive phases and correlated differential expression of transcripts with various testicular events in C. punctatus. The Illumina paired-end sequencing of testicular transcriptome from resting, preparatory, spawning and postspawning phases generated 41.94, 47.51, 61.81 and 44.45 million reads, and 105526, 105169, 122964 and 106544 transcripts, respectively. Transcripts annotated using Rattus norvegicus reference protein sequences and classified under various subcategories of biological process, molecular function and cellular component showed that the majority of the subcategories had highest number of transcripts during spawning phase. In addition, analysis of transcripts exhibiting differential expression during the four phases revealed an appreciable increase in upregulated transcripts of biological processes such as cell proliferation and differentiation, cytoskeleton organization, response to vitamin A, transcription and translation, regulation of angiogenesis and response to hypoxia during spermatogenically active phases. The study also identified significant differential expression of transcripts relevant to spermatogenesis (mgat3, nqo1, hes2, rgs4, cxcl2, alcam, agmat), steroidogenesis (star, tkt, gipc3), cell proliferation (eef1a2, btg3, pif1, myo16, grik3, trim39, plbd1), cytoskeletal organization (espn, wipf3, cd276), sperm development (klhl10, mast1, hspa1a, slc6a1, ros1, foxj1, hipk1), and sperm transport and motility (hint1, muc13). Analysis of functional annotation and differential expression of testicular transcripts depending on reproductive phases of C. punctatus helped in developing a comprehensive understanding on genetic regulation of spermatogenic and steroidogenic events in seasonally breeding teleosts. Our findings provide the basis for future investigation on the precise role of testicular genes in regulation of seasonal reproduction in male teleosts.
Collapse
|
47
|
Morini M, Peñaranda DS, Vílchez MC, Tveiten H, Lafont AG, Dufour S, Pérez L, Asturiano JF. The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2017; 203:91-99. [DOI: 10.1016/j.cbpa.2016.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 02/02/2023]
|
48
|
Kida BMS, Abdalla RP, Moreira RG. Effects of acidic water, aluminum, and manganese on testicular steroidogenesis in Astyanax altiparanae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1347-1356. [PMID: 27025723 DOI: 10.1007/s10695-016-0222-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Metals can influence the gonadal steroidogenesis and endocrine systems of fish, thereby affecting their reproduction. The effects of aluminum and manganese in acidic water were investigated on steroidogenesis in sexually mature male Astyanax altiparanae. Whether mature male fish recover from the effects of metals in metal-free water was also assessed. The fish were exposed to 0.5 mg L(-1) of isolated or combined aluminum and manganese in acidic pH (5.5) to keep the metals bioavailable. The fish underwent 96 h of acute exposure, and samples were taken 24 and 96 h after the beginning of the experiment. The fish were then maintained in metal-free water for 96 h. Plasma levels of testosterone, 11-ketotestosterone, 17β-estradiol, and cortisol were measured. Acidic water increased the plasma concentration of testosterone and 11-ketotestosterone. Aluminum increased the testosterone levels after 96 h of exposure. Manganese increased the 17β-estradiol levels after 24 h of exposure and maintained at high levels until the end of the experiment. With the exception of acidic pH, which increased cortisol levels after 24 h of exposure, no changes were observed in this corticosteroid during the acute experiment. Aluminum and manganese together also altered steroid levels but without a standard variation. The fish recovered from the effects of most exposure conditions after 96 h in metal-free water. A. altiparanae could use reproductive tactics to trigger changes in testicular steroidogenesis by accelerating spermatogenesis and spermiogenesis, which may interfere with their reproductive dynamics.
Collapse
Affiliation(s)
- Bianca Mayumi Silva Kida
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 321, São Paulo, SP, 05508-090, Brazil
| | - Raisa Pereira Abdalla
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 321, São Paulo, SP, 05508-090, Brazil
| | - Renata Guimarães Moreira
- Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav. 14, 321, São Paulo, SP, 05508-090, Brazil.
| |
Collapse
|
49
|
Basak R, Roy A, Rai U. Seasonality of reproduction in male spotted murrel Channa punctatus: correlation of environmental variables and plasma sex steroids with histological changes in testis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1249-1258. [PMID: 26961127 DOI: 10.1007/s10695-016-0214-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
The present study was undertaken to develop a comprehensive understanding of how environmental cues and sex steroids relate with cyclic changes in spermatogenesis in freshwater spotted snakehead Channa punctatus that is nutritious and economically important. The seasonal histological changes in testis and annual profile of gonadosomatic index (GSI) of C. punctatus delineated the testicular cycle into four phases: regressed (December-March), preparatory (April-June), spawning (July and August) and postspawning (September-November). Among environmental variables, correlation and regression analyses exhibited an important relationship between photoperiod and testicular weight while role of rainfall was seen confined to spawning. The seasonal profile of plasma sex steroids when correlated with cyclic changes in spermatogenesis in spotted snakehead, testosterone (T) seems to be involved in controlling the major events of spermatogenesis from renewal of stem cells to spawning of spermatozoa. Another important androgen prevalent in teleosts, 11-ketotestosterone (11-KT), was high during preparatory phase, suggesting that 11-KT in addition to T plays an important role in progression of spermatogenesis and spermiation in C. punctatus. However, 11-KT was not seen to be associated with milt production and release of spermatozoa during spawning. Plasma profile of estradiol-17β (E2) during different reproductive phases revealed the involvement of E2 in repopulation of stem cells during postspawning phase and in maintaining quiescence of testis during regressed phase.
Collapse
Affiliation(s)
- Reetuparna Basak
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Alivia Roy
- Department of Zoology, University of Delhi, Delhi, 110 007, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
50
|
Administration of testosterone inhibits initiation of seminal tubule growth and decreases Sertoli cell number in the earliest period of rat's postnatal development. Folia Histochem Cytobiol 2016; 47:S149-54. [PMID: 20067888 DOI: 10.2478/v10042-009-0094-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Sertoli cell (SC) number determines testes size and their capacity to produce spermatozoa. In the rat SC proliferate until 15th postnatal day (PND). Their proliferation is stimulated by FSH and inhibited by estradiol, but the role for androgens is uncertain. In this study we analyzed the effects of testosterone administration on testes growth and SC number in relation to timing of the treatment. Male rats were injected with 2.5 mg of testosterone propionate (TP) from birth until 5th PND and autopsied either on 6th PND [TP1-5(6)] or on 16th PND [TP1-5(16)] (transient administration). Other rats received TP from birth until 15th PND [TP1-15] or between 5th and 15th PND [TP5-15] continuously and were autopsied on day 16th. Control groups (C) received vehicle. In the Cs serum level of estradiol was 20-fold higher (p<0.001) and FSH was 1,7-fold higher (p<0.05) on 6th PND than on 16th PND, while testosterone did not change. After TP blood level of testosterone increased 2200-fold on 6th PND (p<0.05), and 8-fold on 16th PND. In turn, continuous TP administrations resulted on 16th PND in the increase in testosterone serum level by 2000-times of C without influence on FSH. While the treatment from birth either during initial 5 days or continuously until 15th day decreased testicular weight (p<0.001), tubule length (p<0.05) and SC number (p<0.001), the treatment initiated on 5th PND had no effects. TP reduced serum estradiol level on 6th PND by 13-fold (p<0.01), but doubled it on 16th PND. CONCLUSION Neonatal rats secrete estradiol and FSH in the amounts greatly extending those presented during further development. Testosterone inhibits testicular growth and SC number acting during first 5 neonatal days by decreasing FSH secretion, but is not effective during further development. Direct inhibitory influence of testosterone or trough its increased aromatisation to estradiol beyond neonatal period may be responsible for sustained inhibition of testes growth and SC number during infancy.
Collapse
|