1
|
Aranda-Chan V, Gutiérrez-Soto M, Flores-Pucheta CI, Montes-Flores O, Arroyo R, Ortega-López J. Trichocystatin-2 from Trichomonas vaginalis: role of N-terminal cysteines in aggregation, protease inhibition, and trichomonal cysteine protease-dependent cytotoxicity on HeLa cells. FRONTIERS IN PARASITOLOGY 2025; 4:1512012. [PMID: 40171250 PMCID: PMC11959277 DOI: 10.3389/fpara.2025.1512012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025]
Abstract
Trichomonas vaginalis is a protozoan parasite that causes trichomoniasis, the most common nonviral neglected sexually transmitted disease worldwide. Biomarkers and therapeutic targets, including specific trichomonad cysteine proteases (CPs) and their endogenous inhibitors, have been identified to diagnose and treat this disease. Trichocystatin 2 (TC-2) was previously identified as one of the three endogenous inhibitors of the parasite's cathepsin L-like CPs, including TvCP39, which is involved in T. vaginalis cytotoxicity and is a potential therapeutic target. TC-2 contains five cysteines, including four located in the N-terminal sequence. These cysteines may be responsible for the formation of multimers of the recombinant protein expressed in E. coli. To determine whether these cysteines are responsible for the formation of TC-2 multimers and the effect of the N-terminus on CP inhibition, a recombinant TC-2 mutant was expressed, purified, characterized, and compared with the recombinant wild-type TC-2 protein. In silico and experimental analyses revealed that wild-type and mutant TC-2 proteins presented similar results in terms of secondary and tertiary structure prediction and high thermal stability. However, compared with that of wild-type TC-2, multimer formation was significantly reduced in the mutant lacking the four N-terminal cysteines, leading to a significant reduction in papain inhibition but not in trichomonal CP activity. These results support the hypothesis that the four cysteines located in the N-terminal region are responsible for aggregation, and their deletion affected the interaction of TC-2 with papain without affecting its inhibitory activity on homologous target proteases that are crucial for T. vaginalis virulence. Our results provide essential data supporting the use of TC-2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Verónica Aranda-Chan
- Departmento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Montserrat Gutiérrez-Soto
- Departmento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Claudia Ivonne Flores-Pucheta
- Departmento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Octavio Montes-Flores
- Departmento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| | - Jaime Ortega-López
- Departmento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Mexico City, Mexico
| |
Collapse
|
2
|
Park JY, Park KM. Recent discovery of natural substances with cathepsin L-inhibitory activity for cancer metastasis suppression. Eur J Med Chem 2024; 277:116754. [PMID: 39128327 DOI: 10.1016/j.ejmech.2024.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cathepsin L (CTSL), a cysteine cathepsin protease of the papain superfamily, plays a crucial role in cancer progression and metastasis. Dysregulation of CTSL is frequently observed in tumor malignancies, leading to the degradation of extracellular matrix and facilitating epithelial-mesenchymal transition (EMT), a key process in malignant cancer metastasis. This review mainly provides a comprehensive information about recent findings on natural inhibitors targeting CTSL and their anticancer effects, which have emerged as potent anticancer therapeutic agents or metastasis-suppressive adjuvants. Specifically, inhibitors are categorized into small-molecule and macromolecule inhibitors, with a particular emphasis on cathepsin propeptide-type macromolecules. Additionally, the article explores the molecular mechanisms of CTSL involvement in cancer metastasis, highlighting its regulation at transcriptional, translational, post-translational, and epigenetic levels. This work underscores the importance of understanding natural CTSL inhibitors and provides researchers with practical insights to advance the relevant fields and discover novel CTSL-targeting inhibitors from natural sources.
Collapse
Affiliation(s)
- Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
3
|
Soleimani Asl S, Roozbahani MH. A novel robust inhibitor of papain-like protease (PLpro) as a COVID-19 drug. J Biomol Struct Dyn 2024; 42:6863-6870. [PMID: 37578047 DOI: 10.1080/07391102.2023.2245474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2023] [Indexed: 08/15/2023]
Abstract
Regarding the significance of SARS-CoV-2, scientists have shown considerable interest in developing effective drugs. Inhibitors for PLpro are the primary strategies for locating suitable COVID-19 drugs. Natural compounds comprise the majority of COVID-19 drugs. Due to limitations on the safety of clinical trials in cases of COVID, computational methods are typically utilized for inhibition studies. Whereas papain is highly similar to PLpro and is entirely safe, the current study aimed to examine several plant secondary metabolites to identify the most effective papain inhibitor and validate the results using molecular dynamics and docking. This simulation was conducted identically for PLpro and the optimal inhibitor. The results indicated that the experimental results are comparable to those obtained In-Silico, and the inhibition effects of Chlorogenic acid (CGA) on papain attained in the experiment were validated (IC50=0.54 mM). CGA as an inhibitor was located in the active site of PLpro and papain (total energy -2009410 and -456069 kJ/mol, respectively) at the desired location and distance. The study revealed that CGA and its derivatives are effective PLpro inhibitors against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saeed Soleimani Asl
- Iran Digital Twin Laboratory (IDT-Lab)- Incubator Center, Iran University of Science and Technology, Tehran, Iran
| | | |
Collapse
|
4
|
Abdel-Ghani MA, Ghoneim IM, Nagano M, AlMomen HQM. Impact of papain on the treatment of raw diluted dromedary semen. Reprod Domest Anim 2024; 59:e14637. [PMID: 38864674 DOI: 10.1111/rda.14637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
A variety of parameters, including liquefaction and semen viscosity, affect the sperm's ability to travel and reach the egg for fertilization and conception. Given that the details behind the viscosity of the semen in male camels have not yet been fully clarified, the purpose of this study was to ascertain how the addition of papain affected the viscosity of fresh diluted camel semen. The study examined semen samples derived from camels that had distinct viscosities. Sperm motility, viability, abnormal sperm percentage, concentration, viscosity, morphometry, acrosome integrity and liquefaction were among the evaluations following 0, 5, 10, 20 or 30 min of incubation at 37°C with papain (0.004 mg/mL, 0.04 mg/mL or 0.4 mg/mL; a semen sample without papain was used as a control). A statistically significant interaction between the effects of papain concentrations and incubation time was found (F = 41.68, p = .0001). Papain concentrations (p = .0001) and incubation times (p = .0001) both had a statistically significant impact on viscosity, according to a simple main effects analysis. A lower viscosity was found (p < .05) at 0.04 mg/mL (0.1 ± 0.0) after 10 min of incubation. A simple main effects analysis showed that papain concentrations and incubation time have a statistically significant effect on sperm motility (p = .0001). At 0.04 mg/mL papain, the sperm motility % was higher (p < .05) after 10 min (64.4 ± 4.8), 20 min (68.4 ± 6.2), and 30 min incubation (72.2 ± 6.6) compared to 0, 5 min (38.3 ± 4.1 and 51.6 ± 5.0, respectively). In conclusion, the fresh diluted camel semen had the lowest viscosity properties after 10 min of incubation with 0.04 mg/mL papain, without compromising sperm motility, viability, acrosome integrity and sperm morphology.
Collapse
Affiliation(s)
- Mohammed A Abdel-Ghani
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, AL-Ahsa, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Ibrahim M Ghoneim
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, AL-Ahsa, Saudi Arabia
| | - Masashi Nagano
- Laboratory of Animal Reproduction, Department of Animal Science, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | | |
Collapse
|
5
|
Falke S, Lieske J, Herrmann A, Loboda J, Karničar K, Günther S, Reinke PYA, Ewert W, Usenik A, Lindič N, Sekirnik A, Dretnik K, Tsuge H, Turk V, Chapman HN, Hinrichs W, Ebert G, Turk D, Meents A. Structural Elucidation and Antiviral Activity of Covalent Cathepsin L Inhibitors. J Med Chem 2024; 67:7048-7067. [PMID: 38630165 PMCID: PMC11089505 DOI: 10.1021/acs.jmedchem.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/15/2024]
Abstract
Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.
Collapse
Affiliation(s)
- Sven Falke
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Julia Lieske
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alexander Herrmann
- Institute
of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - Jure Loboda
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Katarina Karničar
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Sebastian Günther
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Patrick Y. A. Reinke
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Wiebke Ewert
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Aleksandra Usenik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Nataša Lindič
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Andreja Sekirnik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Klemen Dretnik
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- The
Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Hideaki Tsuge
- Faculty of
Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Vito Turk
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henry N. Chapman
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Hamburg
Centre for Ultrafast Imaging, Universität
Hamburg, Luruper Chaussee
149, 22761 Hamburg, Germany
- Department
of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Winfried Hinrichs
- Institute
of Biochemistry, Universität Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Gregor Ebert
- Institute
of Virology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
- Institute
of Virology, Technical University of Munich, Trogerstraße 30, 81675 Munich, Germany
| | - Dušan Turk
- Department
of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre
of Excellence for Integrated Approaches in Chemistry and Biology of
Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Alke Meents
- Center
for Free-Electron Laser Science CFEL, Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
6
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
7
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
8
|
Extraction, Purification and Characterization of Papain Cysteine-Proteases from the Leaves of Carica papaya. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2022.e01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Sharafeddin F, Maroufi S. Effect of Er:YAG, Co2 lasers, papain, and bromelain enzymes dentin treatment on shear bond strength of composite resin. Clin Exp Dent Res 2022; 8:1575-1581. [PMID: 36016491 PMCID: PMC9760143 DOI: 10.1002/cre2.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Effective bond strength of composite resin restoration leads to its durability, so evaluation of dentin surface treatment with enzymes and laser for higher bond strength is an important factor. MATERIALS AND METHODS Sixty human molar teeth were cut at a depth of 2 mm of occlusal part and divided into six groups (n = 10). G1: etched with 37% phosphoric, G2 and G3: 10% papain or bromelain enzymes were used on the dentinal surface, G4: 10% papain and bromelain enzyme mixture were used for. Then, the specimens were washed with distilled water. In G5 and G6: Er:YAG or Co2 lasers were used on the dentin surface. An adhesive system was applied and then nanohybrid composite was placed in teflon mold and light cured. Samples were subjected to a shear bond strength (SBS) test by universal testing machines. Statistical analysis was performed, using one-way analysis of variance and Tukey HSD tests (p < .05). RESULTS The mean SBS in G1 was significantly higher in comparison with the other groups (p < .0001). On the other hand, a comparison of mean SBS between groups 2, 3, 4, and 5 shows no significant differences (p = .221). The mean SBS in group 6 (Co2 laser) was significantly lower in comparison with the other groups (p < .0001). CONCLUSION Results showed that SBS of composite resin to dentin was not significantly affected, using either bromelain or papain 10% enzymes or erbium laser. Co2 laser had a negative effect on dentin and decreased the SBS. Phosphoric acid has the best result.
Collapse
Affiliation(s)
- Farahnaz Sharafeddin
- Department of Operative Dentistry, Biomaterials Research Center, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Sara Maroufi
- School of DentistryShiraz University of Medical SciencesShirazIran
| |
Collapse
|
10
|
Zhou Z, Ford R, Bar I, Kanchana-udomkan C. Papaya ( Carica papaya L.) Flavour Profiling. Genes (Basel) 2021; 12:1416. [PMID: 34573398 PMCID: PMC8471406 DOI: 10.3390/genes12091416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
A major challenge to the papaya industry is inconsistency in fruit quality and, in particular, flavour, which is a complex trait that comprises taste perception in the mouth (sweetness, acidity, or bitterness) and aroma produced by several volatile compounds. Current commercial varieties vary greatly in their taste, likely due to historical prioritised selection for fruit appearance as well as large environmental effects. Therefore, it is important to better understand the genetic and biochemical mechanisms and biosynthesis pathways underpinning preferable flavour in order to select and breed for better tasting new commercial papaya varieties. As an initial step, objectively measurable standards of the compound profiles that provide papaya's taste and aroma, together with 'mouth feel', are required. This review presents an overview of the approaches to characterise the flavour profiles of papaya through sugar component determination, volatile compound detection, sensory panel testing, as well as genomics-based studies to identify the papaya flavour.
Collapse
Affiliation(s)
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; (Z.Z.); (I.B.); (C.K.)
| | | | | |
Collapse
|
11
|
Ashford MW, Xu C, Molloy JJ, Carpenter‐Warren C, Slawin AMZ, Leach AG, Watson AJB. Catalytic Enantioselective Synthesis of Heterocyclic Vicinal Fluoroamines by Using Asymmetric Protonation: Method Development and Mechanistic Study. Chemistry 2020; 26:12249-12255. [PMID: 32539163 PMCID: PMC7540707 DOI: 10.1002/chem.202002543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 01/02/2023]
Abstract
A catalytic enantioselective synthesis of heterocyclic vicinal fluoroamines is reported. A chiral Brønsted acid promotes aza-Michael addition to fluoroalkenyl heterocycles to give a prochiral enamine intermediate that undergoes asymmetric protonation upon rearomatization. The reaction accommodates a range of azaheterocycles and nucleophiles, generating the C-F stereocentre in high enantioselectivity, and is also amenable to stereogenic C-CF3 bonds. Extensive DFT calculations provided evidence for stereocontrolled proton transfer from catalyst to substrate as the rate-determining step, and showed the importance of steric interactions from the catalyst's alkyl groups in enforcing the high enantioselectivity. Crystal structure data show the dominance of noncovalent interactions in the core structure conformation, enabling modulation of the conformational landscape. Ramachandran-type analysis of conformer distribution and Protein Data Bank mining indicated that benzylic fluorination by this approach has the potential to improve the potency of several marketed drugs.
Collapse
Affiliation(s)
- Matthew W. Ashford
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Chao Xu
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - John J. Molloy
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | | | - Andrew G. Leach
- School of Health SciencesUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
12
|
Cannalire R, Stefanelli I, Cerchia C, Beccari AR, Pelliccia S, Summa V. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. Int J Mol Sci 2020; 21:ijms21165707. [PMID: 32784899 PMCID: PMC7460888 DOI: 10.3390/ijms21165707] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The pandemic evolution of SARS-CoV-2 infection is forcing the scientific community to unprecedented efforts to explore all possible approaches against COVID-19. In this context, targeting virus entry is a promising antiviral strategy for controlling viral infections. The main strategies pursued to inhibit the viral entry are considering both the virus and the host factors involved in the process. Primarily, direct-acting antivirals rely on inhibition of the interaction between ACE2 and the receptor binding domain (RBD) of the Spike (S) protein or targeting the more conserved heptad repeats (HRs), involved in the membrane fusion process. The inhibition of host TMPRSS2 and cathepsins B/L may represent a complementary strategy to be investigated. In this review, we discuss the development entry inhibitors targeting the S protein, as well as the most promising host targeting strategies involving TMPRSS2 and CatB/L, which have been exploited so far against CoVs and other related viruses.
Collapse
Affiliation(s)
- Rolando Cannalire
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | - Irina Stefanelli
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | - Carmen Cerchia
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | | | - Sveva Pelliccia
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
| | - Vincenzo Summa
- Department of Pharmacy, University of Napoli “Federico II”, via D. Montesano 49, 80131 Napoli, Italy; (R.C.); (I.S.); (C.C.); (S.P.)
- Correspondence: ; Tel.: +39-081-678656
| |
Collapse
|
13
|
Manna D, Cordara G, Krengel U. Crystal structure of MOA in complex with a peptide fragment: A protease caught in flagranti. Curr Res Struct Biol 2020; 2:56-67. [PMID: 34235469 PMCID: PMC8244254 DOI: 10.1016/j.crstbi.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
The Marasmius oreades agglutinin (MOA) is the holotype of an emerging family of fungal chimerolectins and an active Ca2+/Mn2+-dependent protease, which exhibits a unique papain-like fold with special active site features. Here we investigated the functional significance of the structural elements differentiating MOA from other papain-like cysteine proteases. X-ray crystal structures of MOA co-crystallized with two synthetic substrates reveal cleaved peptides bound to the catalytic site, corresponding to the final products of the proteolytic reaction. Anomalous diffraction data on crystals grown in the presence of calcium and manganese, cadmium or zinc resolve the calcium/manganese preference of MOA and elucidate the inhibitory roles of zinc and cadmium towards papain-like cysteine proteases in general. The reported structures, together with activity data of MOA active site variants, point to a conservation of the general proteolysis mechanism established for papain. Ultimately, the findings suggest that papain and the papain-like domain of MOA are the product of convergent evolution.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| |
Collapse
|
14
|
Dana D, Pathak SK. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules 2020; 25:E698. [PMID: 32041276 PMCID: PMC7038230 DOI: 10.3390/molecules25030698] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
15
|
Liu C, Barrett TM, Chen X, Ferrie JJ, Petersson EJ. Fluorescent Probes for Studying Thioamide Positional Effects on Proteolysis Reveal Insight into Resistance to Cysteine Proteases. Chembiochem 2019; 20:2059-2062. [PMID: 30950552 PMCID: PMC7021225 DOI: 10.1002/cbic.201900115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/12/2022]
Abstract
Thioamide substitutions of the peptide backbone have been shown to reduce proteolytic degradation, and this property can be used to generate competitive protease inhibitors and to stabilize peptides toward degradation in vivo. Here, we present a straightforward sensor design that allows a systematic study of the positional effects of thioamide substitution by using real-time fluorescence. Thioamide scanning in peptide substrates of five papain family cysteine proteases demonstrates that a thioamide at or near the scissile bond can slow proteolysis in all cases, but that the magnitude of the effects varies with position and protease in spite of high sequence homology. Mechanistic investigation of papain proteolysis reveals that the thioamide effects derive from reductions in both affinity (KM ) and turnover number (kcat ). Computational modeling allows these effects to be understood based on disruption of key enzyme-substrate hydrogen bonds, providing a model for future rational use of thioamides to confer cysteine protease resistance.
Collapse
Affiliation(s)
- Chunxiao Liu
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, P. R. China
| | - Taylor M Barrett
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - Xing Chen
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
16
|
Comparative structural analysis of fruit and stem bromelain from Ananas comosus. Food Chem 2018; 266:183-191. [DOI: 10.1016/j.foodchem.2018.05.125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/29/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023]
|
17
|
Budama-Kilinc Y, Cakir-Koc R, Kecel-Gunduz S, Zorlu T, Kokcu Y, Bicak B, Karavelioglu Z, Ozel AE. Papain Loaded Poly(ε-Caprolactone) Nanoparticles: In-silico and In-Vitro Studies. J Fluoresc 2018; 28:1127-1142. [PMID: 30097974 DOI: 10.1007/s10895-018-2276-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/30/2018] [Indexed: 01/24/2023]
Abstract
Papain is a protease enzyme with therapeutic properties that are very valuable for medical applications. Poly(ε-caprolactone) (PCL) is an ideal polymeric carrier for controlled drug delivery systems due to its low biodegradability and its high biocompatibility. In this study, the three-dimensional structure and action mechanism of papain were investigated by in vitro and in silico experiments using molecular dynamics (MD) and molecular docking methods to elucidate biological functions. The results showed that the size of papain-loaded PCL nanoparticles (NPs) and the polydispersity index (PDI) of the NPs were 242.9 nm and 0.074, respectively. The encapsulation efficiency and loading efficiency were 80.4 and 27.2%, respectively. Human embryonic kidney cells (HEK-293) were used for determining the cytotoxicity of papain-loaded PCL and PCL nanoparticles. The in vitro cell culture showed that nanoparticles are not toxic at low concentrations, while toxicity slightly increases at high concentrations. In silico studies, which were carried out with MD simulations and ADME analysis showed that the strong hydrogen bonds between the ligand and the papain provide stability and indicate the regions in which the interactions occur.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Rabia Cakir-Koc
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Faculty of Science, Physics Department, Istanbul University, 34134, Istanbul, Turkey
| | - Tolga Zorlu
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Yagmur Kokcu
- Graduate School of Engineering and Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Bilge Bicak
- Faculty of Science, Physics Department, Istanbul University, 34134, Istanbul, Turkey
- Graduate School of Engineering and Sciences, Istanbul University, 34452, Istanbul, Turkey
| | - Zeynep Karavelioglu
- Graduate School of Natural and Applied Science, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Aysen E Ozel
- Faculty of Science, Physics Department, Istanbul University, 34134, Istanbul, Turkey
| |
Collapse
|
18
|
Huisman M, Kodanko JP, Arora K, Herroon M, Alnaed M, Endicott J, Podgorski I, Kodanko JJ. Affinity-Enhanced Luminescent Re(I)- and Ru(II)-Based Inhibitors of the Cysteine Protease Cathepsin L. Inorg Chem 2018; 57:7881-7891. [PMID: 29882662 DOI: 10.1021/acs.inorgchem.8b00978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two new Re(I)- and Ru(II)-based inhibitors were synthesized with the formulas [Re(phen)(CO)3(1)](OTf) (7; phen = 1,10-phenanthroline, OTf = trifluoromethanesulfonate) and [Ru(bpy)2(2)](Cl)2 (8; bpy = 2,2'-bipyridine), where 1 and 2 are the analogues of CLIK-148, an epoxysuccinyl-based cysteine cathepsin L inhibitor (CTSL). Compounds 7 and 8 were characterized using various spectroscopic techniques and elemental analysis; 7 and 8 both show exceptionally long excited state lifetimes. Re(I)-based complex 7 inhibits CTSL in the low nanomolar range, affording a greater than 16-fold enhancement of potency relative to the free inhibitor 1 with a second-order rate constant of 211000 ± 42000 M-1 s-1. Irreversible ligation of 7 to papain, a model of CTSL, was analyzed with mass spectroscopy, and the major peak shown at 24283 au corresponds to that of papain-1-Re(CO)3(phen). Compound 7 was well tolerated by DU-145 prostate cancer cells, with toxicity evident only at high concentrations. Treatment of DU-145 cells with 7 followed by imaging via confocal microscopy showed substantial intracellular fluorescence that can be blocked by the known CTSL inhibitor CLIK-148, consistent with the ability of 7 to label CTSL in living cells. Overall this study reveals that a Re(I) complex can be attached to an enzyme inhibitor and enhance potency and selectivity for a medicinally important target, while at the same time allowing new avenues for tracking and quantification due to long excited state lifetimes and non-native element composition.
Collapse
Affiliation(s)
- Matthew Huisman
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Jacob P Kodanko
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Karan Arora
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Mackenzie Herroon
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States
| | - Marim Alnaed
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - John Endicott
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine , Wayne State University , Detroit , Michigan 48201 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| | - Jeremy J Kodanko
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States.,Barbara Ann Karmanos Cancer Institute , Detroit , Michigan 48201 , United States
| |
Collapse
|
19
|
Zwicker JD, Diaz NA, Guerra AJ, Kirchhoff PD, Wen B, Sun D, Carruthers VB, Larsen SD. Optimization of dipeptidic inhibitors of cathepsin L for improved Toxoplasma gondii selectivity and CNS permeability. Bioorg Med Chem Lett 2018; 28:1972-1980. [PMID: 29650289 PMCID: PMC5938124 DOI: 10.1016/j.bmcl.2018.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
The neurotropic protozoan Toxoplasma gondii is the second leading cause of death due to foodborne illness in the US, and has been designated as one of five neglected parasitic infections by the Center for Disease Control and Prevention. Currently, no treatment options exist for the chronic dormant-phase Toxoplasma infection in the central nervous system (CNS). T. gondii cathepsin L (TgCPL) has recently been implicated as a novel viable target for the treatment of chronic toxoplasmosis. In this study, we report the first body of SAR work aimed at developing potent inhibitors of TgCPL with selectivity vs the human cathepsin L. Starting from a known inhibitor of human cathepsin L, and guided by structure-based design, we were able to modulate the selectivity for Toxoplasma vs human CPL by nearly 50-fold while modifying physiochemical properties to be more favorable for metabolic stability and CNS penetrance. The overall potency of our inhibitors towards TgCPL was improved from 2 μM to as low as 110 nM and we successfully demonstrated that an optimized analog 18b is capable of crossing the BBB (0.5 brain/plasma). This work is an important first step toward development of a CNS-penetrant probe to validate TgCPL as a feasible target for the treatment of chronic toxoplasmosis.
Collapse
Affiliation(s)
- Jeffery D Zwicker
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Nicolas A Diaz
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Alfredo J Guerra
- Department of Immunology and Microbiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Paul D Kirchhoff
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Bo Wen
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Duxin Sun
- Pharmacokinetics Core, Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, United States
| | - Vern B Carruthers
- Department of Immunology and Microbiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, United States; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
20
|
Huisman M, White JK, Lewalski VG, Podgorski I, Turro C, Kodanko JJ. Caging the uncageable: using metal complex release for photochemical control over irreversible inhibition. Chem Commun (Camb) 2018; 52:12590-12593. [PMID: 27711349 DOI: 10.1039/c6cc07083c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photochemical control over irreversible inhibition was shown using Ru(ii)-caged inhibitors of cathepsin L. Levels of control were dependent on where the Ru(ii) complex was attached to the organic inhibitor, reaching >10 : 1 with optimal placement. A new strategy for photoreleasing Ru(ii) fragments from inhibitor-enzyme conjugates is also reported.
Collapse
Affiliation(s)
- Matthew Huisman
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - Jessica K White
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA. and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
21
|
Manohar R, Kutumbarao NHV, Krishna Nagampalli RS, Velmurugan D, Gunasekaran K. Structural insights and binding of a natural ligand, succinic acid with serine and cysteine proteases. Biochem Biophys Res Commun 2017; 495:679-685. [PMID: 29127014 DOI: 10.1016/j.bbrc.2017.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/05/2017] [Indexed: 01/01/2023]
Abstract
In the age of growing infectious diseases, there is a great demand for new inhibitors which can exhibit minimum side effects. Owing to the importance of proteases in life cycle and invasion, they have been projected as attractive targets for structure based drug designing against microbes including viruses. Here we report the inhibitory activity of a well known natural compound succinic acid against both serine and cysteine proteases. The ligand is found co-crystallized with Bovine pancreatic trypsin in one of our crystallization trials and the diffraction data up to1.9 Å reveal its interactions with the catalytic triad residues Histidine 57 and Serine 195. Binding of the ligand with these proteases have been validated using caseinolysis inhibition. With trypsin, ITC analysis showed tight binding of the ligand, resulting in change in Gibb's free energy (ΔG) by -20.31 kJ/mol. To understand the existence of succinic acid at the active site, molecular docking was performed and it revealed binding of it with trypsin and papain at corresponding active sites. This dual inhibitory activity of natural ligand, succinic acid can be accounted for the recent reports on anti-viral property of plant extracts where dicarboxilic fatty acids are normally abundant.
Collapse
Affiliation(s)
- R Manohar
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - N H V Kutumbarao
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | | | - D Velmurugan
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - K Gunasekaran
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India.
| |
Collapse
|
22
|
Fernández-Lucas J, Castañeda D, Hormigo D. New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Ramakrishnan C, Kutumbarao NHV, Suhitha S, Velmurugan D. Structure-function relationship of Chikungunya nsP2 protease: A comparative study with papain. Chem Biol Drug Des 2017; 89:772-782. [PMID: 28054451 DOI: 10.1111/cbdd.12901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/05/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
Chikungunya virus is a growing human pathogen transmitted by mosquito bite. It causes fever, chills, nausea, vomiting, joint pain, headache, and swelling in the joints. Its replication and propagation depend on the protease activity of the Chikungunya virus-nsP2 protein, which cleaves the nsP1234 polyprotein replication complex into individual functional units. The N-terminal segment of papain is structurally identical with the Chikungunya virus-nsP2 protease. Hence, molecular dynamics simulations were performed to compare molecular mechanism of these proteases. The Chikungunya virus-snP2 protease shows more conformational changes and adopts an alternate conformation. However, N-terminal segment of these two proteases has identical active site scaffold with the conserved catalytic diad. Hence, some of the non-peptide inhibitors of papain were used for induced fit docking at the active site of the nsP2 to assess the binding mode. In addition, the peptides that connect different domains/protein in Chikungunya virus poly-protein were also subjected for docking. The overall results suggest that the active site scaffold is the same in both the proteases and a possibility exists to experimentally assess the efficacy of some of the papain inhibitors to inhibit the Chikungunya virus-nsP2.
Collapse
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | | | - Sivasubramanian Suhitha
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
24
|
Xu C, Kozlov G, Wong K, Gehring K, Cygler M. Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS One 2016; 11:e0166643. [PMID: 27923041 PMCID: PMC5140068 DOI: 10.1371/journal.pone.0166643] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Salmonella Typhimurium GtgE is an effector protein contributing to the virulence of this pathogen. It was shown to possess highly selective proteolytic activity against a subset of Rab proteins that helps in evasion of Salmonella-containing vacuole (SCV) fusion with lysosomes. Cys45, His151 and Asp169 are essential for proteolytic activity. The structure of a C-terminal fragment GtgE(79–214) indicated the presence of a papain-like fold. Here, we present the structure of GtgE(17–214) containing the fully assembled active site. The design of a proteolytically active and crystallizable GtgE construct was aided by NMR spectroscopy. The protein indeed displays papain-like fold with an assembled Cys-His-Asp catalytic triad. Like the full-length GtgE, the crystallizable construct showed low activity in vitro for its known substrates, Rab32 and Rab29. NMR titration experiments showed at most very weak binding of GtgE to the peptide encompassing the Rab29 cleavage site. In view of the low in vitro activity and poor substrate binding, we postulate that the function of GtgE in vivo as a proteolytic enzyme is dependent on other factor(s), such as a protein partner or interactions with the SCV membrane, which stimulate(s) GtgE activity in vivo.
Collapse
Affiliation(s)
- Caishuang Xu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Guennadi Kozlov
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
| | - Kathy Wong
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
| | - Miroslaw Cygler
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Groupe de recherche axé sur la structure des protéines, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
25
|
Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev 2016; 32:22-37. [PMID: 27125852 DOI: 10.1016/j.arr.2016.04.010] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/12/2016] [Accepted: 04/23/2016] [Indexed: 02/07/2023]
Abstract
Lysosomes and lysosomal hydrolases, including the cathepsins, have been shown to change their properties with aging brain a long time ago, although their function was not really understood. The first biochemical and clinical studies were followed by a major expansion in the last 20 years with the development of animal disease models and new approaches leading to a major advancement of understanding of the role of physiological and degenerative processes in the brain at the molecular level. This includes the understanding of the major role of autophagy and the cathepsins in a number of diseases, including its critical role in the neuronal ceroid lipofuscinosis. Similarly, cathepsins and some other lysosomal proteases were shown to have important roles in processing and/or degradation of several important neuronal proteins, thereby having either neuroprotective or harmful roles. In this review, we discuss lysosomal cathepsins and their regulation with the focus on cysteine cathepsins and their endogenous inhibitors, as well as their role in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia.
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; J. Stefan International Postgraduate School, Jamova 39, Sl-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Jamova 39, Sl-1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, Sl-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Sl-1000 Ljubljana, Slovenia.
| |
Collapse
|
26
|
Kędzior M, Seredyński R, Gutowicz J. Microbial inhibitors of cysteine proteases. Med Microbiol Immunol 2016; 205:275-96. [PMID: 27048482 DOI: 10.1007/s00430-016-0454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Rafał Seredyński
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Gutowicz
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
27
|
Méndez-Gómez M, Castro-Mercado E, Alexandre G, García-Pineda E. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. PROTOPLASMA 2016; 253:477-486. [PMID: 25952083 DOI: 10.1007/s00709-015-0826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Azospirillum is a plant growth-promoting rhizobacteria (PGPR) able to enhance the growth of wheat. The aim of this study was to test the effect of Azospirillum brasilense cell wall components on superoxide (O2·(-)) production in wheat roots and the effect of oxidative stress on A. brasilense viability. We found that inoculation with A. brasilense reduced O2·(-) levels by approx. 30 % in wheat roots. Inoculation of wheat with papain-treated A. brasilense, a Cys protease, notably increased O2·(-) production in all root tissues, as was observed by the nitro blue tetrazolium (NBT) reduction. However, a 24-h treatment with rhizobacteria lipopolysaccharides (50 and 100 μg/mL) alone did not affect the pattern of O2·(-) production. Analysis of the effect of plant cell wall components on A. brasilense oxidative enzyme activity showed no changes in catalase activity but a decrease in superoxide dismutase activity in response to polygalacturonic acid treatment. Furthermore, A. brasilense growth was only affected by high concentrations of H2O2 or paraquat, but not by sodium nitroprusside. Our results suggest that rhizobacterial cell wall components play an important role in controlling plant cell responses and developing tolerance of A. brasilense to oxidative stress produced by the plant.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Gladys Alexandre
- Department of Biology and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico.
| |
Collapse
|
28
|
Cordara G, van Eerde A, Grahn EM, Winter HC, Goldstein IJ, Krengel U. An Unusual Member of the Papain Superfamily: Mapping the Catalytic Cleft of the Marasmius oreades agglutinin (MOA) with a Caspase Inhibitor. PLoS One 2016; 11:e0149407. [PMID: 26901797 PMCID: PMC4764322 DOI: 10.1371/journal.pone.0149407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Papain-like cysteine proteases (PLCPs) constitute the largest group of thiol-based protein degrading enzymes and are characterized by a highly conserved fold. They are found in bacteria, viruses, plants and animals and involved in a number of physiological and pathological processes, parasitic infections and host defense, making them interesting targets for drug design. The Marasmius oreades agglutinin (MOA) is a blood group B-specific fungal chimerolectin with calcium-dependent proteolytic activity. The proteolytic domain of MOA presents a unique structural arrangement, yet mimicking the main structural elements in known PLCPs. Here we present the X-ray crystal structure of MOA in complex with Z-VAD-fmk, an irreversible caspase inhibitor known to cross-react with PLCPs. The structural data allow modeling of the substrate binding geometry and mapping of the fundamental enzyme-substrate interactions. The new information consolidates MOA as a new, yet strongly atypical member of the papain superfamily. The reported complex is the first published structure of a PLCP in complex with the well characterized caspase inhibitor Z-VAD-fmk.
Collapse
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | - Elin M. Grahn
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Harry C. Winter
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Irwin J. Goldstein
- Department of Biological Chemistry, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Ageitos JM, Yazawa K, Tateishi A, Tsuchiya K, Numata K. The Benzyl Ester Group of Amino Acid Monomers Enhances Substrate Affinity and Broadens the Substrate Specificity of the Enzyme Catalyst in Chemoenzymatic Copolymerization. Biomacromolecules 2015; 17:314-23. [PMID: 26620763 DOI: 10.1021/acs.biomac.5b01430] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemoenzymatic polymerization of amino acid monomers by proteases involves a two-step reaction: the formation of a covalent acyl-intermediate complex between the protease and the carboxyl ester group of the monomer and the subsequent deacylation of the complex by aminolysis to form a peptide bond. Although the initiation with the ester group of the monomer is an important step, the influence of the ester group on the polymerization has not been studied in detail. Herein, we studied the effect of the ester groups (methyl, ethyl, benzyl, and tert-butyl esters) of alanine and glycine on the synthesis of peptides using papain as the catalyst. Alanine and glycine were selected as monomers because of their substantially different affinities toward papain. The efficiency of the polymerization of alanine and glycine benzyl esters was much greater than that of the other esters. The benzyl ester group therefore allowed papain to equally polymerize alanine and glycine, even though the affinity of alanine toward papain is substantially higher. The characterization of the copolymers of alanine and glycine in terms of the secondary structure and thermal properties revealed that the thermal stability of the peptides depends on the amino acid composition and resultant secondary structure. The current results indicate that the nature of the ester group drastically affects the polymerization efficiency and broadens the substrate specificity of the protease.
Collapse
Affiliation(s)
- Jose Manuel Ageitos
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kenjiro Yazawa
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Ayaka Tateishi
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
30
|
Hernández Alvarez L, Naranjo Feliciano D, Hernández González JE, de Oliveira Soares R, Barreto Gomes DE, Pascutti PG. Insights into the Interactions of Fasciola hepatica Cathepsin L3 with a Substrate and Potential Novel Inhibitors through In Silico Approaches. PLoS Negl Trop Dis 2015; 9:e0003759. [PMID: 25978322 PMCID: PMC4433193 DOI: 10.1371/journal.pntd.0003759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background Fasciola hepatica is the causative agent of fascioliasis, a disease affecting grazing animals, causing economic losses in global agriculture and currently being an important human zoonosis. Overuse of chemotherapeutics against fascioliasis has increased the populations of drug resistant parasites. F. hepatica cathepsin L3 is a protease that plays important roles during the life cycle of fluke. Due to its particular collagenolytic activity it is considered an attractive target against the infective phase of F. hepatica. Methodology/Principal Findings Starting with a three dimensional model of FhCL3 we performed a structure-based design of novel inhibitors through a computational study that combined virtual screening, molecular dynamics simulations, and binding free energy (ΔGbind) calculations. Virtual screening was carried out by docking inhibitors obtained from the MYBRIDGE-HitFinder database inside FhCL3 and human cathepsin L substrate-binding sites. On the basis of dock-scores, five compounds were predicted as selective inhibitors of FhCL3. Molecular dynamic simulations were performed and, subsequently, an end-point method was employed to predict ΔGbind values. Two compounds with the best ΔGbind values (-10.68 kcal/mol and -7.16 kcal/mol), comparable to that of the positive control (-10.55 kcal/mol), were identified. A similar approach was followed to structurally and energetically characterize the interface of FhCL3 in complex with a peptidic substrate. Finally, through pair-wise and per-residue free energy decomposition we identified residues that are critical for the substrate/ligand binding and for the enzyme specificity. Conclusions/Significance The present study is the first computer-aided drug design approach against F. hepatica cathepsins. Here we predict the principal determinants of binding of FhCL3 in complex with a natural substrate by detailed energetic characterization of protease interaction surface. We also propose novel compounds as FhCL3 inhibitors. Overall, these results will foster the future rational design of new inhibitors against FhCL3, as well as other F. hepatica cathepsins. Fascioliosis is considered an emerging disease in humans, causing important losses in global agriculture through the infection of livestock animals. The outcome of resistant parasites has increased the search for new drugs which may contribute to disease control. In recent decades, Fasciola cathepsins (FhCs) have been defined as the principal virulence factors of this parasite. Despite being in the same protein family, they have different specificities and, thus, distinct roles throughout the fluke life cycle. Differences in specificity have been attributed to a few variations in the sequence of key FhCs subsites. Currently, the structure-based drug design of inhibitors against Fasciola cathepsin Ls (FhCLs) with unknown structures is possible due to the availability of the three-dimensional structure of FhCL1. Our detailed structural analysis of the major infective juvenile enzyme (FhCL3) identifies the molecular determinants for protein binding. Also, novel potential inhibitors against FhCL3 are proposed, which might reduce host invasion and penetration processes. These compounds are predicted to interact with the binding site of the enzyme, therefore they could prevent substrate processing by competitive inhibition. The structure-based drug design strategy described here will be useful for the development of new potent and selective inhibitors against other FhCs.
Collapse
Affiliation(s)
- Lilian Hernández Alvarez
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | - Dany Naranjo Feliciano
- Departamento de Biología Molecular, Centro Nacional de Sanidad Agropecuaria de Cuba (CENSA), San José de las Lajas, Mayabeque, Cuba
| | | | - Rosemberg de Oliveira Soares
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Diego Enry Barreto Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro, Brazil
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
31
|
Probing of primed and unprimed sites of calpains: Design, synthesis and evaluation of epoxysuccinyl-peptide derivatives as selective inhibitors. Eur J Med Chem 2014; 82:274-80. [DOI: 10.1016/j.ejmech.2014.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/20/2022]
|
32
|
Song J, Jones LM, Chavarria GE, Charlton-Sevcik AK, Jantz A, Johansen A, Bayeh L, Soeung V, Snyder LK, Lade SD, Chaplin DJ, Trawick ML, Pinney KG. Small-molecule inhibitors of cathepsin L incorporating functionalized ring-fused molecular frameworks. Bioorg Med Chem Lett 2013; 23:2801-7. [DOI: 10.1016/j.bmcl.2012.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 12/29/2022]
|
33
|
Macalood JS, Vicente HJ, Boniao RD, Gorospe JG, Roa EC. Chemical Analysis of <i>Carica papaya</i> L. Crude Latex. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.410240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Cysteine cathepsins: from structure, function and regulation to new frontiers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:68-88. [PMID: 22024571 PMCID: PMC7105208 DOI: 10.1016/j.bbapap.2011.10.002] [Citation(s) in RCA: 926] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 02/06/2023]
Abstract
It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate “warhead”. The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
|
35
|
Yoshii H, Kamiyama H, Goto K, Oishi K, Katunuma N, Tanaka Y, Hayashi H, Matsuyama T, Sato H, Yamamoto N, Kubo Y. CD4-independent human immunodeficiency virus infection involves participation of endocytosis and cathepsin B. PLoS One 2011; 6:e19352. [PMID: 21541353 PMCID: PMC3081840 DOI: 10.1371/journal.pone.0019352] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 04/04/2011] [Indexed: 01/03/2023] Open
Abstract
During a comparison of the infectivity of mNDK, a CD4-independent human immunodeficiency virus type 1 (HIV-1) strain, to various cell lines, we found that HeLa cells were much less susceptible than 293T and TE671 cells. Hybridoma cells between HeLa and 293T cells were as susceptible as 293T cells, suggesting that cellular factors enhance the mNDK infection in 293T cells. By screening a cDNA expression library in HeLa cells, cystatin C was isolated as an enhancer of the mNDK infection. Because cathepsin B protease, a natural ligand of cystatin C, was upregulated in HeLa cells, we speculated that the high levels of cathepsin B activities were inhibitory to the CD4-independent infection and that cystatin C enhanced the infection by impairing the excessive cathepsin B activity. Consistent with this idea, pretreatment of HeLa cells with 125 µM of CA-074Me, a cathepsin B inhibitor, resulted in an 8-fold enhancement of the mNDK infectivity. Because cathepsin B is activated by low pH in acidic endosomes, we further examined the potential roles of endosomes in the CD4-independent infection. Suppression of endosome acidification or endocytosis by inhibitors or by an Eps15 dominant negative mutant reduced the infectivity of mNDK in which CD4-dependent infections were not significantly impaired. Taken together, these results suggest that endocytosis, endosomal acidification, and cathepsin B activity are involved in the CD4-independent entry of HIV-1.
Collapse
Affiliation(s)
- Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruka Kamiyama
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Kensuke Goto
- Department of Eco-epidemiology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kazunori Oishi
- Department of Preventive and Therapeutic Research for Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hideki Hayashi
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironori Sato
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Yamamoto
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
36
|
Cordara G, Egge-Jacobsen W, Johansen HT, Winter HC, Goldstein IJ, Sandvig K, Krengel U. Marasmius oreades agglutinin (MOA) is a chimerolectin with proteolytic activity. Biochem Biophys Res Commun 2011; 408:405-10. [PMID: 21513701 DOI: 10.1016/j.bbrc.2011.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The Marasmius oreades mushroom lectin (MOA) is well known for its exquisite binding specificity for blood group B antigens. In addition to its N-terminal carbohydrate-binding domain, MOA possesses a C-terminal domain with unknown function, which structurally resembles hydrolytic enzymes. Here we show that MOA indeed has catalytic activity. It is a calcium-dependent cysteine protease resembling papain-like cysteine proteases, with Cys215 being the catalytic nucleophile. The possible importance of MOA's proteolytic activity for mushroom defense against pathogens is discussed.
Collapse
Affiliation(s)
- Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
37
|
Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun 2011; 2:197. [PMID: 21326229 PMCID: PMC3105313 DOI: 10.1038/ncomms1204] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 01/20/2011] [Indexed: 11/23/2022] Open
Abstract
Proteolysis of eukaryotic histone tails has emerged as an important factor in the modulation of cell-cycle progression and cellular differentiation. The recruitment of lysosomal cathepsin L to the nucleus where it mediates proteolysis of the mouse histone H3 tail has been described recently. Here, we report the three-dimensional crystal structures of a mature, inactive mutant of human cathepsin L alone and in complex with a peptide derived from histone H3. Canonical substrate–cathepsin L interactions are observed in the complex between the protease and the histone H3 peptide. Systematic analysis of the impact of posttranslational modifications at histone H3 on substrate selectivity suggests cathepsin L to be highly accommodating of all modified peptides. This is the first report of cathepsin L–histone H3 interaction and the first structural description of cathepsin L in complex with a substrate. Cathepsin L mediates proteolysis of the histone H3 tail and is a factor in cell-cycle progression and cellular differentiation. Adams-Cioaba et al. report crystal structures of an inactive mutant of the protease complexed with substrate peptides, and find that it is highly accommodating of modified substrates.
Collapse
|
38
|
Kido H, Ishidoh K. Nobuhiko Katunuma: an outstanding scientist in the field of proteolysis and warm-hearted 'Kendo Fighter' biochemist. J Biochem 2011; 148:527-31. [PMID: 20980477 DOI: 10.1093/jb/mvq109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Professor Nobuhiko Katunuma is well known for his outstanding contribution to the understanding of proteolysis in general and cysteine proteinases and their inhibitors in mammals. In fact, he is a world pioneer in the field. In 1963, he started his highly successful scientific career as a Professor at the Institute for Enzyme Research, the University of Tokushima. During the initial 30 years of his career, he was interested in vitamin B6 metabolism and discovered the acceleration of turnover rates of pyridoxal enzyme in apoprotein formation. After this period, his interest expanded to lysosomal cystein proteinases and their endogenous inhibitors. After determining the crystal structure of human cathepsin B, he generated a series of chemically synthesized specific inhibitors of cathepsins. These inhibitors are currently used throughout the world and some of them have been applied therapeutically in various diseases. During his career and even at present, Professor Katunuma has been studying Biochemistry in Medicine and also practicing to become a 'Kendo sword fencing Fighter'.
Collapse
Affiliation(s)
- Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramotocho 3-18-15, Tokushima 770-8503, Japan.
| | | |
Collapse
|
39
|
Katunuma N. Structure-based development of specific inhibitors for individual cathepsins and their medical applications. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:29-39. [PMID: 21321479 PMCID: PMC3043741 DOI: 10.2183/pjab.87.29] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Specific inhibitors for individual cathepsins have been developed based on their tertiary structures of X-ray crystallography. Cathepsin B-specific inhibitors, CA-074 and CA-030, and cathepsin L specific inhibitors, CLIK-148 and CLIK-195, were designed as the epoxysuccinate derivatives. Cathepsin S inhibitor, CLIK-060, and cathepsin K inhibitor, CLIK-166, were synthesized. These inhibitors can use in vitro and also in vivo, and show no toxicity for experimental animals by the amounts used as the cathepsin inhibitor. Various cathepsins are used in the processing of antigenic proteins. The CLIK-060 treatment to the autoimmune disease, Sjögren model mice, led to strongly suppress the expression of the pathological symptoms. Cathepsins L or K participates to the degradation of bone collagen. The CLIK-148 protects osteoporosis in animals and also protects the bone metastasis of cancer cells. Cathepsin L also enhances insulin-induced glucose uptake into 3T3-L1 adipocytes, suggesting cathepsin L plays the roles in adipogenesis and glucose tolerance in type 2 diabetes.
Collapse
Affiliation(s)
- Nobuhiko Katunuma
- Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
40
|
Synthesis, Characterization and Luminescence Properties of Dipyridin-2-ylamine Ligands and Their Bis(2,2′-bipyridyl)ruthenium(II) Complexes and Labelling Studies of Papain fromCarica papaya. Eur J Inorg Chem 2010. [DOI: 10.1002/ejic.201000585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Yamada A, Ishimaru N, Arakaki R, Katunuma N, Hayashi Y. Cathepsin L inhibition prevents murine autoimmune diabetes via suppression of CD8(+) T cell activity. PLoS One 2010; 5:e12894. [PMID: 20877570 PMCID: PMC2943924 DOI: 10.1371/journal.pone.0012894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 08/31/2010] [Indexed: 01/07/2023] Open
Abstract
Background Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet β cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8+ T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8+ T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8+ T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8+ T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strategy for autoimmune diabetes.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Nobuhiko Katunuma
- Institute of Health Science, Tokushima Bunri University, Tokushima, Japan
| | - Yoshio Hayashi
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
- * E-mail:
| |
Collapse
|
42
|
Abstract
The MEROPS website (http://merops.sanger.ac.uk) includes information on peptidase inhibitors as well as on peptidases and their substrates. Displays have been put in place to link peptidases and inhibitors together. The classification of protein peptidase inhibitors is continually being revised, and currently inhibitors are grouped into 67 families based on comparisons of protein sequences. These families can be further grouped into 38 clans based on comparisons of tertiary structure. Small molecule inhibitors are important reagents for peptidase characterization and, with the increasing importance of peptidases as drug targets, they are also important to the pharmaceutical industry. Small molecule inhibitors are now included in MEROPS and over 160 summaries have been written.
Collapse
Affiliation(s)
- Neil D Rawlings
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| |
Collapse
|
43
|
Fortenberry YM, Brandal S, Bialas RC, Church FC. Protein C inhibitor regulates both cathepsin L activity and cell-mediated tumor cell migration. Biochim Biophys Acta Gen Subj 2010; 1800:580-90. [PMID: 20230872 DOI: 10.1016/j.bbagen.2010.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Protein C inhibitor (PCI) is a plasma serine protease inhibitor (serpin) that regulates several serine proteases in coagulation including thrombin and activated protein C. However, the physiological role of PCI remains under investigation. The cysteine protease, cathepsin L, has a role in many physiological processes including cardiovascular diseases, blood vessel remodeling, and cancer. METHODS AND RESULTS We found that PCI inhibits cathepsin L with an inhibition rate (k(2)) of 3.0x10(5)M(-)(1)s(-)(1). Whereas, the PCI P1 mutant (R354A) inhibits cathepsin L at rates similar to wild-type PCI, mutating the P2 residue results in a slight decrease in the rate of inhibition. We then assessed the effect of PCI and cathepsin L on the migration of human breast cancer (MDA-MB-231) cells. Cathepsin L was expressed in both the cell lysates and conditioned media of MDA-MB-231 cells. Wound-induced and transwell migration of MDA-MB-231 cells was inhibited by exogenously administered wtPCI and PCI P1 but not PCI P14 mutant. In addition, migration of MDA-MB-231 cells expressing wtPCI was significantly decreased compared to non-expressing MDA-MB-231 cells or MDA-MB-231 cells expressing the PCI P14 mutant. Downregulation of cathepsin L by either a specific cathepsin L inhibitor or siRNA technology also resulted in a decrease in the migration of MDA-MB-231 cells. CONCLUSIONS Overall, our data show that PCI regulates tumor cell migration partly by inhibiting cathepsin L. GENERAL SIGNIFICANCE Consequently, inhibiting cathepsin L by serpins like PCI may be a new pathway of regulating hemostasis, cardiovascular and metastatic diseases.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Department of Pediatric-Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
44
|
Jevnikar Z, Obermajer N, Kos J. Cysteine protease-mediated cytoskeleton interactions with LFA-1 promote T-cell morphological changes. ACTA ACUST UNITED AC 2010; 66:1030-40. [PMID: 19670215 DOI: 10.1002/cm.20413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T cells migrate through restrictive barriers in a protease-independent, amoeboid fashion that is characterized by morphological cell polarization. The interaction of cysteine-dependent carboxypeptidase cathepsin X with beta(2) integrin LFA-1 (lymphocyte function associated antigen 1) induces T-cell morphological changes, displaying into a 3D extracellular matrix a cytoplasmic projection termed a uropod. In the present study we show that inhibition of cathepsin X and a cysteine-dependent endopeptidase, cathepsin L, markedly inhibits T-cell actin polymerization, shape polarization, and chemotaxis. We propose that cathepsin L promotes T-cell migration associated processes by activating procathepsin X in the endolysosomal vesicles near the cell membrane and at the peak of the uropod, where both proteases were colocalized. We show that active cathepsin X modifies the beta(2) cytoplasmic tail of LFA-1 in the uropod, promoting its high affinity conformation. We suggest that LFA-1 cleavage contributes to the conformational change in the cytoplasmic tail, promoting the binding of the cytoskeletal protein talin. This interaction is restricted to the uropod and results in the stabilization of this region, promoting LFA-1-mediated cell uropod elongation.
Collapse
Affiliation(s)
- Zala Jevnikar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
45
|
Yoshii H, Kamiyama H, Minematsu K, Goto K, Mizota T, Oishi K, Katunuma N, Yamamoto N, Kubo Y. Cathepsin L is required for ecotropic murine leukemia virus infection in NIH3T3 cells. Virology 2009; 394:227-34. [PMID: 19781728 PMCID: PMC7111982 DOI: 10.1016/j.virol.2009.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/27/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
Abstract
Recently it has been reported that a cathepsin B inhibitor, CA-074Me, attenuates ecotropic murine leukemia virus (Eco-MLV) infection in NIH3T3 cells, suggesting that cathepsin B is required for the Eco-MLV infection. However, cathepsin B activity was negative or extremely low in NIH3T3 cells. How did CA-074Me attenuate the Eco-MLV infection? The CA-074Me treatment of NIH3T3 cells inhibited cathepsin L activity, and a cathepsin L specific inhibitor, CLIK148, attenuated the Eco-MLV vector infection. These results indicate that the suppression of cathepsin L activity by CA-074Me induces the inhibition of Eco-MLV infection, suggesting that cathepsin L is required for the Eco-MLV infection in NIH3T3 cells. The CA-074Me treatment inhibited the Eco-MLV infection in human cells expressing the exogenous mouse ecotropic receptor and endogenous cathepsins B and L, but the CLIK148 treatment did not, showing that only the cathepsin L suppression by CLIK148 is not enough to prevent the Eco-MLV infection in cells expressing both of cathepsins B and L, and CA-074Me inhibits the Eco-MLV infection by suppressing both of cathepsins B and L. These results suggest that either cathepsin B or L is sufficient for the Eco-MLV infection.
Collapse
Affiliation(s)
- Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Takahashi K, Ueno T, Tanida I, Minematsu-Ikeguchi N, Murata M, Kominami E. Characterization of CAA0225, a Novel Inhibitor Specific for Cathepsin L, as a Probe for Autophagic Proteolysis. Biol Pharm Bull 2009; 32:475-9. [DOI: 10.1248/bpb.32.475] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Katsuyuki Takahashi
- Clinical Laboratory Department, Nihon University School of Medicine
- Department of Biochemistry, Juntendo University School of Medicine
| | - Takashi Ueno
- Department of Biochemistry, Juntendo University School of Medicine
| | - Isei Tanida
- Department of Biochemistry and Cell Biology, National Institute of Infectious Disease
| | | | | | - Eiki Kominami
- Department of Biochemistry, Juntendo University School of Medicine
| |
Collapse
|
47
|
Karver MR, Barrios AM. Identifying and characterizing the biological targets of metallotherapeutics: Two approaches using Au(I)–protein interactions as model systems. Anal Biochem 2008; 382:63-5. [DOI: 10.1016/j.ab.2008.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/11/2008] [Accepted: 07/19/2008] [Indexed: 10/21/2022]
|
48
|
Mladenovic M, Ansorg K, Fink RF, Thiel W, Schirmeister T, Engels B. Atomistic insights into the inhibition of cysteine proteases: first QM/MM calculations clarifying the stereoselectivity of epoxide-based inhibitors. J Phys Chem B 2008; 112:11798-808. [PMID: 18712902 DOI: 10.1021/jp803895f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to their important role in many diseases, cysteine proteases represent new promising drug targets. An important class of cysteine-protease inhibitors is derived from the naturally occurring compound E64, possessing an epoxysuccinyl moiety as warhead. Experimental studies show stereoselectivity concerning the inhibition potency, e.g., a trans-configured epoxide ring is essential for inhibition, and furthermore, in most cases, the ( S, S)-configured inhibitors have a higher inhibition potency than their ( R, R)-counterparts. However, the underlying effects are not fully understood. In this work, such effects are investigated by classical molecular dynamics simulations and combined quantum mechanics/molecular modeling (QM/MM) calculations for the E64c-cathepsin B complex. Our computations reveal that the hydrogen bonding network between the enzyme and the E64c (or its derivatives) determines the stereoselectivity of the subsequent ring opening reaction by governing the distance between the attacking thiolate and the attacked C2 atom of the epoxide ring. For the ( S, S)-configuration, a strong network can be realized which enables a close contact between the reacting centers, so that the irreversible step becomes very efficient. The ( R, S)-configuration ( cis-configuration) can only form networks in which the two reacting centers are so far away from each other that the irreversible step can hardly happen. The ( R, R)-configuration is in between, less optimal than the ( S, S)-configuration but much better than the ( R, S)-configuration. Exceptions where the ( R, R)-configurations shows higher potency than the ( S, S) ones are also explained.
Collapse
Affiliation(s)
- Milena Mladenovic
- Institut fur Organische Chemie, Universitat Wurzburg, Am Hubland, Wurzburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Beavers MP, Myers MC, Shah PP, Purvis JE, Diamond SL, Cooperman BS, Huryn DM, Smith AB. Molecular docking of cathepsin L inhibitors in the binding site of papain. J Chem Inf Model 2008; 48:1464-72. [PMID: 18598021 DOI: 10.1021/ci800085c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The papain/CLIK-148 coordinate system was employed as a model to study the interactions of a nonpeptide thiocarbazate inhibitor of cathepsin L ( 1). This small molecule inhibitor, a thiol ester containing a diacyl hydrazine functionality and one stereogenic center, was most active as the S-enantiomer, with an IC 50 of 56 nM; the R-enantiomer ( 2) displayed only weak activity (33 microM). Correspondingly, molecular docking studies with Extra Precision Glide revealed a correlation between score and biological activity for the two thiocarbazate enantiomers when a structural water was preserved. The molecular interactions between 1 and papain were very similar to the interactions observed for CLIK-148 ( 3a and 3b) with papain, especially with regard to the hydrogen-bonding and lipophilic interactions of the ligands with conserved residues in the catalytic binding site. Subsequent docking of virtual compounds in the binding site led to the identification of a more potent inhibitor ( 5), with an IC 50 of 7.0 nM. These docking studies revealed that favorable energy scores and correspondingly favorable biological activities could be realized when the virtual compound design included occupation of the S2, S3, and S1' subsites by hydrophobic and aromatic functionalities of the ligand, and at least three hydrogen bonding contacts between the ligand and the conserved binding site residues of the protein.
Collapse
Affiliation(s)
- Mary Pat Beavers
- Penn Center for Molecular Discovery, Institute for Medicine and Engineering, and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Shah PP, Myers MC, Beavers MP, Purvis JE, Jing H, Grieser HJ, Sharlow ER, Napper AD, Huryn DM, Cooperman BS, Smith AB, Diamond SL. Kinetic characterization and molecular docking of a novel, potent, and selective slow-binding inhibitor of human cathepsin L. Mol Pharmacol 2008; 74:34-41. [PMID: 18403718 PMCID: PMC2575030 DOI: 10.1124/mol.108.046219] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel small molecule thiocarbazate (PubChem SID 26681509), a potent inhibitor of human cathepsin L (EC 3.4.22.15) with an IC(50) of 56 nM, was developed after a 57,821-compound screen of the National Institutes of Health Molecular Libraries Small Molecule Repository. After a 4-h preincubation with cathepsin L, this compound became even more potent, demonstrating an IC(50) of 1.0 nM. The thiocarbazate was determined to be a slow-binding and slowly reversible competitive inhibitor. Through a transient kinetic analysis for single-step reversibility, inhibition rate constants were k(on) = 24,000 M(-1)s(-1) and k(off) = 2.2 x 10(-5) s(-1) (K(i) = 0.89 nM). Molecular docking studies were undertaken using the experimentally derived X-ray crystal structure of papain/CLIK-148 (1cvz. pdb). These studies revealed critical hydrogen bonding patterns of the thiocarbazate with key active site residues in papain. The thiocarbazate displayed 7- to 151-fold greater selectivity toward cathepsin L than papain and cathepsins B, K, V, and S with no activity against cathepsin G. The inhibitor demonstrated a lack of toxicity in human aortic endothelial cells and zebrafish. In addition, the thiocarbazate inhibited in vitro propagation of malaria parasite Plasmodium falciparum with an IC(50) of 15.4 microM and inhibited Leishmania major with an IC(50) of 12.5 microM.
Collapse
Affiliation(s)
- Parag P Shah
- Penn Center for Molecular Discovery, University of Pennsylvania, 1024 Vagelos Laboratories, Philadelphia, PA 19104-6383, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|