1
|
Latina V, De Introna M, Malerba F, Florio R, Balzamino BO, Di Natale G, Sciacca MFM, Pappalardo G, Micera A, Pignataro A, Calissano P, Amadoro G. Acute targeting of N-terminal tau protein has long-lasting beneficial effects in Tg2576 APP/Aβ mouse model by reducing cognitive impairment, cerebral Aβ-amyloidosis, synaptic remodeling and microgliosis later in life. Acta Neuropathol Commun 2025; 13:121. [PMID: 40442822 PMCID: PMC12123992 DOI: 10.1186/s40478-025-02022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Even though the number of patients suffering from Alzheimer's Disease (AD) is rapidly growing worldwide, only a few symptomatic treatments have been approved for clinical use, pointing out the urgent need for more effective disease-modifying therapies that actually alter the progression of this neurodegenerative disorder which is characterized by co-occurence of both Amyloid beta (Aβ) and tau neuropathologies. Preclinical and clinical evidence suggests that a link between Aβ and tau drives the entire continuum of AD pathobiology. 12A12 is a monoclonal antibody (mAb) which offers neuroprotection into two transgenic lines of AD, including Tg2576 that overexpresses Swedish mutation (KM670/671NL) of Amyloid Precursor Protein (APP, isoform 695) and 3xTg (APP Swedish, MAPT P301L, and PSEN1 M146V), by targeting the 20-22kDa N-terminal tau fragments (NH2htau). In particular, acute (over 14 days with 4 doses), intravenous injection of 12A12mAb leads to significant improvement of cognitive, biochemical and histopathological AD signs in symptomatic 6-month-old Tg2576, a well-established transgenic mouse model that mimics the human amyloidosis with an age-dependent Aβ accumulation/aggregation and plaque deposition. Here, we report that Tg2576 mice, immunized with 12A12mAb at 6 months of age and returned to their home cage for additional 3 months, exhibit preserved spatial memory despite the anticipated interruption of antibody administration (discontinuous treatment). This enduring beneficial effect on memory deficit (up to 90 days after the last injection) is accompanied by normalization in the synaptic imbalance and microgliosis along with decrease of the most toxic A11-positive prefibrillar oligomers and inverse increase in 4kDa monomeric form(s) of Aβ 1-42. These findings reveal that: (i) soluble, pathogenetic tau specie(s) located at the N-terminal domain of protein early synergizes with Aβ in driving the progression of AD neuropathology; (ii) transient immunoneutralization of the NH2htau following short-term treatment with 12A12mAb exerts preventive, long-lasting neuroprotective effects, at least in part by interfering at "pre-plaque" stage with the progressive deposition of insoluble, fibrillar Aβ via a shift of its aggregation pathway into its less harmful, unaggregated monomeric forms. Taken together, these findings represent a strong rationale for the advancement of 12A12mAb to clinical stage aiming at preventing the Aβ-dependent neurodegeneration by lowering the cerebral levels of NH2htau in humans suffering from chronic, slow-progressing AD.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Margherita De Introna
- Centro Di Ricerca Europeo Sul Cervello (CERC), IRCCS Santa Lucia Foundation (FSL), Via Fosso del Fiorano 43-44, 00143, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
- Institute of Nanotechnology Campus Ecotekne- National Research Council (CNR), Via Monteroni, 73100, Lecce, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184, Rome, Italy
| | - Giuseppe Di Natale
- Institute of Crystallography (IC)-National Research Council (CNR), Via Paolo Gaifami 18, 95126, Catania, Italy
| | | | - Giuseppe Pappalardo
- Institute of Crystallography (IC)-National Research Council (CNR), Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184, Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
- Centro Di Ricerca Europeo Sul Cervello (CERC), IRCCS Santa Lucia Foundation (FSL), Via Fosso del Fiorano 43-44, 00143, Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy.
| |
Collapse
|
2
|
Chen J, Huang J, Han T, Kojima N. Chronic Stress Modulates Microglial Activation Dynamics, Shaping Priming Responses to Subsequent Stress. Brain Sci 2025; 15:534. [PMID: 40426704 PMCID: PMC12110633 DOI: 10.3390/brainsci15050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
(1) Background: The high recurrence rate and individual differences in stress susceptibility contribute to the diverse symptoms of depression, making full recovery and relapse prevention challenging. Emerging evidence suggests that fluctuations in microglial activity are closely linked to depression progression under chronic stress exposure. Changes in the brain microenvironment can elicit microglial priming, enhancing their sensitivity to external stimuli. However, few studies have longitudinally examined how microglial characteristics evolve throughout depression progression. (2) Methods: In this study, we investigated microglial morphological changes and their responses to acute stress at different stages of depression using the chronic unpredictable mild stress (CUMS) paradigm in mice. (3) Results: Our findings reveal that in the dentate gyrus, microglial activation indices, including cell number and morphology, exhibit distinct dynamic patterns depending on CUMS exposure duration. Notably, after 2 and 4 weeks of CUMS exposure followed by acute stress re-exposure, microglia display opposing response patterns. In contrast, after 6 weeks of CUMS exposure, primed microglia exhibit dysfunction, failing to respond to acute stress. Notably, depressive behaviors are not prominent after 2 weeks of CUMS exposure but become more pronounced after 4 and 6 weeks of exposure. Additionally, regardless of CUMS duration, body weight demonstrates an intrinsic capacity to normalize after stress cessation. (4) Conclusions: These findings suggest that microglial priming responses are state-dependent, either enhancing or suppressing secondary stimulus responses, or exceeding physiological limits, thereby preventing further activation. This study provides novel insights into the role of microglial priming in stress vulnerability and its contribution to depression progression.
Collapse
Affiliation(s)
- Junyu Chen
- Laboratory of Molecular Neurobiology, Faculty of Life Sciences, Toyo University, Saitama 351-8510, Japan; (J.C.); (J.H.)
- Super-Network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Jiacheng Huang
- Laboratory of Molecular Neurobiology, Faculty of Life Sciences, Toyo University, Saitama 351-8510, Japan; (J.C.); (J.H.)
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Taolei Han
- Laboratory of Molecular Neurobiology, Faculty of Life Sciences, Toyo University, Saitama 351-8510, Japan; (J.C.); (J.H.)
| | - Nobuhiko Kojima
- Laboratory of Molecular Neurobiology, Faculty of Life Sciences, Toyo University, Saitama 351-8510, Japan; (J.C.); (J.H.)
- Research Center for Biomedical Engineering, Toyo University, Saitama 351-8510, Japan
| |
Collapse
|
3
|
Guan Y, Gao F, Chen B, Yu T, Meng L, Chen Q, Xiao X. Soluble TREM2 ameliorates pathological phenotypes in ischemic stroke models via modulating neuronal and microglial functions. Exp Brain Res 2025; 243:149. [PMID: 40379866 DOI: 10.1007/s00221-025-07094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/25/2025] [Indexed: 05/19/2025]
Abstract
Although the neuroprotective effects of triggering receptor expressed on myeloid cell 2 (TREM2) upregulation after ischemic stroke has been demonstrated, the level change and effect of soluble TREM2 (sTREM2) derived from proteolytic cleavage of the TREM2 extracellular domain in ischemic stroke remain unknown. In our study, the level and function of sTREM2 were detected in neuron-microglia co-cultures subjected to oxygen glucose deprivation (OGD) and in the ischemic striatum of C57BL/6 J mice in a transient middle cerebral artery occlusion (tMCAO) model. sTREM2's effect on neuronal nitric oxide synthase (nNOS)-postsynaptic density protein-95 (PSD-95) interaction was determined by co-immunoprecipitation. The microglial-activated morphology in the striatum was identified by immunohistochemistry. Quantitative real-time polymerase chain reactionwas used to detect the transcriptional levels of TREM2, shorter variant TREM2, insulin-like growth factor 1, interleukin (IL)-4, and IL-13. Levels of sTREM2, generated through the cleavage of full-length TREM2 at the His157-Ser158 peptide bond, declined after OGD and tMCAO. sTREM2 reduced neuronal death after OGD and alleviated brain infarction and neurological deficits after tMCAO by disrupting the nNOS-PSD-95 interaction, promoting microglial activation, and increasing the expression of some cytokines associated with microglial polarization towards an anti-inflammatory phenotype. To the best of our knowledge, this is the first study to suggest that sTREM2 protects against transient cerebral ischemia.
Collapse
Affiliation(s)
- Yanfei Guan
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China.
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| | - Feng Gao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China
| | - Bo Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China
| | - Tiansheng Yu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Linxin Meng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Qingzhuang Chen
- Department of Clinical Pharmacy, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, 510800, China
| | - Xiaodan Xiao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China.
- Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Marongiu R, Platholi J, Park L, Yu F, Sommer G, Woods C, Milner TA, Glass MJ. Promotion of neuroinflammation in select hippocampal regions in a mouse model of perimenopausal Alzheimer's disease. Front Mol Biosci 2025; 12:1597130. [PMID: 40438709 PMCID: PMC12116374 DOI: 10.3389/fmolb.2025.1597130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Alzheimer's disease, the most common form of dementia, is characterized by age-dependent amyloid beta (Ab) aggregation and accumulation, neuroinflammation, and cognitive deficits. Significantly, there are prominent sex differences in the risk, onset, progression, and severity of AD, as well as response to therapies, with disease burden disproportionately affecting women. Although menopause onset (i.e., perimenopause) may be a critical transition stage for AD susceptibility in women, the role of early ovarian decline in initial disease pathology, particularly key neuroinflammatory processes, is not well understood. Methods To study this, we developed a unique mouse model of perimenopausal AD by combining an accelerated ovarian failure (AOF) model of menopause induced by 4-vinylcyclohexene diepoxide (VCD) with the 5xFAD transgenic AD mouse model. To target early stages of disease progression, 5xFAD females were studied at a young age (∼4 months) and at the beginning stage of ovarian failure analogous to human perimenopause (termed "peri-AOF"), and compared to age-matched males. Assessment of neuropathology was performed by immunohistochemical labeling of Ab as well as markers of astrocyte and microglia activity in the hippocampus, a brain region involved in learning and memory that is deleteriously impacted during AD. Results Our results show that genotype, AOF, and sex contributed to AD-like pathology. Aggregation of Ab was heightened in female 5xFAD mice and further increased at peri-AOF, with hippocampal subregion specificity. Further, select increases in glial activation also paralleled Ab pathology in distinct hippocampal subregions. However, cognitive function was not affected by peri-AOF. Discussion These findings align with the hypothesis that perimenopause constitutes a period of susceptibility for AD pathogenesis in women.
Collapse
Affiliation(s)
- Roberta Marongiu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
- Genetic Medicine Department, Weill Cornell Medicine, New York, NY, United States
| | - Jimcy Platholi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Anesthesiology Department, Weill Cornell Medicine, New York, NY, United States
| | - Laibak Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Garrett Sommer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Blackmon TJ, MacMahon JA, Bernardino PN, Hogans RE, Cheng MY, Vu J, Lee RD, Saito NH, Grodzki AC, Bruun DA, Wulff H, Woolard KD, Brooks-Kayal A, Harvey DJ, Gorin FA, Lein PJ. Spatiotemporal perturbations of the plasminogen activation system in a rat model of acute organophosphate intoxication. Acta Neuropathol Commun 2025; 13:62. [PMID: 40102979 PMCID: PMC11917081 DOI: 10.1186/s40478-025-01979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Neuroinflammation is widely posited to be a key pathogenic mechanism linking acute organophosphate (OP)-induced status epilepticus (SE) to persistent brain injury and abnormal electrical activity that contribute to epilepsy and cognitive impairment. The plasminogen activation system (PAS) promotes neuroinflammation in diverse neurological diseases but whether it is activated following acute OP intoxication has yet to be evaluated. To address this data gap, we characterized the spatiotemporal expression patterns of multiple components of the PAS in a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im) and 2-pralidoxime (25 mg/kg, im) went into SE that persisted for hours. One day after acute DFP-induced SE, plasmin activity and protein concentrations of plasminogen activator inhibitor-1 (PAI-1) in the plasma were increased, though not significantly. In contrast, acute DFP intoxication significantly increased brain levels of PAI-1, tissue-type plasminogen activator (tPA), urokinase plasminogen activator (uPA), and transcripts of TGF-β in a time- and region-dependent manner. In the cortex and hippocampus, quantification of PAI-1, tPA, and uPA by ELISA indicated significantly increased levels at 1 day post-exposure (DPE). PAI-1 and uPA returned to control values by 7 DPE while tPA protein remained elevated at 28 DPE. Immunohistochemistry detected elevated PAI-1 expression in the DFP brain up to 28 DPE. Co-localization of PAI-1 with biomarkers of neurons, microglia, and astrocytes demonstrated that PAI-1 localized predominantly to a subpopulation of astrocytes. Cytologically, PAI-1 localized to astrocytic end feet, but not adjacent neurovascular endothelium. Electron microscopy revealed neuronal metabolic stress and neurodegeneration with disruption of adjacent neurovascular units in the hippocampus post-DFP exposure. These data indicate that acute DFP intoxication altered PAS expression in the brain, with aberrant PAI-1 expression in a subset of reactive astrocyte populations.
Collapse
Affiliation(s)
- Thomas J Blackmon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ryan E Hogans
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mei-Yun Cheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ruth Diana Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
- Molecular Biosciences, UC Davis School of Veterinary Medicine, 1089 Veterinary Research Drive, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Marongiu R, Platholi J, Park L, Yu F, Sommer G, Woods C, Milner TA, Glass MJ. Perimenopause promotes neuroinflammation in select hippocampal regions in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643317. [PMID: 40161644 PMCID: PMC11952527 DOI: 10.1101/2025.03.14.643317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by age-dependent amyloid beta (Aβ) aggregation and accumulation, neuroinflammation, and cognitive deficits. Significantly, there are prominent sex differences in the risk, onset, progression, and severity of AD, as well as response to therapies, with disease burden disproportionally affecting women. Although menopause onset (i.e., perimenopause) may be a critical transition stage for AD susceptibility in women, the role of early ovarian decline in initial disease pathology, particularly key neuroinflammatory processes, is not well understood. To study this, we developed a unique mouse model of perimenopausal AD by combining an accelerated ovarian failure (AOF) model of menopause induced by 4-vinylcyclohexene diepoxide (VCD) with the 5xFAD transgenic AD mouse model. To target early stages of disease progression, 5xFAD females were studied at a young age (∼4 months) and at the beginning stage of ovarian failure analogous to human perimenopause (termed "peri-AOF"), and compared to age-matched males. Assessment of neuropathology was performed by immunohistochemical labeling of Aβ as well as markers of astrocyte and microglia activity in the hippocampus, a brain region involved in learning and memory that is deleteriously impacted during AD. Our results show that genotype, AOF, and sex contributed to AD-like pathology. Aggregation of Aβ was heightened in female 5xFAD mice and further increased at peri-AOF, with hippocampal subregion specificity. Further, select increases in glial activation also paralleled Aβ pathology in distinct hippocampal subregions. However, cognitive function was not affected by peri-AOF. These findings align with the hypothesis that perimenopause constitutes a period of susceptibility for AD pathogenesis in women.
Collapse
|
7
|
Kurokawa A, Yamamoto Y. Immunohistochemical identification of immune cell subsets in formalin- and zinc-fixed, paraffin-embedded tissues from chicken and duck using commercial antibodies. Vet Immunol Immunopathol 2025; 281:110898. [PMID: 39938274 DOI: 10.1016/j.vetimm.2025.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Immunohistochemical identification of immune cells in poultry has primarily been performed using frozen tissues, with limited identification in paraffin-embedded tissues. In this study, the following 18 commercially available primary antibodies associated with immune cell phenotypes were tested: anti-CD3, CD4 (clone CT-4 and 2-35), TCRγδ, TCRαVβ1, TCRαVβ2, CD8, BAFF-R, PAX5, Bu-1a/b, Iba-1, MRC1L-B, CSF-1R, TIM4, MHC class II (clone 2D5 and 21-1A6), MUM1, and CD45 antibodies in formalin-fixed, paraffin-embedded (FFPE) and zinc-fixed, paraffin-embedded (ZFPE) chicken and duck lymphoid tissues. In chickens, 11 antibodies in FFPE tissue and 16 in ZFPE tissue reacted with the expected antigens under some of the antigen retrieval conditions tested. Antibodies against CD4 (clone CT-4), TCRγδ, TCRαVβ1, CSF-1R, and MHC class II (clone 21-1A6) were effective only in ZFPE tissue. In ducks, cells in both FFPE and ZFPE tissues were immunolabeled by five antibodies under some of the conditions tested. Antigen retrieval suitable for cellular membrane antigen tended to be heat for FFPE tissues and no treatment for ZFPE tissues. Heat-induced antigen retrieval allowed for better detection of nuclear antigens in both FFPE and ZFPE sections. Our results indicate that commercially available antibodies can immunohistochemically detect some of chicken and duck immune cell subsets in paraffin-embedded sections.
Collapse
Affiliation(s)
- Aoi Kurokawa
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Yu Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
8
|
Swanson MEV, Mrkela M, Turner C, Curtis MA, Faull RLM, Walker AK, Scotter EL. Neuronal TDP-43 aggregation drives changes in microglial morphology prior to immunophenotype in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2025; 13:39. [PMID: 39985110 PMCID: PMC11844090 DOI: 10.1186/s40478-025-01941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
Microglia are the innate immune cells of the brain with the capacity to react to damage or disease. Microglial reactions can be characterised in post-mortem tissues by assessing their pattern of protein expression, or immunophenotypes, and cell morphologies. We recently demonstrated that microglia have a phagocytic immunophenotype in early-stage ALS but transition to a dysfunctional immunophenotype by end stage, and that these states are driven by TAR DNA-binding protein 43 (TDP-43) aggregation in the human brain. However, it remains unclear how microglial morphologies are changed in ALS. Here we examine the relationship between microglial immunophenotypes and morphologies, and TDP-43 pathology in motor cortex tissue from people with ALS and from a TDP-43-driven ALS mouse model. Post-mortem human brain tissue from 10 control and 10 ALS cases was analysed alongside brain tissue from the bigenic NEFH-tTA/tetO-hTDP-43∆NLS (rNLS) mouse model of ALS at distinct disease stages. Sections were immunohistochemically labelled for microglial markers (HLA-DR, CD68, and Iba1) and phosphorylated TDP-43 (pTDP-43). Single-cell microglial HLA-DR, CD68, and Iba1 average intensities, and morphological features (cell body area, process number, total outgrowth, and branch number) were measured using custom image analysis pipelines. In human ALS motor cortex, we identified a significant change in microglial morphologies from ramified to hypertrophic, which was associated with increased Iba1 and CD68 levels. In the rNLS mouse motor cortex, the microglial morphologies changed from ramified to hypertrophic and increased Iba1 levels occurred in parallel with pTDP-43 aggregation, prior to increases in CD68 levels. Overall, the evidence presented in this study demonstrates that microglia change their morphologies prior to immunophenotype changes. These morphological changes may prime microglia near neurons with pTDP-43 aggregation for phagocytosis, in turn triggering immunophenotype changes; first, to a phagocytic state then to a dysfunctional one.
Collapse
Affiliation(s)
- Molly E V Swanson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Miran Mrkela
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology, Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Adam K Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Emma L Scotter
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Lanz M, Cortada M, Lu Y, Levano S, Bodmer D. mTORC2 Regulates Actin Polymerization in Auditory Cells. J Neurochem 2025; 169:e70012. [PMID: 39921391 DOI: 10.1111/jnc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
Mammalian target of rapamycin complex 2 (mTORC2) is essential for hearing by regulating auditory hair cell structure and function. However, mechanistic details of how mTORC2 regulates intracellular processes in sensory hair cells have not yet been clarified. To further elucidate the role of mTORC2 in auditory cells, we generated a Rictor knockout cell line from HEI-OC1 auditory cells. mTORC2-deficient auditory cells exhibited significant alterations in actin cytoskeleton morphology and decreased proliferation rates. Additionally, we observed a reduction in phosphorylation of protein kinase C alpha (PKCα) and disrupted actin polymerization in mTORC2-deficient cells. Using proteomics, we found that mTORC2 disruption altered expression of cytoskeleton-related proteins in auditory cells. These findings provide valuable mechanistic insights into the functional role of mTORC2 in auditory cells, potentially opening new perspectives to address sensorineural hearing loss.
Collapse
Affiliation(s)
- Michael Lanz
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Maurizio Cortada
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| | - Yu Lu
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Otorhinolaryngology, Head and Neck Surgery, University of Basel Hospital, Basel, Switzerland
| |
Collapse
|
10
|
Lin Y, Li C, Chen Y, Gao J, Li J, Huang C, Liu Z, Wang W, Zheng X, Song X, Wu J, Wu J, Luo OJ, Tu Z, Li S, Li XJ, Lai L, Yan S. RNA-Targeting CRISPR/CasRx system relieves disease symptoms in Huntington's disease models. Mol Neurodegener 2025; 20:4. [PMID: 39806441 PMCID: PMC11727607 DOI: 10.1186/s13024-024-00794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND HD is a devastating neurodegenerative disorder caused by the expansion of CAG repeats in the HTT. Silencing the expression of mutated proteins is a therapeutic direction to rescue HD patients, and recent advances in gene editing technology such as CRISPR/CasRx have opened up new avenues for therapeutic intervention. METHODS The CRISPR/CasRx system was employed to target human HTT exon 1, resulting in an efficient knockdown of HTT mRNA. This therapeutic effect was substantiated in various models: HEK 293 T cell, the HD 140Q-KI mouse, and the HD-KI pig model. The efficiency of the knockdown was analyzed through Western blot and RT-qPCR. Additionally, neuropathological changes were examined using Western blot, immunostaining, and RNA sequencing. The impact on motor abilities was assessed via behavioral experiments, providing a comprehensive evaluation of the treatment's effectiveness. RESULTS CRISPR/CasRx system can significantly reduce HTT mRNA levels across various models, including HEK 293 T cells, HD 140Q-KI mice at various disease stages, and HD-KI pigs, and resulted in decreased expression of mHTT. Utilizing the CRISPR/CasRx system to knock down HTT RNA has shown to ameliorate gliosis in HD 140Q-KI mice and delay neurodegeneration in HD pigs. CONCLUSIONS These findings highlight the effectiveness of the RNA-targeting CRISPR/CasRx as a potential therapeutic strategy for HD. Furthermore, the success of this approach provides valuable insights and novel avenues for the treatment of other genetic disorders caused by gene mutations.
Collapse
Affiliation(s)
- Yingqi Lin
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Zhaoming Liu
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao Zheng
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, Institutes of Biomedicine and Health , Chinese Academy of Sciences, Guangzhou, China
| | - Sen Yan
- Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Neurology, Faculty of Medical Science, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Angolano C, Hansen E, Ajjawi H, Nowlin P, Zhang Y, Thunemann N, Ferran C, Todd N. Characterization of focused ultrasound blood-brain barrier disruption effect on inflammation as a function of treatment parameters. Biomed Pharmacother 2025; 182:117762. [PMID: 39719739 PMCID: PMC11803570 DOI: 10.1016/j.biopha.2024.117762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024] Open
Abstract
The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS-BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are only beginning to be understood. This study builds on previous work that has investigated the inflammatory response following FUS-BBB opening. In this study, we characterize the effect of FUS intensity, microbubble dose and single vs multiple treatments on the extent of BBB disruption, observed level of microhemorrhage, and degree of inflammatory response at acute post-treatment time points in the wild-type mouse brain. Results show that upregulation of pro-inflammatory markers is primarily driven by microbubble dose, with peak effects seen at 24 hours post-treatment. We additionally saw significantly elevated levels of cytokine and chemokine markers in female vs male mice, despite no sex differences in level of BBB disruption or microglia activation. Multiple treatments did not result in increased levels of pro-inflammatory markers compared to single treatment baseline. However, we did see an interesting elevation of the anti-inflammatory molecule eNOS after multiple treatments, indicating active mechanisms were at work to restore homeostasis in the brain environment.
Collapse
Affiliation(s)
- Cleide Angolano
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Emily Hansen
- Harvard University, Cambridge, MA, United States
| | - Hala Ajjawi
- Harvard University, Cambridge, MA, United States
| | - Paige Nowlin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Natalie Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Nephrology and the Transplant Institute, Department of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Oh J, Ha Y, Kwon TW, Jo HS, Moon SK, Lee Y, Nah SY, Kim MS, Cho IH. Non-saponin from Panax ginseng maintains blood-brain barrier integrity by inhibiting NF-κB and p38 MAP kinase signaling pathways to prevent the progression of experimental autoimmune encephalomyelitis. J Ginseng Res 2025; 49:53-63. [PMID: 39872290 PMCID: PMC11764484 DOI: 10.1016/j.jgr.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 01/30/2025] Open
Abstract
Background The non-saponin (NS) fraction is an important active component of Panax ginseng, with multifunctional pharmacological activities including neuroprotective, immune regulatory, anti-inflammatory, and antioxidant effects. However, the effects of NSs on multiple sclerosis (MS), a chronic and autoimmune demyelinating disorder, have not yet been demonstrated. Purpose and Methods: The goal of the present study was to demonstrate the pharmacological actions of NSs on movement dysfunctions and the related mechanisms of action using an experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Results NSs (p.o.) alleviated movement dysfunctions in EAE mice related to reduced demyelination in the lumbar spinal cord (LSC). NSs attenuated the recruitment of microglia (CD11b+/CD45low) and macrophages (CD11b+/CD45high) in LSCs from EAE model mice, consistent with the decreased mRNA expression levels of the main proinflammatory mediators (IL-1β, COX-2, MCP-1, MIP-1α, and RANTES). NSs blocked the migration of Th17 cells (CD4+/IL17A+) and mRNA expression levels of IL-17A (product of Th17 cells) in LSCs from EAE mice. NSs suppressed alterations in blood-brain barrier (BBB) components, such as astrocytes and cell adhesion molecules, associated with inhibiting NF-κB and p38 MAPK pathways in LSCs of EAE mice and lipopolysaccharide-induced bEND.3 cells. Conclusions NSs could attenuate movement dysfunctions and related pathological/inflammatory changes by reducing BBB permeability through NF-κB and p38 MAPK pathway inhibition in LSCs of EAE model mice. These are the first results suggesting that NSs can be potential therapeutic agents for MS by reducing BBB permeability.
Collapse
Affiliation(s)
- Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yujeong Ha
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Sung Jo
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Kwan Moon
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Min Soo Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Wijenayake S, Eisha S, Purohit MK, McGowan PO. Milk derived extracellular vesicle uptake in human microglia regulates the DNA methylation machinery : Short title: milk-derived extracellular vesicles and the epigenetic machinery. Sci Rep 2024; 14:28630. [PMID: 39562680 PMCID: PMC11576889 DOI: 10.1038/s41598-024-79724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Mammalian milk contains milk-derived extracellular vesicles (MEVs), a group of biological nanovesicles that transport macromolecules. Their ability to cross the blood brain barrier and the presence of cargo capable of modifying gene function have led to the hypothesis that MEVs may play a role in brain function and development. Here, we investigated the uptake of MEVs by human microglia cells in vitro and explored the functional outcomes of MEV uptake. We examined the expression of the miR-148/152 family, highly abundant MEV microRNAs, that directly suppress the translation of DNA methyltransferase (DNMT) enzymes crucial for catalyzing DNA methylation modifications. We also measured phenotypic and inflammatory gene expression in baseline homeostatic and IFN-γ primed microglia to determine if MEVs induce anti-inflammatory effects. We found that MEVs are taken up and localize in baseline and primed microglia. In baseline microglia, MEV supplementation reduced miR-148a-5P levels, increased DNMT1 transcript, protein abundance, and enzymatic activity, compared to cells that did not receive MEVs. In primed microglia, MEV supplementation decreased miR-148a-5P levels and increased DNMT1 protein abundance, but DNMT1 transcript and enzymatic levels remained unchanged. Contrary to predictions, MEV supplementation failed to attenuate pro-inflammatory IL1β expression in primed microglia. This study provides the first evidence of MEV uptake by a brain macrophage, suggesting a potential role in regulating epigenetic machinery and neuroimmune modulation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, The University of Winnipeg, Winnipeg, Manitoba, Canada.
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
| | - Shafinaz Eisha
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mansi Kamlesh Purohit
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick Owen McGowan
- Department of Biological Sciences and Center for Environmental Epigenetics and Development, Scarborough Campus, University of Toronto, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Lyubomudrov M, Babkina A, Tsokolaeva Z, Yadgarov M, Shigeev S, Sundukov D, Golubev A. Morphology of Cortical Microglia in the Hyperacute Phase of Subarachnoid Hemorrhage. BIOLOGY 2024; 13:917. [PMID: 39596872 PMCID: PMC11591589 DOI: 10.3390/biology13110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Hemorrhagic stroke is the deadliest type of stroke. Cellular and molecular biomarkers are important for understanding the pathophysiology of stroke. Microglia are among the most promising biological markers. However, the morphological and physiological characteristics of microglia, as well as the structural and functional aspects of their interactions with neurons and other cells, are largely unknown. Due to the large number of different morphological phenotypes and very limited information on microglial changes in subarachnoid hemorrhage (SAH), we performed this study aimed at identifying the features of the distribution of various microglial phenotypes in the layers of the cerebral cortex in the hyperacute phase of non-traumatic SAH. We studied the distribution of various microglial phenotypes in the layers of the cerebral cortex of SAH non-survivors with a control group (coronary heart disease and sudden cardiac death were the underlying causes of death). An immunohistochemical study using antibodies to iba-1 (a marker of microglia) revealed changes in the morphological phenotypes of microglia in the cerebral cortex after subarachnoid hemorrhage. Significant differences between the groups indicate a rapid microglial response to injury. The findings indicate that there are quantitative and phenotypic changes in microglia in the cerebral cortex during early SAH in the human cortex.
Collapse
Affiliation(s)
- Maksim Lyubomudrov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Anastasiya Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Zoya Tsokolaeva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Mikhail Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Sergey Shigeev
- Bureau of Forensic Medical Examination of the Department of Healthcare of the City of Moscow, Moscow 115516, Russia
| | - Dmitriy Sundukov
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia
| | - Arkady Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia
| |
Collapse
|
15
|
Karayay B, Olze H, Szczepek AJ. Mammalian Inner Ear-Resident Immune Cells-A Scoping Review. Cells 2024; 13:1528. [PMID: 39329712 PMCID: PMC11430779 DOI: 10.3390/cells13181528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Several studies have demonstrated the presence of resident immune cells in the healthy inner ear. AIM This scoping review aimed to systematize this knowledge by collecting the data on resident immune cells in the inner ear of different species under steady-state conditions. METHODS The databases PubMed, MEDLINE (Ovid), CINAHL (EBSCO), and LIVIVO were used to identify articles. Systematic reviews, experimental studies, and clinical data in English and German were included without time limitations. RESULTS The search yielded 49 eligible articles published between 1979 and 2022. Resident immune cells, including macrophages, lymphocytes, leukocytes, and mast cells, have been observed in various mammalian inner ear structures under steady-state conditions. However, the physiological function of these cells in the healthy cochlea remains unclear, providing an opportunity for basic research in inner ear biology. CONCLUSIONS This review highlights the need for further investigation into the role of these cells, which is crucial for advancing the development of therapeutic methods for treating inner ear disorders, potentially transforming the field of otolaryngology and immunology.
Collapse
Affiliation(s)
- Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
16
|
Gabele L, Bochow I, Rieke N, Sieben C, Michaelsen-Preusse K, Hosseini S, Korte M. H7N7 viral infection elicits pronounced, sex-specific neuroinflammatory responses in vitro. Front Cell Neurosci 2024; 18:1444876. [PMID: 39171200 PMCID: PMC11335524 DOI: 10.3389/fncel.2024.1444876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Influenza A virus (IAV) infection can increase the risk of neuroinflammation, and subsequent neurodegenerative diseases. Certain IAV strains, such as avian H7N7 subtype, possess neurotropic properties, enabling them to directly invade the brain parenchyma and infect neurons and glia cells. Host sex significantly influences the severity of IAV infections. Studies indicate that females of the reproductive age exhibit stronger innate and adaptive immune responses to IAVs compared to males. This heightened immune response correlates with increased morbidity and mortality, and potential neuronal damage in females. Understanding the sex-specific neurotropism of IAV and associated mechanisms leading to adverse neurological outcomes is essential. Our study reveals that primary hippocampal cultures from female mice show heightened interferon-β and pro-inflammatory chemokine secretion following neurotropic IAV infection. We observed sex-specific differences in microglia activation: both sexes showed a transition into a hyper-ramified state, but only male-derived microglia exhibited an increase in amoeboid-shaped cells. These disparities extended to alterations in neuronal morphology. Neurons derived from female mice displayed increased spine density within 24 h post-infection, while no significant change was observed in male cultures. This aligns with sex-specific differences in microglial synaptic pruning. Data suggest that amoeboid-shaped microglia preferentially target postsynaptic terminals, potentially reducing neuronal hyperexcitability. Conversely, hyper-ramified microglia may focus on presynaptic terminals, potentially limiting viral spread. In conclusion, our findings underscore the utility of primary hippocampal cultures, incorporating microglia, as an effective model to study sex-specific, virus-induced effects on brain-resident cells.
Collapse
Affiliation(s)
- Lea Gabele
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Isabell Bochow
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nele Rieke
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
| | - Christian Sieben
- Helmholtz Centre for Infection Research, Nanoscale Infection Biology Group, Braunschweig, Germany
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Research Group Neuroinflammation and Neurodegeneration, Braunschweig, Germany
| |
Collapse
|
17
|
Zhang PF, You WY, Gao YJ, Wu XB. Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice. Brain Res Bull 2024; 214:111008. [PMID: 38866373 DOI: 10.1016/j.brainresbull.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Wen-Yong You
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
18
|
Angolano C, Hansen E, Ajjawi H, Nowlin P, Zhang Y, Thunemann N, Ferran C, Todd N. Characterization of focused ultrasound blood-brain barrier disruption effect on inflammation as a function of treatment parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602776. [PMID: 39071338 PMCID: PMC11275883 DOI: 10.1101/2024.07.10.602776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The technology of focused ultrasound-mediated disruption of the blood-brain barrier (FUS- BBB opening) has now been used in over 20 Phase 1 clinical trials to validate the safety and feasibility of BBB opening for drug delivery in patients with brain tumors and neurodegenerative diseases. The primary treatment parameters, FUS intensity and microbubble dose, are chosen to balance sufficient BBB disruption to achieve drug delivery against potential acute vessel damage leading to microhemorrhage. This can largely be achieved based on both empirical results from animal studies and by monitoring the microbubble cavitation signal in real time during the treatment. However, other safety considerations due to second order effects caused by BBB disruption, such as inflammation and alteration of neurovascular function, are not as easily measurable, may take longer to manifest and are only beginning to be understood. This study builds on previous work that has investigated the inflammatory response following FUS-BBB opening. In this study, we characterize the effect of FUS intensity and microbubble dose on the extent of BBB disruption, observed level of microhemorrhage, and degree of inflammatory response at three acute post-treatment time points in the wild-type mouse brain. Additionally, we evaluate differences related to biological sex, presence and degree of the anti- inflammatory response that develops to restore homeostasis in the brain environment, and the impact of multiple FUS-BBB opening treatments on this inflammatory response.
Collapse
|
19
|
Rentsch P, Ganesan K, Langdon A, Konen LM, Vissel B. Toward the development of a sporadic model of Alzheimer's disease: comparing pathologies between humanized APP and the familial J20 mouse models. Front Aging Neurosci 2024; 16:1421900. [PMID: 39040546 PMCID: PMC11260812 DOI: 10.3389/fnagi.2024.1421900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/03/2024] [Indexed: 07/24/2024] Open
Abstract
Background Finding successful therapies for individuals with Alzheimer's disease (AD) remains an ongoing challenge. One contributing factor is that the mouse models commonly used in preclinical research primarily mimic the familial form of AD, whereas the vast majority of human cases are sporadic. Accordingly, for a sporadic mouse model of AD, incorporating the multifactorial aspects of the disease is of utmost importance. Methods In the current study, we exposed humanized Aβ knock-in mice (hAβ-KI) to weekly low-dose lipopolysaccharide (LPS) injections until 24 weeks of age and compared the development of AD pathologies to the familial AD mouse model known as the J20 mice. Results At the early time point of 24 weeks, hAβ-KI mice and J20 mice exhibited spatial memory impairments in the Barnes maze. Strikingly, both hAβ-KI mice and J20 mice showed significant loss of dendritic spines when compared to WT controls, despite the absence of Aβ plaques in hAβ-KI mice at 24 weeks of age. Glial cell numbers remained unchanged in hAβ-KI mice compared to WT, and LPS exposure in hAβ-KI mice did not result in memory deficits and failed to exacerbate any other examined AD pathology. Conclusion The study highlights the potential of hAβ-KI mice as a model for sporadic AD, demonstrating early cognitive deficits and synaptic alterations despite no evidence of Aβ plaque formation. These findings underscore the importance of considering multifactorial influences in sporadic AD pathogenesis and the need for innovative models to advance our understanding and treatment strategies for this complex disease.
Collapse
Affiliation(s)
- Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- UNSW St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia
- UNSW St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
20
|
Shirguppe S, Gapinske M, Swami D, Gosstola N, Acharya P, Miskalis A, Joulani D, Szkwarek MG, Bhattacharjee A, Elias G, Stilger M, Winter J, Woods WS, Anand D, Lim CKW, Gaj T, Perez-Pinera P. In vivo CRISPR base editing for treatment of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602282. [PMID: 39005280 PMCID: PMC11245100 DOI: 10.1101/2024.07.05.602282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Huntington's disease (HD) is an inherited and ultimately fatal neurodegenerative disorder caused by an expanded polyglutamine-encoding CAG repeat within exon 1 of the huntingtin (HTT) gene, which produces a mutant protein that destroys striatal and cortical neurons. Importantly, a critical event in the pathogenesis of HD is the proteolytic cleavage of the mutant HTT protein by caspase-6, which generates fragments of the N-terminal domain of the protein that form highly toxic aggregates. Given the role that proteolysis of the mutant HTT protein plays in HD, strategies for preventing this process hold potential for treating the disorder. By screening 141 CRISPR base editor variants targeting splice elements in the HTT gene, we identified platforms capable of producing HTT protein isoforms resistant to caspase-6-mediated proteolysis via editing of the splice acceptor sequence for exon 13. When delivered to the striatum of a rodent HD model, these base editors induced efficient exon skipping and decreased the formation of the N-terminal fragments, which in turn reduced HTT protein aggregation and attenuated striatal and cortical atrophy. Collectively, these results illustrate the potential for CRISPR base editing to decrease the toxicity of the mutant HTT protein for HD.
Collapse
|
21
|
Rogerson-Wood L, Goldsbury CS, Sawatari A, Leamey CA. An early enriched experience drives targeted microglial engulfment of miswired neural circuitry during a restricted postnatal period. Glia 2024; 72:1217-1235. [PMID: 38511347 DOI: 10.1002/glia.24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Brain function is critically dependent on correct circuit assembly. Microglia are well-known for their important roles in immunological defense and neural plasticity, but whether they can also mediate experience-induced correction of miswired circuitry is unclear. Ten-m3 knockout (KO) mice display a pronounced and stereotyped visuotopic mismapping of ipsilateral retinal inputs in their visual thalamus, providing a useful model to probe circuit correction mechanisms. Environmental enrichment (EE) commenced around birth, but not later in life, can drive a partial correction of the most mismapped retinal inputs in Ten-m3 KO mice. Here, we assess whether enrichment unlocks the capacity for microglia to selectively engulf and remove miswired circuitry, and the timing of this effect. Expression of the microglial-associated lysosomal protein CD68 showed a clear enrichment-driven, spatially restricted change which had not commenced at postnatal day (P)18, was evident at P21, more robust at P25, and had ceased by P30. This was observed specifically at the corrective pruning site and was absent at a control site. An engulfment assay at the corrective pruning site in P25 mice showed EE-driven microglial-uptake of the mismapped axon terminals. This was temporally and spatially specific, as no enrichment-driven microglial engulfment was seen in P18 KO mice, nor the control locus. The timecourse of the EE-driven corrective pruning as determined anatomically, aligned with this pattern of microglia reactivity and engulfment. Collectively, these findings show experience can drive targeted microglial engulfment of miswired neural circuitry during a restricted postnatal window. This may have important therapeutic implications for neurodevelopmental conditions involving aberrant neural connectivity.
Collapse
Affiliation(s)
- Lara Rogerson-Wood
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Claire S Goldsbury
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Atomu Sawatari
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine A Leamey
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Shook LL, Batorsky RE, De Guzman RM, McCrea LT, Brigida SM, Horng JE, Sheridan SD, Kholod O, Cook AM, Li JZ, Slonim DK, Goods BA, Perlis RH, Edlow AG. Maternal SARS-CoV-2 impacts fetal placental macrophage programs and placenta-derived microglial models of neurodevelopment. J Neuroinflammation 2024; 21:163. [PMID: 38918792 PMCID: PMC11197235 DOI: 10.1186/s12974-024-03157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The SARS-CoV-2 virus activates maternal and placental immune responses. Such activation in the setting of other infections during pregnancy is known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. METHODS AND RESULTS We assessed the impact of maternal SARS-CoV-2 on HBCs isolated from 24 term placentas (N = 10 SARS-CoV-2 positive cases, 14 negative controls). Using single-cell RNA-sequencing, we demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells (HBC-iMGs), with impaired synaptic pruning behavior compared to HBC models from negative controls. CONCLUSION These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.
Collapse
Affiliation(s)
- Lydia L Shook
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rose M De Guzman
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Liam T McCrea
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara M Brigida
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA
| | - Joy E Horng
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven D Sheridan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Olha Kholod
- Thayer School of Engineering and Program, Dartmouth College, Hanover, NH, USA
| | - Aidan M Cook
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Jonathan Z Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Brittany A Goods
- Thayer School of Engineering and Program, Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Roy H Perlis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit Street, Thier Research Building, 903B, Boston, MA, 02114, USA.
- Department of Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Grenon MB, Papavergi MT, Bathini P, Sadowski M, Lemere CA. Temporal Characterization of the Amyloidogenic APPswe/PS1dE9;hAPOE4 Mouse Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:5754. [PMID: 38891941 PMCID: PMC11172317 DOI: 10.3390/ijms25115754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating disorder with a global prevalence estimated at 55 million people. In clinical studies administering certain anti-beta-amyloid (Aβ) antibodies, amyloid-related imaging abnormalities (ARIAs) have emerged as major adverse events. The frequency of these events is higher among apolipoprotein ε4 allele carriers (APOE4) compared to non-carriers. To reflect patients most at risk for vascular complications of anti-Aβ immunotherapy, we selected an APPswe/PS1dE9 transgenic mouse model bearing the human APOE4 gene (APPPS1:E4) and compared it with the same APP/PS1 mouse model bearing the human APOE3 gene (APOE ε3 allele; APPPS1:E3). Using histological and biochemical analyses, we characterized mice at three ages: 8, 12, and 16 months. Female and male mice were assayed for general cerebral fibrillar and pyroglutamate (pGlu-3) Aβ deposition, cerebral amyloid angiopathy (CAA), microhemorrhages, apoE and cholesterol composition, astrocytes, microglia, inflammation, lysosomal dysfunction, and neuritic dystrophy. Amyloidosis, lipid deposition, and astrogliosis increased with age in APPPS1:E4 mice, while inflammation did not reveal significant changes with age. In general, APOE4 carriers showed elevated Aβ, apoE, reactive astrocytes, pro-inflammatory cytokines, microglial response, and neuritic dystrophy compared to APOE3 carriers at different ages. These results highlight the potential of the APPPS1:E4 mouse model as a valuable tool in investigating the vascular side effects associated with anti-amyloid immunotherapy.
Collapse
Affiliation(s)
- Martine B. Grenon
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Section Neuropsychology & Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Maria-Tzousi Papavergi
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Praveen Bathini
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| | - Martin Sadowski
- Departments of Neurology, Psychiatry, and Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Cynthia A. Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.B.G.); (M.-T.P.); (P.B.)
| |
Collapse
|
24
|
Peshoff MM, Gupta P, Oberai S, Trivedi R, Katayama H, Chakrapani P, Dang M, Migliozzi S, Gumin J, Kadri DB, Lin JK, Milam NK, Maynard ME, Vaillant BD, Parker-Kerrigan B, Lang FF, Huse JT, Iavarone A, Wang L, Clise-Dwyer K, Bhat KP. Triggering receptor expressed on myeloid cells 2 (TREM2) regulates phagocytosis in glioblastoma. Neuro Oncol 2024; 26:826-839. [PMID: 38237157 PMCID: PMC11066944 DOI: 10.1093/neuonc/noad257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Glioblastomas (GBMs) are central nervous system tumors that resist standard-of-care interventions and even immune checkpoint blockade. Myeloid cells in the tumor microenvironment can contribute to GBM progression; therefore, emerging immunotherapeutic approaches include reprogramming these cells to achieve desirable antitumor activity. Triggering receptor expressed on myeloid cells 2 (TREM2) is a myeloid signaling regulator that has been implicated in a variety of cancers and neurological diseases with contrasting functions, but its role in GBM immunopathology and progression is still under investigation. METHODS Our reverse translational investigations leveraged single-cell RNA sequencing and cytometry of human gliomas to characterize TREM2 expression across myeloid subpopulations. Using 2 distinct murine glioma models, we examined the role of Trem2 on tumor progression and immune modulation of myeloid cells. Furthermore, we designed a method of tracking phagocytosis of glioma cells in vivo and employed in vitro assays to mechanistically understand the influence of TREM2 signaling on tumor uptake. RESULTS We discovered that TREM2 expression does not correlate with immunosuppressive pathways, but rather showed strong a positive association with the canonical phagocytosis markers lysozyme (LYZ) and macrophage scavenger receptor (CD163) in gliomas. While Trem2 deficiency was found to be dispensable for gliomagenesis, Trem2+ myeloid cells display enhanced tumor uptake compared to Trem2- cells. Mechanistically, we demonstrate that TREM2 mediates phagocytosis via Syk signaling. CONCLUSIONS These results indicate that TREM2 is not associated with immunosuppression in gliomas. Instead, TREM2 is an important regulator of phagocytosis that may be exploited as a potential therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Mekenzie M Peshoff
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Pravesh Gupta
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shivangi Oberai
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rakesh Trivedi
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hiroshi Katayama
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Prashanth Chakrapani
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Minghao Dang
- Department of Genomic Medicine, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Simona Migliozzi
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joy Gumin
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Divya B Kadri
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica K Lin
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nancy K Milam
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark E Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Brian D Vaillant
- Departments of Translational Molecular Pathology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Brittany Parker-Kerrigan
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Antonio Iavarone
- Department of Neurological Surgery, Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Linghua Wang
- Department of Genomic Medicine, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology & Malignancy, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, Neurosurgery at the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Translational Molecular Pathology, The University of Texas, MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
25
|
Kim W, Kim M, Kim B. Unraveling the enigma: housekeeping gene Ugt1a7c as a universal biomarker for microglia. Front Psychiatry 2024; 15:1364201. [PMID: 38666091 PMCID: PMC11043603 DOI: 10.3389/fpsyt.2024.1364201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Background Microglia, brain resident macrophages, play multiple roles in maintaining homeostasis, including immunity, surveillance, and protecting the central nervous system through their distinct activation processes. Identifying all types of microglia-driven populations is crucial due to the presence of various phenotypes that differ based on developmental stages or activation states. During embryonic development, the E8.5 yolk sac contains erythromyeloid progenitors that go through different growth phases, eventually resulting in the formation of microglia. In addition, microglia are present in neurological diseases as a diverse population. So far, no individual biomarker for microglia has been discovered that can accurately identify and monitor their development and attributes. Summary Here, we highlight the newly defined biomarker of mouse microglia, UGT1A7C, which exhibits superior stability in expression during microglia development and activation compared to other known microglia biomarkers. The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse model. The expression of Ugt1a7c is stable during development, with only a 4-fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit at least a 10-fold difference. The UGT1A7C expression remains constant throughout its lifespan. In addition, the expression and activity of UGT1A7C are the same in response to different types of inflammatory activators' treatment in vitro. Conclusion We propose employing UGT1A7C as the representative biomarker for microglia, irrespective of their developmental state, age, or activation status. Using UGT1A7C can reduce the requirement for using multiple biomarkers, enhance the precision of microglia analysis, and even be utilized as a standard for gene/protein expression.
Collapse
Affiliation(s)
| | | | - Beomsue Kim
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
26
|
Berríos-Cárcamo P, Núñez S, Castañeda J, Gallardo J, Bono MR, Ezquer F. Two-Month Voluntary Ethanol Consumption Promotes Mild Neuroinflammation in the Cerebellum but Not in the Prefrontal Cortex, Hippocampus, or Striatum of Mice. Int J Mol Sci 2024; 25:4173. [PMID: 38673763 PMCID: PMC11050159 DOI: 10.3390/ijms25084173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1β, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.
Collapse
Affiliation(s)
- Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
| | - Sarah Núñez
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones 7510602, Chile;
- Centro Ciencia & Vida, Santiago 8580702, Chile
| | - Justine Castañeda
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.C.); (M.R.B.)
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.C.); (M.R.B.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
- Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
| |
Collapse
|
27
|
Liu C, Cárdenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:78. [PMID: 38600598 PMCID: PMC11005245 DOI: 10.1186/s13195-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. METHODS We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccharide-induced neuroinflammation. RESULTS Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. CONCLUSIONS This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
Affiliation(s)
- Chang Liu
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shayna Teitelbaum
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Austin Birmingham
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammed Alfadhel
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Mohammad A Yaseen
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Chen S, Huang W, Wan Q, Tang Z, Li X, Zeng F, Zheng S, Li Z, Liu X. Investigation of the acute pathogenesis of spondyloarthritis/HLA-B27-associated anterior uveitis based on genome-wide association analysis and single-cell transcriptomics. J Transl Med 2024; 22:271. [PMID: 38475831 PMCID: PMC10936029 DOI: 10.1186/s12967-024-05077-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Patients with spondyloarthritis (SpA)/HLA-B27-associated acute anterior uveitis (AAU) experience recurring acute flares, which pose significant visual and financial challenges. Despite established links between SpA and HLA-B27-associated AAU, the exact mechanism involved remains unclear, and further understanding is needed for effective prevention and treatment. METHODS To investigate the acute pathogenesis of SpA/HLA-B27-associated AAU, Mendelian randomization (MR) and single-cell transcriptomic analyses were employed. The MR incorporated publicly available protein quantitative trait locus data from previous studies, along with genome-wide association study data from public databases. Causal relationships between plasma proteins and anterior uveitis were assessed using two-sample MR. Additionally, colocalization analysis was performed using Bayesian colocalization. Single-cell transcriptome analysis utilized the anterior uveitis dataset from the Gene Expression Omnibus (GEO) database. Dimensionality reduction, clustering, transcription factor analysis, pseudotime analysis, and cell communication analysis were subsequently conducted to explore the underlying mechanisms involved. RESULTS Mendelian randomization analysis revealed that circulating levels of AIF1 and VARS were significantly associated with a reduced risk of developing SpA/HLA-B27-associated AAU, with AIF1 showing a robust correlation with anterior uveitis onset. Colocalization analysis supported these findings. Single-cell transcriptome analysis showed predominant AIF1 expression in myeloid cells, which was notably lower in the HLA-B27-positive group. Pseudotime analysis revealed dendritic cell terminal positions in differentiation branches, accompanied by gradual decreases in AIF1 expression. Based on cell communication analysis, CD141+CLEC9A+ classic dendritic cells (cDCs) and the APP pathway play crucial roles in cellular communication in the Spa/HLA-B27 group. CONCLUSIONS AIF1 is essential for the pathogenesis of SpA/HLA-B27-associated AAU. Myeloid cell differentiation into DCs and decreased AIF1 levels are also pivotal in this process.
Collapse
Affiliation(s)
- Shuming Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Weidi Huang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Qiaoqian Wan
- Department of Anaesthesiology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zichun Tang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Xie Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Fang Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Shuyan Zheng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China
| | - Zhuo Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
- Hunan Provincial Key Laboratory of Critical Quality Attribute of Cell Therapy Products, Changsha, 410011, Hunan, China.
| | - Xiao Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Procès A, Alpizar YA, Halliez S, Brône B, Saudou F, Ris L, Gabriele S. Stretch-injury promotes microglia activation with enhanced phagocytic and synaptic stripping activities. Biomaterials 2024; 305:122426. [PMID: 38134473 DOI: 10.1016/j.biomaterials.2023.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Microglial cells, as the primary defense line in the central nervous system, play a crucial role in responding to various mechanical signals that can trigger their activation. Despite extensive research on the impact of chemical signaling on brain cells, the understanding of mechanical signaling in microglia remains limited. To bridge this gap, we subjected microglial cells to a singular mechanical stretch and compared their responses with those induced by lipopolysaccharide treatment, a well-established chemical activator. Here we show that stretching microglial cells leads to their activation, highlighting their significant mechanosensitivity. Stretched microglial cells exhibited distinct features, including elevated levels of Iba1 protein, a denser actin cytoskeleton, and increased persistence in migration. Unlike LPS-treated microglial cells, the secretory profile of chemokines and cytokines remained largely unchanged in response to stretching, except for TNF-α. Intriguingly, a single stretch injury resulted in more compacted chromatin and DNA damage, suggesting potential long-term genomic instabilities in stretched microglia. Using compartmentalized microfluidic chambers with neuronal networks, we observed that stretched microglial cells exhibited enhanced phagocytic and synaptic stripping activities. These findings collectively suggest that stretching events can unlock the immune potential of microglial cells, contributing to the maintenance of brain tissue homeostasis following mechanical injury.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium; Neuroscience Laboratory, Neuroscience Department, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Yeranddy A Alpizar
- Neurophysiology Laboratory, BIOMED Research Institute, UHasselt, B-3500, Hasselt, Belgium
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Bert Brône
- Neurophysiology Laboratory, BIOMED Research Institute, UHasselt, B-3500, Hasselt, Belgium
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, F-38000, Grenoble, France
| | - Laurence Ris
- Neuroscience Laboratory, Neuroscience Department, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium.
| |
Collapse
|
30
|
Al-Hakeim HK, Twaij BAAR, Al-Naqeeb TH, Moustafa SR, Maes M. Neuronal damage and inflammatory biomarkers are associated with the affective and chronic fatigue-like symptoms due to end-stage renal disease. J Affect Disord 2024; 347:220-229. [PMID: 38007104 DOI: 10.1016/j.jad.2023.11.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Many biochemical, immunological, and neuropsychiatric changes are associated with end-stage renal disease (ESRD). Neuronal damage biomarkers such as glial fibrillary acidic protein (GFAP), neurofilament light chain (NFL), S100 calcium-binding protein B (S100B), ionized calcium-binding adaptor molecule-1 (IBA1), and myelin basic protein (MBP) are among the less-studied biomarkers of ESRD. AIM We examined the associations between these neuro-axis biomarkers, inflammatory biomarkers, e.g., C-reactive protein (CRP), interleukin (IL-6), IL-10, and zinc, copper, and neuropsychiatric symptoms due to ERSD. METHODS ELISA techniques were used to measure serum levels of neuronal damage biomarkers in 70 ESRD patients, and 46 healthy controls. RESULTS ESRD patients have higher scores of depression, anxiety, fatigue, and physiosomatic symptoms than healthy controls. Aberrations in kidney function tests and the number of dialysis interventions are associated with the severity of depression, anxiety, fibro-fatigue and physiosomatic symptoms, peripheral inflammation, nestin, and NFL. Serum levels of neuronal damage biomarkers (NFL, MBP, and nestin), CRP, and interleukin (IL)-10 are elevated, and serum zinc is decreased in ESRD patients as compared with controls. The neuronal damage biomarkers NFL, nestin, S100B and MBP are associated with the severity of one or more neuropsychiatric symptom domains. Around 50 % of the variance in the neuropsychiatric symptoms is explained by NFL, nestin, S00B, copper, and an inflammatory index. CONCLUSIONS The severity of renal dysfunction and/or the number of dialysis interventions may induce peripheral inflammation and, consequently, neurotoxicity to intermediate filament proteins, astrocytes, and the blood-brain barrier, leading to the neuropsychiatric symptoms of ESRD.
Collapse
Affiliation(s)
| | | | - Tabarek Hadi Al-Naqeeb
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| |
Collapse
|
31
|
Bobotis BC, Halvorson T, Carrier M, Tremblay MÈ. Established and emerging techniques for the study of microglia: visualization, depletion, and fate mapping. Front Cell Neurosci 2024; 18:1317125. [PMID: 38425429 PMCID: PMC10902073 DOI: 10.3389/fncel.2024.1317125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
The central nervous system (CNS) is an essential hub for neuronal communication. As a major component of the CNS, glial cells are vital in the maintenance and regulation of neuronal network dynamics. Research on microglia, the resident innate immune cells of the CNS, has advanced considerably in recent years, and our understanding of their diverse functions continues to grow. Microglia play critical roles in the formation and regulation of neuronal synapses, myelination, responses to injury, neurogenesis, inflammation, and many other physiological processes. In parallel with advances in microglial biology, cutting-edge techniques for the characterization of microglial properties have emerged with increasing depth and precision. Labeling tools and reporter models are important for the study of microglial morphology, ultrastructure, and dynamics, but also for microglial isolation, which is required to glean key phenotypic information through single-cell transcriptomics and other emerging approaches. Strategies for selective microglial depletion and modulation can provide novel insights into microglia-targeted treatment strategies in models of neuropsychiatric and neurodegenerative conditions, cancer, and autoimmunity. Finally, fate mapping has emerged as an important tool to answer fundamental questions about microglial biology, including their origin, migration, and proliferation throughout the lifetime of an organism. This review aims to provide a comprehensive discussion of these established and emerging techniques, with applications to the study of microglia in development, homeostasis, and CNS pathologies.
Collapse
Affiliation(s)
- Bianca Caroline Bobotis
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
| | - Torin Halvorson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Micaël Carrier
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec City, QC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Centre for Advanced Materials and Related Technology, Victoria, BC, Canada
- Axe neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
32
|
Matsuo M, Kanbe A, Noguchi K, Niwa A, Imaizumi Y, Kuroda T, Ichihashi K, Okubo T, Mori K, Kanayama T, Tomita H, Hara A. Time-course analysis of liver and serum galectin-3 in acute liver injury after alpha-galactosylceramide injection. PLoS One 2024; 19:e0298284. [PMID: 38330036 PMCID: PMC10852258 DOI: 10.1371/journal.pone.0298284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Galectin-3 is a beta-galactoside-binding lectin that plays important roles in diverse physiological functions, such as cell proliferation, apoptosis, and mRNA splicing. This protein is expressed on inflammatory cells and acts as a local inflammatory mediator. Recently, galectin-3 has been detected in several diseases, such as chronic liver, heart, and kidney diseases, diabetes, viral infection, autoimmune and neurodegenerative diseases, and tumors, and its role as a biomarker has attracted attention. Alpha-galactosylceramide is an artificially synthesized sphingolipid that can induce acute liver injury via the natural killer T pathway. However, the pathophysiological roles and kinetics of galectin-3 in acute liver injury are not fully understood. This study aimed to elucidate the expression and time course of galectin-3 in liver tissues during acute liver injury following alpha-galactosylceramide injection. Animals were histologically examined on days 1, 2, 4, and 7 after intraperitoneal injection of alpha-galactosylceramide, and the expressions of galectin-3 and ionized calcium-binding adaptor molecule 1 were analyzed. Notably, galectin-3 formed characteristic cluster foci, particularly on day 2 after injection. Cluster formation was not observed in chronic liver disease. Simultaneously, ionized calcium-binding adaptor molecule 1-positive cells were observed in the cluster foci. Serum galectin-3 levels increased on day 2 of treatment and correlated well with the number of galectin-3-positive cell clusters in the liver. Moreover, galectin-3 expression was an important mediator of the early phase of liver injury after alpha-galactosylceramide injection. These results suggest that serum galectin-3 may be a biomarker for the early diagnosis of acute liver injury and that clusters of galectin-3-positive cells may be a specific finding in acute liver injury.
Collapse
Affiliation(s)
- Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumu Kanbe
- Division of Clinical Laboratory, Gifu University Hospital, Gifu, Japan
| | - Kei Noguchi
- Department of Pathology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Ayumi Niwa
- Department of Diagnostic Pathology, Gifu University Hospital, Gifu Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahito Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takafumi Okubo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Mori
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
33
|
Arribas V, Onetti Y, Ramiro-Pareta M, Villacampa P, Beck H, Alberola M, Esteve-Codina A, Merkel A, Sperandio M, Martínez-Estrada OM, Schmid B, Montanez E. Endothelial TDP-43 controls sprouting angiogenesis and vascular barrier integrity, and its deletion triggers neuroinflammation. JCI Insight 2024; 9:e177819. [PMID: 38300714 PMCID: PMC11143933 DOI: 10.1172/jci.insight.177819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a DNA/RNA-binding protein that regulates gene expression, and its malfunction in neurons has been causally associated with multiple neurodegenerative disorders. Although progress has been made in understanding the functions of TDP-43 in neurons, little is known about its roles in endothelial cells (ECs), angiogenesis, and vascular function. Using inducible EC-specific TDP-43-KO mice, we showed that TDP-43 is required for sprouting angiogenesis, vascular barrier integrity, and blood vessel stability. Postnatal EC-specific deletion of TDP-43 led to retinal hypovascularization due to defects in vessel sprouting associated with reduced EC proliferation and migration. In mature blood vessels, loss of TDP-43 disrupted the blood-brain barrier and triggered vascular degeneration. These vascular defects were associated with an inflammatory response in the CNS with activation of microglia and astrocytes. Mechanistically, deletion of TDP-43 disrupted the fibronectin matrix around sprouting vessels and reduced β-catenin signaling in ECs. Together, our results indicate that TDP-43 is essential for the formation of a stable and mature vasculature.
Collapse
Affiliation(s)
- Víctor Arribas
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Yara Onetti
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Marina Ramiro-Pareta
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Mariona Alberola
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Angelika Merkel
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ofelia M. Martínez-Estrada
- Celltec-UB, Department of Cell Biology, Physiology, and Immunology, Faculty of Biology, and
- Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet del Llobregat, Spain
| |
Collapse
|
34
|
Lai AY, Almanza DLV, Ribeiro JA, Hill ME, Mandrozos M, Koletar MM, Stefanovic B, McLaurin J. Obesity Facilitates Sex-Specific Improvement In Cognition And Neuronal Function In A Rat Model Of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575200. [PMID: 38328066 PMCID: PMC10849478 DOI: 10.1101/2024.01.11.575200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Obesity reduces or increases the risk of developing Alzheimer's disease (AD) depending on whether it is assessed in mid-life or late-life. There is currently no consensus on the relationship between obesity and AD or the mechanism or their interaction. Here, we aim to differentiate the cause-and-effect relationship between obesity and AD in a controlled rat model of AD. We induced obesity in 9-month-old TgF344-AD rats, that is pathology-load wise similar to early symptomatic phase of human AD. To more accurately model human obesity, we fed both TgF344-AD and non-transgenic littermates a varied high-carbohydrate-high-fat diet consisting of human food for 3 months. Obesity increased overall glucose metabolism and slowed cognitive decline in TgF344-AD rats, specifically executive function, without affecting non-transgenic rats. Pathological analyses of prefrontal cortex and hippocampus showed that obesity in TgF344-AD rats produced varied effects, with increased density of myelin and oligodendrocytes, lowered density and activation of microglia that we propose contributes to the cognitive improvement. However, obesity also decreased neuronal density, and promoted deposition of amyloid-beta plaques and tau inclusions. After 6 months on the high-carbohydrate-high-fat diet, detrimental effects on density of neurons, amyloid-beta plaques, and tau inclusions persisted while the beneficial effects on myelin, microglia, and cognitive functions remained albeit with a lower effect size. By examining the effect of sex, we found that both beneficial and detrimental effects of obesity were stronger in female TgF344-AD rats indicating that obesity during early symptomatic phase of AD is protective in females.
Collapse
|
35
|
Zhang Z, Chen W, Chan H, Peng J, Zhu P, Li J, Jiang X, Zhang Z, Wang Y, Tan Z, Peng Y, Zhang S, Lin K, Yung KKL. Polystyrene microplastics induce size-dependent multi-organ damage in mice: Insights into gut microbiota and fecal metabolites. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132503. [PMID: 37717443 DOI: 10.1016/j.jhazmat.2023.132503] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Particle size is one of the most important factors in determining the biological toxicity of microplastics (MPs). In this study, we attempted to examine the systemic toxicity of polystyrene MPs of different sizes (0.5 µm MP1 and 5 µm MP2) in C57BL/6 J mice. After the mice were given oral gavage of MPs for 8 consecutive weeks, histopathology and molecular biology assays, 16 S rRNA sequencing of the gut microbiota, and untargeted metabolomics were performed. The results showed that MPs were distributed in the organs in a size-dependent manner, with smaller particles demonstrating greater biodistribution. Further analysis indicated that exposure to MPs caused multi-organ damage through distinct toxicity pathways. Specifically, exposure to 0.5 µm MP1 led to excessive accumulation and induced more serious inflammation and mechanical damage in the spleen, kidney, heart, lung, and liver. However, 5 µm MP2 led to more severe intestinal barrier dysfunction, as well as gut dysbiosis and metabolic disorder in association with neuroinflammation. These results are helpful in expanding our knowledge of the toxicity of MPs of different sizes in mammalian models.
Collapse
Affiliation(s)
- Zhu Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Wenqing Chen
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Hiutung Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junjie Peng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Peili Zhu
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Junkui Li
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Zhang Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ying Wang
- Key Laboratory of Cellular Physiology, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zicong Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Yungkang Peng
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.
| | - Ken Kin-Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hong Kong Special Administrative Region; Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
36
|
Oh J, Kwon TW, Choi JH, Kim Y, Moon SK, Nah SY, Cho IH. Ginsenoside-Re inhibits experimental autoimmune encephalomyelitis as a mouse model of multiple sclerosis by downregulating TLR4/MyD88/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155065. [PMID: 37856989 DOI: 10.1016/j.phymed.2023.155065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Ginsenosides are main active compounds of Panax ginseng with pharmacological effects on immunological/neurological diseases. Recently, ginsenoside-Re (G-Re) has been shown to exert neuroprotective effects on neurodegenerative diseases such as Alzheimer's disease. However, whether G-Re has an effect on multiple sclerosis (MS), a representative autoimmune disease of the central nervous system (CNS), has not been revealed yet. PURPOSE AND METHODS The purpose of this study was to investigate pharmacological effects of G-Re and related molecular mechanisms using a myelin oligodendrocyte glycoprotein peptide-immunized experimental autoimmune encephalomyelitis (EAE) animal model of MS and lipopolysaccharide (LPS)-stimulated bEND.3 cells as an in vitro model of the blood-brain barrier (BBB). RESULTS G-Re attenuated motor impairment of EAE, demyelination, and inflammation in spinal cords of EAE mice. G-Re reduced infiltration/activation of microglia/macrophages and decreased mRNA expression levels of pro-inflammatory cytokines (IL-1β and IL-6), chemokines (MIP-1α, MCP-1, and RANTES), and enzymes (iNOS) in spinal cords of EAE mice. G-Re inhibited alterations of BBB constituents (such as astrocytes, cell adhesion molecule (platelet endothelial cell adhesion molecule-1), and tight junctional molecules (occludin and zonula occludens-1)) and toll like receptor 4 (TLR4)/MyD88/nuclear factor kappa-B (NF-κB) signaling pathways in spinal cords of EAE mice and LPS-stimulated bEND.3 cells. Interestingly, combination treatment with G-Re and TLR4 inhibitor (TAK242) significantly inhibited the upregulation of TLR4/MyD88/NF-κB pathway in LPS-stimulated bEND.3 cells. TLR4 inhibitor- and activator-treated EAE mice showed conflicting behavior patterns. CONCLUSION G-Re might alleviate motor impairment of EAE and its pathological/inflammatory events in the spinal cord by preventing BBB disruption via downregulation of TLR4/MyD88/NF-κB signaling pathways. These findings for the first time suggest that G-Re might be a potential therapeutic for MS through maintenance of BBB integrity.
Collapse
Affiliation(s)
- Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Tae Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Yunna Kim
- Department of Neuropsychiatry in Korean Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Sang-Kwan Moon
- Department of Cardiology and Neurology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Institute of Convergence Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
37
|
Kodosaki E, Daniels-Morgan A, Hassan N, Webb R, Morris K, Kelly CM. Development and characterisation of mgTHP-1, a novel in vitro model for neural macrophages with microglial characteristics. Neurol Res 2024; 46:1-13. [PMID: 37935114 DOI: 10.1080/01616412.2023.2257422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/23/2023] [Indexed: 11/09/2023]
Abstract
Neuroinflammation is primarily characterised by activation of the brain's resident macrophages - the microglia. However, other central nervous system (CNS) cells also contribute to this response, including the astrocytes and endothelial cells. In addition, there is infiltration into the CNS of peripherally derived immune cells. Together these cells mediate inflammation by the production of cytokines, chemokines, reactive oxygen species, and secondary messengers, and enacting of the appropriate response to those signals. However, deciphering the specific contributions of each cell type has been challenging. Studying CNS cell biology is often challenging, as the isolation of primary cells is not always feasible, and differentiation towards microglia-like cells is complex. Here, we demonstrate a novel method whereby THP-1 monocytic cells are differentiated into neural macrophage cells with microglia-like cell characteristics. The cells, designated mgTHP-1, show typical morphological and gene expression patterns of resident CNS macrophages and functionally respond to inflammatory stimuli by producing inflammatory cytokines. Furthermore, with the addition of Vicenin-2 (an anti-inflammatory flavonoid) such responses can be reversed. This novel cell model will allow further investigations, and hence insights, into the neuroinflammatory mechanisms associated with CNS diseases.
Collapse
Affiliation(s)
- E Kodosaki
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - A Daniels-Morgan
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - N Hassan
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - R Webb
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - K Morris
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - C M Kelly
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
38
|
Shook LL, Batorsky RA, De Guzman RM, McCrea LT, Brigida SM, Horng JE, Sheridan SD, Kholod O, Cook AM, Li JZ, Goods BA, Perlis RH, Edlow AG. Maternal SARS-CoV-2 impacts fetal placental macrophage programs and placenta-derived microglial models of neurodevelopment. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.29.23300544. [PMID: 38234776 PMCID: PMC10793528 DOI: 10.1101/2023.12.29.23300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The SARS-CoV-2 virus activates maternal and placental immune responses, which in the setting of other infections occurring during pregnancy are known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. Here, we assessed the impact of maternal SARS-CoV-2 on HBCs isolated from term placentas using single-cell RNA-sequencing. We demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells, with altered morphology and impaired synaptic pruning behavior compared to HBC models from negative controls. These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.
Collapse
|
39
|
Bravo P, Liu Y, Draper BW, Marlow FL. Macrophage activation drives ovarian failure and masculinization in zebrafish. SCIENCE ADVANCES 2023; 9:eadg7488. [PMID: 37992158 PMCID: PMC10664988 DOI: 10.1126/sciadv.adg7488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
BMP15 is a conserved regulator of ovarian development and maintenance in vertebrates. In humans, premature ovarian insufficiency is caused by autoimmunity and genetic factors, including mutation of BMP15. The cellular mechanisms underlying ovarian failure caused by BMP15 mutation and immune contributions are not understood. Using zebrafish, we established a causal link between macrophage activation and ovarian failure, which, in zebrafish, causes sex reversal. We define a germline-soma signaling axis that activates macrophages and drives ovarian failure and female-to-male sex reversal. Germline loss of zebrafish Bmp15 impairs oogenesis and initiates this cascade. Single-cell RNA sequencing and genetic analyses implicate ovarian somatic cells that express conserved macrophage-activating ligands as mediators of ovarian failure and sex reversal. Genetic ablation of macrophages or elimination of Csf1Rb ligands, Il34 or Csf1a, delays or blocks premature oocyte loss and sex reversal. The axis identified here provides insight into the cells and pathways governing oocyte and ovary maintenance and potential therapeutic targets to preserve female fertility.
Collapse
Affiliation(s)
- Paloma Bravo
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yulong Liu
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Bruce W. Draper
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Florence L. Marlow
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
40
|
Platholi J, Marongiu R, Park L, Yu F, Sommer G, Weinberger R, Tower W, Milner TA, Glass MJ. Hippocampal glial inflammatory markers are differentially altered in a novel mouse model of perimenopausal cerebral amyloid angiopathy. Front Aging Neurosci 2023; 15:1280218. [PMID: 38035277 PMCID: PMC10684955 DOI: 10.3389/fnagi.2023.1280218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Dementia is often characterized by age-dependent cerebrovascular pathology, neuroinflammation, and cognitive deficits with notable sex differences in risk, disease onset, progression and severity. Women bear a disproportionate burden of dementia, and the onset of menopause (i.e., perimenopause) may be a critical period conferring increased susceptibility. However, the contribution of early ovarian decline to the neuroinflammatory processes associated with cerebrovascular dementia risks, particularly at the initial stages of pathology that may be more amenable to proactive intervention, is unknown. To better understand the influence of early ovarian failure on dementia-associated neuroinflammation we developed a model of perimenopausal cerebral amyloid angiopathy (CAA), an important contributor to dementia. For this, accelerated ovarian failure (AOF) was induced by 4-vinylcyclohexene diepoxide (VCD) treatment to isolate early-stage ovarian failure comparable to human perimenopause (termed "peri-AOF") in transgenic SWDI mice expressing human vasculotropic mutant amyloid beta (Aβ) precursor protein, that were also tested at an early stage of amyloidosis. We found that peri-AOF SWDI mice showed increased astrocyte activation accompanied by elevated Aβ in select regions of the hippocampus, a brain system involved in learning and memory that is severely impacted during dementia. However, although SWDI mice showed signs of increased hippocampal microglial activation and impaired cognitive function, this was not further affected by peri-AOF. In sum, these results suggest that elevated dysfunction of key elements of the neurovascular unit in select hippocampal regions characterizes the brain pathology of mice at early stages of both CAA and AOF. However, neurovascular unit pathology may not yet have passed a threshold that leads to further behavioral compromise at these early periods of cerebral amyloidosis and ovarian failure. These results are consistent with the hypothesis that the hormonal dysregulation associated with perimenopause onset represents a stage of emerging vulnerability to dementia-associated neuropathology, thus providing a selective window of opportunity for therapeutic intervention prior to the development of advanced pathology that has proven difficult to repair or reverse.
Collapse
Affiliation(s)
- Jimcy Platholi
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Anesthesiology Department, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Marongiu
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
- Genetic Medicine Department, Weill Cornell Medicine, New York, NY, United States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Laibaik Park
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Fangmin Yu
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Garrett Sommer
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - Rena Weinberger
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| | - William Tower
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Michael J. Glass
- Weill Cornell Medicine, Feil Family Brain and Mind Research Institute, New York, NY, United States
| |
Collapse
|
41
|
Zhang H, Sumbria RK, Chang R, Sun J, Cribbs DH, Holmes TC, Fisher MJ, Xu X. Erythrocyte-brain endothelial interactions induce microglial responses and cerebral microhemorrhages in vivo. J Neuroinflammation 2023; 20:265. [PMID: 37968737 PMCID: PMC10647121 DOI: 10.1186/s12974-023-02932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Cerebral microhemorrhages (CMH) are associated with stroke, cognitive decline, and normal aging. Our previous study shows that the interaction between oxidatively stressed red blood cells (RBC) and cerebral endothelium may underlie CMH development. However, the real-time examination of altered RBC-brain endothelial interactions in vivo, and their relationship with clearance of stalled RBC, microglial responses, and CMH development, has not been reported. METHODS RBC were oxidatively stressed using tert-butylhydroperoxide (t-BHP), fluorescently labeled and injected into adult Tie2-GFP mice. In vivo two-photon imaging and ex vivo confocal microscopy were used to evaluate the temporal profile of RBC-brain endothelial interactions associated with oxidatively stressed RBC. Their relationship with microglial activation and CMH was examined with post-mortem histology. RESULTS Oxidatively stressed RBC stall significantly and rapidly in cerebral vessels in mice, accompanied by decreased blood flow velocity which recovers at 5 days. Post-mortem histology confirms significantly greater RBC-cerebral endothelial interactions and microglial activation at 24 h after t-BHP-treated RBC injection, which persist at 7 days. Furthermore, significant CMH develop in the absence of blood-brain barrier leakage after t-BHP-RBC injection. CONCLUSIONS Our in vivo and ex vivo findings show the stalling and clearance of oxidatively stressed RBC in cerebral capillaries, highlighting the significance of microglial responses and altered RBC-brain endothelial interactions in CMH development. Our study provides novel mechanistic insight into CMH associated with pathological conditions with increased RBC-brain endothelial interactions.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - Jiahong Sun
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, 92618, USA
| | - David H Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Mark J Fisher
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department of Neurology, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Beckman Laser Institute, University of California, Irvine, CA, 92697, USA.
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA, 92697, USA.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
42
|
Gheorghe RO, Grosu AV, Magercu M, Ghenghea MS, Zbarcea CE, Tanase A, Negres S, Filippi A, Chiritoiu G, Gherghiceanu M, Dinescu S, Gaina G, Sapunar D, Ristoiu V. Switching Rat Resident Macrophages from M1 to M2 Phenotype by Iba1 Silencing Has Analgesic Effects in SNL-Induced Neuropathic Pain. Int J Mol Sci 2023; 24:15831. [PMID: 37958812 PMCID: PMC10648812 DOI: 10.3390/ijms242115831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Resident macrophages from dorsal root ganglia are important for the development of traumatic-induced neuropathic pain. In the first 5-7 days after a traumatic sciatic nerve injury (i.e., spinal nerve ligation (SNL), spared nerve injury (SNI), sciatic nerve transection or sciatic nerve ligation and transection), Ionized binding adapter protein 1 (Iba1) (+) resident macrophages cluster around dorsal root ganglia neurons, possibly contributing to nerve injury-induced hypersensitivity. Since infiltrating macrophages gradually recruited to the lesion site peak at about 7 days, the first few days post-lesion offer a window of opportunity when the contribution of Iba1 (+) resident macrophages to neuropathic pain pathogenesis could be investigated. Iba1 is an actin cross-linking cytoskeleton protein, specifically located only in macrophages and microglia. In this study, we explored the contribution of rat Iba1 (+) macrophages in SNL-induced neuropathic pain by using intra-ganglionic injections of naked Iba1-siRNA, delivered at the time the lesion occurred. The results show that 5 days after Iba1 silencing, Iba1 (+) resident macrophages are switched from an M1 (pro-inflammatory) phenotype to an M2 (anti-inflammatory) phenotype, which was confirmed by a significant decrease of M1 markers (CD32 and CD86), a significant increase of M2 markers (CD163 and Arginase-1), a reduced secretion of pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) and an increased release of pro-regenerative factors (BDNF, NGF and NT-3) which initiated the regrowth of adult DRG neurites and reduced SNL-induced neuropathic pain. Our data show for the first time, that it is possible to induce macrophages towards an anti-inflammatory phenotype by interacting with their cytoskeleton.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Andreea Violeta Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Melania Magercu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Mihail-Sebastian Ghenghea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| | - Cristina Elena Zbarcea
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandra Tanase
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Simona Negres
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 6 Traian Vuia Street, District 2, 02095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Biophysics, University of Medicine and Pharmacy “Carol Davila”, 8 Eroilor Sanitari Blvd., 050474 Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 2996 Splaiul Independentei 296, District 6, 060031 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, Victor Babeș National Institute of Pathology Bucharest, 99-101 Splaiul Independentei, District 5, 050096 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Gisela Gaina
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Damir Sapunar
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania; (R.-O.G.)
| |
Collapse
|
43
|
Liu C, Cardenas-Rivera A, Teitelbaum S, Birmingham A, Alfadhel M, Yaseen MA. Neuroinflammation increases oxygen extraction in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562353. [PMID: 37905082 PMCID: PMC10614808 DOI: 10.1101/2023.10.16.562353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccaride-induced neuroinflammation. Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.
Collapse
|
44
|
Loeb AM, Pattwell SS, Meshinchi S, Bedalov A, Loeb KR. Donor bone marrow-derived macrophage engraftment into the central nervous system of patients following allogeneic transplantation. Blood Adv 2023; 7:5851-5859. [PMID: 37315172 PMCID: PMC10558597 DOI: 10.1182/bloodadvances.2023010409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/16/2023] Open
Abstract
Hematopoietic stem cell transplantation is a well-known treatment for hematologic malignancies, wherein nascent stem cells provide regenerating marrow and immunotherapy against the tumor. The progeny of hematopoietic stem cells also populate a wide spectrum of tissues, including the brain, as bone marrow-derived macrophages similar to microglial cells. We developed a sensitive and novel combined immunohistochemistry (IHC) and XY fluorescence in situ hybridization assay to detect, quantify, and characterize donor cells in the cerebral cortices of 19 female patients who underwent allogeneic stem cell transplantation. We showed that the number of male donor cells ranged from 0.14% to 3.0% of the total cells or from 1.2% to 25% of microglial cells. Using tyramide-based fluorescent IHC, we found that at least 80% of the donor cells expressed the microglial marker ionized calcium-binding adapter molecule-1, consistent with bone marrow-derived macrophages. The percentage of donor cells was related to pretransplantation conditioning; donor cells from radiation-based myeloablative cases averaged 8.1% of microglial cells, whereas those from nonmyeloablative cases averaged only 1.3%. The number of donor cells in patients conditioned with busulfan- or treosulfan-based myeloablation was similar to that in total body irradiation-based conditioning; donor cells averaged 6.8% of the microglial cells. Notably, patients who received multiple transplantations and those with the longest posttransplantation survival had the highest level of donor engraftment, with donor cells averaging 16.3% of the microglial cells. Our work represents the largest study characterizing bone marrow-derived macrophages in patients after transplantation. The efficiency of engraftment observed in our study warrants future research on microglial replacement as a therapeutic option for disorders of the central nervous system.
Collapse
Affiliation(s)
| | - Siobhan S. Pattwell
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Soheil Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Antonio Bedalov
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Keith R. Loeb
- Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
45
|
Gurule NJ, Malcolm KC, Harris C, Knapp JR, O'Connor BP, McClendon J, Janssen WJ, Lee FFY, Price C, Osaghae-Nosa J, Wheeler EA, McMahon CM, Pietras EM, Pollyea DA, Alper S. Myelodysplastic neoplasm-associated U2AF1 mutations induce host defense defects by compromising neutrophil chemotaxis. Leukemia 2023; 37:2115-2124. [PMID: 37591942 PMCID: PMC10539173 DOI: 10.1038/s41375-023-02007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Myelodysplastic neoplasm (MDS) is a hematopoietic stem cell disorder that may evolve into acute myeloid leukemia. Fatal infection is among the most common cause of death in MDS patients, likely due to myeloid cell cytopenia and dysfunction in these patients. Mutations in genes that encode components of the spliceosome represent the most common class of somatically acquired mutations in MDS patients. To determine the molecular underpinnings of the host defense defects in MDS patients, we investigated the MDS-associated spliceosome mutation U2AF1-S34F using a transgenic mouse model that expresses this mutant gene. We found that U2AF1-S34F causes a profound host defense defect in these mice, likely by inducing a significant neutrophil chemotaxis defect. Studies in human neutrophils suggest that this effect of U2AF1-S34F likely extends to MDS patients as well. RNA-seq analysis suggests that the expression of multiple genes that mediate cell migration are affected by this spliceosome mutation and therefore are likely drivers of this neutrophil dysfunction.
Collapse
Affiliation(s)
- Natalia J Gurule
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - Chelsea Harris
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jennifer R Knapp
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | | | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, CO, USA
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA
| | - Caitlin Price
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | - Jackson Osaghae-Nosa
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Emily A Wheeler
- Department of Medicine, National Jewish Health, Denver, CO, USA
| | | | - Eric M Pietras
- Department of Medicine, University of Colorado, Aurora, CO, USA
| | | | - Scott Alper
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA.
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, USA.
| |
Collapse
|
46
|
Shaposhnikova DA, Moskaleva EY, Syomochkina YP, Vysotskaya OV, Komova OV, Nasonova EA, Koshlan IV. Characteristics of SIM-A9 Microglia Cells: New Data. CELL AND TISSUE BIOLOGY 2023; 17:503-516. [DOI: 10.1134/s1990519x23050127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/15/2022] [Accepted: 12/03/2022] [Indexed: 01/03/2025]
|
47
|
Larochelle J, Tishko RJ, Yang C, Ge Y, Phan LT, Gunraj RE, Stansbury SM, Liu L, Mohamadzadeh M, Khoshbouei H, Candelario-Jalil E. Receptor-interacting protein kinase 2 (RIPK2) profoundly contributes to post-stroke neuroinflammation and behavioral deficits with microglia as unique perpetrators. J Neuroinflammation 2023; 20:221. [PMID: 37777791 PMCID: PMC10543871 DOI: 10.1186/s12974-023-02907-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Receptor-interacting protein kinase 2 (RIPK2) is a serine/threonine kinase whose activity propagates inflammatory signaling through its association with pattern recognition receptors (PRRs) and subsequent TAK1, NF-κB, and MAPK pathway activation. After stroke, dead and dying cells release a host of damage-associated molecular patterns (DAMPs) that activate PRRs and initiate a robust inflammatory response. We hypothesize that RIPK2 plays a damaging role in the progression of stroke injury by enhancing the neuroinflammatory response to stroke and that global genetic deletion or microglia-specific conditional deletion of Ripk2 will be protective following ischemic stroke. METHODS Adult (3-6 months) male mice were subjected to 45 min of transient middle cerebral artery occlusion (tMCAO) followed by 24 h, 48 h, or 28 days of reperfusion. Aged male and female mice (18-24 months) were subjected to permanent ischemic stroke and sacrificed 48 h later. Infarct volumes were calculated using TTC staining (24-48 h) or Cresyl violet staining (28d). Sensorimotor tests (weight grip, vertical grid, and open field) were performed at indicated timepoints. Blood-brain barrier (BBB) damage, tight junction proteins, matrix metalloproteinase-9 (MMP-9), and neuroinflammatory markers were assessed via immunoblotting, ELISA, immunohistochemistry, and RT-qPCR. Differential gene expression profiles were generated through bulk RNA sequencing and nanoString®. RESULTS Global genetic deletion of Ripk2 resulted in decreased infarct sizes and reduced neuroinflammatory markers 24 h after stroke compared to wild-type controls. Ripk2 global deletion also improved both acute and long-term behavioral outcomes with powerful effects on reducing infarct volume and mortality at 28d post-stroke. Conditional deletion of microglial Ripk2 (mKO) partially recapitulated our results in global Ripk2 deficient mice, showing reductive effects on infarct volume and improved behavioral outcomes within 48 h of injury. Finally, bulk transcriptomic profiling and nanoString data demonstrated that Ripk2 deficiency in microglia decreases genes associated with MAPK and NF-κB signaling, dampening the neuroinflammatory response after stroke injury by reducing immune cell activation and peripheral immune cell invasion. CONCLUSIONS These results reveal a hitherto unknown role for RIPK2 in the pathogenesis of ischemic stroke injury, with microglia playing a distinct role. This study identifies RIPK2 as a potent propagator of neuroinflammatory signaling, highlighting its potential as a therapeutic target for post-stroke intervention.
Collapse
Affiliation(s)
- Jonathan Larochelle
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Ryland J Tishko
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Yong Ge
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Leah T Phan
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Rachel E Gunraj
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Sofia M Stansbury
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Mansour Mohamadzadeh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health, San Antonio, TX, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 1149 SW Newell Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
48
|
Oliva CA, Lira M, Jara C, Catenaccio A, Mariqueo TA, Lindsay CB, Bozinovic F, Cavieres G, Inestrosa NC, Tapia-Rojas C, Rivera DS. Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1250342. [PMID: 37810621 PMCID: PMC10557460 DOI: 10.3389/fnagi.2023.1250342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Centro para la Transversalización de Género en I+D+i+e, Vicerrectoría de Investigación y Doctorados, Universidad Autónoma de Chile, Santiago, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alejandra Catenaccio
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Trinidad A. Mariqueo
- Centro de Investigaciones Médicas, Laboratorio de Neurofarmacología, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Carolina B. Lindsay
- Laboratory of Neurosystems, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Grisel Cavieres
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Daniela S. Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| |
Collapse
|
49
|
Wang Y, Gao T, Wang B. Application of mesenchymal stem cells for anti-senescence and clinical challenges. Stem Cell Res Ther 2023; 14:260. [PMID: 37726805 PMCID: PMC10510299 DOI: 10.1186/s13287-023-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Senescence is a hot topic nowadays, which shows the accumulation of senescent cells and inflammatory factors, leading to the occurrence of various senescence-related diseases. Although some methods have been identified to partly delay senescence, such as strengthening exercise, restricting diet, and some drugs, these only slow down the process of senescence and cannot fundamentally delay or even reverse senescence. Stem cell-based therapy is expected to be a potential effective way to alleviate or cure senescence-related disorders in the coming future. Mesenchymal stromal cells (MSCs) are the most widely used cell type in treating various diseases due to their potentials of self-replication and multidirectional differentiation, paracrine action, and immunoregulatory effects. Some biological characteristics of MSCs can be well targeted at the pathological features of aging. Therefore, MSC-based therapy is also a promising strategy to combat senescence-related diseases. Here we review the recent progresses of MSC-based therapies in the research of age-related diseases and the challenges in clinical application, proving further insight and reference for broad application prospects of MSCs in effectively combating senesce in the future.
Collapse
Affiliation(s)
- Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, People's Republic of China
| | - Tianyun Gao
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
50
|
Brandt A, Kromm F, Hernández-Arriaga A, Martínez Sánchez I, Bozkir HÖ, Staltner R, Baumann A, Camarinha-Silva A, Heijtz RD, Bergheim I. Cognitive Alterations in Old Mice Are Associated with Intestinal Barrier Dysfunction and Induced Toll-like Receptor 2 and 4 Signaling in Different Brain Regions. Cells 2023; 12:2153. [PMID: 37681885 PMCID: PMC10486476 DOI: 10.3390/cells12172153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Emerging evidence implicate the 'microbiota-gut-brain axis' in cognitive aging and neuroinflammation; however, underlying mechanisms still remain to be elucidated. Here, we assessed if potential alterations in intestinal barrier function and microbiota composition as well as levels of two key pattern-recognition receptors namely Toll-like receptor (TLR) 2 and TLR4, in blood and different brain regions, and depending signaling cascades are paralleling aging associated alterations of cognition in healthy aging mice. Cognitive function was assessed in the Y-maze and intestinal and brain tissue and blood were collected in young (4 months old) and old (24 months old) male C57BL/6 mice to determine intestinal microbiota composition by Illumina amplicon sequencing, the concentration of TLR2 and TLR4 ligands in plasma and brain tissue as well as to determine markers of intestinal barrier function, senescence and TLR2 and TLR4 signaling. Cognitive function was significantly impaired in old mice. Also, in old mice, intestinal microbiota composition was significantly altered, while the relative abundance of Gram-negative or Gram-positive bacteria in the small and large intestines at different ages was not altered. Moreover, intestinal barrier function was impaired in small intestine of old mice, and the levels of TLR2 and TLR4 ligands were also significantly higher in both portal and peripheral blood. Furthermore, levels of TLR2 and TLR4 ligands, and downstream markers of TLR signaling were higher in the hippocampal and prefrontal cortex of old mice compared to young animals. Taken together, our results suggest that even in 'healthy' aging, cognitive function is impaired in mice going along with an increased intestinal translocation of TLR ligands and alterations of TLR signaling in several brain regions.
Collapse
Affiliation(s)
- Annette Brandt
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Franziska Kromm
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Angélica Hernández-Arriaga
- Animal Nutrition Department, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany
| | - Inés Martínez Sánchez
- Department of Neuroscience, Karolinska Institute, Biomedicum, 17177 Stockholm, Sweden
| | - Haktan Övül Bozkir
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Raphaela Staltner
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Anja Baumann
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| | - Amélia Camarinha-Silva
- Animal Nutrition Department, Institute of Animal Science, University of Hohenheim, 70593 Stuttgart, Germany
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Karolinska Institute, Biomedicum, 17177 Stockholm, Sweden
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|