1
|
García-de-Diego AM. C-subfamily ATP binding cassette transporters extrude the calcium fluorescent probe fluo-4 from a cone photoreceptor cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1727-1740. [PMID: 36805766 DOI: 10.1007/s00210-023-02422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Whole transcriptome sequencing has revealed the existence of mRNAs for multiple membrane transporters in photoreceptors. Except for ATP binding cassette (ABC) member A4, involved in the retinoid cycle, an understanding of the function of most transport proteins in photoreceptors is lacking. In this research paper, extrusion of fluo-4, a Ca2+ fluorescent probe, from 661W cells, a cone photoreceptor murine cell line was studied with online fluorometry and immunocytochemistry. Fluo-4 efflux was temperature dependent, required ATP but not extracellular Na+, was not affected by pH in the range 5.4-8.4, and followed saturating kinetics with a Km of nearly 4 μM, suggesting it was effected by ABC type transporters. A panel of antagonists showed an inhibitory profile typical of the C subfamily of ABC transporters. Immunofluorescence staining was positive for ABCC3, ABCC4 and ABCC5. These experimental results are compatible with fluo-4 being extruded from 661W cones by one or a combination of C-type ABC transporters. Examination of physicochemical descriptors related to drug membrane permeability and ABC substrate binding region further suggested efflux of fluo-4 by C-type ABC transporters. Possible functions of this transport mechanism in photoreceptors are discussed.
Collapse
Affiliation(s)
- Antonio-Miguel García-de-Diego
- Instituto Teófilo Hernando de I+D del Medicamento, Madrid, Spain.
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Li G, Zhang P, Sun W, Ren C, Wang L. Bridging-BPs: a novel approach to predict potential drug-target interactions based on a bridging heterogeneous graph and BPs2vec. Brief Bioinform 2022; 23:6509044. [PMID: 35037024 DOI: 10.1093/bib/bbab557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/04/2021] [Accepted: 12/05/2021] [Indexed: 11/12/2022] Open
Abstract
Predicting drug-target interactions (DTIs) is a convenient strategy for drug discovery. Although various computational methods have been put forward in recent years, DTIs prediction is still a challenging task. In this paper, based on indirect prior information (we term them as mediators), we proposed a new model, called Bridging-BPs (bridging paths), for DTIs prediction. Specifically, we regarded linkage process between mediators and DTs (drugs and proteins) as 'bridging' and source (drug)-mediators-destination (protein) as bridging paths. By integrating various bridging paths, we constructed a bridging heterogeneous graph for DTIs. After that, an improved graph-embedding algorithm-BPs2vec-was designed to capture deep topological features underlying the bridging graph, thereby obtaining the low-dimensional node vector representations. Then, the vector representations were fed into a Random Forest classifier to train and score the probability, outputting the final classification results for potential DTIs. Under 5-fold cross validation, our method obtained AUPR of 88.97% and AUC of 88.63%, suggesting that Bridging-BPs could effectively mine the link relationships hidden in indirect prior information and it significantly improved the accuracy and robustness of DTIs prediction without direct prior information. Finally, we confirmed the practical prediction ability of Bridging-BPs by case studies.
Collapse
Affiliation(s)
- Guodong Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengjuan Ren
- School of Computer Software Convergence Engineering, Kunsan National University, Kunsan, 54150, Korea
| | - Lei Wang
- Big Data and Intelligent Computing Research Center, Guangxi Academy of Science, Nanning, 530007, China
| |
Collapse
|
3
|
Saib S, Hodin S, Bin V, Ollier E, Delavenne X. In Vitro Evaluation of P-gp-Mediated Drug-Drug Interactions Using the RPTEC/TERT1 Human Renal Cell Model. Eur J Drug Metab Pharmacokinet 2021; 47:223-233. [PMID: 34935100 DOI: 10.1007/s13318-021-00744-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVES In vitro evaluation of the P-glycoprotein (P-gp) inhibitory potential is an important issue when predicting clinically relevant drug-drug interactions (DDIs). Located within all physiological barriers, including intestine, liver, and kidneys, P-gp plays a major role in the pharmacokinetics of various therapeutic classes. However, few data are available about DDIs involving renal transporters during the active tubular secretion of drugs. In this context, the present study was designed to investigate the application of the human renal cell line RPTEC/TERT1 to study drug interactions mediated by P-gp. METHODS The P-gp inhibitory potentials of a panel of drugs were first determined by measuring the intracellular accumulation of rhodamine 123 in RPTEC/TERT1 cells. Then four drugs were selected to assess the half-maximal inhibitor concentration (IC50) values by measuring the intracellular accumulation of two P-gp-substrate drugs, apixaban and rivaroxaban. Finally, according to the FDA guidelines, the [I1]/IC50 ratio was calculated for each combination of drugs to assess the clinical relevance of the DDIs. RESULTS The data showed that drugs which are known P-gp inhibitors, including cyclosporin A, ketoconazole, and verapamil, caused great increases in rhodamine 123 retention, whereas noninhibitors did not affect the intracellular accumulation of the P-gp substrate. The determined IC50 values were in accordance with the inhibition profiles observed in the rhodamine 123 accumulation assays, confirming the reliability of the RPTEC/TERT1 model. CONCLUSIONS Taken together, the data demonstrate the feasibility of the application of the RPTEC/TERT1 model for evaluating the P-gp inhibitory potentials of drugs and consequently predicting renal drug interactions.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France.
| | - Sophie Hodin
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Valérie Bin
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Edouard Ollier
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
4
|
Lal N, Verma N. The effect of combination of functional and nonfunctional acrylic polymers on transdermal patches of : in vitro permeation, in vivo evaluation using biochemical parameters, and stability studies. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A double-layer transdermal drug-in-adhesive patch of carvedilol was developed using functional and nonfunctional grades of acrylic adhesives, DURO-TAK® 387-2051, DURO-TAK® 387-2510, and DURO-TAK® 87-4098. The patch was designed to provide adequate permeation of the drug up to 2 days, with effective adhesion attributes. An optimized formulation was selected, the effect of the combination was studied and a 180° peel strength test was performed to evaluate adhesive properties. Further, the patch was assessed for in vivo studies on basis of biochemical parameters, skin irritation, and stability studies. The stability study was carried out on optimized fresh (S1) and 6 months old patches stored at room, and accelerated condition (40 ± 2 °C/75 ± 5% RH) using FTIR, DSC, and SEM techniques.
Result
It was studied that the steady-state flux (Jss) or permeation rate of the drug through excised rat skin has relied on the nature of acrylic and the combination of acrylic polymers. The TDDS containing –OH functional group DT 387-2510 with nonfunctional pressure-sensitive adhesives (PSAs) DT 87-4098, with Span 80 as penetration enhancer exhibited maximum flux (19.12 ± 0.64 μg/cm2/h) and form homogeneous and stable blends, controlling permeation of drug at a desired steady rate for 48 h. The data obtained from in vivo studies using biochemical parameters suggested that there were no statistical differences observed in results for the control and treated group while analyzing observations for serum creatinine, glucose test, sodium test, albumin, and potassium (p > 0.05). Also, the optimized formulation showed no sign of localized reactions and was confirmed by a skin histological study indicating the formulation was safe and compatible with the skin. A significant shift of peaks was not observed in FTIR spectra and DSC thermograms of the patches after the stability period.
Conclusion
The investigation reveals that the drug-in-adhesive patch of carvedilol, by a combination of functional and nonfunctional PSAs, provides a good and effective option for controlled delivery of carvedilol. From our findings, it has been concluded that drug in the adhesive patch has been able to provide satisfactory adhesion, drug uniformity, drug permeation, marked positive biochemical results, and good stability.
Collapse
|
5
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
6
|
Ibrahim H, El Kerdawy AM, Abdo A, Sharaf Eldin A. Similarity-based machine learning framework for predicting safety signals of adverse drug–drug interactions. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
7
|
Neuronal Activity Regulates Blood-Brain Barrier Efflux Transport through Endothelial Circadian Genes. Neuron 2020; 108:937-952.e7. [PMID: 32979312 DOI: 10.1016/j.neuron.2020.09.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 01/11/2023]
Abstract
The blood vessels in the central nervous system (CNS) have a series of unique properties, termed the blood-brain barrier (BBB), which stringently regulate the entry of molecules into the brain, thus maintaining proper brain homeostasis. We sought to understand whether neuronal activity could regulate BBB properties. Using both chemogenetics and a volitional behavior paradigm, we identified a core set of brain endothelial genes whose expression is regulated by neuronal activity. In particular, neuronal activity regulates BBB efflux transporter expression and function, which is critical for excluding many small lipophilic molecules from the brain parenchyma. Furthermore, we found that neuronal activity regulates the expression of circadian clock genes within brain endothelial cells, which in turn mediate the activity-dependent control of BBB efflux transport. These results have important clinical implications for CNS drug delivery and clearance of CNS waste products, including Aβ, and for understanding how neuronal activity can modulate diurnal processes.
Collapse
|
8
|
Pollard J, Rajabi-Siahboomi A, Badhan RKS, Mohammed AR, Perrie Y. High-throughput screening of excipients with a biological effect: a kinetic study on the effects of surfactants on efflux-mediated transport. J Pharm Pharmacol 2019; 71:889-897. [DOI: 10.1111/jphp.13072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/12/2019] [Indexed: 11/28/2022]
Abstract
Abstract
Objective
In this study, we develop and apply a high-throughput screening protocol to investigate the activity of non-ionic surfactants, with a broad range of hydrophilic–lipophilic balance values, against ABCB1-mediated efflux transport and ABCC2-mediated efflux transport.
Methods
Caco-2 cells were grown for 7 days in 96-well plates, then washed and incubated with the test materials for 2 h in the presence of 2.5 μm of either rhodamine 123 (R-123) or 5(6)-Carboxy-2′,7′ dichlorofluorescein diacetate as probes of ABCB1 and ABCC2, respectively.
Key findings
Of the surfactants tested, no activity against ABCC2 was detected and all surfactants showing efficacy against ABCB1 had a HLB value of 22 or below. Inhibition of ABCB1 was seen in the order of efficacy to be poloxamer 335 > poloxamer 40 > Crovol A-70 > Myrj S-40 > poloxamer 184 > poloxamer 182 > Etocas 40 > Tween 20 > Etocas 29 > Tween 80 > Acconon C-44 > Span 20. With regard to this inhibition, the distribution of hydrophilic regions is more important than the HLB value.
Conclusion
This work demonstrates a high-throughput protocol for detecting materials that can modulate ABCB1-mediated efflux. These surfactants could be exploited to improve oral delivery of drugs prone to efflux.
Collapse
Affiliation(s)
- John Pollard
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Birmingham, UK
| | | | - Raj K S Badhan
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Afzal R Mohammed
- Aston Pharmacy School, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
9
|
Elefantova K, Lakatos B, Kubickova J, Sulova Z, Breier A. Detection of the Mitochondrial Membrane Potential by the Cationic Dye JC-1 in L1210 Cells with Massive Overexpression of the Plasma Membrane ABCB1 Drug Transporter. Int J Mol Sci 2018; 19:ijms19071985. [PMID: 29986516 PMCID: PMC6073605 DOI: 10.3390/ijms19071985] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 01/13/2023] Open
Abstract
JC-1, a cationic fluorescent dye when added to living cells, is known to be localized exclusively in mitochondria, particularly in good physiological conditions characterized by sufficient mitochondrial membrane potential (ΔΨ). The accumulation of JC-1 in these organelles leads to the formation J-aggregates (with a specific red fluorescence emission maximum at 590 nm), which is in addition to the typical green fluorescence of J-monomers (emission maximum of ∼529 nm). The lack of mitochondrial ΔΨ leads to the depression of JC-1 mitochondrial accumulation and a decrease in J-aggregate formation. Therefore, the ratio between the red and green fluorescence of cells loaded with JC-1 is often used for the detection of the mitochondrial membrane potential. However, JC-1 represents a suitable substrate of the multidrug transporter P-glycoprotein (P-gp). Therefore, the depression of the JC-1 content in intracellular space and particularly in the mitochondria to a level that is inefficient for J-aggregate formation could be expected in P-gp-positive cells. In the current paper, we proved this behavior on parental P-gp-negative L1210 (S) cells and their P-gp-positive variants obtained by either selection with vincristine (R) or transfection with the human gene encoding P-gp (T). P-glycoprotein inhibitors cyclosporine A and verapamil fail to restore JC-1 loading of the R and T cells to an extent similar to that observed in S cells. In contrast, the noncompetitive high affinity P-gp inhibitor tariquidar fully restored JC-1 accumulation and the presence of the typical red fluorescence of J-aggregates. In the presence of tariquidar, measurement of the JC-1 fluorescence revealed similar levels of mitochondrial membrane potential in P-gp-negative (S) and P-gp-positive cells (R and T).
Collapse
Affiliation(s)
- Katarina Elefantova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
| | - Boris Lakatos
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
| | - Jana Kubickova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava 4, Slovakia.
| | - Albert Breier
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava 1, Slovakia.
- Institute of Molecular Physiology and Genetics, Centre of Bioscience, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava 4, Slovakia.
| |
Collapse
|
10
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
11
|
Li M, de Graaf IA, de Jager MH, Groothuis GM. P-gp activity and inhibition in the different regions of human intestineex vivo. Biopharm Drug Dispos 2016; 38:127-138. [DOI: 10.1002/bdd.2047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Ming Li
- Department of Pharmacokinetics, Toxicology & Targeting; Groningen Research Institute of Pharmacy, University of Groningen; Antonius Deusinglaan 1, 9713 AV Groningen the Netherlands
| | - Inge A.M. de Graaf
- Department of Pharmacokinetics, Toxicology & Targeting; Groningen Research Institute of Pharmacy, University of Groningen; Antonius Deusinglaan 1, 9713 AV Groningen the Netherlands
| | - Marina H. de Jager
- Department of Pharmacokinetics, Toxicology & Targeting; Groningen Research Institute of Pharmacy, University of Groningen; Antonius Deusinglaan 1, 9713 AV Groningen the Netherlands
| | - Geny M.M. Groothuis
- Department of Pharmacokinetics, Toxicology & Targeting; Groningen Research Institute of Pharmacy, University of Groningen; Antonius Deusinglaan 1, 9713 AV Groningen the Netherlands
| |
Collapse
|
12
|
Kim MK, Park KS, Choo H, Chong Y. Quercetin-POM (pivaloxymethyl) conjugates: Modulatory activity for P-glycoprotein-based multidrug resistance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:778-785. [PMID: 26141765 DOI: 10.1016/j.phymed.2015.05.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND We previously demonstrated that the bioactivity of quercetin could be improved through conjugation with a hydrolysable pivaloxymethyl (POM) group. PURPOSE Present study aimed to evaluate MDR (multidrug resistance)-modulatory activity of the quercetin-POM conjugates. STUDY DESIGN/METHODS MDR-modulatory activity was determined by measuring cytotoxicity of various anticancer agents to MDR MES-SA/Dx5 cell lines upon combination with the quercetin-POM conjugates. RESULTS The quercetin-7-O-POM conjugate (7-O-POM-Q) was significantly more potent than quercetin in reversing MDR, which recovered the cytotoxicity of various anticancer agents with EC50 values of 1.1-1.3 µM. A series of mechanistic studies revealed that 7-O-POM-Q competes with verapamil in binding to the same drug-binding site of the major MDR target, Pgp (P-glycoprotein), and inhibits Pgp-mediated drug efflux with a similar potency as verapamil. The physicochemical properties of 7-O-POM-Q were then evaluated, which confirmed that 7-O-POM-Q has remarkably enhanced cellular uptake and intracellular localization compared with quercetin. Additionally, it is noteworthy that 7-O-POM-Q undergoes slow hydrolysis to quercetin over a prolonged period of time. CONCLUSION The quercetin-POM conjugate showed significantly improved MDR-reversing activity compared with quercetin, which could be attributed to its capacity to maintain high intracellular concentrations.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Kwang-su Park
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hyunah Choo
- Neuro-Medicine Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoungbuk-gu, Seoul 136-791, Republic of Korea.
| | - Youhoon Chong
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
13
|
Fardel O, Le Vee M, Jouan E, Denizot C, Parmentier Y. Nature and uses of fluorescent dyes for drug transporter studies. Expert Opin Drug Metab Toxicol 2015; 11:1233-51. [PMID: 26050735 DOI: 10.1517/17425255.2015.1053462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Drug transporters are now recognized as major players involved in pharmacokinetics and toxicology. Methods for assessing their activity are important to consider, particularly owing to regulatory requirements with respect to inhibition of drug transporter activity and prediction of drug-drug interactions. In this context, the use of fluorescent-dye-based transport assays is likely to deserve attention. AREAS COVERED This review provides an overview of the nature of fluorescent dye substrates for ATP-binding cassette and solute carrier drug transporters. Their use for investigating drug transporter activity in cultured cells and clinical hematological samples, drug transporter inhibition, drug transporter imaging and drug transport at the organ level are summarized. EXPERT OPINION A wide range of fluorescent dyes is now available for use in various aspects of drug transporter studies. The use of these dyes for transporter analyses may, however, be hampered by classic pitfalls of fluorescence technology, such as quenching. Transporter-independent processes such as passive diffusion of dyes through plasma membrane or dye sequestration into subcellular compartments must also be considered, as well as the redundant handling by various distinct transporters of some fluorescent probes. Finally, standardization of dye-based transport assays remains an important on-going issue.
Collapse
Affiliation(s)
- Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes , France
| | | | | | | | | |
Collapse
|
14
|
Thai KM, Huynh NT, Ngo TD, Mai TT, Nguyen TH, Tran TD. Three- and four-class classification models for P-glycoprotein inhibitors using counter-propagation neural networks. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:139-163. [PMID: 25588022 DOI: 10.1080/1062936x.2014.995701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
P-glycoprotein (P-gp) is an ATP binding cassette (ABC) transporter that helps to protect several certain human organs from xenobiotic exposure. This efflux pump is also responsible for multi-drug resistance (MDR), an issue of the chemotherapy approach in the fight against cancer. Therefore, the discovery of P-gp inhibitors is considered one of the most popular strategies to reverse MDR in tumour cells and to improve therapeutic efficacy of commonly used cytotoxic drugs. Until now, several generations of P-gp inhibitors have been developed but they have largely failed in preclinical and clinical studies due to lack of selectivity, poor solubility and severe pharmacokinetic interactions. In this study, three models (SION, SIO, SIN) to classify specific 'true' P-gp inhibitors as well as three other models (CPBN, CPB1, CPN) to distinguish between P-gp inhibitors, CYP 3A inhibitors and co-inhibitors of these proteins with rather high accuracy values for the test set and the external set were generated based on counter-propagation neural networks (CPG-NN). Such three and four-class classification models helped provide more information about the bioactivities of compounds not only on one target (P-gp), but also on a combination of multiple targets (P-gp, CYP 3A).
Collapse
Affiliation(s)
- K-M Thai
- a Department of Medicinal Chemistry, School of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Ho Chi Minh City , Viet Nam
| | | | | | | | | | | |
Collapse
|
15
|
Rijpma SR, van den Heuvel JJMW, van der Velden M, Sauerwein RW, Russel FGM, Koenderink JB. Atovaquone and quinine anti-malarials inhibit ATP binding cassette transporter activity. Malar J 2014; 13:359. [PMID: 25218605 PMCID: PMC4172838 DOI: 10.1186/1475-2875-13-359] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/22/2014] [Indexed: 12/21/2022] Open
Abstract
Background Therapeutic blood plasma concentrations of anti-malarial drugs are essential for successful treatment. Pharmacokinetics of pharmaceutical compounds are dependent of adsorption, distribution, metabolism, and excretion. ATP binding cassette (ABC) transport proteins are particularly involved in drug deposition, as they are located at membranes of many uptake and excretory organs and at protective barriers, where they export endogenous and xenobiotic compounds, including pharmaceuticals. In this study, a panel of well-established anti-malarial drugs which may affect drug plasma concentrations was tested for interactions with human ABC transport proteins. Methods The interaction of chloroquine, quinine, artemisinin, mefloquine, lumefantrine, atovaquone, dihydroartemisinin and proguanil, with transport activity of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), bile salt export pump (BSEP) and multidrug resistance-associated proteins (MRP) 1–4 were analysed. The effect of the anti-malarials on the ATP-dependent uptake of radio-labelled substrates was measured in membrane vesicles isolated from HEK293 cells overexpressing the ABC transport proteins. Results A strong and previously undescribed inhibition of BCRP-mediated transport by atovaquone with a 50% inhibitory concentration (IC50) of 0.23 μM (95% CI 0.17-0.29 μM) and inhibition of P-gp-mediated transport by quinine with an IC50 of 6.8 μM (95% CI 5.9-7.8 μM) was observed. Furthermore, chloroquine and mefloquine were found to significantly inhibit P-gp-mediated transport. BCRP transport activity was significantly inhibited by all anti-malarials tested, whereas BSEP-mediated transport was not inhibited by any of the compounds. Both MRP1- and MRP3-mediated transport were significantly inhibited by mefloquine. Conclusions Atovaquone and quinine significantly inhibit BCRP- and P-gp- mediated transport at concentrations within the clinically relevant prophylactic and therapeutic range. Co-administration of these established anti-malarials with drugs that are BCRP or P-gp substrates may potentially lead to drug-drug interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
16
|
Kim MK, Choo H, Chong Y. Water-soluble and cleavable quercetin-amino acid conjugates as safe modulators for P-glycoprotein-based multidrug resistance. J Med Chem 2014; 57:7216-33. [PMID: 25122155 DOI: 10.1021/jm500290c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quercetin-amino acid conjugates with alanine or glutamic acid moiety attached at 7-O and/or 3-O position of quercetin were prepared, and their multidrug resistance (MDR)-modulatory effects were evaluated. A quercetin-glutamic acid conjugate, 7-O-Glu-Q (3a), was as potent as verapamil in reversing MDR and sensitized MDR MES-SA/Dx5 cells to various anticancer drugs with EC50 values of 0.8-0.9 μM. Analysis on Rh-123 accumulation confirmed that 3a inhibits drug efflux by Pgp, and Pgp ATPase assay showed that 3a interacts with the drug-binding site of Pgp to stimulate its ATPase activity. Physicochemical analysis of 3a revealed that solubility, stability, and cellular uptake of quercetin were significantly improved by the glutamic acid promoiety, which eventually dissociates from 3a to produce quercetin and quercetin metabolites in intracellular milieu. Taken together, potent MDR-modulating activity along with intracellular conversion into the natural flavonoid quercetin warrants development of the quercetin-amino acid conjugates as safe MDR modulators.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University , Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | | | | |
Collapse
|
17
|
Ohkura N, Shigetani Y, Yoshiba N, Yoshiba K, Okiji T. Prostaglandin Transporting Protein-mediated Prostaglandin E2 Transport in Lipopolysaccharide-inflamed Rat Dental Pulp. J Endod 2014; 40:1112-7. [DOI: 10.1016/j.joen.2013.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/06/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
|
18
|
Cihalova D, Hofman J, Ceckova M, Staud F. Purvalanol A, olomoucine II and roscovitine inhibit ABCB1 transporter and synergistically potentiate cytotoxic effects of daunorubicin in vitro. PLoS One 2013; 8:e83467. [PMID: 24376706 PMCID: PMC3871618 DOI: 10.1371/journal.pone.0083467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase inhibitors (CDKi) have high potential applicability in anticancer therapy, but various aspects of their pharmacokinetics, especially their interactions with drug efflux transporters, have not yet been evaluated in detail. Thus, we investigated interactions of five CDKi (purvalanol A, olomoucine II, roscovitine, flavopiridol and SNS-032) with the ABCB1 transporter. Four of the compounds inhibited efflux of two ABCB1 substrates, Hoechst 33342 and daunorubicin, in MDCKII-ABCB1 cells: Olomoucine II most strongly, followed by roscovitine, purvalanol A, and flavopiridol. SNS-032 inhibited ABCB1-mediated efflux of Hoechst 33342 but not daunorubicin. In addition, purvalanol A, SNS-032 and flavopiridol lowered the stimulated ATPase activity in ABCB1 membrane preparations, while olomoucine II and roscovitine not only inhibited the stimulated ATPase but also significantly activated the basal ABCB1 ATPase, suggesting that these two CDKi are ABCB1 substrates. We further revealed that the strongest ABCB1 inhibitors (purvalanol A, olomoucine II and roscovitine) synergistically potentiate the antiproliferative effect of daunorubicin, a commonly used anticancer drug and ABCB1 substrate, in MDCKII-ABCB1 cells as well as in human carcinoma HCT-8 and HepG2 cells. We suggest that this pronounced synergism is at least partly caused by (i) CDKi-mediated inhibition of ABCB1 transporter leading to increased intracellular retention of daunorubicin and (ii) native cytotoxic activity of the CDKi. Our results indicate that co-administration of the tested CDKi with anticancer drugs that are ABCB1 substrates may allow significant dose reduction in the treatment of ABCB1-expressing tumors.
Collapse
Affiliation(s)
- Daniela Cihalova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Jakub Hofman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic
- * E-mail:
| |
Collapse
|
19
|
Reversing P-glycoprotein-mediated multidrug resistance in vitro by α-asarone and β-asarone, bioactive cis–trans isomers from Acorus tatarinowii. Biotechnol Lett 2013; 36:685-91. [DOI: 10.1007/s10529-013-1419-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
|
20
|
Herédi-Szabó K, Palm JE, Andersson TB, Pál Á, Méhn D, Fekete Z, Beéry E, Jakab KT, Jani M, Krajcsi P. A P-gp vesicular transport inhibition assay – Optimization and validation for drug–drug interaction testing. Eur J Pharm Sci 2013; 49:773-81. [DOI: 10.1016/j.ejps.2013.04.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/18/2013] [Accepted: 04/30/2013] [Indexed: 12/16/2022]
|
21
|
Screening compounds with a novel high-throughput ABCB1-mediated efflux assay identifies drugs with known therapeutic targets at risk for multidrug resistance interference. PLoS One 2013; 8:e60334. [PMID: 23593196 PMCID: PMC3622673 DOI: 10.1371/journal.pone.0060334] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/25/2013] [Indexed: 11/19/2022] Open
Abstract
ABCB1, also known as P-glycoprotein (P-gp) or multidrug resistance protein 1 (MDR1), is a membrane-associated multidrug transporter of the ATP-binding cassette (ABC) transporter family. It is one of the most widely studied transporters that enable cancer cells to develop drug resistance. Reliable high-throughput assays that can identify compounds that interact with ABCB1 are crucial for developing new therapeutic drugs. A high-throughput assay for measuring ABCB1-mediated calcein AM efflux was developed using a fluorescent and phase-contrast live cell imaging system. This assay demonstrated the time- and dose-dependent accumulation of fluorescent calcein in ABCB1-overexpressing KB-V1 cells. Validation of the assay was performed with known ABCB1 inhibitors, XR9576, verapamil, and cyclosporin A, all of which displayed dose-dependent inhibition of ABCB1-mediated calcein AM efflux in this assay. Phase-contrast and fluorescent images taken by the imaging system provided additional opportunities for evaluating compounds that are cytotoxic or produce false positive signals. Compounds with known therapeutic targets and a kinase inhibitor library were screened. The assay identified multiple agents as inhibitors of ABCB1-mediated efflux and is highly reproducible. Among compounds identified as ABCB1 inhibitors, BEZ235, BI 2536, IKK 16, and ispinesib were further evaluated. The four compounds inhibited calcein AM efflux in a dose-dependent manner and were also active in the flow cytometry-based calcein AM efflux assay. BEZ235, BI 2536, and IKK 16 also successfully inhibited the labeling of ABCB1 with radiolabeled photoaffinity substrate [125I]iodoarylazidoprazosin. Inhibition of ABCB1 with XR9576 and cyclosporin A enhanced the cytotoxicity of BI 2536 to ABCB1-overexpressing cancer cells, HCT-15-Pgp, and decreased the IC50 value of BI 2536 by several orders of magnitude. This efficient, reliable, and simple high-throughput assay has identified ABCB1 substrates/inhibitors that may influence drug potency or drug-drug interactions and predict multidrug resistance in clinical treatment.
Collapse
|
22
|
Strouse JJ, Ivnitski-Steele I, Waller A, Young SM, Perez D, Evangelisti AM, Ursu O, Bologa CG, Carter MB, Salas VM, Tegos G, Larson RS, Oprea TI, Edwards BS, Sklar LA. Fluorescent substrates for flow cytometric evaluation of efflux inhibition in ABCB1, ABCC1, and ABCG2 transporters. Anal Biochem 2013; 437:77-87. [PMID: 23470221 DOI: 10.1016/j.ab.2013.02.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 01/08/2023]
Abstract
ATP binding cassette (ABC) transmembrane efflux pumps such as P-glycoprotein (ABCB1), multidrug resistance protein 1 (ABCC1), and breast cancer resistance protein (ABCG2) play an important role in anticancer drug resistance. A large number of structurally and functionally diverse compounds act as substrates or modulators of these pumps. In vitro assessment of the affinity of drug candidates for multidrug resistance proteins is central to predict in vivo pharmacokinetics and drug-drug interactions. The objective of this study was to identify and characterize new substrates for these transporters. As part of a collaborative project with Life Technologies, 102 fluorescent probes were investigated in a flow cytometric screen of ABC transporters. The primary screen compared substrate efflux activity in parental cell lines with their corresponding highly expressing resistant counterparts. The fluorescent compound library included a range of excitation/emission profiles and required dual laser excitation as well as multiple fluorescence detection channels. A total of 31 substrates with active efflux in one or more pumps and practical fluorescence response ranges were identified and tested for interaction with eight known inhibitors. This screening approach provides an efficient tool for identification and characterization of new fluorescent substrates for ABCB1, ABCC1, and ABCG2.
Collapse
Affiliation(s)
- J Jacob Strouse
- Cytometry, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:399-451. [PMID: 24219506 PMCID: PMC3856475 DOI: 10.1080/10937404.2013.842523] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sucralose is a synthetic organochlorine sweetener (OC) that is a common ingredient in the world's food supply. Sucralose interacts with chemosensors in the alimentary tract that play a role in sweet taste sensation and hormone secretion. In rats, sucralose ingestion was shown to increase the expression of the efflux transporter P-glycoprotein (P-gp) and two cytochrome P-450 (CYP) isozymes in the intestine. P-gp and CYP are key components of the presystemic detoxification system involved in first-pass drug metabolism. The effect of sucralose on first-pass drug metabolism in humans, however, has not yet been determined. In rats, sucralose alters the microbial composition in the gastrointestinal tract (GIT), with relatively greater reduction in beneficial bacteria. Although early studies asserted that sucralose passes through the GIT unchanged, subsequent analysis suggested that some of the ingested sweetener is metabolized in the GIT, as indicated by multiple peaks found in thin-layer radiochromatographic profiles of methanolic fecal extracts after oral sucralose administration. The identity and safety profile of these putative sucralose metabolites are not known at this time. Sucralose and one of its hydrolysis products were found to be mutagenic at elevated concentrations in several testing methods. Cooking with sucralose at high temperatures was reported to generate chloropropanols, a potentially toxic class of compounds. Both human and rodent studies demonstrated that sucralose may alter glucose, insulin, and glucagon-like peptide 1 (GLP-1) levels. Taken together, these findings indicate that sucralose is not a biologically inert compound.
Collapse
Affiliation(s)
- Susan S. Schiffman
- Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Address correspondence to Susan S. Schiffman, PhD, Department of Electrical and Computer Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695-7911, USA. E-mail:
| | - Kristina I. Rother
- Section on Pediatric Diabetes & Metabolism, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Zdrazil B, Pinto M, Vasanthanathan P, Williams AJ, Balderud LZ, Engkvist O, Chichester C, Hersey A, Overington JP, Ecker GF. Annotating Human P-Glycoprotein Bioassay Data. Mol Inform 2012; 31:599-609. [PMID: 23293680 PMCID: PMC3531886 DOI: 10.1002/minf.201200059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/20/2012] [Indexed: 11/30/2022]
Abstract
Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.
Collapse
Affiliation(s)
- Barbara Zdrazil
- University of Vienna , Department of Medicinal Chemistry, Pharmacoinformatics Research Group, Althanstrasse 14, 1090 Vienna, Austria ' phone/fax: +43-1-4277-55110/+43-1-4277-9551
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Long-Lasting Inhibition of the Intestinal Absorption of Fexofenadine by Cyclosporin a in Rats. J Pharm Sci 2012; 101:2606-15. [DOI: 10.1002/jps.23174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 03/21/2012] [Accepted: 04/10/2012] [Indexed: 12/24/2022]
|
26
|
Sasaki H, Kawano R, Osaki T, Kamiya K, Takeuchi S. Single-vesicle estimation of ATP-binding cassette transporters in microfluidic channels. LAB ON A CHIP 2012; 12:702-704. [PMID: 22179619 DOI: 10.1039/c2lc21058d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We have developed a method to analyze the substrate transport of ATP-binding cassette (ABC) transporters, which are associated with drug resistance in tumor cells. Our microfluidic method is well suited to the single-vesicle estimation of substrate transport and the rapid drug screening of ABC transporters. Using this method, we have demonstrated, for the first time, the analysis of substrate transport by a single transporter and performed drug-inhibition experiments in less than 3 h.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor/instrumentation
- Drug Screening Assays, Antitumor/methods
- Humans
- Liposomes/chemistry
- Microfluidic Analytical Techniques/instrumentation
- Microfluidic Analytical Techniques/methods
- Neoplasms/chemistry
- Neoplasms/drug therapy
- Neoplasms/metabolism
Collapse
|
27
|
Tegos GP, Haynes M, Strouse JJ, Khan MMT, Bologa CG, Oprea TI, Sklar LA. Microbial efflux pump inhibition: tactics and strategies. Curr Pharm Des 2011; 17:1291-302. [PMID: 21470111 DOI: 10.2174/138161211795703726] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/21/2011] [Indexed: 11/22/2022]
Abstract
Traditional antimicrobials are increasingly suffering from the emergence of multidrug resistance among pathogenic microorganisms. To overcome these deficiencies, a range of novel approaches to control microbial infections are under investigation as potential alternative treatments. Multidrug efflux is a key target of these efforts. Efflux mechanisms are broadly recognized as major components of resistance to many classes of chemotherapeutic agents as well as antimicrobials. Efflux occurs due to the activity of membrane transporter proteins widely known as Multidrug Efflux Systems (MES). They are implicated in a variety of physiological roles other than efflux and identifying natural substrates and inhibitors is an active and expanding research discipline. One plausible alternative is the combination of conventional antimicrobial agents/antibiotics with small molecules that block MES known as multidrug efflux pump inhibitors (EPIs). An array of approaches in academic and industrial research settings, varying from high-throughput screening (HTS) ventures to bioassay guided purification and determination, have yielded a number of promising EPIs in a series of pathogenic systems. This synergistic discovery platform has been exploited in translational directions beyond the potentiation of conventional antimicrobial treatments. This venture attempts to highlight different tactical elements of this platform, identifying the need for highly informative and comprehensive EPI-discovery strategies. Advances in assay development genomics, proteomics as well as the accumulation of bioactivity and structural information regarding MES facilitates the basis for a new discovery era. This platform is expanding drastically. A combination of chemogenomics and chemoinformatics approaches will integrate data mining with virtual and physical HTS ventures and populate the chemical-biological interface with a plethora of novel chemotypes. This comprehensive step will expedite the preclinical development of lead EPIs.
Collapse
Affiliation(s)
- George P Tegos
- Center for Molecular Discovery, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Shen Q, Wang Y, Zhang Y. Improvement of colchicine oral bioavailability by incorporating eugenol in the nanoemulsion as an oil excipient and enhancer. Int J Nanomedicine 2011; 6:1237-43. [PMID: 21753875 PMCID: PMC3131190 DOI: 10.2147/ijn.s20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 12/02/2022] Open
Abstract
The effect of eugenol on colchicine transport across an isolated rat intestinal membrane was studied using an in vitro diffusion chamber system. We found that eugenol increased the absorptive transport of the drug efficiently. The effect of eugenol on intestinal absorption of colchicine in an oral administrative nanoemulsion formulation was also demonstrated in vivo. The colchicine nanoemulsion was prepared with isopropyl myristate, eugenol, Tween80, ethanol and water, and eugenol was used as an oil phase in the formulation; an average particle size of this nanoemulsion was 41.2 ± 7.2 nm. The permeation of colchicine in the nanoemulsion across the intestinal membrane was significantly different from that of the control group (0.2 mM colchicine). Finally, co-administration of eugenol in colchicine nanoemulsion to enhance the colchicine bioavailability was investigated by an oral administration method. After oral administration of colchicine (8 mg/kg) in the form of either the nanoemulsion or in free colchicine solution, the relative bioavailability of nanoemulsion and eugenol–nanoemulsion were enhanced by about 1.6- and 2.1-fold, respectively, compared with free colchicine solution. The procedure indicated that the intestinal absorption of colchicine was enhanced significantly by eugenol in the tested nanoemulsion. All the results suggested that eugenol is an efficient component in an oral administrative formulation for improving the intestinal absorption of colchicine.
Collapse
Affiliation(s)
- Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road, People's Republic of China.
| | | | | |
Collapse
|
29
|
Thollet A, Vendrell JA, Payen L, Ghayad SE, Ben Larbi S, Grisard E, Collins C, Villedieu M, Cohen PA. ZNF217 confers resistance to the pro-apoptotic signals of paclitaxel and aberrant expression of Aurora-A in breast cancer cells. Mol Cancer 2010; 9:291. [PMID: 21059223 PMCID: PMC2996367 DOI: 10.1186/1476-4598-9-291] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ZNF217 is a candidate oncogene located at 20q13, a chromosomal region frequently amplified in breast cancers. The precise mechanisms involved in ZNF217 pro-survival function are currently unknown, and utmost importance is given to deciphering the role of ZNF217 in cancer therapy response. RESULTS We provide evidence that stable overexpression of ZNF217 in MDA-MB-231 breast cancer cells conferred resistance to paclitaxel, stimulated cell proliferation in vitro associated with aberrant expression of several cyclins, and increased tumor growth in mouse xenograft models. Conversely, siRNA-mediated silencing of ZNF217 expression in MCF7 breast cancer cells, which possess high endogenous levels of ZNF217, led to decreased cell proliferation and increased sensitivity to paclitaxel. The paclitaxel resistance developed by ZNF217-overexpressing MDA-MB-231 cells was not mediated by the ABCB1/PgP transporter. However, ZNF217 was able to counteract the apoptotic signals mediated by paclitaxel as a consequence of alterations in the intrinsic apoptotic pathway through constitutive deregulation of the balance of Bcl-2 family proteins. Interestingly, ZNF217 expression levels were correlated with the oncogenic kinase Aurora-A expression levels, as ZNF217 overexpression led to increased expression of the Aurora-A protein, whereas ZNF217 silencing was associated with low Aurora-A expression levels. We showed that a potent Aurora-A kinase inhibitor was able to reverse paclitaxel resistance in the ZNF217-overexpressing cells. CONCLUSION Altogether, these data suggest that ZNF217 might play an important role in breast neoplastic progression and chemoresistance, and that Aurora-A might be involved in ZNF217-mediated effects.
Collapse
|
30
|
Increased Affinity to Canalicular P-gp via Formation of Lipophilic Ion-Pair Complexes with Endogenous Bile Salts is Associated with Mw Threshold in Hepatobiliary Excretion of Quaternary Ammonium Compounds. Pharm Res 2010; 27:823-31. [DOI: 10.1007/s11095-010-0075-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/24/2009] [Indexed: 10/19/2022]
|
31
|
Kitagawa S, Nabekura T, Nakamura Y, Takahashi T, Kashiwada Y. Inhibition of P-glycoprotein function by tannic acid and pentagalloylglucose. J Pharm Pharmacol 2010; 59:965-9. [PMID: 17637191 DOI: 10.1211/jpp.59.7.0008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
We studied the effects of tannic acid and 1(β),2,3,4,6-penta-O-galloyl-D-glucose (pentagalloylglucose), one of the components of tannic acid, on the P-glycoprotein (P-gp) function in multidrug-resistant P-gp over-expressing KB-C2 cells. Both tannic acid and pentagalloylglucose markedly elevated the accumulation of P-gp substrates, rhodamine 123 and daunorubicin, by inhibiting their efflux. A 19-fold increase in cellular rhodamine 123 was observed for tannic acid at 60 μM (85 μg mL−1) and a 21-fold increase was observed for pentagalloylglucose at 100 μM (94 μg mL−1). The increasing effects of these compounds in the accumulation were much larger than that of (-)epigallocatechin-3-O-gallate (EGCG), which has been revealed to have a prominent inhibitory effect on P-gp compared with other flavonoids. Analysis of verapamil-stimulated ATPase activity in membrane vesicles expressing human P-gp suggested that inhibition of P-gp function by tannic acid and pentagalloylglucose was at least partly due to ATPase inhibition of P-gp. The findings also suggested that the presence of a large number of galloyl groups in polyphenols strengthens the interaction with regulatory regions in P-gp.
Collapse
Affiliation(s)
- Shuji Kitagawa
- Kobe Pharmaceutical University, Motoyamakita-machi 4-19-1, Kobe 658-8558, Japan.
| | | | | | | | | |
Collapse
|
32
|
Xing L, Hu Y, Lai Y. Advancement of structure-activity relationship of multidrug resistance-associated protein 2 interactions. AAPS JOURNAL 2009; 11:406-13. [PMID: 19495992 DOI: 10.1208/s12248-009-9117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/18/2009] [Indexed: 11/30/2022]
Abstract
Multidrug resistance-associated protein 2 (MRP2/ABCC2) is mainly expressed in the apical phase of barrier membranes. It functions as a critical efflux pump in the biliary excretion of endogenous substances, such as conjugated bilirubin and bile salts, as well as many structurally diverse xenobiotics and their metabolites. Due to its important role in defining ADME/Tox properties, efforts have emerged to build the structure-activity relationship (SAR) for MRP2/ABCC2 at early stages of drug discovery process. MRP2/ABCC2 is a member of the integral membrane protein family whose high-resolution crystal structure has not been described. To overcome the obstacle of lacking detailed structural depiction, various molecular modeling approaches have been applied to derive the structural requirements for binding interactions with MRP2/ABCC2 protein, including two-dimensional (2D) and three-dimensional (3D) quantitative SAR (QSAR) analysis, pharmacophore models, and homology modeling of the transporter. Here we summarize recent progresses in understanding the SAR of MRP2/ABCC2 recognition of substrates and/or inhibitors, and describe some of the useful in vitro tools for characterizing the interactions with the transporter.
Collapse
Affiliation(s)
- Li Xing
- St Louis Laboratories, Pfizer Global Research and Development, 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA
| | | | | |
Collapse
|
33
|
Pires MM, Emmert D, Hrycyna CA, Chmielewski J. Inhibition of P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine homodimers. Mol Pharmacol 2008; 75:92-100. [PMID: 18945821 DOI: 10.1124/mol.108.050492] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
P-glycoprotein (P-gp), an ATP-dependent drug efflux pump, has been implicated in multidrug resistance of several cancers as a result of its overexpression. In this work, rationally designed second-generation P-gp inhibitors are disclosed, based on dimerized versions of the substrates quinine and quinidine. These dimeric agents include reversible tethers with a built-in clearance mechanism. The designed agents were potent inhibitors of rhodamine 123 efflux in cultured cancer cell lines that display high levels of P-gp expression at the cell surface and in transfected cells expressing P-gp. The quinine homodimer Q2, which was tethered by reversible ester bonds, was particularly potent (IC(50) approximately 1.7 microM). Further studies revealed that Q2 inhibited the efflux of a range of fluorescent substrates (rhodamine 123, doxorubicin, mitoxantrone, and BODIPY-FL-prazosin) from MCF-7/DX1 cells. The reversibility of the tether was confirmed in experiments showing that Q2 was readily hydrolyzed by esterases in vitro (t(1/2) approximately 20 h) while demonstrating high resistance to nonenzymatic hydrolysis in cell culture media (t(1/2) approximately 21 days). Specific inhibition of [(125)I]iodoarylazidoprazosin binding to P-gp by Q2 verified that the bivalent agent interacted specifically with the drug binding site(s) of P-gp. Q2 was also an inhibitor of verapamil-stimulated ATPase activity. In addition, low concentrations of Q2 stimulated basal P-gp ATPase levels. Finally, Q2 was shown to inhibit the transport of radiolabeled paclitaxel (Taxol) in MCF-7/DX1 cells, and it completely reversed the P-gp-mediated paclitaxel resistance phenotype.
Collapse
Affiliation(s)
- Marcos M Pires
- Department of Chemistry and Purdue Cancer Center, Purdue University, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
34
|
Barta CA, Sachs-Barrable K, Feng F, Wasan KM. Effects of Monoglycerides on P-Glycoprotein: Modulation of the Activity and Expression in Caco-2 Cell Monolayers. Mol Pharm 2008; 5:863-75. [DOI: 10.1021/mp800050q] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheri A. Barta
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kristina Sachs-Barrable
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Florina Feng
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kishor M. Wasan
- Division of Pharmaceutics and Biopharmaceutics, Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Cooperation between prokaryotic (Lde) and eukaryotic (MRP) efflux transporters in J774 macrophages infected with Listeria monocytogenes: studies with ciprofloxacin and moxifloxacin. Antimicrob Agents Chemother 2008; 52:3040-6. [PMID: 18573933 DOI: 10.1128/aac.00105-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic efflux is observed in both eukaryotic and prokaryotic cells, modulating accumulation and resistance. The present study examines whether eukaryotic and prokaryotic fluoroquinolone transporters can cooperate in the context of an intracellular infection. We have used (i) J774 macrophages (comparing a ciprofloxacin-resistant cell line overexpressing an MRP-like transporter with wild-type cells with basal expression), (ii) Listeria monocytogenes (comparing a clinical isolate [CLIP21369] displaying ciprofloxacin resistance associated with overexpression of the Lde efflux system with a wild-type strain [EGD]), (iii) ciprofloxacin (substrate of both Lde and MRP) and moxifloxacin (nonsubstrate), and (iv) probenecid and reserpine (preferential inhibitors of MRP and Lde, respectively). The ciprofloxacin MICs for EGD were unaffected by reserpine, while those for CLIP21369 were decreased approximately fourfold (and made similar to those of EGD). Neither probenecid nor reserpine affected the moxifloxacin MICs against EGD or CLIP21369. In dose-response studies (0.01x to 100x MIC) in broth, reserpine fully restored the susceptibility of CLIP21369 to ciprofloxacin (no effect on EGD) but did not influence the activity of moxifloxacin. In studies with intracellular bacteria, reserpine, probenecid, and their combination increased the activity of ciprofloxacin in wild-type and ciprofloxacin-resistant macrophages in parallel with an increase in ciprofloxacin accumulation in macrophages for EGD and an increase in accumulation and decrease in MIC (in broth) for CLIP21369. Moxifloxacin accumulation and intracellular activity were consistently not affected by the inhibitors. A bacterial efflux pump may thus actively cooperate with a eukaryotic efflux transporter to reduce the activity of a common substrate (ciprofloxacin) toward an intracellular bacterial target.
Collapse
|
36
|
Yoshida N, Takada T, Yamamura Y, Adachi I, Suzuki H, Kawakami J. Inhibitory Effects of Terpenoids on Multidrug Resistance-Associated Protein 2- and Breast Cancer Resistance Protein-Mediated Transport. Drug Metab Dispos 2008; 36:1206-11. [DOI: 10.1124/dmd.107.019513] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
37
|
Cali JJ, Niles A, Valley MP, O'Brien MA, Riss TL, Shultz J. Bioluminescent assays for ADMET. Expert Opin Drug Metab Toxicol 2008; 4:103-20. [PMID: 18370862 DOI: 10.1517/17425255.4.1.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Bioluminescent assays couple a limiting component of a luciferase-catalyzed photon-emitting reaction to a variable parameter of interest, while holding the other components constant or non-limiting. In this way light output varies with the parameter of interest. This review describes three bioluminescent assay types that use firefly luciferase to measure properties of drugs and other xenobiotics which affect their absorption, distribution, metabolism, elimination and toxicity. First, levels of the luciferase enzyme itself are measured in gene reporter assays that place a luciferase cDNA under the control of regulatory sequences from ADMET-related genes. This approach identifies activators of nuclear receptors that regulate expression of genes encoding drug-metabolizing enzymes and drug transporters. Second, drug effects on enzyme activities are monitored with luminogenic probe substrates that are inactive derivatives of the luciferase substrate luciferin. The enzymes of interest convert the substrates to free luciferin, which is detected in a second reaction with luciferase. This approach is used with the drug-metabolizing CYP and monoamine oxidase enzymes, apoptosis-associated caspase proteases, a marker protease for non-viable cells and with glutathione-S-transferase to measure glutathione levels in cell lysates. Third, ATP concentration is monitored as a marker of cell viability or cell death and as a way of identifying substrates for the ATP-dependent drug transporter, P-glycoprotein. Luciferase activity is measured in the presence of a sample that supplies the requisite luciferase substrate, ATP, so that light output varies with ATP concentration. The bioluminescent ADMET assays are rapid and sensitive, amenable to automated high-throughput applications and offer significant advantages over alternative methods.
Collapse
Affiliation(s)
- James J Cali
- Promega Corp., 2800 Woods Hollow Road, Madison, WI 53711, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Ivnitski-Steele I, Larson RS, Lovato DM, Khawaja HM, Winter SS, Oprea TI, Sklar LA, Edwards BS. High-Throughput Flow Cytometry to Detect Selective Inhibitors of ABCB1, ABCC1, and ABCG2 Transporters. Assay Drug Dev Technol 2008; 6:263-76. [DOI: 10.1089/adt.2007.107] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Irena Ivnitski-Steele
- Cytometry, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
- New Mexico Molecular Libraries Screening Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Richard S. Larson
- Office of Research, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Pathology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Debbie M. Lovato
- Department of Pathology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Hadya M. Khawaja
- Department of Pathology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Stuart S. Winter
- Division of Pediatric Hematology/Oncology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Tudor I. Oprea
- New Mexico Molecular Libraries Screening Center, University of New Mexico Health Sciences Center, Albuquerque, NM
- Division of Biocomputing, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Larry A. Sklar
- Cytometry, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
- New Mexico Molecular Libraries Screening Center, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Pathology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Bruce S. Edwards
- Cytometry, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
- New Mexico Molecular Libraries Screening Center, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Pathology, Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
39
|
Müller H, Klinkhammer W, Globisch C, Kassack MU, Pajeva IK, Wiese M. New functional assay of P-glycoprotein activity using Hoechst 33342. Bioorg Med Chem 2007; 15:7470-9. [PMID: 17890094 DOI: 10.1016/j.bmc.2007.07.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 06/11/2007] [Accepted: 07/06/2007] [Indexed: 11/29/2022]
Abstract
In this study we describe a simplified, HTS-capable functional assay for the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) based on its substrate Hoechst 33342. The physicochemical properties of Hoechst 33342 and the enormous milieu dependency of its fluorescence intensity allowed performing the assay in a homogeneous manner. This new assay served as an effective tool to estimate the potency of 10 well recognized P-gp substrates and modulators. Further, the potency of these compounds was also estimated in the calcein AM assay. The Hoechst 33342 and calcein AM assays yielded significantly comparable results for all compounds tested. Principal component analysis (PCA) applied to literature data on inhibition of P-gp activity and our results obtained in the Hoechst 33342 and calcein AM assay indicated similarity of compared functional transport assays. However, no correlation could be detected between these functional assays and the ATPase activity assay.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- Adenosine Triphosphatases/drug effects
- Adenosine Triphosphatases/metabolism
- Benzimidazoles/chemistry
- Benzimidazoles/pharmacokinetics
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Fluoresceins/chemistry
- Humans
- Microscopy, Fluorescence/methods
- Molecular Structure
- Principal Component Analysis
- Time Factors
Collapse
Affiliation(s)
- Henrik Müller
- Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Res 2006; 16:857-71. [PMID: 17088897 DOI: 10.1038/sj.cr.7310107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
41
|
Yoshida N, Koizumi M, Adachi I, Kawakami J. Inhibition of P-glycoprotein-mediated transport by terpenoids contained in herbal medicines and natural products. Food Chem Toxicol 2006; 44:2033-9. [PMID: 16904803 DOI: 10.1016/j.fct.2006.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 10/24/2022]
Abstract
Terpenoids form a large and structurally diverse family of natural products and are ingredients of various herbal medicines. We have investigated possible interactions between herbal medicines and conventional medicines, and recently reported that monoterpenoids contained in Zanthoxyli Fructus can be potent inhibitors of P-glycoprotein (P-gp). In the present study, the influence of 70 kinds of terpenoids present in natural products on P-gp-mediated efflux transport was investigated. LLC-GA5-COL150 cells transfected with human MDR1 cDNA encoding P-gp were used to screen the terpenoids. Large increases in the intracellular accumulation of [(3)H]digoxin were observed in the presence of (R)-(+)-citronellal, (S)-(-)-beta-citronellol, alpha-terpinene, terpinolene, (-)-beta-pinene, abietic acid, ophiobolin A, cucurbitacin I, and glycyrrhetic acid. A study of the concentration-dependency revealed that the IC(50) of ophiobolin A, glycyrrhetic acid, (R)-(+)-citronellal, abietic acid, and cucurbitacin I was smaller than that of verapamil. The transcellular transport of [(3)H]digoxin across Caco-2 cell monolayers was then examined in the presence of (R)-(+)-citronellal, abietic acid, and glycyrrhetic acid. Significant increases in the apical-to-basolateral transport and decreases in the basolateral-to-apical transport and efflux ratio were demonstrated. These findings suggest that some natural products containing these terpenoids may inhibit P-gp-mediated transport and interact with P-gp substrates in the intestinal absorption process.
Collapse
Affiliation(s)
- Naoko Yoshida
- Department of Pharmacy, Toyama University Hospital, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
42
|
Barecki-Roach M, Wang EJ, Johnson WW. Quantitative evaluation of isothiocyanates as substrates and inhibitors of P-glycoprotein. J Pharm Pharmacol 2006; 55:1251-7. [PMID: 14604468 DOI: 10.1211/0022357021666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) exerts a critical role in the systemic disposition of, and exposure to, lipophilic and amphipathic drugs, carcinogens, toxins and other xenobiotics. The ability of P-gp to transfer a wide variety of structurally unrelated compounds from the cell interior across the membrane bilayer remains intriguing. Since dietary chemicals in cruciferous and several other foods appear to exert anticarcinogenic effects by inducing phase II enzymes and inhibiting some phase I enzymes, the isothiocyanate constituents are frequently studied for interactions with various biomacromolecules as well as cytotoxins or isolated cells. Several prominent dietary isothiocyanates were characterized for their interaction with P-gp and their specific effects on the P-gp export activity of several marker substrates. Some of these compounds inhibit the active P-gp-mediated efflux of the fluorescent markers LDS-751 and daunorubicin with low potency, with the most potent among them, phenethyl isothiocyanate, inhibiting transport of the LDS-751 substrate with an IC(50) of approximately 240 microM. Overall, these isothiocyanates are unlikely to impede the xenobiotic defence function of P-gp even in the intestine where the concentrations are potentially high.
Collapse
Affiliation(s)
- Mary Barecki-Roach
- Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Lafayette, NJ 07848, USA
| | | | | |
Collapse
|
43
|
Kitagawa S. Inhibitory effects of polyphenols on p-glycoprotein-mediated transport. Biol Pharm Bull 2006; 29:1-6. [PMID: 16394499 DOI: 10.1248/bpb.29.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), a plasma membrane transporter which extrudes chemotherapeutic agents out of cells, has been associated with the multidrug resistance (MDR) of cancer cells. It has been revealed that flavonoids and other polyphenols inhibit P-gp activity. Due to their inhibitory activities of polyphenols on P-gp function and their physiological safety, they are possible candidates for modulators of MDR. To determine suitable candidates, it is important to clarify the structure-activity relationships of their inhibitory activities on P-gp function. Determining the structure-activity relationships is also meaningful because the intake of dietary polyphenols may also alter drug pharmacokinetics and pharmacodynamics via inhibition of P-gp-mediated drug efflux in tissues such as the intestinal epithelium, blood-brain barrier, hepatocytes and renal tubular cells. This is a review of our recent investigations using multidrug-resistant P-gp overexpressing KB-C2 cells.
Collapse
Affiliation(s)
- Shuji Kitagawa
- Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan.
| |
Collapse
|
44
|
Iida A, Tomita M, Idota Y, Takizawa Y, Hayashi M. Improvement of Intestinal Absorption of Pglycoprotein Substrate by Dtartaric Acid. Drug Metab Pharmacokinet 2006; 21:424-8. [PMID: 17072096 DOI: 10.2133/dmpk.21.424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of the present experiment was to examine the effects of D-tartaric acid (TA) on intestinal drug absorption under both in situ and in vitro experimental conditions. In the in vitro diffusion chamber experiments, TA (10 mM) added to the mucosal side of rat colon significantly decreased rhodamine123 (Rho 123) transport from the serosal to mucosal side. Since TA has been shown to change the integrity of the epithelial tight junctions in rat colon at low pH conditions, resulting in improved paracellular drug transport, the effect of TA on membrane resistance was examined at pH 7.4 in the present study. It was found that membrane resistance, an indicator of paracellular integrity, did not change at pH 7.4. In the in situ loop method, TA (20 mM) increased the absorption of Rho123 in both ileum and colon but not in jejunum. TA (20 mM) also increased the absorption of daunorubicin in the ileum, but TA (20 mM) did not change the expression level of P-glycoprotein (P-gp). TA (20 mM) significantly inhibited excretion of i.v.-administered Rho123 and daunorubicin into the ileal lumen. In conclusion, for the first time we demonstrated that TA increases the intestinal absorption of P-gp substrates Rho123 and daunorubicin, possibly by modulating the P-gp function without changing the expression level of P-gp in the rat intestine.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/physiology
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Biological Transport/drug effects
- Biological Transport/physiology
- Blotting, Western
- Cardiovascular Agents/administration & dosage
- Cardiovascular Agents/pharmacokinetics
- Colon/cytology
- Colon/drug effects
- Colon/metabolism
- Daunorubicin/administration & dosage
- Daunorubicin/pharmacokinetics
- Diffusion Chambers, Culture/methods
- Fluorescent Dyes/pharmacokinetics
- Ileum/cytology
- Ileum/drug effects
- Ileum/metabolism
- Injections, Intravenous
- Intestinal Absorption/drug effects
- Jejunum/cytology
- Jejunum/drug effects
- Jejunum/metabolism
- Male
- Rats
- Rats, Wistar
- Rhodamine 123/pharmacokinetics
- Tartrates/pharmacology
- Verapamil/administration & dosage
- Verapamil/pharmacokinetics
Collapse
Affiliation(s)
- Aiko Iida
- Department of Drug Absorption and Pharmacokinetics, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
45
|
Kitagawa S, Nabekura T, Kamiyama S, Takahashi T, Nakamura Y, Kashiwada Y, Ikeshiro Y. Effects of alkyl gallates on P-glycoprotein function. Biochem Pharmacol 2005; 70:1262-6. [PMID: 16139251 DOI: 10.1016/j.bcp.2005.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
In this study, we examined the effects of the food antioxidants, alkyl gallates, on the function of P-glycoprotein (P-gp) and elucidated the importance of alkyl chains and gallic acid moieties on the activity of P-gp. We examined the effects of three alkyl (n-butyl, n-octyl and n-dodecyl) gallates and their related compounds on the cellular accumulation and efflux of rhodamine 123 and daunorubicin in P-gp overexpressing KB-C2 cells. Alkyl gallates increased the cellular accumulation of these P-gp substrates dependent on their alkyl chain lengths by inhibiting the efflux of the substrates. n-Dodecylresorcinol also increased the accumulation, but its effect was less than that of n-dodecyl gallate. However, either lauric acid or n-dodecyl-beta-d-maltoside, which does not have a phenol group, did not increase the accumulation. The results indicated that both the gallic acid moiety and a long alkyl chain play important roles in the modification of P-gp function. The cytotoxicity of daunorubicin was recovered in the presence of alkyl gallates possibly due to their inhibition of P-gp function.
Collapse
Affiliation(s)
- Shuji Kitagawa
- Laboratory of Pharmaceutics, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Korjamo T, Honkakoski P, Toppinen MR, Niva S, Reinisalo M, Palmgrén JJ, Mönkkönen J. Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. Eur J Pharm Sci 2005; 26:266-79. [PMID: 16111871 DOI: 10.1016/j.ejps.2005.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 04/28/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
Caco-2 cell line is extensively used as an in vitro model in studying small intestinal absorption but it lacks proper expression of efflux pumps and cytochrome P450 enzymes that are involved in absorption and first pass metabolism of drugs. We created two novel Caco-2 cell lines expressing orphan nuclear receptors pregnane X receptor and constitutive androstane receptor that regulate many genes involved in xenobiotic metabolism. We conducted a systematic study on expression of some metabolic genes, P-glycoprotein activity and absorption properties of several drugs with these new cell lines and previously described modified Caco-2 cell lines (MDR1 transfection, vincristine treatment and 1alpha,25-dihydroxyvitamin D3 treatment). A short culture time medium was also included in the study. Most modified cell lines formed tight differentiated monolayers. MDR1, CYP2C9 and CYP3A4 genes were upregulated in some cell lines. Elevated P-glycoprotein activities were observed by calcein-AM uptake experiments but this did not affect significantly the permeability of selected P-glycoprotein substrates. Some cell lines had similar passive and active permeability properties to Caco/WT cells while in few cell lines these were altered. Passive transcellular permeability was modestly elevated in all modified cell lines. In addition, several compounds showed pH-dependent permeability properties.
Collapse
Affiliation(s)
- Timo Korjamo
- Department of Pharmaceutics, University of Kuopio, Harjulantie 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
47
|
Reimann S, Deising HB. Inhibition of efflux transporter-mediated fungicide resistance in Pyrenophora tritici-repentis by a derivative of 4'-hydroxyflavone and enhancement of fungicide activity. Appl Environ Microbiol 2005; 71:3269-75. [PMID: 15933029 PMCID: PMC1151812 DOI: 10.1128/aem.71.6.3269-3275.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Populations of the causal agent of wheat tan spot, Pyrenophora tritici-repentis, that are collected from fields frequently treated with reduced fungicide concentrations have reduced sensitivity to strobilurin fungicides and azole fungicides (C14-demethylase inhibitors). Energy-dependent efflux transporter activity can be induced under field conditions and after in vitro application of sublethal amounts of fungicides. Efflux transporters can mediate cross-resistance to a number of fungicides that belong to different chemical classes and have different modes of action. Resistant isolates can grow on substrata amended with fungicides and can infect plants treated with fungicides at levels above recommended field concentrations. We identified the hydroxyflavone derivative 2-(4-ethoxy-phenyl)-chromen-4-one as a potent inhibitor of energy-dependent fungicide efflux transporters in P. tritici-repentis. Application of this compound in combination with fungicides shifted fungicide-resistant P. tritici-repentis isolates back to normal sensitivity levels and prevented infection of wheat leaves. These results highlight the role of energy-dependent efflux transporters in fungicide resistance and could enable a novel disease management strategy based on the inhibition of fungicide efflux to be developed.
Collapse
Affiliation(s)
- Sven Reimann
- Martin Luther University Halle-Wittenberg, Faculty of Agriculture, Phytopathology and Plant Protection, D-06099 Halle (Saale), Germany
| | | |
Collapse
|
48
|
Kitagawa S, Nabekura T, Takahashi T, Nakamura Y, Sakamoto H, Tano H, Hirai M, Tsukahara G. Structure-Activity Relationships of the Inhibitory Effects of Flavonoids on P-Glycoprotein-Mediated Transport in KB-C2 Cells. Biol Pharm Bull 2005; 28:2274-8. [PMID: 16327165 DOI: 10.1248/bpb.28.2274] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the effects of flavonoids, naringenin (flavanone), baicalein (flavone), kaempferol, quercetin, myricetin, morin, and fisetin (flavonols) as well as two glycosides of quercetin on P-glycoprotein (P-gp) function in multidrug-resistant P-gp overexpressing KB-C2 cells. Flavonoids such as kaempferol and quercetin increased the accumulation of rhodamine-123 dependent on their chemical structure. Analysis by flow cytometry indicated that the increase in substrate accumulation was due to the inhibition of substrate efflux. Naringenin, which lacks the 2,3-double bond in the C ring, had no effect, although it was more hydrophobic than myricetin, fisetin and morin. Therefore, the planar structure of the flavonoids seemed to be important for their interaction with P-gp. The effects of other flavonoids on the accumulation of daunorubicin were in the order of kaempferol>quercetin, baicalein>myricetin>fisetin, morin. Quercetin-3-O-glucoside and rutin had no effect. The order of the effects corresponded with that of the partition coefficients. Difference in the number and position of hydroxyl groups in flavonoid molecules by themselves seemed to have little effect. These results suggested that hydrophobicity as well as planar structure is important for the inhibitory effects of flavonoids on P-gp-mediated transport.
Collapse
Affiliation(s)
- Shuji Kitagawa
- Niigata University of Pharmacy and Applied Life Sciences, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Konishi T, Satsu H, Hatsugai Y, Aizawa K, Inakuma T, Nagata S, Sakuda SH, Nagasawa H, Shimizu M. Inhibitory effect of a bitter melon extract on the P-glycoprotein activity in intestinal Caco-2 cells. Br J Pharmacol 2004; 143:379-87. [PMID: 15351776 PMCID: PMC1575343 DOI: 10.1038/sj.bjp.0705804] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Extracts of bitter melon, soybean, dokudami and welsh onion by 40% methanol increased the accumulation of rhodamine-123 by Caco-2 cells, suggesting that these extracts inhibited P-glycoprotein (P-gp). The extract of bitter melon was separated in a tC18 cartridge column and the eluate from 80% acetonitrile most markedly increased the [(3)H]-daunomycin accumulation by Caco-2 cells. The inhibitory compounds in the bitter melon fraction were isolated by HPLC with Pegasil C4 and Pegasil ODS columns. The HPLC fraction having the highest activity was analyzed by (1)H-NMR and FAB-MS, and the active compound was identified as 1-monopalmitin. The inhibitory activities of 1-monopalmitin and its related compounds suggested that the inhibition of P-gp activity was not dependent on the degree of unsaturation of fatty acid in the monoglyceride, but on the chain length. It was also suggested that the monoglyceride structure played an important role in the inhibition of P-gp activity. Monoglycerides could therefore alter the pharmacokinetics of drugs by inhibiting the P-gp-mediated efflux.
Collapse
Affiliation(s)
- Tomoko Konishi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Hatsugai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Koichi Aizawa
- Research Institute, Kagome Co. Ltd, 17 Nishitomiyama, Nishinasuno-machi, Nasu-gun, Tochigi 329-2762, Japan
| | - Takahiro Inakuma
- Research Institute, Kagome Co. Ltd, 17 Nishitomiyama, Nishinasuno-machi, Nasu-gun, Tochigi 329-2762, Japan
| | - Shinji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sho-hei Sakuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Author for correspondence:
| |
Collapse
|
50
|
Wang EJ, Barecki-Roach M, Johnson WW. Quantitative characterization of direct P-glycoprotein inhibition by St John's wort constituents hypericin and hyperforin. J Pharm Pharmacol 2004; 56:123-8. [PMID: 14980009 DOI: 10.1211/0022357022395] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The ATP-binding cassette transporter P-glycoprotein (P-gp) exerts a critical role in the systemic disposition of, and exposure to, lipophilic and amphipathic drugs, carcinogens, toxins and other xenobiotics. The ability of P-gp to transfer a wide variety of structurally unrelated compounds from the cell interior across the membrane bilayer remains intriguing. Since natural product chemicals in the widely consumed St John's wort appear to exert antidepressant effects by an unknown mechanism, the constituents are frequently studied for interactions with various biomacromolecules as well as cytotoxins or isolated cells. The drug interactions caused by this widely used herbal remedy are under-appreciated. Various clinical interactions have been observed upon the co-administration of St John's wort, and P-gp and CYP3A4 have been indicted as the cause. We characterized several St John's wort constituents for their interaction with P-gp and their specific effects on the P-gp export activity of several marker substrates. Two of these constituents, hyperforin and hypericin, inhibit the active efflux of the fluorescent markers daunorubicin (IC(50) approximately 30 microM) and calcein-AM. Herein, we show in-vitro results that can both explain the competing clinical observations of initial elevated exposure of P-gp substrate drugs (P-gp inhibition) followed by under-exposure (P-gp induction) when St John's wort is co-administered, and provide a further warning against unchecked co-administration of drugs with St John's wort.
Collapse
Affiliation(s)
- Er-Jia Wang
- Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Lafayette, NJ 07848, USA.
| | | | | |
Collapse
|