1
|
Díaz-García JD, Leyva-Leyva M, Sánchez-Aguillón F, de León-Bautista MP, Fuentes-Venegas A, Torres-Viloria A, Tenorio-Aguirre EK, Morales-Lázaro SL, Olivo-Díaz A, González-Ramírez R. Association Study of CACNA1D, KCNJ11, KCNQ1, and CACNA1E Single-Nucleotide Polymorphisms with Type 2 Diabetes Mellitus. Int J Mol Sci 2024; 25:9196. [PMID: 39273144 PMCID: PMC11395491 DOI: 10.3390/ijms25179196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex chronic disease characterized by decreased insulin secretion and the development of insulin resistance. Previous genome-wide association studies demonstrated that single-nucleotide polymorphisms (SNPs) present in genes coding for ion channels involved in insulin secretion increase the risk of developing this disease. We determined the association of 16 SNPs found in CACNA1D, KCNQ1, KCNJ11, and CACNA1E genes and the increased probability of developing T2DM. In this work, we performed a case-control study in 301 Mexican adults, including 201 cases with diabetes and 100 controls without diabetes. Our findings indicate a moderate association between T2DM and the C allele, and the C/C genotype of rs312480 within CACNA1D. The CAG haplotype surprisingly showed a protective effect, whereas the CAC and CGG haplotypes have a strong association with T2DM. The C allele and C/C genotype of rs5219 were significantly associated with diabetes. Also, an association was observed between diabetes and the A allele and the A/A genotype of rs3753737 and rs175338 in CACNA1E. The TGG and CGA haplotypes were also found to be significantly associated. The findings of this study indicate that the SNPs examined could serve as a potential diagnostic tool and contribute to the susceptibility of the Mexican population to this disease.
Collapse
Affiliation(s)
- Juan Daniel Díaz-García
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Margarita Leyva-Leyva
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
| | - Fabiola Sánchez-Aguillón
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia 58090, Mexico;
- Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia 58280, Mexico
| | - Abel Fuentes-Venegas
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Alfredo Torres-Viloria
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Erika Karina Tenorio-Aguirre
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Sara Luz Morales-Lázaro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Centro de Investigación Sobre el Envejecimiento, CINVESTAV, Mexico City 14330, Mexico
| | - Angélica Olivo-Díaz
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
| | - Ricardo González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
- Centro de Investigación Sobre el Envejecimiento, CINVESTAV, Mexico City 14330, Mexico
| |
Collapse
|
2
|
Becker A, Wardas B, Salah H, Amini M, Fecher-Trost C, Sen Q, Martus D, Beck A, Philipp SE, Flockerzi V, Belkacemi A. Cavβ3 Regulates Ca 2+ Signaling and Insulin Expression in Pancreatic β-Cells in a Cell-Autonomous Manner. Diabetes 2021; 70:2532-2544. [PMID: 34426509 PMCID: PMC8564405 DOI: 10.2337/db21-0078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022]
Abstract
Voltage-gated Ca2+ (Cav) channels consist of a pore-forming Cavα1 subunit and auxiliary Cavα2-δ and Cavβ subunits. In fibroblasts, Cavβ3, independent of its role as a Cav subunit, reduces the sensitivity to low concentrations of inositol-1,4,5-trisphosphate (IP3). Similarly, Cavβ3 could affect cytosolic calcium concentration ([Ca2 +]) in pancreatic β-cells. In this study, we deleted the Cavβ3-encoding gene Cacnb3 in insulin-secreting rat β-(Ins-1) cells using CRISPR/Cas9. These cells were used as controls to investigate the role of Cavβ3 on Ca2+ signaling, glucose-induced insulin secretion (GIIS), Cav channel activity, and gene expression in wild-type cells in which Cavβ3 and the IP3 receptor were coimmunoprecipitated. Transcript and protein profiling revealed significantly increased levels of insulin transcription factor Mafa, CaMKIV, proprotein convertase subtilisin/kexin type-1, and nitric oxide synthase-1 in Cavβ3-knockout cells. In the absence of Cavβ3, Cav currents were not altered. In contrast, CREB activity, the amount of MAFA protein and GIIS, the extent of IP3-dependent Ca2+ release and the frequency of Ca2+ oscillations were increased. These processes were decreased by the Cavβ3 protein in a concentration-dependent manner. Our study shows that Cavβ3 interacts with the IP3 receptor in isolated β-cells, controls IP3-dependent Ca2+-signaling independently of Cav channel functions, and thereby regulates insulin expression and its glucose-dependent release in a cell-autonomous manner.
Collapse
Affiliation(s)
- Alexander Becker
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Barbara Wardas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Houssein Salah
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Maryam Amini
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Qiao Sen
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Damian Martus
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Andreas Beck
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Stephan E Philipp
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Veit Flockerzi
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| | - Anouar Belkacemi
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Präklinisches Zentrum für Molekulare Signalverarbeitung der Universität des Saarlandes, Homburg, Germany
| |
Collapse
|
3
|
Neumaier F, Alpdogan S, Hescheler J, Schneider T. Zn2+-induced changes in Cav2.3 channel function: An electrophysiological and modeling study. J Gen Physiol 2021; 152:151872. [PMID: 32559275 PMCID: PMC7478874 DOI: 10.1085/jgp.202012585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 01/25/2023] Open
Abstract
Loosely bound Zn2+ ions are increasingly recognized as potential modulators of synaptic plasticity and neuronal excitability under normal and pathophysiological conditions. Cav2.3 voltage-gated Ca2+ channels are among the most sensitive targets of Zn2+ and are therefore likely to be involved in the neuromodulatory actions of endogenous Zn2+. Although histidine residues on the external side of domain I have been implicated in the effects on Cav2.3 channel gating, the exact mechanisms involved in channel modulation remain incompletely understood. Here, we use a combination of electrophysiological recordings, modification of histidine residues, and computational modeling to analyze Zn2+-induced changes in Cav2.3 channel function. Our most important findings are that multiple high- and low-affinity mechanisms contribute to the net Zn2+ action, that Zn2+ can either inhibit or stimulate Ca2+ influx through Cav2.3 channels depending on resting membrane potential, and that Zn2+ effects may persist for some time even after cessation of the Zn2+ signal. Computer simulations show that (1) most salient features of Cav2.3 channel gating in the absence of trace metals can be reproduced by an obligatory model in which activation of two voltage sensors is necessary to open the pore; and (2) most, but not all, of the effects of Zn2+ can be accounted for by assuming that Zn2+ binding to a first site is associated with an electrostatic modification and mechanical slowing of one of the voltage sensors, whereas Zn2+ binding to a second, lower-affinity site blocks the channel and modifies the opening and closing transitions. While still far from complete, our model provides a first quantitative framework for understanding Zn2+ effects on Cav2.3 channel function and a step toward the application of computational approaches for predicting the complex actions of Zn2+ on neuronal excitability.
Collapse
Affiliation(s)
- Felix Neumaier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Serdar Alpdogan
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Jürgen Hescheler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| | - Toni Schneider
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Neurophysiology, Cologne, Germany
| |
Collapse
|
4
|
Tuluc P, Theiner T, Jacobo-Piqueras N, Geisler SM. Role of High Voltage-Gated Ca 2+ Channel Subunits in Pancreatic β-Cell Insulin Release. From Structure to Function. Cells 2021; 10:2004. [PMID: 34440773 PMCID: PMC8393260 DOI: 10.3390/cells10082004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
The pancreatic islets of Langerhans secrete several hormones critical for glucose homeostasis. The β-cells, the major cellular component of the pancreatic islets, secrete insulin, the only hormone capable of lowering the plasma glucose concentration. The counter-regulatory hormone glucagon is secreted by the α-cells while δ-cells secrete somatostatin that via paracrine mechanisms regulates the α- and β-cell activity. These three peptide hormones are packed into secretory granules that are released through exocytosis following a local increase in intracellular Ca2+ concentration. The high voltage-gated Ca2+ channels (HVCCs) occupy a central role in pancreatic hormone release both as a source of Ca2+ required for excitation-secretion coupling as well as a scaffold for the release machinery. HVCCs are multi-protein complexes composed of the main pore-forming transmembrane α1 and the auxiliary intracellular β, extracellular α2δ, and transmembrane γ subunits. Here, we review the current understanding regarding the role of all HVCC subunits expressed in pancreatic β-cell on electrical activity, excitation-secretion coupling, and β-cell mass. The evidence we review was obtained from many seminal studies employing pharmacological approaches as well as genetically modified mouse models. The significance for diabetes in humans is discussed in the context of genetic variations in the genes encoding for the HVCC subunits.
Collapse
Affiliation(s)
- Petronel Tuluc
- Centre for Molecular Biosciences, Department of Pharmacology and Toxicology, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (T.T.); (N.J.-P.); (S.M.G.)
| | | | | | | |
Collapse
|
5
|
Papazoglou A, Henseler C, Broich K, Daubner J, Weiergräber M. Breeding of Ca v2.3 deficient mice reveals Mendelian inheritance in contrast to complex inheritance in Ca v3.2 null mutant breeding. Sci Rep 2021; 11:13972. [PMID: 34234221 PMCID: PMC8263769 DOI: 10.1038/s41598-021-93391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
High voltage-activated Cav2.3 R-type Ca2+ channels and low voltage-activated Cav3.2 T-type Ca2+ channels were reported to be involved in numerous physiological and pathophysiological processes. Many of these findings are based on studies in Cav2.3 and Cav3.2 deficient mice. Recently, it has been proposed that inbreeding of Cav2.3 and Cav3.2 deficient mice exhibits significant deviation from Mendelian inheritance and might be an indication for potential prenatal lethality in these lines. In our study, we analyzed 926 offspring from Cav3.2 breedings and 1142 offspring from Cav2.3 breedings. Our results demonstrate that breeding of Cav2.3 deficient mice shows typical Mendelian inheritance and that there is no indication of prenatal lethality. In contrast, Cav3.2 breeding exhibits a complex inheritance pattern. It might be speculated that the differences in inheritance, particularly for Cav2.3 breeding, are related to other factors, such as genetic specificities of the mutant lines, compensatory mechanisms and altered sperm activity.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.
| |
Collapse
|
6
|
Neumaier F, Schneider T, Albanna W. Ca v2.3 channel function and Zn 2+-induced modulation: potential mechanisms and (patho)physiological relevance. Channels (Austin) 2020; 14:362-379. [PMID: 33079629 PMCID: PMC7583514 DOI: 10.1080/19336950.2020.1829842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are critical for Ca2+ influx into all types of excitable cells, but their exact function is still poorly understood. Recent reconstruction of homology models for all human VGCCs at atomic resolution provides the opportunity for a structure-based discussion of VGCC function and novel insights into the mechanisms underlying Ca2+ selective flux through these channels. In the present review, we use these data as a basis to examine the structure, function, and Zn2+-induced modulation of Cav2.3 VGCCs, which mediate native R-type currents and belong to the most enigmatic members of the family. Their unique sensitivity to Zn2+ and the existence of multiple mechanisms of Zn2+ action strongly argue for a role of these channels in the modulatory action of endogenous loosely bound Zn2+, pools of which have been detected in a number of neuronal, endocrine, and reproductive tissues. Following a description of the different mechanisms by which Zn2+ has been shown or is thought to alter the function of these channels, we discuss their potential (patho)physiological relevance, taking into account what is known about the magnitude and function of extracellular Zn2+ signals in different tissues. While still far from complete, the picture that emerges is one where Cav2.3 channel expression parallels the occurrence of loosely bound Zn2+ pools in different tissues and where these channels may serve to translate physiological Zn2+ signals into changes of electrical activity and/or intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Felix Neumaier
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5) , Jülich, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Radiochemistry and Experimental Molecular Imaging , Cologne, Germany
| | - Toni Schneider
- Institute of Neurophysiology , Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University , Aachen, Germany
| |
Collapse
|
7
|
Rajagopal S, Burton BK, Fields BL, El IO, Kamatchi GL. Stimulatory and inhibitory effects of PKC isozymes are mediated by serine/threonine PKC sites of the Ca v2.3α 1 subunits. Arch Biochem Biophys 2017; 621:24-30. [PMID: 28389298 DOI: 10.1016/j.abb.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022]
Abstract
Protein kinase C (PKC) isozymes modulate voltage-gated calcium (Cav) currents through Cav2.2 and Cav2.3 channels by targeting serine/threonine (Ser/Thr) phosphorylation sites of Cavα1 subunits. Stimulatory (Thr-422, Ser-2108 and Ser-2132) and inhibitory (Ser-425) sites were identified in the Cav2.2α1 subunits to PKCs βII and ε. In the current study, we investigated if the homologous sites of Cav2.3α1 subunits (stimulatory: Thr-365, Ser-1995 and Ser-2011; inhibitory: Ser-369) behaved in similar manner. Several Ala and Asp mutants were constructed in Cav2.3α1 subunits in such a way that the Ser/Thr sites can be examined in isolation. These mutants or WT Cav2.3α1 along with auxiliary β1b and α2/δ subunits were expressed in Xenopus oocytes and the effects of PKCs βII and ε studied on the barium current (IBa). Among these sites, stimulatory Thr-365 and Ser-1995 and inhibitory Ser-369 behaved similar to their homologs in Cav2.2α1 subunits. Furthermore PKCs produced neither stimulation nor inhibition when stimulatory Thr-365 or Ser-1995 and inhibitory Ser-369 were present together. However, the PKCs potentiated the IBa when two stimulatory sites, Thr-365 and Ser-1995 were present together, thus overcoming the inhibitory effect of Ser-369. Taken together net PKC effect may be the difference between the responses of the stimulatory and inhibitory sites.
Collapse
Affiliation(s)
| | - Brittney K Burton
- Department of Biology, Norfolk State University, Norfolk, VA 23504, USA
| | - Blanche L Fields
- Department of Biology, Norfolk State University, Norfolk, VA 23504, USA
| | - India O El
- Department of Biology, Norfolk State University, Norfolk, VA 23504, USA
| | - Ganesan L Kamatchi
- Department of Biology, Norfolk State University, Norfolk, VA 23504, USA.
| |
Collapse
|
8
|
Abstract
The genetic basis of type 2 diabetes remains incompletely defined despite the use of multiple genetic strategies. Multiparental populations such as heterogeneous stocks (HS) facilitate gene discovery by allowing fine mapping to only a few megabases, significantly decreasing the number of potential candidate genes compared to traditional mapping strategies. In the present work, we employed expression and sequence analysis in HS rats (Rattus norvegicus) to identify Tpcn2 as a likely causal gene underlying a 3.1-Mb locus for glucose and insulin levels. Global gene expression analysis on liver identified Tpcn2 as the only gene in the region that is differentially expressed between HS rats with glucose intolerance and those with normal glucose regulation. Tpcn2 also maps as a cis-regulating expression QTL and is negatively correlated with fasting glucose levels. We used founder sequence to identify variants within this region and assessed association between 18 variants and diabetic traits by conducting a mixed-model analysis, accounting for the complex family structure of the HS. We found that two variants were significantly associated with fasting glucose levels, including a nonsynonymous coding variant within Tpcn2. Studies in Tpcn2 knockout mice demonstrated a significant decrease in fasting glucose levels and insulin response to a glucose challenge relative to those in wild-type mice. Finally, we identified variants within Tpcn2 that are associated with fasting insulin in humans. These studies indicate that Tpcn2 is a likely causal gene that may play a role in human diabetes and demonstrate the utility of multiparental populations for positionally cloning genes within complex loci.
Collapse
|
9
|
Diethyldithiocarbamate-mediated zinc ion chelation reveals role of Cav2.3 channels in glucagon secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:953-64. [DOI: 10.1016/j.bbamcr.2015.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/28/2014] [Accepted: 01/03/2015] [Indexed: 12/13/2022]
|
10
|
Lee SY, Park SL, Nam YD, Yi SH, Lim SI. Anti-diabetic Effects of Fermented Green Tea in KK-AyDiabetic Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.9721/kjfst.2013.45.4.488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Schneider T, Dibué M, Hescheler J. How "Pharmacoresistant" is Cav2.3, the Major Component of Voltage-Gated R-type Ca2+ Channels? Pharmaceuticals (Basel) 2013; 6:759-76. [PMID: 24276260 PMCID: PMC3816731 DOI: 10.3390/ph6060759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/04/2022] Open
Abstract
Membrane-bound voltage-gated Ca2+ channels (VGCCs) are targets for specific signaling complexes, which regulate important processes like gene expression, neurotransmitter release and neuronal excitability. It is becoming increasingly evident that the so called “resistant” (R-type) VGCC Cav2.3 is critical in several physiologic and pathophysiologic processes in the central nervous system, vascular system and in endocrine systems. However its eponymous attribute of pharmacologic inertness initially made in depth investigation of the channel difficult. Although the identification of SNX-482 as a fairly specific inhibitor of Cav2.3 in the nanomolar range has enabled insights into the channels properties, availability of other pharmacologic modulators of Cav2.3 with different chemical, physical and biological properties are of great importance for future investigations. Therefore the literature was screened systematically for molecules that modulate Cav2.3 VGCCs.
Collapse
Affiliation(s)
- Toni Schneider
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Maxine Dibué
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, Duesseldorf D-40225, Germany & Center of Molecular Medicine, Cologne D-50931, Germany
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
| |
Collapse
|
12
|
Trombetta M, Bonetti S, Boselli M, Turrini F, Malerba G, Trabetti E, Pignatti P, Bonora E, Bonadonna RC. CACNA1E variants affect beta cell function in patients with newly diagnosed type 2 diabetes. the Verona newly diagnosed type 2 diabetes study (VNDS) 3. PLoS One 2012; 7:e32755. [PMID: 22427875 PMCID: PMC3302892 DOI: 10.1371/journal.pone.0032755] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/30/2012] [Indexed: 11/23/2022] Open
Abstract
Background Genetic variability of the major subunit (CACNA1E) of the voltage-dependent Ca2+ channel CaV2.3 is associated to risk of type 2 diabetes, insulin resistance and impaired insulin secretion in nondiabetic subjects. The aim of the study was to test whether CACNA1E common variability affects beta cell function and/or insulin sensitivity in patients with newly diagnosed type 2 diabetes. Methodology/Principal Findings In 595 GAD-negative, drug naïve patients (mean±SD; age: 58.5±10.2 yrs; BMI: 29.9±5 kg/m2, HbA1c: 7.0±1.3) with newly diagnosed type 2 diabetes we: 1. genotyped 10 tag SNPs in CACNA1E region reportedly covering ∼93% of CACNA1E common variability: rs558994, rs679931, rs2184945, rs10797728, rs3905011, rs12071300, rs175338, rs3753737, rs2253388 and rs4652679; 2. assessed clinical phenotypes, insulin sensitivity by the euglycemic insulin clamp and beta cell function by state-of-art modelling of glucose/C-peptide curves during OGTT. Five CACNA1E tag SNPs (rs10797728, rs175338, rs2184945, rs3905011 and rs4652679) were associated with specific aspects of beta cell function (p<0.05−0.01). Both major alleles of rs2184945 and rs3905011 were each (p<0.01 and p<0.005, respectively) associated to reduced proportional control with a demonstrable additive effect (p<0.005). In contrast, only the major allele of rs2253388 was related weakly to more severe insulin resistance (p<0.05). Conclusions/Significance In patients with newly diagnosed type 2 diabetes CACNA1E common variability is strongly associated to beta cell function. Genotyping CACNA1E might be of help to infer the beta cell functional phenotype and to select a personalized treatment.
Collapse
Affiliation(s)
- Maddalena Trombetta
- Department of Medicine, University of Verona, Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Sara Bonetti
- Department of Medicine, University of Verona, Verona, Italy
- * E-mail: (SB); (RCB)
| | | | | | - Giovanni Malerba
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Elisabetta Trabetti
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - PierFranco Pignatti
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Enzo Bonora
- Department of Medicine, University of Verona, Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Riccardo C. Bonadonna
- Department of Medicine, University of Verona, Verona, Italy
- Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
- * E-mail: (SB); (RCB)
| |
Collapse
|
13
|
Swensen AM, Herrington J, Bugianesi RM, Dai G, Haedo RJ, Ratliff KS, Smith MM, Warren VA, Arneric SP, Eduljee C, Parker D, Snutch TP, Hoyt SB, London C, Duffy JL, Kaczorowski GJ, McManus OB. Characterization of the substituted N-triazole oxindole TROX-1, a small-molecule, state-dependent inhibitor of Ca(V)2 calcium channels. Mol Pharmacol 2012; 81:488-97. [PMID: 22188924 DOI: 10.1124/mol.111.075226] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biological, genetic, and clinical evidence provide validation for N-type calcium channels (Ca(V)2.2) as therapeutic targets for chronic pain. A state-dependent Ca(V)2.2 inhibitor may provide an improved therapeutic window over ziconotide, the peptidyl Ca(V)2.2 inhibitor used clinically. Supporting this notion, we recently reported that in preclinical models, the state-dependent Ca(V)2 inhibitor (3R)-5-(3-chloro-4-fluorophenyl)-3-methyl-3-(pyrimidin-5-ylmethyl)-1-(1H-1,2,4-triazol-3-yl)-1,3-dihydro-2H-indol-2-one (TROX-1) has an improved therapeutic window compared with ziconotide. Here we characterize TROX-1 inhibition of Cav2.2 channels in more detail. When channels are biased toward open/inactivated states by depolarizing the membrane potential under voltage-clamp electrophysiology, TROX-1 inhibits Ca(V)2.2 channels with an IC(50) of 0.11 μM. The voltage dependence of Ca(V)2.2 inhibition was examined using automated electrophysiology. TROX-1 IC(50) values were 4.2, 0.90, and 0.36 μM at -110, -90, and -70 mV, respectively. TROX-1 displayed use-dependent inhibition of Ca(V)2.2 with a 10-fold IC(50) separation between first (27 μM) and last (2.7 μM) pulses in a train. In a fluorescence-based calcium influx assay, TROX-1 inhibited Ca(V)2.2 channels with an IC(50) of 9.5 μM under hyperpolarized conditions and 0.69 μM under depolarized conditions. Finally, TROX-1 potency was examined across the Ca(V)2 subfamily. Depolarized IC(50) values were 0.29, 0.19, and 0.28 μM by manual electrophysiology using matched conditions and 1.8, 0.69, and 1.1 μM by calcium influx for Ca(V)2.1, Ca(V)2.2, and Ca(V)2.3, respectively. Together, these in vitro data support the idea that a state-dependent, non-subtype-selective Ca(V)2 channel inhibitor can achieve an improved therapeutic window over the relatively state-independent Ca(V)2.2-selective inhibitor ziconotide in preclinical models of chronic pain.
Collapse
Affiliation(s)
- Andrew M Swensen
- Department of Ion Channels, Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nifedipine protects INS-1 β-cell from high glucose-induced ER stress and apoptosis. Int J Mol Sci 2011; 12:7569-80. [PMID: 22174617 PMCID: PMC3233423 DOI: 10.3390/ijms12117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/19/2011] [Accepted: 10/31/2011] [Indexed: 01/14/2023] Open
Abstract
Sustained high concentration of glucose has been verified toxic to β-cells. Glucose augments Ca2+-stimulated insulin release in pancreatic β-cells, but chronic high concentration of glucose could induce a sustained level of Ca2+ in β-cells, which leads to cell apoptosis. However, the mechanism of high glucose-induced β-cell apoptosis remains unclear. In this study, we use a calcium channel blocker, nifedipine, to investigate whether the inhibition of intracellular Ca2+ concentration could protect β-cells from chronic high glucose-induced apoptosis. It was found that in a concentration of 33.3 mM, chronic stimulation of glucose could induce INS-1 β-cells apoptosis at least through the endoplasmic reticulum stress pathway and 10 μM nifedipine inhibited Ca2+ release to protect β-cells from high glucose-induced endoplasmic reticulum stress and apoptosis. These results indicated that inhibition of Ca2+ over-accumulation might provide benefit to attenuate islet β-cell decompensation in a high glucose environment.
Collapse
|
15
|
Drews G, Krippeit-Drews P, Düfer M. Electrophysiology of islet cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:115-63. [PMID: 20217497 DOI: 10.1007/978-90-481-3271-3_7] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimulus-Secretion Coupling (SSC) of pancreatic islet cells comprises electrical activity. Changes of the membrane potential (V(m)) are regulated by metabolism-dependent alterations in ion channel activity. This coupling is best explored in beta-cells. The effect of glucose is directly linked to mitochondrial metabolism as the ATP/ADP ratio determines the open probability of ATP-sensitive K(+) channels (K(ATP) channels). Nucleotide sensitivity and concentration in the direct vicinity of the channels are controlled by several factors including phospholipids, fatty acids, and kinases, e.g., creatine and adenylate kinase. Closure of K(ATP) channels leads to depolarization of beta-cells via a yet unknown depolarizing current. Ca(2+) influx during action potentials (APs) results in an increase of the cytosolic Ca(2+) concentration ([Ca(2+)](c)) that triggers exocytosis. APs are elicited by the opening of voltage-dependent Na(+) and/or Ca(2+) channels and repolarized by voltage- and/or Ca(2+)-dependent K(+) channels. At a constant stimulatory glucose concentration APs are clustered in bursts that are interrupted by hyperpolarized interburst phases. Bursting electrical activity induces parallel fluctuations in [Ca(2+)](c) and insulin secretion. Bursts are terminated by I(Kslow) consisting of currents through Ca(2+)-dependent K(+) channels and K(ATP) channels. This review focuses on structure, characteristics, physiological function, and regulation of ion channels in beta-cells. Information about pharmacological drugs acting on K(ATP) channels, K(ATP) channelopathies, and influence of oxidative stress on K(ATP) channel function is provided. One focus is the outstanding significance of L-type Ca(2+) channels for insulin secretion. The role of less well characterized beta-cell channels including voltage-dependent Na(+) channels, volume sensitive anion channels (VSACs), transient receptor potential (TRP)-related channels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is discussed. A model of beta-cell oscillations provides insight in the interplay of the different channels to induce and maintain electrical activity. Regulation of beta-cell electrical activity by hormones and the autonomous nervous system is discussed. alpha- and delta-cells are also equipped with K(ATP) channels, voltage-dependent Na(+), K(+), and Ca(2+) channels. Yet the SSC of these cells is less clear and is not necessarily dependent on K(ATP) channel closure. Different ion channels of alpha- and delta-cells are introduced and SSC in alpha-cells is described in special respect of paracrine effects of insulin and GABA secreted from beta-cells.
Collapse
Affiliation(s)
- Gisela Drews
- Institute of Pharmacy, Department of Pharmacology and Clinical Pharmacy, University of Tübingen, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
16
|
Abstract
Pain remains a major clinical challenge, severely afflicting around 6% of the population at any one time. Channelopathies that underlie monogenic human pain syndromes are of great clinical relevance, as cell surface ion channels are tractable drug targets. The recent discovery that loss-of-function mutations in the sodium channel Nav1.7 underlie a recessive pain-free state in otherwise normal people is particularly significant. Deletion of channel-encoding genes in mice has also provided insights into mammalian pain mechanisms. Ion channels expressed by immune system cells (e.g. P2X7) have been shown to play a pivotal role in changing pain thresholds, whilst channels involved in sensory transduction (e.g. TRPV1), the regulation of neuronal excitability (potassium channels), action potential propagation (sodium channels) and neurotransmitter release (calcium channels) have all been shown to be potentially selective analgesic drug targets in some animal pain models. Migraine and visceral pain have also been associated with voltage-gated ion channel mutations. Insights into such channelopathies thus provide us with a number of potential targets to control pain.
Collapse
Affiliation(s)
- Roman Cregg
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
17
|
Ma L, Hanson RL, Que LN, Guo Y, Kobes S, Bogardus C, Baier LJ. PCLO variants are nominally associated with early-onset type 2 diabetes and insulin resistance in Pima Indians. Diabetes 2008; 57:3156-60. [PMID: 18647954 PMCID: PMC2570415 DOI: 10.2337/db07-1800] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE A prior genome-wide association (GWA) study in Pima Indians identified variants within PCLO that were associated with early-onset type 2 diabetes. PCLO encodes a presynaptic cytomatrix protein that functions as a Ca(2+) sensor that may be involved in insulin secretion and/or insulin action. Therefore, PCLO was analyzed as a candidate gene for type 2 diabetes. RESEARCH DESIGN AND METHODS Sequencing of PCLO identified four nonsynonymous variants and a 10-amino acid insertion. These variants, together with 100 additional variants identified by sequencing or chosen from databases, were genotyped for association analysis in the same 895 subjects analyzed in the prior GWA study (300 case subjects with diabetes onset at aged <25 years, 334 nondiabetic control subjects aged >45 years, and 261 discordant siblings of the case or control subjects for within-family analyses), as well as 415 nondiabetic Pima Indians who had been metabolically phenotyped for predictors of diabetes. Selected variants were further genotyped in a population-based sample of 3,501 Pima Indians. RESULTS Four variants were modestly associated with early-onset type 2 diabetes in both general and within-family analyses (P = 0.004-0.04, recessive model), where the diabetes risk allele was also nominally associated with a lower insulin-mediated glucose disposal rate (P = 0.009-0.14, recessive model) in nondiabetic Pima Indians. However, their association with diabetes in the population-based sample was weaker (P = 0.02-0.20, recessive model). CONCLUSIONS Variation within PCLO may have a modest effect on early-onset type 2 diabetes, possibly as a result of reduced insulin action, but has minimal, if any, impact on population-based risk for type 2 diabetes.
Collapse
Affiliation(s)
- Lijun Ma
- Department of Health and HumanServices, Diabetes Molecular Genetics Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and KidneyDiseases, National Institutes of Health, Phoenix, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Mergler S, Singh V, Grötzinger C, Kaczmarek P, Wiedenmann B, Strowski MZ. Characterization of voltage operated R-type Ca2+ channels in modulating somatostatin receptor subtype 2- and 3-dependent inhibition of insulin secretion from INS-1 cells. Cell Signal 2008; 20:2286-95. [PMID: 18793718 DOI: 10.1016/j.cellsig.2008.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 08/24/2008] [Indexed: 11/28/2022]
Abstract
Somatostatin (SST) inhibits Ca(2+) entry into pancreatic B-cells via voltage-operated Ca(2+) channels (VOCCs) of L-type, leading to the suppression of insulin secretion. Activation of R-type channels increases insulin secretion. However, the role of R-type Ca(2+) channels (Ca(V)2.3) in mediating the effects of SST on insulin secretion has not been so far investigated. Here, we identify the SST-receptor subtypes (SSTR) expressed on insulin-producing INS-1 cells by RT-PCR and by functional assays. The role of R-type channels in regulating [Ca(2+)](i) in response to SST-treatment was detected by cell fluorescence imaging and patch-clamp technique. INS-1 expressed SSTR2 and SSTR3 and agonists (ag.) selective for these receptors reduced 10 nM exendin-4/20 mM glucose-stimulated insulin secretion. Surprisingly, SST and SST2-ag. transiently increased [Ca(2+)](i). Subsequently, these agonists led to a decrease in [Ca(2+)](i) below the basal levels. In contrast, SST3-ag. failed to induce a transient peak of [Ca(2+)](i). Instead, a persistent minor suppression of [Ca(2+)](i) was detected from 25 min. R-type channel blocker SNX-482 altered [Ca(2+)](i) in SST- and SST2-ag.-treated cells. Notably, the inhibition of insulin secretion by SST and SST2-ag., but not SST3-ag. was attenuated by SNX-482. Taken together, SST and SSTR2 regulate [Ca(2+)](i) and insulin secretion in INS-1 cells via R-type channels. In contrast, the R-type calcium channel does not mediate the effects of SST3-ag. on insulin secretion. We conclude that R-type channels play a major role in the inhibition of insulin secretion by somatostatin in INS-1 cells.
Collapse
Affiliation(s)
- Stefan Mergler
- Augenklinik, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Holmkvist J, Tojjar D, Almgren P, Lyssenko V, Lindgren CM, Isomaa B, Tuomi T, Berglund G, Renström E, Groop L. Polymorphisms in the gene encoding the voltage-dependent Ca(2+) channel Ca (V)2.3 (CACNA1E) are associated with type 2 diabetes and impaired insulin secretion. Diabetologia 2007; 50:2467-75. [PMID: 17934712 DOI: 10.1007/s00125-007-0846-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/29/2007] [Indexed: 01/20/2023]
Abstract
AIMS/HYPOTHESIS Glucose-stimulated insulin secretion is dependent on the electrical activity of beta cells; hence, genes encoding beta cell ion channels are potential candidate genes for type 2 diabetes. The gene encoding the voltage-dependent Ca(2+) channel Ca(V)2.3 (CACNA1E), telomeric to a region that has shown suggestive linkage to type 2 diabetes (1q21-q25), has been ascribed a role for second-phase insulin secretion. METHODS Based upon the genotyping of 52 haplotype tagging single nucleotide polymorphisms (SNPs) in a type 2 diabetes case-control sample (n = 1,467), we selected five SNPs that were nominally associated with type 2 diabetes and genotyped them in the following groups (1) a new case-control sample of 6,570 individuals from Sweden; (2) 2,293 individuals from the Botnia prospective cohort; and (3) 935 individuals with insulin secretion data from an IVGTT. RESULTS The rs679931 TT genotype was associated with (1) an increased risk of type 2 diabetes in the Botnia case-control sample [odds ratio (OR) 1.4, 95% CI 1.0-2.0, p = 0.06] and in the replication sample (OR 1.2, 95% CI 1.0-1.5, p = 0.01 one-tailed), with a combined OR of 1.3 (95% CI 1.1-1.5, p = 0.004 two-tailed); (2) reduced insulin secretion [insulinogenic index at 30 min p = 0.02, disposition index (D (I)) p = 0.03] in control participants during an OGTT; (3) reduced second-phase insulin secretion at 30 min (p = 0.04) and 60 min (p = 0.02) during an IVGTT; and (4) reduced D (I) over time in the Botnia prospective cohort (p = 0.05). CONCLUSIONS/INTERPRETATION We conclude that genetic variation in the CACNA1E gene contributes to an increased risk of the development of type 2 diabetes by reducing insulin secretion.
Collapse
Affiliation(s)
- J Holmkvist
- Department of Clinical Sciences, Diabetes and Endocrinology, CRC, Malmö University Hospital MAS, Lund University, Malmo, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Muller YL, Hanson RL, Zimmerman C, Harper I, Sutherland J, Kobes S, Knowler WC, Bogardus C, Baier LJ. Variants in the Ca V 2.3 (alpha 1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes 2007; 56:3089-94. [PMID: 17720895 DOI: 10.2337/db07-0587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Linkage to type 2 diabetes has been reported on chromosome 1q21-25 in Pima Indians. Fine mapping identified single nucleotide polymorphisms (SNPs) near the CACNA1E gene associated with this disease. CACNA1E encodes the voltage-dependent calcium channel Ca(v)2.3 Ca(2+), and mice lacking this channel exhibit impaired glucose tolerance and insulin secretion. Therefore, CACNA1E was investigated as a positional candidate gene. RESEARCH DESIGN AND METHODS CACNA1E was sequenced, and 28 SNPs were genotyped in the same group of Pima subjects who had been analyzed in the linkage study. Allele-specific expression was used to functionally evaluate a variant in the 3' untranslated region (UTR). RESULTS A novel G/A variant in the 3'-UTR was associated with young-onset type 2 diabetes (odds ratio 2.09 per copy of the G-allele [95% CI 1.31-3.33], adjusted P = 0.001) and had an effect on the evidence for linkage at chromosome 1q21-25 (P = 0.004). Among 372 nondiabetic Pima subjects who had undergone metabolic testing, the risk allele was associated with reduced insulin action including increased fasting, 30, 60, and 120 min plasma glucose concentrations and increased fasting plasma insulin during an oral glucose tolerance test (all P < 0.01), as well as a decreased rate of insulin-stimulated glucose disposal at both physiologically and maximally stimulated insulin concentrations (both P < 0.002). Functional analysis of this variant showed that the nonrisk allele had a 2.3-fold higher expression compared with the risk allele. CONCLUSIONS A functional variant in CACNA1E contributes to type 2 diabetes susceptibility by affecting insulin action. This variant partially explains the linkage to type 2 diabetes on chromosome 1q21-25 in Pima Indians.
Collapse
Affiliation(s)
- Yunhua Li Muller
- Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, 455 North 5th St., Phoenix, AZ 85004, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Moosmang S, Kleppisch T, Wegener J, Welling A, Hofmann F. Analysis of calcium channels by conditional mutagenesis. Handb Exp Pharmacol 2007:469-90. [PMID: 17203667 DOI: 10.1007/978-3-540-35109-2_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ca2+ influx through various ion channels is an important determinant of the cytosolic Ca2+ concentration, which plays a pivotal role in countless cellular processes. The cardiac L-type Ca2+ channel, Ca(v)1.2, represents a major pathway for Ca2+ entry and is in many cells expressed together with other high- and low-voltage-activated Ca2+ channels. This article will focus on the use of conditional transgenic mouse models to clarify the roles of Ca2+ channels in several biological systems. The phenotypes of conditional Ca2+ channel transgenic mice have provided novel, and often unexpected, insights into the in vivo function of L-type and T-type Ca2+ channels as mediators of signaling between cell membrane and intracellular processes in blood pressure regulation, smooth muscle contractility, insulin secretion, cardiac function, sleep, learning, and memory.
Collapse
Affiliation(s)
- S Moosmang
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802 München, Germany
| | | | | | | | | |
Collapse
|
22
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
23
|
Vignali S, Leiss V, Karl R, Hofmann F, Welling A. Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic A- and B-cells. J Physiol 2006; 572:691-706. [PMID: 16513675 PMCID: PMC1780015 DOI: 10.1113/jphysiol.2005.102368] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Insulin and glucagon are the major hormones of the islets of Langerhans that are stored and released from the B- and A-cells, respectively. Both hormones are secreted when the intracellular cytosolic Ca2+ concentration ([Ca2+]i) increases. The [Ca2+]i is modulated by mutual inhibition and activation of different voltage-gated ion channels. The precise interplay of these ion channels in either glucagon or insulin release is unknown, owing in part to the difficulties in distinguishing A- from B-cells in electrophysiological experiments. We have established a single-cell RT-PCR method to identify A- and B-cells from the mouse. A combination of PCR, RT-PCR, electrophysiology and pharmacology enabled us to characterize the different sodium and calcium channels in mouse islet cells. In both A- and B-cells, 60% of the inward calcium current (I(Ca)) is carried by L-type calcium channels. In B-cells, the predominant calcium channel is Ca(v)1.2, whereas Ca(v)1.2 and Ca(v)1.3 were identified in A-cells. These results were confirmed by using mice carrying A- or B-cell-specific inactivation of the Ca(v)1.2 gene. In B-cells, the remaining I(Ca) flows in equal amounts through Ca(v)2.1, Ca(v)2.2 and Ca(v)2.3. In A-cells, 30 and 15% of I(Ca) is due to Ca(v)2.3 and Ca(v)2.1 activity, respectively, whereas Ca(v)2.2 current was not found in these cells. Low-voltage-activated T-type calcium channels could not be identified in A- and B-cells. Instead, two TTX-sensitive sodium currents were found: an early inactivating and a residual current. The residual current was only recovered in a subpopulation of B-cells. A putative genetic background for these currents is Na(v)1.7.
Collapse
Affiliation(s)
- Sheila Vignali
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Strasse 29, D-80802 München, Germany
| | | | | | | | | |
Collapse
|
24
|
Toro-Castillo C, Thapliyal A, Gonzalez-Ochoa H, Adams BA, Meza U. Muscarinic modulation of Cav2.3 (R-type) calcium channels is antagonized by RGS3 and RGS3T. Am J Physiol Cell Physiol 2006; 292:C573-80. [PMID: 16855219 DOI: 10.1152/ajpcell.00219.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) influx through voltage-gated R-type (Ca(V)2.3) Ca(2+) channels is important for hormone and neurotransmitter secretion and other cellular events. Previous studies have shown that Ca(V)2.3 is both inhibited and stimulated through signaling mechanisms coupled to muscarinic ACh receptors. We previously demonstrated that muscarinic stimulation of Ca(V)2.3 is blocked by regulator of G protein signaling (RGS) 2. Here we investigated whether muscarinic inhibition of Ca(V)2.3 is antagonized by RGS3. RGS3 is particularly interesting because it contains a lengthy ( approximately 380 residue) amino-terminal domain of uncertain physiological function. Ca(V)2.3, M(2) muscarinic ACh receptors (M(2)R), and various deletion mutants of RGS3, including its native isoform RGS3T, were expressed in HEK293 cells, and agonist-dependent inhibition of Ca(V)2.3 was quantified using whole cell patch-clamp recordings. Full-length RGS3, RGS3T, and the core domain of RGS3 were equally effective in antagonizing inhibition of Ca(V)2.3 through M(2)R. These results identify RGS3 and RGS3T as potential physiological regulators of R-type Ca(2+) channels. Furthermore, they suggest that the signaling activity of RGS3 is unaffected by its extended amino-terminal domain. Confocal microscopy was used to examine the intracellular locations of four RGS3-enhanced green fluorescent protein fusion proteins. The RGS3 core domain was uniformly distributed throughout both cytoplasm and nucleus. By contrast, full-length RGS3, RGS3T, and the amino-terminal domain of RGS3 were restricted to the cytoplasm. These observations suggest that the amino terminus of RGS3 may serve to confine it to the cytoplasmic compartment where it can interact with cell surface receptors, heterotrimeric G proteins, and other signaling proteins.
Collapse
Affiliation(s)
- Carmen Toro-Castillo
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, San Luis Potosí, SLP, 78210 México
| | | | | | | | | |
Collapse
|
25
|
Pereverzev A, Salehi A, Mikhna M, Renström E, Hescheler J, Weiergräber M, Smyth N, Schneider T. The ablation of the Cav2.3/E-type voltage-gated Ca2+ channel causes a mild phenotype despite an altered glucose induced glucagon response in isolated islets of Langerhans. Eur J Pharmacol 2005; 511:65-72. [PMID: 15777780 DOI: 10.1016/j.ejphar.2005.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/15/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
Glucagon release upon hypoglycemia is an important homeostatic mechanism utilized by vertebrates to restore blood glucose to normal. Glucagon secretion itself is triggered by Ca2+ influx through voltage-gated ion channels, and the gene inactivation of R-type Ca2+ channels, with Ca(v)2.3 as the ion conducting subunit, has been shown to disturb glucose homeostasis. To understand how glucagon release may be affected in Ca(v)2.3-deficient mice, carbachol, insulin and glucose induced glucagon response was investigated. While the rise of insulin and glucose induced by carbachol is normal, mutant mice show an impaired glucagon-response. Further, the effect of insulin injection on glucagon levels was altered by the loss of the Ca(v)2.3 subunit. Ca(v)2.3-deficient mice are characterized by an impaired glucose suppression of glucagon release. This was most obvious at the level of isolated islets suggesting that Ca(v)2.3 containing R-type voltage-gated Ca2+ channels are involved in the glucose-mediated signalling to glucagon release in mice.
Collapse
Affiliation(s)
- Alexey Pereverzev
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, D-50931 Köln, Germany; Center of Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 39, D-50931 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Voltage-gated calcium channels are key sources of calcium entry into the cytosol of many excitable tissues. A number of different types of calcium channels have been identified and shown to mediate specialized cellular functions. Because of their fundamental nature, they are important targets for therapeutic intervention in disorders such as hypertension, pain, stroke, and epilepsy. Calcium channel antagonists fall into one of the following three groups: small inorganic ions, large peptide blockers, and small organic molecules. Inorganic ions nonselectively inhibit calcium entry by physical pore occlusion and are of little therapeutic value. Calcium-channel-blocking peptides isolated from various predatory animals such as spiders and cone snails are often highly selective blockers of individual types of calcium channels, either by preventing calcium flux through the pore or by antagonizing channel activation. There are many structure-activity-relation classes of small organic molecules that interact with various sites on the calcium channel protein, with actions ranging from selective high affinity block to relatively nondiscriminatory action on multiple calcium channel isoforms. Detailed interactions with the calcium channel protein are well understood for the dihydropyridine and phenylalkylamine drug classes, whereas we are only beginning to understand the molecular actions of some of the more recently discovered calcium channel blockers. Here, we provide a comprehensive review of pharmacology of high voltage-activated calcium channels.
Collapse
Affiliation(s)
- Clinton J Doering
- Department of Physiology and Biophysics, University of Calgary, 3330 Hospital Dr. NW, Calgary, Canada T2N 4N1
| | | |
Collapse
|
27
|
Mears D. Regulation of Insulin Secretion in Islets of Langerhans by Ca2+Channels. J Membr Biol 2004; 200:57-66. [PMID: 15520904 DOI: 10.1007/s00232-004-0692-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 06/04/2004] [Indexed: 12/21/2022]
Abstract
Insulin secretion from beta-cells of the pancreatic islets of Langerhans is triggered by Ca(2+) influx through voltage-dependent Ca(2+) channels. Electrophysiological and molecular studies indicate that beta-cells express several subtypes of these channels. This review discusses their roles in regulating insulin secretion, focusing on recent studies using beta-cells, exogenous expression systems, and Ca(2+) channel knockout mice. These investigations reveal that L-type Ca(2+) channels in the beta-cell physically interact with the secretory apparatus by binding to synaptic proteins on the plasma membrane and insulin granule. As a result, Ca(2+) influx through L-type channels efficiently and rapidly stimulates release of a pool of insulin granules in close contact with the channels. Thus, L-type Ca(2+) channel activity is preferentially coupled to exocytosis in the beta-cell, and plays a critical role in regulating the dynamics of insulin secretion. Non-L-type channels carry a significant portion of the total voltage-dependent Ca(2+) current in beta-cells and cell lines from some species, but nevertheless account for only a small fraction of insulin secretion. These channels may regulate exocytosis indirectly by affecting membrane potential or second messenger signaling pathways. Finally, voltage-independent Ca(2+) entry pathways and their potential roles in beta-cell function are discussed. The emerging picture is that Ca(2+) channels regulate insulin secretion at multiple sites in the stimulus-secretion coupling pathway, with the specific role of each channel determined by its biophysical and structural properties.
Collapse
Affiliation(s)
- David Mears
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, USA.
| |
Collapse
|
28
|
Shafer TJ, Meyer DA. Effects of pyrethroids on voltage-sensitive calcium channels: a critical evaluation of strengths, weaknesses, data needs, and relationship to assessment of cumulative neurotoxicity. Toxicol Appl Pharmacol 2004; 196:303-18. [PMID: 15081275 DOI: 10.1016/j.taap.2003.12.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
The Food Quality Protection Act of 1996 requires that the U.S. Environmental Protection Agency conduct cumulative risk assessments for classes of pesticides that have a common mode or mechanism of action. For the pyrethroid insecticides, disruption of voltage-sensitive sodium channel function is generally accepted as the mechanism underlying acute neurotoxicity. However, data exist which suggest that voltage-sensitive calcium (Ca(2+)) channels (VSCC) may also be important targets of pyrethroid action. VSCC are important to neuronal function during development and for neurotransmitter release, gene expression, and electrical excitability in the nervous system. Disruption of these and other processes mediated by VSCC can result in neurotoxicity. If effects on VSCC are demonstrated to contribute to pyrethroid neurotoxicity, then such effects will have to be considered when making decisions regarding cumulative risk of exposure to this class of compounds. This document provides a critical review of the data related to the hypothesis that VSCC are important targets of pyrethroid effects. Data supporting effects of pyrethroids on VSCC have been generated by several different laboratories using different techniques and biological preparations. Thus, the many reports of effects on VSCC provide evidence that pyrethroids may interact with VSCC. However, evidence to support a role of VSCC in pyrethroid neurotoxicity is based entirely on in vitro observations, and numerous limitations exist in these data, including: (1) lack of defined concentration-response relationships, with some effects observed only at relatively high concentrations, (2) the use of indirect measures of VSCC function, (3) data from nonmammalian species, (4) data from studies that have not been peer-reviewed, (5) the need for replication of some effects, and (6) inconsistent or contradictory results from different laboratories/preparations. Thus, at the present time, it is premature to conclude that effects on VSCC play an important role in the acute neurotoxicity of pyrethroid insecticides in mammals. To demonstrate that VSCC are important targets of pyrethroid neurotoxicity in mammals, in vivo studies supporting a role for pyrethroid effects on VSCC are needed. Additional support could be provided by demonstration of direct effects of pyrethroid compounds on mammalian neuronal VSCC in vitro, including demonstration that concentration-response relationships are similar, or greater, in sensitivity to effects of pyrethroids on voltage-sensitive sodium channels. If such effects were to be demonstrated, the rationale for considering VSCC as targets of pyrethroid compounds when assessing cumulative risk would be strengthened. However, at the present time, the data available neither support nor refute conclusively the hypothesis that effects on VSCC are important to the acute neurotoxicity of pyrethroids.
Collapse
Affiliation(s)
- Timothy J Shafer
- Neurophysiological Toxicology Branch, Neurotoxicology Division, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | |
Collapse
|
29
|
Bannister RA, Melliti K, Adams BA. Differential modulation of CaV2.3 Ca2+ channels by Galphaq/11-coupled muscarinic receptors. Mol Pharmacol 2004; 65:381-8. [PMID: 14742680 DOI: 10.1124/mol.65.2.381] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CaV2.3 subunits are expressed in neuronal and neuroendocrine cells where they are believed to form native R-type Ca2+ channels. Although R-type currents are involved in triggering neurotransmitter and hormone secretion, little is known about their modulation. Previous studies have shown that muscarinic acetylcholine receptors evoke both inhibition and stimulation of CaV2.3. Muscarinic inhibition of CaV2.3 is mediated by Gbetagamma subunits, whereas stimulation is mediated by pertussis toxin-insensitive Galpha subunits. In the present study, we compared modulation of CaV2.3 by the three Galphaq/11-coupled muscarinic receptors (M1, M3, and M5). Our data indicate that these receptors trigger comparable stimulation of CaV2.3. The signaling pathway that mediates stimulation was meticulously analyzed for M1 receptors. Stimulation is blocked by neutralizing antibodies directed against Galphaq/11, coexpression of the regulatory domain of protein kinase Cdelta (PKCdelta), preactivating PKC with phorbol ester, or pharmacological suppression of PKC with bisindolylmaleimide I. Stimulation of CaV2.3 is Ca(2+)-independent and insensitive to 12-(2-cyanoethyl)-6,7,12,13-tetrahydro-13-methyl-5-oxo-5H-indolo(2,3-a)pyrrolo(3,4-c)-carbazole (Gö 6976), a specific inhibitor of Ca(2+)-dependent PKC isozymes. These results indicate that muscarinic stimulation of CaV2.3 involves signaling by Galphaq/11, diacylglycerol, and a Ca(2+)-independent PKC. In contrast to stimulation, the magnitude of CaV2.3 inhibition depended on receptor subtype, with M3 and M5 receptors producing much larger CaV2.3 inhibition than M1 receptors. Interestingly, muscarinic inhibition of CaV2.3 was notably enhanced during pharmacological suppression of PKC, suggesting the presence of cross-talk between Gbetagamma-mediated inhibition and PKC-mediated stimulation of R-type channels similar to that described previously for N-type channels.
Collapse
Affiliation(s)
- R A Bannister
- Department of Biology, Utah State University, Logan, Utah 84322, USA
| | | | | |
Collapse
|