1
|
Li M, Chen P, Xue M, Wang J, Wang H, Liang X. AKT-FoxO1-PCK/ChREBP signaling pathway regulates metabolic liver disease induced by high glucose in largemouth bass. Int J Biol Macromol 2025; 295:139703. [PMID: 39793804 DOI: 10.1016/j.ijbiomac.2025.139703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Starch is widely used in aquaculture because of its low price and the advantages for processing expanded feed. Largemouth bass are naturally type 2 diabetic and intolerant to dietary carbohydrates. In this study, we found that the phosphorylation of AKT and FoxO1 were down-regulated in the fish suffering from metabolic liver disease (MLD). High glucose (25 mM) stimulation in hepatocytes significantly reduced AKT and FoxO1 phosphorylation level, while enhancing glycolysis and gluconeogenesis enzyme activities, leading to acute glucose metabolism disorder. However, after treatment of insulin or FoxO1 inhibitor, the related parameters returned to control level. The mRNA levels of ChREBP and lipid synthesis genes were increased after high glucose stimulation, and then decreased after adding FoxO1 inhibitor, accompanied by a reduction of TG content. Furtherly, plasmid transfection, dual-luciferase reporter assay experiments and EMSA proved that AKT positively regulated the phosphorylation of FoxO1 and FoxO1 positively regulated the promoter activities of PCK and ChREBP, and the transcription factor binding sites were found. In summary, these results support a critical role of AKT-FoxO1-PCK/ChREBP signaling pathway in regulating the occurrence of MLD in largemouth bass. Moreover, we identified a novel FoxO1-mediated gene regulation mechanism, revealing a previously unrecognized cross-talk between FoxO1 and ChREBP.
Collapse
Affiliation(s)
- Min Li
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei Chen
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Pan L, Qian J, Liu H, Tan B, Dong X, Yang Q, Chi S, Zhang S. Implications on growth performance, glucose metabolism, PI 3K/AKT pathway, intestinal flora induced by dietary taurine in a high-carbohydrate diet for grass carp ( Ctenopharyngodon idella). Br J Nutr 2024; 131:27-40. [PMID: 37492950 DOI: 10.1017/s0007114523001502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
An 8-week experiment was performed to investigate the influence on growth performance, plasma biochemistry, glucose metabolism and the insulin pathway of supplementation of dietary taurine to a high-carbohydrate diet for grass carp. In this study, fish were fed diets at one of two carbohydrate levels, 31·49 % (positive control) or 38·61 % (T00). The high-carbohydrate basal diet (T00), without taurine, was supplemented with 0·05 % (T05), 0·10 % (T10), 0·15 % (T15) or 0·20 % (T20) taurine, resulting in six isonitrogenous (30·37 %) and isolipidic (2·37 %) experimental diets. The experimental results showed that optimal taurine level improved significantly weight gain, specific growth rate (SGR), feed utilisation, reduced plasma total cholesterol levels, TAG and promoted insulin-like growth factor level. Glucokinase, pyruvate kinase and phosphoenolpyruvate carboxykinase activities showed a quadratic function model with increasing dietary taurine level, while hexokinase, fatty acid synthetase activities exhibited a positive linear trend. Optimal taurine supplementation in high-carbohydrate diet upregulated insulin receptor (Ir), insulin receptor substrate (Irs1), phosphatidylinositol 3-kinase (pi3k), protein kinase B (akt1), glycogen synthase kinase 3 β (gs3kβ) mRNA level and downregulated insulin-like growth factor (igf-1), insulin-like growth factor 1 receptor (igf-1R) and Fork head transcription factor 1 (foxo1) mRNA level. The above results suggested that optimal taurine level could improve growth performance, hepatic capacity for glycolipid metabolism and insulin sensitivity, thus enhancing the utilisation of carbohydrates in grass carp. Based on SGR, dietary optimal tributyrin taurine supplementation in grass carp was estimated to be 0·08 %.
Collapse
Affiliation(s)
- Ling Pan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Jiahao Qian
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
- Aquatic Animals Precision Nutrition and High-Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, People's Republic of China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Subramaniam M, Loewen ME. Review: A species comparison of the kinetic homogeneous and heterogeneous organization of sodium-dependent glucose transport systems along the intestine. Comp Biochem Physiol A Mol Integr Physiol 2023; 285:111492. [PMID: 37536429 DOI: 10.1016/j.cbpa.2023.111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The targeted use of carbohydrates by feed and food industries to create balanced and cost-effective diets has generated a tremendous amount of research in carbohydrate digestion and absorption in different species. Specifically, this research has led us to a larger observation that identified different organizations of intestinal sodium-dependent glucose absorption across species, which has not been previously collated and reviewed. Thus, this review will compare the kinetic segregation of sodium-dependent glucose transport across the intestine of different species, which we have termed either homogeneous or heterogeneous systems. For instance, the pig follows a heterogeneous system of sodium-dependent glucose transport with a high-affinity, super-low-capacity (Ha/sLc) in the jejunum, and a high-affinity, super-high-capacity (Ha/sHc) in the ileum. This is achieved by multiple sodium-dependent glucose transporters contributing to each segment. In contrast, tilapia have a homogenous system characterized by high-affinity, high-capacity (Ha/Hc) throughout the intestine. Additionally, we are the first to report glucose transporter patterns across species presented from vertebrates to invertebrates. Finally, other kinetic transport systems are briefly covered to illustrate possible contributions/modulations to sodium-dependent glucose transporter organization. Overall, we present a new perspective on the organization of glucose absorption along the intestinal tract.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
4
|
Luo W, Li L, Zhang Y, Xu Z, Xiong Y, Guo Z, Zhang N, Zhang Y, Chen P, Wang Y, Du Z. Study on the Hyperglycemic Effect of GLP-1 in Spinibarbus denticulatus by Oral Administration and Intraperitoneal Injection Methods. AQUACULTURE NUTRITION 2023; 2023:9969406. [PMID: 37051050 PMCID: PMC10085660 DOI: 10.1155/2023/9969406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), one of the expression products of the proglucagon (pg) gene, is an incretin mainly secreted by the gastrointestinal system. In mammals, GLP-1 has hypoglycemic and food-inhibiting effects; while in some fish species, it has been confirmed to increase blood glucose by promoting gluconeogenesis and stimulating glycogenolysis. In order to more deeply understand the role of GLP-1 in the process of glycometabolism in herbivorous fish, the pg gene was cloned from Spinibarbus denticulatus to obtain its sequence characteristics, and the changes in blood glucose level and pg gene expression in S. denticulatus were further explored by feeding with three kinds of carbohydrates and intraperitoneal injection of GLP-1. Basal and temporal blood glucose levels and pg gene expression of S. denticulatus (91.68 ± 10.79 g) were measured at 0, 1, 3, 5, 7, and 12 h after oral administration (n = 4). Then, the changes of blood glucose levels and pg and glucokinase (gk) gene expressions of S. denticulatus (94.29 ± 10.82 g) were determined at 0, 30, 60, and 120 min after intraperitoneal injection (n = 4). It was shown that polysaccharides could induce the upregulation of pg gene expression faster than monosaccharides and stimulate the secretion of GLP-1 in the intestine. Intraperitoneal injection of GLP-1 peptide rapidly raised blood glucose levels, and pg gene expression in the anterior intestine, whole brain, and hepatopancreas decreased continuously after 30 minutes. These results showed that S. denticulatus might inhibit the excessive accumulation of blood glucose by reducing the expression of the pg gene and increasing the expression of gk gene in a short time. It was speculated that GLP-1 of S. denticulatus might have a "gut-brain-liver" pathway similar to mammals in glycemia regulation. Therefore, this study provided a novel perspective for explaining the functional differences of GLP-1 in herbivorous fish and mammals.
Collapse
Affiliation(s)
- Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Luojia Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Yue Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Zhou Xu
- Mianyang Academy of Agricultural Sciences, Mianyang, Sichuan, China
| | - Yinlin Xiong
- The Original Stock Farm of Leiocassis longirostris of Sichuan Province, Chongzhou, Sichuan, China
| | - Zhonggang Guo
- Agricultural and Rural Bureau of Chongzhou, Chongzhou, Sichuan, China
| | - Ning Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Yibo Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Pengyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Takase K, Kakuta I. Oral administration of wild plant-derived minerals and red ginseng ameliorates insulin resistance in fish through different pathways. Physiol Rep 2023; 11:e15667. [PMID: 37078367 PMCID: PMC10116403 DOI: 10.14814/phy2.15667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023] Open
Abstract
Many kinds of fish are characterized by a limited efficiency to use carbohydrates. For this reason, raw fish and mixed feed containing a lot of fish meal have been used as feed for fish farming. However, continuing to use high-protein diets not only increases the cost of fish farming, but may also fuel animal protein shortages. Furthermore, carbohydrates are added to improve the texture of the feed and act as a binding agent and are usually contained at 20% in the feed. It makes sense, therefore, to find ways to make good use of carbohydrates rather than wasting them. The physiological mechanisms of glucose intolerance in fish are not yet well understood. Therefore, we investigated the glucose utilization of fish, omnivorous goldfish Carassius auratus and carnivorous rainbow trout Oncorhynchus mykiss. Furthermore, the effects of oral administration of wild plant-derived minerals and red ginseng on the glucose utilization in these fish muscle cells were investigated. As a result, we found the following. (1) An extremely high insulin resistance in fish muscle and the symptom was more pronounced in carnivorous rainbow trout. (2) Administration of wild plant-derived minerals promotes the translocation of the insulin-responsive glucose transporter GLUT4 to the cell surface of white muscle via activation of the PI3 kinase axis, whereas administration of red ginseng not only promotes GLUT4 transfer and translocation to the cell surface of white muscle via AMPK activation as well as promoting glucose uptake into muscle cells via a pathway separate from the insulin signaling system. (3) In fish, at least goldfish and rainbow trout, both PI3K/Akt and AMPK signaling cascades exist to promote glucose uptake into muscle cells, as in mammals.
Collapse
Affiliation(s)
- Kiyomi Takase
- Research Center for Creative PartnershipsIshinomaki Senshu UniversityIshinomaki986‐8580Japan
| | - Izuru Kakuta
- Faculty of Science and EngineeringIshinomaki Senshu UniverisityIshinomaki986‐8580Japan
| |
Collapse
|
6
|
Wang S, Zuo Z, Wang Q, Zhou A, Wang G, Xu G, Zou J. Replacing starch with resistant starch (Laminaria japonica) improves water quality, nitrogen and phosphorus budget and microbial community in hybrid snakehead (Channa maculata ♀ × Channa argus ♂). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10836. [PMID: 36744448 DOI: 10.1002/wer.10836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
It is essential to increase the use of carbohydrates as an energy source and improve protein synthesis and utilization to reduce ammonia nitrogen emissions. A 60-day cultural experiment was conducted to assess the impact of resistant starch (kelp meal, Laminaria japonica) replacing starch on water quality, nitrogen and phosphorus budget and microbial community of hybrid snakehead. Approximately 1350 experimental fish (11.4 ± 0.15 g) were randomly divided into control group (C, 20% starch) and four resistant starch groups: low replacement group (LR, 15% starch), medium replacement group (MR, 10% starch), high replacement group (HR, 5% starch) and full replacement group (FR, 0% starch). The crude protein and crude fat content of hybrid snakehead fish fed with the FR diet had the most significant improvement (P < 0.05). However, resistant starch also increased the effectiveness of nitrogen and phosphorus utilization in hybrid snakeheads, which decreased the proportion of total nitrogen and total phosphorus in tail water. The minimum nitrogen and phosphorus emission rate was when the starch level was 6.1%. Denitrifying microbes including Gemmobacter, Rhodobacter, Emticicia and Bosea have become much more prevalent in group FR (P < 0.05). In general, replacing starch with resistant starch can enhance the rate at which nitrogen and phosphorus are used in feeding, lessening water pollution and altering environmental microbial composition. PRACTITIONER POINTS: Resistant starch (RS) improves whole fish nutritional content. Resistant starch improves dietary nitrogen and phosphorus utilization. Resistant starch acts as a carbon source and encourages the colonization of denitrifying bacteria in water.
Collapse
Affiliation(s)
- Shaodan Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiheng Zuo
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qiujie Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Aiguo Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guiqin Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Key Laboratory of Animal Production, Product Quality and Security, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agriculture University, Changchun, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Zhang X, Huang C, Yang Y, Li X, Guo C, Yang Z, Xie S, Luo J, Zhu T, Zhao W, Jin M, Zhou Q. Dietary Corn Starch Levels Regulated Insulin-Mediated Glycemic Responses and Glucose Homeostasis in Swimming Crab ( Portunus trituberculatus). AQUACULTURE NUTRITION 2022; 2022:2355274. [PMID: 36860440 PMCID: PMC9973156 DOI: 10.1155/2022/2355274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/18/2023]
Abstract
Carbohydrate is the cheapest source of energy among the three major nutrient groups, an appropriate amount of carbohydrates can reduce feed cost and improve growth performance, but carnivorous aquatic animals cannot effectively utilize carbohydrates. The objectives of the present study are aimed at exploring the effects of dietary corn starch levels on glucose loading capacity, insulin-mediated glycemic responses, and glucose homeostasis for Portunus trituberculatus. After two weeks of feeding trial, swimming crabs were starved and sampled at 0, 1, 2, 3, 4, 5, 6, 12, and 24 hours, respectively. The results indicated that crabs fed diet with 0% corn starch exhibited lower glucose concentration in hemolymph than those fed with the other diets, and glucose concentration in hemolymph remained low with the extension of sampling time. The glucose concentration in hemolymph of crabs fed with 6% and 12% corn starch diets reached the peak after 2 hours of feeding; however, the glucose concentration in hemolymph of crabs fed with 24% corn starch attained the highest value after 3 hours of feeding, and the hyperglycemia lasted for 3 hours and decreased rapidly after 6 hours of feeding. Enzyme activities in hemolymph related to glucose metabolism such as pyruvate kinase (PK), glucokinase (GK), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly influenced by dietary corn starch levels and sampling time. Glycogen content in hepatopancreas of crabs fed with 6% and 12% corn starch first increased and then decreased; however, the glycogen content in hepatopancreas of crabs fed with 24% corn starch significantly increased with the prolongation of feeding time. In the 24% corn starch diet, insulin-like peptide (ILP) in hemolymph reached a peak after 1 hour of feeding and then significantly decreased, whereas crustacean hyperglycemia hormone (CHH) was not significantly influenced by dietary corn starch levels and sampling time. ATP content in hepatopancreas peaked at 1 h after feeding and then decreased significantly in different corn starch feeding groups, while the opposite trend was observed in NADH. The activities of mitochondrial respiratory chain complexes I, II, III, and V of crabs fed with different corn starch diets significantly increased first and then decreased. In addition, relative expressions of genes related to glycolysis, gluconeogenesis, glucose transport, glycogen synthesis, insulin signaling pathway, and energy metabolism were significantly affected by dietary corn starch levels and sampling time. In conclusion, the results of the present study reveal glucose metabolic responses were regulated by different corn starch levels at different time points and play an important role in clearing glucose through increased activity of insulin, glycolysis, and glycogenesis, along with gluconeogenesis suppression.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chaokai Huang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yuhang Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiangkai Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chen Guo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheng Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Zhang X, Chen H, Li Y, Tang N, Chen D, Li Z. The insulin gene as an energy homeostasis biomarker in Yangtze sturgeon (Acipenser dabryanus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:693-705. [PMID: 35501527 DOI: 10.1007/s10695-022-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Insulin plays an important role in maintaining energy homeostasis and has the potential to be an indicator of energy homeostasis in the Yangtze sturgeon, Acipenser dabryanus. In this study, the Yangtze sturgeon insulin (Adinsulin) was cloned and characterized. To evaluate the possibility of insulin as an energy state assessment indicator, quantification real-time PCR (qRT-PCR) was used to evaluate expression changes in different tissues (the whole brain, esophagus, cardiac stomach, pyloric stomach, pyloric caeca, duodenum, valvula intestine, rectum, liver, pancreas, spleen, kidney, heart, muscle, gill and eye) from 6 fish (average weight 325.7 ± 22.3 g) and in three experiments including postprandial, fasting and re-feeding, and glucose tolerance treatment in which fish were divided into two groups including a group that administered a glucose solution (1 ul/g body weight) and another group that administered sterile water as control. In these three experiments, 6 fish were sampled, respectively, then been used to evaluate expression changes of insulin. All fish in feeding groups were fed in tanks (60.0 cm × 50.0 cm × 40.0 cm) with a commercial diet (crude protein ≥ 40%, crude fat ≥ 12%, coarse fiber ≤ 6%, crude ash ≤ 18%; TONGWEI CO., LTD, China) once a day at 16:00. The result showed that Adinsulin was highly expressed in the pancreas, which was the basis for the next experiment to use the pancreas as the test target. Adinsulin expression significantly increased 1 h after feeding and decreased rapidly after 3 h of feeding, but it was still significantly higher than that of the group without feeding (P < 0.01). Compared to the feeding group, the expression of Adinsulin was significantly reduced in the fasting group of 3 days (P < 0.01), 6 days (P < 0.01), 10 days (P < 0.05), 11 days (P < 0.05) and 13 days (P < 0.01) and was no significant difference in re-feeding for 1st day, 2nd day and 4th day, but there was difference between re-feeding group and fasting group. After glucose tolerance treatment, serum glucose levels increased significantly (P < 0.05), accompanied by a significant increase (P < 0.001) in insulin expression. This study result shows that insulin has the capacity to measure the energy homeostasis of Yangtze sturgeon. Further development of detection methods for sturgeon plasma or serum insulin will avoid slaughtering animals and is more practical in energy homeostasis assessment.
Collapse
Affiliation(s)
- Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Hu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China.
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Hainan 5, Haikou, China.
| | - Ya Li
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Ni Tang
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Defang Chen
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, 611130, China.
| |
Collapse
|
9
|
Ferrari JEC, Palma M, Carli GC, Satiro TM, Tavares LC, Viegas I, Takahashi LS. Carbohydrate tolerance in Amazon tambaqui (Colossoma macropomum) revealed by NMR-metabolomics - Are glucose and fructose different sugars for fruit-eating fish? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100928. [PMID: 34847514 DOI: 10.1016/j.cbd.2021.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
In the present study, two approaches were followed to evaluate the metabolic responses of tambaqui (Colossoma macropomum), a frugivorous species, to intraperitoneal (IP) administration of glucose (GLU) and fructose (FRU) in fed (FED) and 10-day fasted (FAST) fish. Glucose and fructose tolerance tests were performed to assess the carbohydrate utilization and complementary NMR-metabolomics analyses were done to elucidate the impacts of sugar mobilization on the metabolic profile of plasma, liver and muscle. Blood was sampled from FED groups at 0, 3, 6 and 24 h; and at 0 and 24 h from FAST groups. Significant differences were observed in the hyperglycaemic peak between sugars at 3 h (GLU - 13.7 ± 2.0 mM vs. FRU - 8.7 ± 1.1 mM; saline 6.3 ± 0.6 mM) and on the return to normoglycaemia (GLU - 8.5 ± 2.2 mM vs. FRU - 5.2 ± 0.9 mM; saline 4.9 ± 0.6 mM) 6 h after IP on the FRU fish. The NMR-metabolomics approach allowed to conclude that tambaqui seems to be more responsive to the feeding regime (FED vs. FAST) than to the injected sugar (FRU vs. GLU). From the studied tissues, plasma showed no significant variations between feeding regimes at 24 h after IP, while muscle and liver revealed some variations on the final metabolome profile between FED and FAST groups. The metabolome variations between feeding regimes are indicative of changes on the amino acid utilization. Fish from FAST group seem to utilize amino acids as energy source rather than for protein synthesis and muscle growth. Variations on glucose concentration in muscle can also indicate different utilization of the sugars depending on the feeding regime.
Collapse
Affiliation(s)
| | - Mariana Palma
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra 3000-456, Portugal
| | - Gabriela Castellani Carli
- São Paulo State University (Unesp), Aquaculture Center of Unesp (Caunesp), Jaboticabal 14884-900, Brazil; São Paulo State University (Unesp), College of Agricultural and Technological Sciences (FCAT-Unesp), Dracena 17900-000, Brazil
| | - Thaise Mota Satiro
- São Paulo State University (Unesp), Aquaculture Center of Unesp (Caunesp), Jaboticabal 14884-900, Brazil
| | - Ludgero C Tavares
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, 3020-210 Coimbra, Portugal
| | - Ivan Viegas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra 3000-456, Portugal
| | - Leonardo Susumu Takahashi
- São Paulo State University (Unesp), Aquaculture Center of Unesp (Caunesp), Jaboticabal 14884-900, Brazil; São Paulo State University (Unesp), College of Agricultural and Technological Sciences (FCAT-Unesp), Dracena 17900-000, Brazil.
| |
Collapse
|
10
|
Chen P, Wu X, Gu X, Han J, Xue M, Liang X. FoxO1 in Micropterus salmoides: Molecular characterization and its roles in glucose metabolism by glucose or insulin-glucose loading. Gen Comp Endocrinol 2021; 310:113811. [PMID: 33979571 DOI: 10.1016/j.ygcen.2021.113811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 12/18/2022]
Abstract
Forkhead box O1 (FoxO1), a nuclear transcription factor, plays an important role in insulin-mediated glucose metabolism. In this study, FoxO1 gene from largemouth bass (Micropterus salmoides) was cloned and characterized, and its effects on hepatic glucose metabolism regulated by insulin-AKT pathway were investigated in response to glucose or insulin-glucose injection. The full-length cDNA of FoxO1 consisted of 2541 bp and encoded 680 amino acids. Sequence alignments and phylogenetic analysis revealed that FoxO1 exhibited a high degree of conservation among teleost, retaining one forkhead domain, one transactivation domain, and three phosphorylation sites. FoxO1 mRNA was expressed in a wide range of tissues, and high in the brain and liver. Glucose loading resulted in persistent hyperglycemia, and plasma insulin levels remained unchanged except at 1 h. After the insulin-glucose injection, insulin levels were significantly elevated and glucose levels recovered to the basal value after 6 h, which indicated insufficient insulin secretion caused persistent hyperglycemia in this species. Compared with the glucose injection group, transcript levels and enzyme activities of hepatic glycolysis-related genes (GK and PK) were significantly activated, and gluconeogenesis-related genes (PEPCK and G6Pase) were significantly depressed at 3 h after the insulin-glucose injection. Besides, phosphorylation of AKT-FoxO1 pathway was significantly activated. Therefore, insulin improved glucose metabolism by activating the AKT-FoxO1 phosphorylation to decrease hyperglycemia stress after the meal, which indicated insufficient insulin secretion was the reason for glucose intolerance in largemouth bass. Meanwhile, conserved S267 and S329 phosphorylation sites of FoxO1 were confirmed to be regulated by AKT and mediated the glucose metabolism. In conclusion, activation of insulin-AKT-FoxO1 pathway improved glucose tolerance through mediating glucose metabolism in largemouth bass.
Collapse
Affiliation(s)
- Pei Chen
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiufeng Wu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Gu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan Han
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Jiang Q, Jiang Z, Gu S, Qian L, Li X, Gao X, Zhang X. Insights into carbohydrate metabolism from an insulin-like peptide in Macrobrachium rosenbergii. Gen Comp Endocrinol 2020; 293:113478. [PMID: 32243957 DOI: 10.1016/j.ygcen.2020.113478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/15/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
This study identified an insulin-like peptide (ILP) in Macrobrachium rosenbergii termed Mr-ILP and further investigated its function through glucose injection and RNAi. With the analysis of five other glucose metabolism related genes, this study shed light on the molecular mechanism of carbohydrate metabolism in crustaceans. Mr-ILP shared the typical skeleton with six conserved cysteine and mainly expressed in neuroendocrine system. In M. rosenbergii, the elevated hemolymph glucose concentration after glucose injection returned to basal levels in short time, implying an efficient regulatory system in carbohydrate metabolism. Hyperglycemic related genes answered the elevated hemolymph glucose concentration quickly with significant decreased expression level, while Mr-ILP showed delayed response. Instead, glycolysis increased after glucose injection, which indicated glycolysis might play an important role in lowering the abnormally high glucose level. In vivo silencing of Mr-ILP, by injecting the prawns with double-stranded RNA (dsRNA) for 21 days reduced its expression by approximately 75%. Accordingly, glycogen synthase decreased and the trehalose and glycogen level in the hepatopancreas were significantly reduced, indicating the function of Mr-ILP in oligosaccharide and polysaccharide accumulation. When Mr-ILP was silenced, the expression of hyperglycemic related genes were enhanced, but the hemolymph glucose level was not elevated significantly, which might attribute to the increased glycolysis to keep a balanced glucose level in hemolymph.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ziyan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shuwen Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lan Qian
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xixi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
12
|
Callet T, Hu H, Larroquet L, Surget A, Liu J, Plagnes-Juan E, Maunas P, Turonnet N, Mennigen JA, Bobe J, Burel C, Corraze G, Panserat S, Marandel L. Exploring the Impact of a Low-Protein High-Carbohydrate Diet in Mature Broodstock of a Glucose-Intolerant Teleost, the Rainbow Trout. Front Physiol 2020; 11:303. [PMID: 32499714 PMCID: PMC7243711 DOI: 10.3389/fphys.2020.00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Sustainable aquaculture production requires a greater reduction in the use of marine-derived ingredients, and one of the most promising solutions today is the augmentation in the proportion of digestible carbohydrates in aquafeed. This challenge is particularly difficult for high trophic level teleost fish as they are considered to be glucose-intolerant (growth delay and persistent postprandial hyperglycemia observed in juveniles fed a diet containing more than 20% of carbohydrates). It was previously suggested that broodstock could potentially use carbohydrates more efficiently than juveniles, probably due to important metabolic changes that occur during gametogenesis. To investigate this hypothesis, 2-year old male and female rainbow trout (Oncorhynchus mykiss) were either fed a diet containing no carbohydrates (NC) or a 35%-carbohydrate diet (HC) for an entire reproductive cycle. Zootechnical parameters as well as the activities of enzymes involved in carbohydrate metabolism were measured in livers and gonads. Fish were then reproduced to investigate the effects of such a diet on reproductive performance. Broodstock consumed the HC diet, and in contrast to what is commonly observed in juveniles, they were able to grow normally and they did not display postprandial hyperglycemia. The modulation of their hepatic metabolism, with an augmentation of the glycogenesis, the pentose phosphate pathway and a possible better regulation of gluconeogenesis, may explain their improved ability to use dietary carbohydrates. Although the HC diet did induce precocious maturation, the reproductive performance of fish was not affected, confirming that broodstock are able to reproduce when fed a low-protein high-carbohydrate diet. In conclusion, this exploratory work has shown that broodstock are able to use a diet containing digestible carbohydrates as high as 35% and can then grow and reproduce normally over an entire reproductive cycle for females and at least at the beginning of the cycle for males. These results are highly promising and suggest that dietary carbohydrates can at least partially replace proteins in broodstock aquafeed.
Collapse
Affiliation(s)
- Thérèse Callet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Huihua Hu
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Laurence Larroquet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Jingwei Liu
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Patrick Maunas
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Nicolas Turonnet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | | | - Julien Bobe
- INRAE, LPGP UR1037, Campus de Beaulieu, Rennes, France
| | - Christine Burel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Geneviève Corraze
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Stephane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
13
|
Li S, Wang A, Li Z, Zhang J, Sang C, Chen N. Antioxidant defenses and non-specific immunity at enzymatic and transcriptional levels in response to dietary carbohydrate in a typical carnivorous fish, hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). FISH & SHELLFISH IMMUNOLOGY 2020; 100:109-116. [PMID: 32156583 DOI: 10.1016/j.fsi.2020.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The present study was conducted to explore the influence of dietary carbohydrate on antioxidant capacity and non-specific immunity of hybrid grouper, which would contribute to determine the tolerable dietary carbohydrate content. Seven diets with grade levels of carbohydrate (5.27, 8.95, 11.49, 14.37, 17.78, 20.82 and 23.65%) were fed to triplicate groups of fish for 10 weeks. Results showed that the inclusion of carbohydrate above 11.49% produced significant increased content of hydrogen peroxide (H2O2) in liver and malondialdehyde (MDA) in both serum and liver. The specific activity of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (Gpx) and total antioxidative capacity (T-AOC) were significantly elevated with the increase of dietary carbohydrate from 8.95 to 23.65%, which may be associated with the reduced hepatic soluble protein content. However, opposite variation was observed in the expression of antioxidant related genes (SOD1 and Gpx), which was partly caused by the activation of NF-E2-related factor 2 (Nrf2) and inhibition of Kelch-like-ECH-associated protein 1 (Keap1) at the transcriptional level. The immunoglobulin M (lgM) content and activity of lysozyme and CCP in serum significantly depressed when dietary carbohydrate was above 11.49%. The expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-8) was significantly increased with the increase of dietary carbohydrate from 5.27 to 8.95% and thereafter significantly reduced, which was consistent with the changed expression of toll-like receptor 2 (TLR2) and nuclear factor κΒ (NF-κΒ). In above, high dietary carbohydrate significantly impaired the antioxidant capacity and reduced the non-specific immunity of hybrid grouper, and the tolerable dietary carbohydrate content should not exceed 11.49%.
Collapse
Affiliation(s)
- Songlin Li
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, China; Research Centre of the Agriculture Ministry on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - An Wang
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ziqiang Li
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiacan Zhang
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Chunyan Sang
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Naisong Chen
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China; Research Centre of the Agriculture Ministry on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
14
|
Subramaniam M, Enns CB, Luu K, Weber LP, Loewen ME. Comparison of intestinal glucose flux and electrogenic current demonstrates two absorptive pathways in pig and one in Nile tilapia and rainbow trout. Am J Physiol Regul Integr Comp Physiol 2019; 318:R245-R255. [PMID: 31746628 DOI: 10.1152/ajpregu.00160.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mucosal-to-serosal flux of 14C 3-O-methyl-d-glucose was compared against the electrogenic transport of d-glucose across ex vivo intestinal segments of Nile tilapia, rainbow trout, and pig in Ussing chambers. The difference in affinities (Km "fingerprints") between pig flux and electrogenic transport of glucose, and the absence of this difference in tilapia and trout, suggest two absorptive pathways in the pig and one in the fish species examined. More specifically, the total mucosal-to-serosal flux revealed a super high-affinity, high-capacity (sHa/Hc) total glucose transport system in tilapia; a super high-affinity, low-capacity (sHa/Lc) total glucose transport system in trout and a low-affinity, low-capacity (La/Lc) total glucose transport system in pig. Comparatively, electrogenic glucose absorption revealed similar Km in both fish species, with a super high-affinity, high capacity (sHa/Hc) system in tilapia; a super high-affinity/super low-capacity (sHa/sLc) system in trout; but a different Km fingerprint in the pig, with a high-affinity, low-capacity (Ha/Lc) system. This was supported by different responses to inhibitors of sodium-dependent glucose transporters (SGLTs) and glucose transporter type 2 (GLUT2) administered on the apical side between species. More specifically, tilapia flux was inhibited by SGLT inhibitors, but not the GLUT2 inhibitor, whereas trout lacked response to inhibitors. In contrast, the pig responded to inhibition by both SGLT and GLUT2 inhibitors with a higher expression of GLUT2. Altogether, it would appear that two pathways are working together in the pig, allowing it to have continued absorption at high glucose concentrations, whereas this is not present in both tilapia and trout.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole B Enns
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Khanh Luu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Zhao W, Qin C, Yang G, Yan X, Meng X, Yang L, Lu R, Deng D, Niu M, Nie G. Expression of glut2 in response to glucose load, insulin and glucagon in grass carp (Ctenophcuyngodon idellus). Comp Biochem Physiol B Biochem Mol Biol 2019; 239:110351. [PMID: 31518684 DOI: 10.1016/j.cbpb.2019.110351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Generally, fish are thought to have a limited ability to utilize carbohydrate. Postprandial blood glucose is cleared sluggishly in fish, resulting in prolonged hyperglycemia. Facilitative glucose transporters (GLUTs) play an important role in glucose utilization. In the present study, the expression levels of glut2 in different tissues were detected in grass carp. Furthermore, the effects of oral glucose administration on glut2 mRNA expression in the liver, intestine and kidney were investigated, and we also evaluated the response of glut2 mRNA to insulin and glucagon in the primary hepatocytes of grass carp. The expression level of glut2 mRNA was highest in the liver, followed by the intestine and kidney, but lower in other tissues. The result of glucose tolerance test (GTT) showed that serum glucose reached the highest level at 3 h after GTT and recovered to the basic level at 6 h. The glut2 mRNA in the intestine was up-regulated at 1 h after GTT. However, the glut2 mRNA expression in the liver of grass carp was unchanged after GTT for 1, 3, 6 h, and even decreased at 12 h after GTT. In addition, the expression of glut2 mRNA in the primary hepatocytes was enhanced by insulin and glucagon at 3 h post treatment. These results suggested that glut2 expression in the liver of grass carp was sensitive to insulin and glucagon, but not blood glucose. The up-regulation of glut2 by these hormones might be involved in the bi-directional transportation of glucose in the liver.
Collapse
Affiliation(s)
- Wenli Zhao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Chaobin Qin
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| | - Guokun Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiao Yan
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Xiaolin Meng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Liping Yang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Ronghua Lu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Dapeng Deng
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Mingming Niu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China
| | - Guoxing Nie
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, No. 46 Jianshe Road, Xinxiang 453007, PR China.
| |
Collapse
|
16
|
Latimer MN, Reid RM, Biga PR, Cleveland BM. Glucose regulates protein turnover and growth-related mechanisms in rainbow trout myogenic precursor cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:91-97. [PMID: 30904682 PMCID: PMC9105748 DOI: 10.1016/j.cbpa.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
Rainbow trout are considered glucose intolerant because they are poor utilizers of glucose, despite having functional insulin receptors and glucose transporters. Following high carbohydrate meals, rainbow trout are persistently hyperglycemic, which is likely due to low glucose utilization in peripheral tissues including the muscle. Also, rainbow trout myogenic precursor cells (MPCs) treated in vitro with insulin and IGF1 increase glucose uptake and protein synthesis, whereas protein degradation is decreased. Given our understanding of glucose regulation in trout, we sought to understand how glucose concentrations affect protein synthesis, protein degradation; and expression of genes associated with muscle growth and proteolysis in MPCs. We found that following 24 h and 48 h of treatment with low glucose media (5.6 mM), myoblasts had significant decreases in protein synthesis. Also, low glucose treatments affected the expression of both mstn2a and igfbp5. These findings support that glucose is a direct regulator of protein synthesis and growth-related mechanisms in rainbow trout muscle.
Collapse
Affiliation(s)
- M N Latimer
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA
| | - R M Reid
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA
| | - P R Biga
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall, 464, Birmingham, AL, USA.
| | - B M Cleveland
- United States Department of Agriculture, Agricultural Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, WV, USA
| |
Collapse
|
17
|
Subramaniam M, Weber LP, Loewen ME. Intestinal electrogenic sodium-dependent glucose absorption in tilapia and trout reveal species differences in SLC5A-associated kinetic segmental segregation. Am J Physiol Regul Integr Comp Physiol 2019; 316:R222-R234. [PMID: 30601703 PMCID: PMC6459381 DOI: 10.1152/ajpregu.00304.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
Electrogenic sodium-dependent glucose transport along the length of the intestine was compared between the omnivorous Nile tilapia ( Oreochromis niloticus) and the carnivorous rainbow trout ( Oncorhynchus mykiss) in Ussing chambers. In tilapia, a high-affinity, high-capacity kinetic system accounted for the transport throughout the proximal intestine, midintestine, and hindgut segments. Similar dapagliflozin and phloridzin dihydrate inhibition across all segments support this homogenous high-affinity, high-capacity system throughout the tilapia intestine. Genomic and gene expression analysis supported findings by identifying 10 of the known 12 SLC5A family members, with homogeneous expression throughout the segments with dominant expression of sodium-glucose cotransporter 1 (SGLT1; SLC5A1) and sodium-myoinositol cotransporter 2 (SMIT2; SLC5A11). In contrast, trout's electrogenic sodium-dependent glucose absorption was 20-35 times lower and segregated into three significantly different kinetic systems found in different anatomical segments: a high-affinity, low-capacity system in the pyloric ceca; a super-high-affinity, low-capacity system in the midgut; and a low-affinity, low-capacity system in the hindgut. Genomic and gene expression analysis found 5 of the known 12 SLC5A family members with dominant expression of SGLT1 ( SLC5A1), sodium-glucose cotransporter 2 (SGLT2; SLC5A2), and SMIT2 ( SLC5A11) in the pyloric ceca, and only SGLT1 ( SLC5A1) in the midgut, accounting for differences in kinetics between the two. The hindgut presented a low-affinity, low-capacity system partially attributed to a decrease in SGLT1 ( SLC5A1). Overall, the omnivorous tilapia had a higher electrogenic glucose absorption than the carnivorous trout, represented with different kinetic systems and a greater expression and number of SLC5A orthologs. Fish differ from mammals, having hindgut electrogenic glucose absorption and segment specific transport kinetics.
Collapse
Affiliation(s)
- Marina Subramaniam
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon, Saskatchewan , Canada
| |
Collapse
|
18
|
Gu Z, Mu H, Shen H, Deng K, Liu D, Yang M, Zhang Y, Zhang W, Mai K. High level of dietary soybean oil affects the glucose and lipid metabolism in large yellow croaker Larimichthys crocea through the insulin-mediated PI3K/AKT signaling pathway. Comp Biochem Physiol B Biochem Mol Biol 2019; 231:34-41. [PMID: 30772486 DOI: 10.1016/j.cbpb.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Abstract
The present study was conducted to investigate the metabolic responses of glucose and lipid in large yellow croaker Larimichthys crocea (initial weight, 36.80 ± 0.39 g) to high level of dietary soybean oil. Three isonitrogenous (46% crude protein) and isolipidic (13% crude lipid) experimental diets were designed, with 100% fish oil (FO), 50% fish oil and 50% soybean oil (FS) and 100% soybean oil (SO), respectively. After a 12-week growth trial, the results showed that compared with FO group, contents n-6 PUFAs increased while the n-3 PUFAs decreased significantly both in liver and muscle in FS and SO groups. Concentrations of blood glucose, leptin, free fatty acid and total triglyceride reached the highest values in SO group, while blood insulin showed no significant difference among all groups. The gene expressions of insulin receptor substrate-2, glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, fatty acid synthetase, and lipoprotein lipase increased, and the insulin receptor substrate-1, phosphotidylinsositol-3-kinase (PI3K), hexokinase, glycogen synthetase and glucose transporter 2 in liver decreased significantly in SO group. Meanwhile, the phosphorylation of protein kinase B (AKT) also decreased significantly in this group. These results suggested that high level of dietary soybean oil depressed PI3K/AKT signaling pathway, and then affected glucose and lipid metabolism by glycolysis, gluconeogenesis, glucose transportation, glycogenesis and lipogenesis.
Collapse
Affiliation(s)
- Zhixiang Gu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Hua Mu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Haohao Shen
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Kangyu Deng
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Dong Liu
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Mengxi Yang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Yue Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture (Ministry of Education), The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture), Fisheries College, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao 266237, China
| |
Collapse
|
19
|
Forbes JLI, Kostyniuk DJ, Mennigen JA, Weber JM. Unexpected effect of insulin on glucose disposal explains glucose intolerance of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2019; 316:R387-R394. [PMID: 30698988 DOI: 10.1152/ajpregu.00344.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physiological reasons why salmonids show glucose intolerance are unclear. In mammals, rapid clearance of a glucose load is mainly achieved through insulin-mediated inhibition of hepatic glucose production ( Ra) and stimulation of glucose disposal ( Rd), but the effects of insulin on Ra and Rd glucose have never been measured in fish. The goal of this study was to characterize the impact of insulin on the glucose kinetics of rainbow trout in vivo. Glucose fluxes were measured by continuous infusion of [6-3H]glucose before and during 4 h of insulin administration. The phosphorylated form of the key signaling proteins Akt and S6 in the insulin cascade were also examined, confirming activation of this pathway in muscle but not liver. Results show that insulin inhibits trout Rd glucose from 8.6 ± 0.6 to 5.4 ± 0.5 µmol kg-1 min-1: the opposite effect than classically seen in mammals. Such a different response may be explained by the contrasting effects of insulin on gluco/hexokinases of trout versus mammals. Insulin also reduced trout Ra from 8.5 ± 0.7 to 4.8 ± 0.6 µmol·kg-1·min-1, whereas it can almost completely suppresses Ra in mammals. The partial inhibition of Ra glucose may be because insulin only affects gluconeogenesis but not glycogen breakdown in trout. The small mismatch between the responses to insulin for Rd (-37%) and Ra glucose (-43%) gives trout a very limited capacity to decrease glycemia. We conclude that the glucose intolerance of rainbow trout can be explained by the inhibiting effect of insulin on glucose disposal.
Collapse
Affiliation(s)
| | | | - Jan A Mennigen
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa , Ottawa, Ontario , Canada
| |
Collapse
|
20
|
Jin J, Yang Y, Zhu X, Han D, Liu H, Xie S. Effects of glucose administration on glucose and lipid metabolism in two strains of gibel carp (Carassius gibelio). Gen Comp Endocrinol 2018; 267:18-28. [PMID: 29802832 DOI: 10.1016/j.ygcen.2018.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022]
Abstract
We compared the glucose clearance ability of gibel carp CAS III (A strain) with gibel carp Dongting (DT strain). A previous study suggested that these two strains responded to insulin differently. As insulin plays an important role in glucose utilization, we hypothesized that the ability to eliminate excess glucose after a glucose load would differ between A strain and DT strain. To test this hypothesis, fasted specimens of both strains of gibel carp were injected with glucose. As expected, glucose induced hyperglycemia in both A strain and DT strain. In both strains, mRNA levels of the glycolytic enzyme 6-phosphofructokinase (6PFK) increased in the white skeletal muscle 8 h post-injection, while expression levels of glucose-6-phosphatase (G6Pase), fructose 1,6-bisphosphatase (FBPase), and phosphoenolpyruvate carboxykinase (PEPCK) decreased in the liver 8 h post-injection. In the DT strain, both GLUT4 expression and muscular glycolytic processes increased, as reflected by elevated hexokinase 2 (HK2) and pyruvate kinase (PK) mRNA expression levels. The DT strain also returned to basal glycemia more quickly than the A strain (within 6 h versus more than 12 h). The glycogen concentration in the liver of the DT strain was higher than that of the A strain, indicating that the DT strain was better able to store glucose as glycogen than the A strain. Overall, the DT strain was better able to clear excess blood glucose after the glucose tolerance test than the A strain.
Collapse
Affiliation(s)
- Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
21
|
Li S, Sang C, Zhang J, Chen N, Li Z, Jin P, Huang X. Effects of acute hyperglycemia stress on plasma glucose, glycogen content, and expressions of glycogen synthase and phosphorylase in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1185-1196. [PMID: 29790091 DOI: 10.1007/s10695-018-0508-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
In the present study, the hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂), a typical carnivorous fish, was chosen as a model to investigate the regulation of glycogen metabolism owning to its characteristic of glucose intolerance. The variation of plasma glucose concentration, glycogen content, and expressions of glycogen metabolism-related genes under acute hyperglycemia stress were measured. Following glucose administration, plasma glucose concentration increased immediately, and the glucose level remained elevated for at least 12 h. The prolonged glucose clearance and hyperglycemia revealed glucose intolerance of this fish species. Meanwhile, the glycogen content in both liver and muscle changed significantly during the clearance of plasma glucose. However, the peak value of hepatic glycogen (1 and 12 h post injection) appeared much earlier than muscle (3 and 24 h post injection). To investigate the regulation of glycogen metabolism from molecular aspect, the complete coding sequence (CDS) of glycogen synthase (GS) and glycogen phosphorylase (GP) in both liver and muscle types were obtained, encoding a polypeptide of 704, 711, 853, and 842 amino acid residues, respectively. The results of gene expression analysis revealed that the expression of liver type and muscle type GS was significantly higher than other time points at 12 and 24 h post glucose injection, respectively. Meanwhile, the highest expressions of GP in both liver and muscle types occurred at 24 h post glucose injection. The response of GS and GP to glucose load may account for the variation of glycogen content at the transcriptional level to some extent.
Collapse
Affiliation(s)
- Songlin Li
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China
| | - Chunyan Sang
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiacan Zhang
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Naisong Chen
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China.
- Research Centre of the Agriculture Ministry on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China.
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - Ziqiang Li
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Pengfei Jin
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuxiong Huang
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
22
|
Expression profile of glucose transport-related genes under chronic and acute exposure to growth hormone in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018. [DOI: 10.1016/j.cbpa.2018.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Liang H, Mokrani A, Chisomo-Kasiya H, Wilson-Arop OM, Mi H, Ji K, Ge X, Ren M. Molecular characterization and identification of facilitative glucose transporter 2 (GLUT2) and its expression and of the related glycometabolism enzymes in response to different starch levels in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:869-883. [PMID: 29560575 DOI: 10.1007/s10695-018-0477-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Facilitative glucose transporters (GLUT) are transmembrane transporters involved in glucose transport across the plasma membrane. In this study, blunt snout bream GLUT2 gene was cloned, and its expression in various tissues and in liver in response to diets with different carbohydrate levels (17.1; 21.8; 26.4; 32.0; 36.3; and 41.9% of dry matter). Blunt snout bream GLUT2 was also characterized. A full-length cDNA fragment of 2577 bp was cloned, which contains a 5'-untranslated region (UTR) of 73 bp, a 3'-UTR of 992 bp, and an open reading frame of 1512 bp that encodes a polypeptide of 503 amino acids with predicted molecular mass of 55.046 kDa and theoretical isoelectric point was 7.52. The predicted GLUT2 protein has 12 transmembrane domains between amino acid residues at 7-29; 71-93; 106-123; 133-155; 168-190; 195-217; 282-301; 316-338; 345-367; 377-399; 412-434; and 438-460. Besides, the conservative structure domains located at 12-477 amino acids belong to the sugar porter family which is the major facilitator superfamily (MFS) of transporters. Blunt snout bream GLUT2 had the high degree of sequence identity to four GLUT2s from zebrafish, chicken, human, and mouse, with 91, 63, 57, and 54% identity, respectively. Quantitative real-time (qRT) PCR assays revealed that GLUT2 expression was high in the liver, intestine, and kidney; highest in the liver and was regulated by carbohydrate intake. Compared with the control group (17.1%), fed by 3 h with higher starch levels (32.0; 36.3; and 41.9%), increased plasma glucose levels and glycemic level went back to basal by 24 h after treatment. Furthermore, higher dietary starch levels significantly increase GLUT2, glucokinase (GK), and pyruvate kinase (PK) expression and concurrently decrease phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) mRNA levels (P < 0.05), and these changes were also back to basal levels after 24 h of any dietary treatment. These results indicate that the blunt snout bream is able to regulate their ability to metabolize glucose by improving GLUT2, GK, and PK expression levels and decreasing PEPCK and G6P expression levels.
Collapse
Affiliation(s)
- Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Ahmed Mokrani
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | | | | | - Haifeng Mi
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, 214081, China.
| |
Collapse
|
24
|
Latimer MN, Cleveland BM, Biga PR. Dietary methionine restriction: Effects on glucose tolerance, lipid content and micro-RNA composition in the muscle of rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:47-52. [PMID: 29100953 PMCID: PMC5930159 DOI: 10.1016/j.cbpc.2017.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022]
Abstract
Lean muscle mass plays an important role in overall health, as altered skeletal muscle metabolism can impact both the incidence and prevention of conditions related to metabolic health. Intriguingly, dietary methionine restriction (MR) has been shown to ameliorate this phenotype over time potentially through mechanisms related to changes in myogenic precursor cell (MPC) differentiation status. Recently the role of micro-RNAs (miRs) in regulating the expression of muscle specific transcription factors myoD and myogenin as well as signaling molecules involved in skeletal muscle differentiation has been reported in vitro. We performed an 8week feeding trial to determine if MR in vivo could alter miR abundance as well as change metabolic markers. Results show changes in muscle miR abundance for miR-133a at 4weeks with no significant difference seen in miR-210 or miR-206. After 8weeks of MR feeding fish demonstrated increased clearance of glucose, increased fat accumulation in the liver, and decreased fat accumulation in the muscle. These data demonstrate conservation of MR effects on fish metabolism, and suggest, for the first time, that miR-133a might play a role in tissue response to MR.
Collapse
Affiliation(s)
- M N Latimer
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall 464, United States
| | - B M Cleveland
- United States Department of Agriculture Research Service, National Center for Cool and Cold Water Aquaculture, Kearneysville, West Virginia, United States
| | - P R Biga
- University of Alabama Birmingham, Department of Biology, 1300 University Blvd-Campbell Hall 464, United States.
| |
Collapse
|
25
|
Chronic stress of high dietary carbohydrate level causes inflammation and influences glucose transport through SOCS3 in Japanese flounder Paralichthys olivaceus. Sci Rep 2018; 8:7415. [PMID: 29743495 PMCID: PMC5943576 DOI: 10.1038/s41598-018-25412-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Carnivorous fish is thought to be high-glucose intolerance. But the reasons were still unclear. The aim of the present study is to investigate the effects of high level of dietary carbohydrate on the survival, growth and immune responses of Paralichthys olivaceus, and the underlying molecular mechanism related to the immune and glucose metabolism. P. olivaceus were fed with 8%, 16% and 24% of dietary carbohydrate for 10 weeks, respectively. After that, a glucose tolerance test (GTT) was conducted. Results showed that excessive (24%) dietary carbohydrate significantly decreased the growth and glucose tolerance ability according to the GTT. It significantly increased hepatic NADPH oxidase activity and malondialdehyde content and serum contents of IL-6 and advanced glycation end products. The expressions of glucose transport-relevant genes in liver and the content of related hormones in serum were analyzed. In conclusion, it was confirmed that IL-6 increased the expression of suppressor of cytokine signaling 3 (SOCS3) and regulated the downstream targets of PI3K-AKT mediated signal transduction, and then downregulated the glucose transporter 2 activity in liver of P. olivaceus fed diet with excessive carbohydrate level. It was suggested that SOCS3 served as a bridge between immune response and glucose metabolism in P. olivaceus.
Collapse
|
26
|
Shi HJ, Liu WB, Xu C, Zhang DD, Wang BK, Zhang L, Li XF. Molecular Characterization of the RNA-Binding Protein Quaking-a in Megalobrama amblycephala: Response to High-Carbohydrate Feeding and Glucose/Insulin/Glucagon Treatment. Front Physiol 2018; 9:434. [PMID: 29740344 PMCID: PMC5928497 DOI: 10.3389/fphys.2018.00434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein quaking-a (Qkia) was cloned from the liver of blunt snout bream Megalobrama amblycephala through the rapid amplification of cDNA ends method, with its potential role in glucose metabolism investigated. The full-length cDNA of qkia covered 1,718 bp, with an open reading frame of 1,572 bp, which encodes 383 AA. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (97–99%) among most fish and other higher vertebrates. The mRNA of qkia was detected in all examined organs/tissues. Then, the plasma glucose levels and tissue qkia expressions were determined in fish intraperitoneally injected with glucose [1.67 g per kg body weight (BW)], insulin (0.052 mg/kg BW), and glucagon (0.075 mg/kg BW) respectively, as well as in fish fed two dietary carbohydrate levels (31 and 41%) for 12 weeks. Glucose administration induced a remarkable increase of plasma glucose with the highest value being recorded at 1 h. Thereafter, it reduced to the basal value. After glucose administration, qkia expressions significantly decreased with the lowest value being recorded at 1 h in liver and muscle and 8 h in brain, respectively. Then they gradually returned to the basal value. The insulin injection induced a significant decrease of plasma glucose with the lowest value being recorded at 1 h, whereas the opposite was true after glucagon load (the highest value was gained at 4 h). Subsequently, glucose levels gradually returned to the basal value. After insulin administration, the qkia expressions significantly decreased with the lowest value being attained at 2 h in brain and muscle and 1 h in liver, respectively. However, glucagon significantly stimulated the expressions of qkia in tissues with the highest value being gained at 6 h. Moreover, high dietary carbohydrate levels remarkably increased plasma glucose levels, but down-regulated the transcriptions of qkia in tissues. These results indicated that the gene of blunt snout bream shared a high similarity with that of the other vertebrates. Glucose and insulin administration, as well as high-carbohydrate feeding, remarkably down-regulated its transcriptions in brain, muscle and liver, whereas the opposite was true after the glucagon load.
Collapse
Affiliation(s)
- Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Pan W, Miao L, Lin Y, Huang X, Ge X, Moosa SL, Liu B, Ren M, Zhou Q, Liang H, Zhang W, Pan L. Regulation mechanism of oxidative stress induced by high glucose through PI3K/Akt/Nrf2 pathway in juvenile blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2017; 70:66-75. [PMID: 28882793 DOI: 10.1016/j.fsi.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/23/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
This study was conducted to investigate the effects of oral administration of a high concentration of glucose on the respiratory burst, antioxidant status, and hepatic gene expression of heme oxygenase-1 (ho1) and PI3K/Akt/Nrf2-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala). Blunt snout bream juveniles with an initial body weight of 19.94 ± 0.58 g were orally fed with a high concentration of glucose (3 g/kg body weight). The results indicated that plasma glucose exhibited a biphasic response. Acute and persistent hyperglycemia due to the oral glucose administration significantly reduced (P < 0.05) the white blood cell count, red blood cell count, and hemoglobin content and caused oxidative stress (significantly increased alanine aminotransferase, aspartate transaminase, alkaline phosphatase, and glucose levels) and early apoptosis of hepatocytes in the fish. Hepatic superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activities increased rapidly (P < 0.05) as protection from oxidative stress and were downregulated (P < 0.05) because of persistent hyperglycemia. Blood respiratory burst was significantly reduced (P < 0.05) because of hyperglycemia and showed a trend that was opposite to that of plasma glucose. Slight upregulation of nrf2 mRNA and antioxidants acts as a compensative protection mechanism, and the downregulated PI3K/Akt pathway blocked this function of Nrf2. In conclusion, the PI3K/Akt pathway and Nrf2 mediated the antioxidative mechanism independently in the blunt snout bream juveniles subjected to the oral administration of a high glucose concentration.
Collapse
Affiliation(s)
- Wenjing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China.
| | - Silli Laban Moosa
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Mingchun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Qunlan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Wuxiao Zhang
- Wuxi Fisheries College, Nanjing Agricultural University, 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| | - Liangkun Pan
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), 9 Shanshui East Road, Wuxi, Jiangsu 214081, PR China
| |
Collapse
|
28
|
Deck CA, Gary Anderson W, Walsh PJ. Effects of glucose and insulin administration on glucose transporter expression in the North Pacific spiny dogfish (Squalus suckleyi). Gen Comp Endocrinol 2017; 247:46-52. [PMID: 28093310 DOI: 10.1016/j.ygcen.2017.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
Abstract
Elasmobranchs (sharks, skates, and rays) are a primarily carnivorous group of fish, consuming few carbohydrates. Further, they tend to exhibit delayed responses to glucose and insulin administration in vivo relative to mammals, leading to a presumption of glucose-intolerance. To investigate the glucoregulatory capabilities of the spiny dogfish (Squalus suckleyi), plasma glucose concentration, muscle and liver glycogen content, and glucose transporter (glut1 and 4) mRNA levels were measured following intra-arterial administration of bovine insulin (10ngkg-1) or an approximate doubling of fasting plasma glucose concentration. Within 6h, following glucose administration, approximately half of the introduced glucose load had been cleared, with control levels being restored by 24h post-injection. It was determined that plasma clearance was due in part to increased uptake by the tissues as muscle and liver glycogen content increased significantly, correlating with an upregulation of glut mRNA levels. Following administration of bovine insulin, plasma glucose steadily decreased through 18h before returning toward control levels. Observed decreases in plasma glucose following insulin injection were, however, relatively minor, and no increases in tissue glycogen content were observed. glut4 and glycogen synthase mRNA levels did significantly increase in the muscle in response to insulin, but no changes occurred in the liver. The responses observed mimic what occurs in mammals and teleosts, thus suggesting a conserved mechanism for glucose homeostasis in vertebrates and a high degree of glucose tolerance in these predominantly carnivorous fish.
Collapse
Affiliation(s)
- Courtney A Deck
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| | - Patrick J Walsh
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada
| |
Collapse
|
29
|
Jin J, Zhu X, Han D, Yang Y, Liu H, Xie S. Different regulation of insulin on glucose and lipid metabolism in 2 strains of gibel carp. Gen Comp Endocrinol 2017; 246:363-371. [PMID: 28069424 DOI: 10.1016/j.ygcen.2017.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 02/05/2023]
Abstract
To test the hypothesis that response to insulin by regulating glucose and lipid metabolism in gibel carp A strain may be different from that in DT strain, bovine insulin was injected into both strains of gibel carp after previous fasting for 48h. The results showed that insulin induced hypoglycemia at 3h in 2 strains, and that this was coupled with increased expression of glucose transporters (GLUT2 in the liver and GLUT1, GLUT4 in the muscle) and glycolytic enzyme (HK2 in the muscle) in both strains. Insulin induced increased glycolysis (GK) and fatty acid oxidation (ACO3 in the liver and CPT1a, ACO3 in the muscle) in the DT strain. Conversely, very strong lipogenic capacity, as indicated by higher mRNA levels of transcription factor of fatty acid anabolism (SREBP1) and lipogenic enzymes (ACC, ACLY, and FAS) and decrease lipolytic capacity as indicated by lower mRNA levels of fatty acid oxidation enzymes in the liver (ACO3) and muscle (CPT1a and ACO3) detected in the A strain after insulin injection. Higher plasma insulin levels and decreased plasma free fatty acid levels were detected at 8h post insulin injection in A strain induced hypoglycemia. However, plasma glucose levels returned to baseline and no effect on fatty acid levels in the DT strain was observed in response to insulin treatment at the same point in time. These insulin-strain interactions demonstrated that insulin induced different changes in glucose and lipid metabolism in these 2 strains as expected.
Collapse
Affiliation(s)
- Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
30
|
Liu H, Dong X, Chi S, Yang Q, Zhang S, Chen L, Tan B. Molecular cloning of glucose transporter 1 in grouper Epinephelus coioides and effects of an acute hyperglycemia stress on its expression and glucose tolerance. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:103-114. [PMID: 27495737 DOI: 10.1007/s10695-016-0271-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/01/2016] [Indexed: 06/06/2023]
Abstract
The glucose transporter family proteins play pivotal roles in glucose metabolism. In this study, we successfully cloned the orange spotted grouper (Epinephelus coioides) glucose transporter 1 (EcGlut1) gene (GenBank accession: JQ623903). The full-length EcGlut1 cDNA was 2126 bp with a 1476 bp ORF, a 437bp5'-UTR and 223bp3'-UTR. EcGlut1 is predicted to encode a 491 amino acid protein with a MW of 53.9 kDa, a pI of 8.66 and a Pfam domain. Bioinformatics analysis revealed that EcGlut1 was evolutionally conserved between fishes with 80-89 % amino acid identities. EcGlut1 was expressed predominantly in heart and liver and at lower levels in muscle, intestine, stomach and brain. We also investigated the effect of acute hyperglycemia stress on EcGlut1 expression. In glucose tolerance test, changes in EcGlut1 mRNA expression in response to glucose injection and glucose metabolism-related indictors were assessed at the same time. Glucose injection significantly suppressed EcGlut1 mRNA expression in liver at 12 h and in brain at 24 h postinjection (P < 0.05). EcGlut1 mRNA levels in heart were increased at 6 h (P < 0.05). Plasma glucose level increased significantly and reached its maximum at 3 h postinjection (P < 0.05). The spatiotemporal expression of EcGlut1 and glucose metabolism suggested that orange spotted grouper might rely on fat anabolism to reduce acute hyperglycemia stress and the delayed transcription of EcGlut1 gene might be one reason for glucose intolerance in E. coioides.
Collapse
Affiliation(s)
- Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, People's Republic of China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China
| | - Liqiao Chen
- College of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
31
|
Choi K, Weber JM. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming. Am J Physiol Regul Integr Comp Physiol 2015; 310:R493-501. [PMID: 26719305 DOI: 10.1152/ajpregu.00330.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/29/2015] [Indexed: 11/22/2022]
Abstract
This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise.
Collapse
Affiliation(s)
- Kevin Choi
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
32
|
Choi K, Weber JM. Pushing the limits of glucose kinetics: how rainbow trout cope with a carbohydrate overload. J Exp Biol 2015; 218:2873-80. [DOI: 10.1242/jeb.125716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/08/2015] [Indexed: 01/11/2023]
Abstract
Rainbow trout are generally considered as poor glucoregulators. To evaluate this statement, exogenous glucose was administered to chronically hyperglycemic fish at twice the endogenous rate of hepatic production, and their ability to modulate glucose fluxes was tested. Our goals were to determine: (1) whether hyperglycemic fish maintain higher glucose fluxes than normal; (2) whether they can lower hepatic production (Ra glucose) or stimulate disposal (Rd glucose) to cope with a carbohydrate overload; and (3) an estimate of the relative importance of glucose as an oxidative fuel. Results show that hyperglycemic trout sustain elevated baseline Ra and Rd glucose of 10.6±0.1 µmol kg−1 min−1 (or 30% above normal). If 50% of Rd was oxidized as in mammals, glucose could account from 36 to 100% of metabolic rate when exogenous glucose is supplied. In response to exogenous glucose, rainbow trout can completely suppress hepatic glucose production and increase disposal by 2.6-fold, even with chronically elevated baseline fluxes. Such large changes in fluxes limit the increase in blood glucose to 2.5-fold and are probably mediated by the effects of insulin on glucose transporters 2 and 4 and on key enzymes of carbohydrate metabolism. Without this strong and rapid modulation of glucose kinetics, glycemia would rise 4 times faster to reach dangerous levels exceeding 100 mmol l−1. Such responses are typical of mammals, but rather unexpected for an ectotherm. The impressive plasticity of glucose kinetics demonstrated here suggests that trout have a much better glucoregulatory capacity than usually portrayed in the literature.
Collapse
Affiliation(s)
- Kevin Choi
- Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|
33
|
Dai W, Panserat S, Terrier F, Seiliez I, Skiba-Cassy S. Acute rapamycin treatment improved glucose tolerance through inhibition of hepatic gluconeogenesis in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2014; 307:R1231-8. [DOI: 10.1152/ajpregu.00166.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our aim was to investigate the potential role of TOR (target of rapamycin) signaling pathway in the regulation of hepatic glucose metabolism in rainbow trout. Fasted fish were first treated with a single intraperitoneal injection of rapamycin or vehicle and then submitted to a second intraperitoneal administration of glucose 4 h later. Our results revealed that intraperitoneal administration of glucose induced hyperglycemia for both vehicle and rapamycin treatments, which peaked at 2 h. Plasma glucose level in vehicle-treated fish was significantly higher than in rapamycin-treated fish at 8 and 17 h, whereas it remained at the basal level in rapamycin-treated fish. Glucose administration significantly enhanced the phosphorylation of Akt and ribosomal protein S6 kinase (S6K1) in vehicle-treated fish, while rapamycin completely abolished the activation of S6K1 in rapamycin-treated fish, without inhibiting the phosphorylation of Akt on Thr-308 or Ser-473. Despite the lack of significant variation in phosphoenolpyruvate carboxykinase mRNA abundance, mRNA abundance for glucokinase (GK), glucose 6-phosphatase (G6Pase) I and II, and fructose 1,6-bisphosphatase (FBPase) was reduced by rapamycin 17 h after glucose administration. The inhibition effect of rapamycin on GK and FBPase was further substantiated at the activity level. The suppression of GK gene expression and activity by rapamycin provided the first in vivo evidence in fish that glucose regulates hepatic GK gene expression and activity through a TORC1-dependent manner. Unlike in mammals, we observed that acute rapamycin treatment improved glucose tolerance through the inhibition of hepatic gluconeogenesis in rainbow trout.
Collapse
Affiliation(s)
- Weiwei Dai
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Frédéric Terrier
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Iban Seiliez
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- Institut National de la Recherche Agronomique, UR 1067 Nutrition Métabolisme, Aquaculture, Pole d'Hydrobiologie, CD 918, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
34
|
Jin J, Médale F, Kamalam BS, Aguirre P, Véron V, Panserat S. Comparison of glucose and lipid metabolic gene expressions between fat and lean lines of rainbow trout after a glucose load. PLoS One 2014; 9:e105548. [PMID: 25141351 PMCID: PMC4139350 DOI: 10.1371/journal.pone.0105548] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
Two experimental rainbow trout lines developed through divergent selection for low (Lean ‘L’ line) or high (Fat ‘F’ line) muscle fat content were used as models to study the genetic determinism of fat depots. Previous nutritional studies suggested that the F line had a better capability to use glucose than the L line during feeding trials. Based on that, we put forward the hypothesis that F line has a greater metabolic ability to clear a glucose load effectively, compared to L line. In order to test this hypothesis, 250 mg/kg glucose was intraperitoneally injected to the two rainbow trout lines fasted for 48 h. Hyperglycemia was observed after glucose treatment in both lines without affecting the phosphorylation of AMPK (cellular energy sensor) and Akt-TOR (insulin signaling) components. Liver glucokinase and glucose-6-phosphate dehydrogenase expression levels were increased by glucose, whereas mRNA levels of β-oxidation enzymes (CPT1a, CPT1b, HOAD and ACO) were down-regulated in the white skeletal muscle of both lines. Regarding the genotype effect, concordant with normoglycemia at 12 h after glucose treatment, higher muscle glycogen was found in F line compared to L line which exhibited hyperglycemia. Moreover, mRNA levels of hepatic glycolytic enzymes (GK, 6PFK and PK), gluconeogenic enzyme PEPCK and muscle fatty acid oxidation enzymes (CPT1a, CPT1b and HOAD) were concurrently higher in the F line. Overall, these findings suggest that F line may have a better ability to maintain glucose homeostasis than L line.
Collapse
Affiliation(s)
- Junyan Jin
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Françoise Médale
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Biju Sam Kamalam
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Peyo Aguirre
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, UR 1067 Nutrition Metabolism Aquaculture, Institut National de la Recherche Agronomique, Saint-Pée-sur-Nivelle, France
- * E-mail:
| |
Collapse
|
35
|
Glycated hemoglobin is not an accurate indicator of glycemia in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:343-52. [DOI: 10.1016/j.cbpa.2013.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/14/2013] [Accepted: 04/14/2013] [Indexed: 11/16/2022]
|
36
|
Enes P, Pousão-Ferreira P, Salmerón C, Capilla E, Navarro I, Gutiérrez J, Oliva-Teles A. Effect of guar gum on glucose and lipid metabolism in white sea bream Diplodus sargus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:159-169. [PMID: 22763699 DOI: 10.1007/s10695-012-9687-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/23/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to assess the role of soluble non-starch polysaccharide (guar gum) on white sea bream Diplodus sargus, glucose and lipid metabolism. A control diet was formulated to contain 40 % crude protein, 14 % crude lipids and 35 % pregelatinized maize starch, and three other diets were formulated similar to the control diet except for guar gum, which was included at 4 % (diet GG4), 8 % (diet GG8) or 12 % (diet GG12). Diets were fed to the fish for 9 weeks on a pair-feeding scheme. Guar gum had no effect on growth performance, feed efficiency, glycaemia, cholesterolaemia and plasma triacylglyceride levels. Hepatic glucokinase and pyruvate kinase activities, liver glycogen content and liver insulin-like growth factor-I gene expression were not affected by dietary guar gum, while fructose-1,6-bisphosphatase activity was lower in fish fed guar gum-supplemented diets. Hepatic glucose-6-phosphate dehydrogenase activity was higher in fish fed diets GG4 and GG8 than in the control group. Overall, data suggest that in contrast to mammals guar gum had no effect on white sea bream glucose utilization and in lowering plasma cholesterol and triacylglyceride levels. However, it seems to contribute to lower endogenous glucose production.
Collapse
Affiliation(s)
- P Enes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
37
|
Apparent low ability of liver and muscle to adapt to variation of dietary carbohydrate:protein ratio in rainbow trout (Oncorhynchus mykiss). Br J Nutr 2012; 109:1359-72. [DOI: 10.1017/s0007114512003352] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rainbow trout (Oncorhynchus mykiss) exhibits high dietary amino acid requirements and an apparent inefficiency to use dietary carbohydrates. Using this species, we investigated the metabolic consequences of long-term high carbohydrates/low protein feeding. Fish were fed two experimental diets containing either 20 % carbohydrates/50 % proteins (C20P50), or high levels of carbohydrates at the expense of proteins (35 % carbohydrates/35 % proteins – C35P35). The expression of genes related to hepatic and muscle glycolysis (glucokinase (GK), pyruvate kinase and hexokinase) illustrates the poor utilisation of carbohydrates irrespective of their dietary levels. The increased postprandial GK activity and the absence of inhibition of the gluconeogenic enzyme glucose-6-phosphatase activity support the hypothesis of the existence of a futile cycle around glucose phosphorylation extending postprandial hyperglycaemia. After 9 weeks of feeding, the C35P35-fed trout displayed lower body weight and feed efficiency and reduced protein and fat gains than those fed C20P50. The reduced activation of eukaryotic translation initiation factor 4-E binding protein 1 (4E-BP1) in the muscle in this C35P35 group suggests a reduction in protein synthesis, possibly contributing to the reduction in N gain. An increase in the dietary carbohydrate:protein ratio decreased the expression of genes involved in amino acid catabolism (serine dehydratase and branched-chain α-keto acid dehydrogenase E1α and E1β), and increased that of carnitine palmitoyltransferase 1, suggesting a higher reliance on lipids as energy source in fish fed high-carbohydrate and low-protein diets. This probably also contributes to the lower fat gain. Together, these results show that different metabolic pathways are affected by a high-carbohydrate/low-protein diet in rainbow trout.
Collapse
|
38
|
Enes P, Peres H, Pousão-Ferreira P, Sanchez-Gurmaches J, Navarro I, Gutiérrez J, Oliva-Teles A. Glycemic and insulin responses in white sea bream Diplodus sargus, after intraperitoneal administration of glucose. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:645-652. [PMID: 21830035 DOI: 10.1007/s10695-011-9546-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/30/2011] [Indexed: 05/31/2023]
Abstract
A glucose tolerance test was performed in white sea bream Diplodus sargus, juveniles to evaluate the effect of a glucose load on plasma glucose, insulin, triacylglyceride levels, and on liver glycogen storage in order to study the capability of glucose utilization by this species. After being fasted for 48 h, fish were intraperitoneally injected with either 1 g of glucose per kg body weight or a saline solution. Plasma glucose rose from a basal level of 4 to a peak of 18-19 mmol l(-1), 2-4 h after glucose injection and fish exhibited hyperglycemia for 9 h. An insulin peak (from 0.5 to 0.8 ng ml(-1)) was observed 2-6 h after glucose injection, and basal value was attained within 9 h. Liver glycogen peaked 6-12 h after the glucose load and thereafter decreased to the basal value which was attained 24 h after injection. Plasma triacylglycerides in glucose-injected fish were only significantly higher than the basal value 12 h after injection. Glucose-injected fish generally showed lower plasma triacylglyceride levels than control fish. Our results indicate that under these experimental conditions, glucose acts as an insulin secretagogue in white sea bream juveniles. Moreover, insulin may have contributed to restoring basal plasma glucose levels by enhancing glucose uptake in the liver. Further studies are needed to corroborate the lipolytic action of glucose. Clearance of glucose from the blood stream was fast, comparatively to other species, indicating that white sea bream has a good capability of glucose utilization.
Collapse
Affiliation(s)
- P Enes
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 289, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
39
|
Glucose metabolism in fish: a review. J Comp Physiol B 2012; 182:1015-45. [PMID: 22476584 DOI: 10.1007/s00360-012-0658-7] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 02/07/2023]
Abstract
Teleost fishes represent a highly diverse group consisting of more than 20,000 species living across all aquatic environments. This group has significant economical, societal and environmental impacts, yet research efforts have concentrated primarily on salmonid and cyprinid species. This review examines carbohydrate/glucose metabolism and its regulation in these model species including the role of hormones and diet. Over the past decade, molecular tools have been used to address some of the downstream components of these processes and these are incorporated to better understand the roles played by carbohydrates and their regulatory paths. Glucose metabolism remains a contentious area as many fish species are traditionally considered glucose intolerant and, therefore, one might expect that the use and storage of glucose would be considered of minor importance. However, the actual picture is not so clear since the apparent intolerance of fish to carbohydrates is not evident in herbivorous and omnivorous species and even in carnivorous species, glucose is important for specific tissues and/or for specific activities. Thus, our aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake. Finally, we suggest that new research directions ultimately will lead to a better understanding of these processes.
Collapse
|
40
|
Caruso MA, Sheridan MA. The expression of insulin and insulin receptor mRNAs is regulated by nutritional state and glucose in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2012; 175:321-8. [PMID: 22154645 DOI: 10.1016/j.ygcen.2011.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 11/16/2022]
Abstract
Many species of fish, including rainbow trout, possess multiple INS- and IR-encoding mRNAs. In this study, rainbow trout (Oncorhynchus mykiss) were used as a model to study the regulation of INS (INS1, INS2) and IR (IR1, IR2, IR3, and IR4) mRNA expression by nutritional state and glucose. In the nutritional state study, fish were either fed continuously, fasted (4 or 6 weeks), or fasted 4 weeks, then refed for 2 weeks. Nutritional state regulated INS and IR mRNA expression in a subtype- and tissue-specific manner. A 4-week fast reduced INS1 expression in endocrine pancreas (Brockmann body) and of INS1 and INS2 in brain, whereas a 6-week fast reduced the expression of both INS1 and INS2 in pancreas but only of INS1 in brain. Refeeding only restored INS2 levels in pancreas. In adipose tissue, by contrast, a 4-week fast increased INS1 expression, and a 6-week fast increased the expression of both INS1 and INS2. Nutritional state also modulated the pattern of IR mRNA expression. Fasting for 4 weeks resulted in no significant change in IR expression. Prolonged fasting (6 weeks) increased the expression of IR4 mRNA in the pancreas, adipose tissue, cardiac muscle, and gill; however, fasting decreased expression of IR3 mRNA in liver. Refeeding restored fasting-associated increases in IR4 expression in pancreas, adipose tissue, cardiac muscle, and gill, but had no effect on the fasting-associated decrease in IR3 expression in liver. Glucose differentially regulated the expression of INS and IR mRNAs in Brockmann bodies and liver pieces incubated in vitro, respectively. Low glucose (1 mM) reduced pancreatic expression of both INS1 and INS2 mRNAs compared to levels observed at 4 or 10 mM glucose. In the liver, IR1 and IR2 mRNA expression was insensitive to glucose concentration, whereas expression of IR3 and IR4 was attenuated at 1 and 10 mM compared to 4 mM glucose. These findings indicate that the pattern of INS and IR expression in selected tissues is regulated by nutritional state and glucose.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
41
|
Montserrat N, Capilla E, Navarro I, Gutiérrez J. Metabolic Effects of Insulin and IGFs on Gilthead Sea Bream (Sparus aurata) Muscle Cells. Front Endocrinol (Lausanne) 2012; 3:55. [PMID: 22654873 PMCID: PMC3356123 DOI: 10.3389/fendo.2012.00055] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/30/2012] [Indexed: 11/15/2022] Open
Abstract
Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and l-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, l-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and l-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.
Collapse
Affiliation(s)
- Núria Montserrat
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | - Encarnación Capilla
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | - Isabel Navarro
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| | - Joaquim Gutiérrez
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
- *Correspondence: Joaquim Gutiérrez, Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain. e-mail:
| |
Collapse
|
42
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
43
|
Characterization of non-cytosolic hexokinase activity in white skeletal muscle from goldfish (Carassius auratus L.) and the effect of cold acclimation. Biosci Rep 2010; 30:413-23. [DOI: 10.1042/bsr20090128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
HK (hexokinase) is an enzyme involved in the first step in the glucose metabolism pathway, converting glucose into G6P (glucose 6-phosphate). Owing to the importance of skeletal muscle for fish swimming and acclimation processes, we used goldfish (Carassius auratus L.) white muscle in order to investigate subcellular distribution and kinetics of HK. In this study, we report that HK activity is predominantly localized in the mitochondrial fraction [NC-HK (non-cytosolic HK)] in goldfish white muscle. Studies of the kinetic parameters revealed that the Km (Michaelis–Menten constant) for glucose was 0.41±0.03 mM and that for mannose was 3-fold lower, whereas the affinity for fructose was too low to be measured. The Km for ATP was 0.88±0.05 mM, whereas no activity was observed when either GTP or ITP was used as a phosphate donor. A moderate inhibition (20–40%) was found for ADP and AMP. Similar to mammalian HK, G6P and glucose analogues were able to promote an inhibition of between 85 and 100% of activity. Here, we found that acclimation of goldfish at 5°C promoted a 2.5-fold increase in NC-HK compared with its counterpart acclimated at 25°C. However, cytosolic HK activity was not altered after thermal acclimation. In summary, our results suggest that the goldfish has a constitutive NC-HK that shows some similarities to mammalian HK-II and, curiously, may play a role in the broad metabolic changes required during the cold acclimation process.
Collapse
|
44
|
The gastrointestinal tract as an endocrine/neuroendocrine/paracrine organ: organization, chemical messengers and physiological targets. FISH PHYSIOLOGY 2010. [DOI: 10.1016/s1546-5098(10)03007-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Skiba-Cassy S, Lansard M, Panserat S, Médale F. Rainbow trout genetically selected for greater muscle fat content display increased activation of liver TOR signaling and lipogenic gene expression. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1421-9. [PMID: 19710390 DOI: 10.1152/ajpregu.00312.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic selection is commonly used in farm animals to manage body fat content. In rainbow trout, divergent selection for low or high muscle fat content leads to differences in utilization of dietary energy sources between the fat muscle line (FL) and the lean muscle line (LL). To establish whether genetic selection on muscle fat content affects the hepatic insulin/nutrient signaling pathway, we analyzed this pathway and the expression of several metabolism-related target genes in the livers of the two divergent lines under fasting and then refeeding conditions. Whereas glycemia returned to basal level 24 h after refeeding in FL trout, it remained elevated in the LL trout. Target of rapamycin (TOR) protein was more abundant in the livers of FL trout than in LL trout, and refeeding activation of the hepatic TOR signaling pathway (TOR, S6K1, and S6) was therefore enhanced. Genes related to glycolysis (glucokinase and pyruvate kinase) and gluconeogenesis (glucose-6-phosphatase and phosphoenolpyruvate carboxykinase) were only slightly affected by refeeding and genetic selection. Refeeding stimulated expression of lipogenic genes and the sterol-responsive element binding protein (SREBP1), and expression of fatty acid synthase, glucose-6-phosphate dehydrogenase, and serine dehydratase was predominant in the livers of FL fish compared with LL fish. In agreement with recent findings linking TOR to lipogenesis control, we concluded that genetic selection for muscle fat content resulted in overactivation of the TOR signaling pathway-associated lipogenesis and probably also improved utilization of glucose.
Collapse
Affiliation(s)
- Sandrine Skiba-Cassy
- Unité Mixte de Recherches 1067 Nutrition Aquaculture and Génomique, Institut National de la Recherche Agronomique, Pôle d'hydrobiologie, 64310 Saint Pée-sur-Nivelle, France.
| | | | | | | |
Collapse
|
46
|
Panserat S, Skiba-Cassy S, Seiliez I, Lansard M, Plagnes-Juan E, Vachot C, Aguirre P, Larroquet L, Chavernac G, Medale F, Corraze G, Kaushik S, Moon TW. Metformin improves postprandial glucose homeostasis in rainbow trout fed dietary carbohydrates: a link with the induction of hepatic lipogenic capacities? Am J Physiol Regul Integr Comp Physiol 2009; 297:R707-15. [PMID: 19553503 DOI: 10.1152/ajpregu.00120.2009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carnivorous fish are poor users of dietary carbohydrates and are considered to be glucose intolerant. In this context, we have tested, for the first time in rainbow trout, metformin, a common anti-diabetic drug, known to modify muscle and liver metabolism and to control hyperglycemia in mammals. In the present study, juvenile trout were fed with very high levels of carbohydrates (30% of the diet) for this species during 10 days followed by feeding with pellets supplemented with metformin (0.25% of the diet) for three additional days. Dietary metformin led to a significant reduction in postprandial glycemia in trout, demonstrating unambiguously the hypoglycemic effect of this drug. No effect of metformin was detected on mRNA levels for glucose transporter type 4 (GLUT4), or enzymes involved in glycolysis, mitochondrial energy metabolism, or on glycogen level in the white muscle. Expected inhibition of hepatic gluconeogenic (glucose-6-phosphatase, fructose-1,6-bisphosphatase, and phosphoenolpyruvate carboxykinase) mRNA levels was not found, showing instead paradoxically higher mRNA levels for these genes after drug treatment. Finally, metformin treatment was associated with higher mRNA levels and activities for lipogenic enzymes (fatty acid synthase and glucose-6-phosphate dehydrogenase). Overall, this study strongly supports that the induction of hepatic lipogenesis by dietary glucose may permit a more efficient control of postprandial glycemia in carnivorous fish fed with high carbohydrate diets.
Collapse
Affiliation(s)
- S Panserat
- Institut National de la Recherche Agronomique, Joint Research Unit 1067 Nutrition Aquaculture et Génomique, Saint-Pée-sur-Nivelle, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
METABOLIC RESPONSES OF PLASMA GLUCOSE AND TRIGLYCERIDE OF GIBEL CARP( CARASSIUS AURATUS GIBELIO)AFTER ORAL ADMINISTRATION OF DIFFERENT DOSAGE OF SOLUBLE STARCH. ACTA ACUST UNITED AC 2008. [DOI: 10.3724/sp.j.1035.2008.00610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Plagnes-Juan E, Lansard M, Seiliez I, Médale F, Corraze G, Kaushik S, Panserat S, Skiba-Cassy S. Insulin regulates the expression of several metabolism-related genes in the liver and primary hepatocytes of rainbow trout (Oncorhynchus mykiss). J Exp Biol 2008; 211:2510-8. [DOI: 10.1242/jeb.018374] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SUMMARYRainbow trout have a limited ability to use dietary carbohydrates efficiently and are considered to be glucose intolerant. Administration of carbohydrates results in persistent hyperglycemia and impairs post-prandial down regulation of gluconeogenesis despite normal insulin secretion. Since gluconeogenic genes are mainly under insulin control, we put forward the hypothesis that the transcriptional function of insulin as a whole may be impaired in the trout liver. In order to test this hypothesis, we performed intraperitoneal administration of bovine insulin to fasted rainbow trout and also subjected rainbow trout primary hepatocytes to insulin and/or glucose stimulation. We demonstrate that insulin was able to activate Akt, a key element in the insulin signaling pathway, and to regulate hepatic metabolism-related target genes both in vivo and in vitro. In the same way as in mammals, insulin decreased mRNA expression of gluconeogenic genes, including glucose 6-phosphatase (G6Pase),fructose 1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Insulin also limited the expression of carnitine palmitoyltransferase 1 (CPT1), a limiting enzyme of fatty acid β-oxidation. In vitro studies revealed that, as in mammals,glucose is an important regulator of some insulin target genes such as the glycolytic enzyme pyruvate kinase (PK) and the lipogenic enzyme fatty acid synthase (FAS). Interestingly, glucose also stimulates expression of glucokinase (GK), which has no equivalent in mammals. This study demonstrates that insulin possesses the intrinsic ability to regulate hepatic gene expression in rainbow trout, suggesting that other hormonal or metabolic factors may counteract some of the post-prandial actions of insulin.
Collapse
Affiliation(s)
- Elisabeth Plagnes-Juan
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| | - Marine Lansard
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| | - Iban Seiliez
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| | - Françoise Médale
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| | - Geneviève Corraze
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| | - Sadasivam Kaushik
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| | - Sandrine Skiba-Cassy
- INRA, UMR 1067 Nutrition Aquaculture and Génomique, Pôle d'hydrobiologie, CD 918, F-64310 Saint Pée-sur-Nivelle, France
| |
Collapse
|
49
|
The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout. J Comp Physiol B 2008; 178:429-38. [PMID: 18180932 DOI: 10.1007/s00360-007-0235-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/14/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
Rainbow trout is unable to utilize high levels of dietary carbohydrates and experiences hyperglycemia after consumption of carbohydrate-rich meals. Carbohydrates stimulate hepatic glycolytic activity, but gene expression of the rate-limiting gluconeogenic enzymes glucose-6-phosphatase (G6Pase), fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK) remains high. Although there is significant mRNA expression and activity of gluconeogenic enzymes in trout intestine and kidney, the regulation of these enzymes by diet is not known. We tested the hypothesis that dietary carbohydrate modulates intestinal and renal G6Pase, FBPase and PEPCK. Fish were either fasted or fed isocaloric carbohydrate-free (CF) or high carbohydrate (HC) diets for 14 days. As expected, fish fed HC exhibited postprandial hyperglycemia and enhanced levels of hepatic glucokinase mRNA and activity. Dietary carbohydrates had no significant effect on the expression and activity of PEPCK, FBPase and G6Pase in all three organs. In contrast, fasting enhanced the activity, but not the mRNA expression of both hepatic and intestinal PEPCK, as well as intestinal FBPase. Therefore, the activity of rate-limiting gluconeogenic enzymes in trout can be modified by fasting, but not by the carbohydrate content of the diet, potentially causing hyperglycemia when fed high levels of dietary carbohydrates. In this species consuming low carbohydrate diets at infrequent intervals in the wild, fasting-induced increases in hepatic and intestinal gluconeogenic enzyme activities may be a key adaptation to prevent perturbations in blood glucose during food deprivation.
Collapse
|
50
|
Díaz M, Capilla E, Planas JV. Physiological regulation of glucose transporter (GLUT4) protein content in brown trout (Salmo trutta) skeletal muscle. ACTA ACUST UNITED AC 2007; 210:2346-51. [PMID: 17575039 DOI: 10.1242/jeb.002857] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In brown trout, red and white skeletal muscle express the insulin-regulatable glucose transporter 4 (btGLUT4). We have previously shown that the mRNA expression of btGLUT4 in red muscle, but not white muscle, is altered under experimental conditions designed to cause changes in the plasma levels of insulin, such as fasting, insulin and arginine administration. In order to determine whether changes of btGLUT4 expression at the mRNA level are correlated with changes at the protein level, we performed in vivo experiments to alter blood insulin concentrations and determined the abundance of btGLUT4 protein in trout red and white skeletal muscle by immunoblotting using an antibody to salmon GLUT4. In the present study we show that btGLUT4 protein content in red muscle decreases after fasting and increases after insulin administration. By contrast, btGLUT4 protein content in white muscle decreases after fasting but is not affected by insulin treatment. Our results show a good correlation between the changes observed in btGLUT4 protein and the previously reported changes in mRNA levels in response to alterations in circulating insulin, indicating that the regulation of btGLUT4 in brown trout takes place predominantly in the red skeletal muscle.
Collapse
Affiliation(s)
- Mònica Díaz
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | |
Collapse
|