1
|
Lisachova L, Lisachov A, Romanenko S, Davletshina G, Altmanová M, Rovatsos M, Kratochvíl L, Giovannotti M, Nazarov R, Okshtein I, Trifonov V. Concerted Evolution of Genus-Specific Centromeric Satellite DNA in Eremias (Lacertidae, Reptilia). Cytogenet Genome Res 2025:1-13. [PMID: 40096838 DOI: 10.1159/000543883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Tandemly repeated satellite DNA sequences are an important part of animal genomes. They are involved in chromosome interactions and the maintenance of the integral structure of the nucleus, regulation of chromatin conformation and gene expression, and chromosome condensation and movement during cell division. Satellite DNAs located in the centromeric heterochromatin evolve rapidly and likely affect hybrid fertility and fitness. However, their studies are taxonomically highly biased. In lacertid lizards, satDNA has been extensively studied in the subfamily Lacertinae, but the subfamily Eremiadinae has been largely overlooked. RESULTS In this work, we describe a novel 177-bp-long centromeric satDNA family EremSat177, which is present in all studied species of the genus Eremias, but not in related genera. EremSat177 is not homologous to any previously identified centromeric satellites. Using fluorescence in situ hybridization, we demonstrate its centromeric localization in E. velox and E. arguta. We also show its tandem organization and intra-genomic homogenization by in silico analysis in the genome of E. argus. The phylogenetic analysis of consensus EremSat177 sequences from 12 Eremias species demonstrates that the same monomer subfamily is the most abundant in all these species, and its evolution mainly follows the species phylogeny as revealed by the mtDNA sequences. CONCLUSION The EremSat177 represents a novel, lineage-specific centromeric satellite DNA, and its role in centromere functioning should be revealed in further research.
Collapse
Affiliation(s)
- Lada Lisachova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Artem Lisachov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Guzel Davletshina
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Massimo Giovannotti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Roman Nazarov
- Zoological Museum, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor Okshtein
- Institute of Theoretical and Experimental Physics, Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czechia
| |
Collapse
|
2
|
Jonika MM, Wilhoit KT, Chin M, Arekere A, Blackmon H. Drift drives the evolution of chromosome number II: The impact of range size on genome evolution in Carnivora. J Hered 2024; 115:524-531. [PMID: 38712909 PMCID: PMC11334210 DOI: 10.1093/jhered/esae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chromosome number is a fundamental genomic trait that is often the first recorded characteristic of a genome. Across large clades, a common pattern emerges: many or even most lineages exhibit relative stasis, while a handful of lineages or species exhibit striking variation. Despite recent developments in comparative methods, most of this heterogeneity is still poorly understood. It is essential to understand why some lineages have rapid rates of chromosome number evolution, as it can impact a variety of other traits. Previous research suggests that biased female meiotic drive may shape rates of karyotype evolution in some mammals. However, Carnivora exhibits variation that this female meiotic drive model cannot explain. We hypothesize that variation in effective population size may underlie rate variation in Carnivora. To test this hypothesis, we estimated rates of fusions and fissions while accounting for range size, which we use as a proxy for effective population size. We reason fusions and fissions are deleterious or underdominant and that only in lineages with small range sizes will these changes be able to fix due to genetic drift. In this study, we find that the rates of fusions and fissions are elevated in taxa with small range sizes relative to those with large range sizes. Based on these findings, we conclude that 1) naturally occurring structural mutations that change chromosome number are underdominant or mildly deleterious, and 2) when population sizes are small, structural rearrangements may play an important role in speciation and reduction in gene flow among populations.
Collapse
Affiliation(s)
- Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
| | - Kayla T Wilhoit
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Maximos Chin
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Abhimanyu Arekere
- Department of Biology, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, University of Texas, Austin, TX, United States
| | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, United States
- Ecology and Evolutionary Biology Interdepartmental Program, Texas A&M University, College Station, TX, United States
| |
Collapse
|
3
|
Blake JM, Thompson J, HogenEsch H, Ekenstedt KJ. Heritability and genome-wide association study of vaccine-induced immune response in Beagles: A pilot study. Vaccine 2024; 42:3099-3106. [PMID: 38604911 PMCID: PMC11144447 DOI: 10.1016/j.vaccine.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.
Collapse
Affiliation(s)
- Jeanna M Blake
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - James Thompson
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases, West Lafayette, IN, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Romanenko SA, Kliver SF, Serdyukova NA, Perelman PL, Trifonov VA, Seluanov A, Gorbunova V, Azpurua J, Pereira JC, Ferguson-Smith MA, Graphodatsky AS. Integration of fluorescence in situ hybridization and chromosome-length genome assemblies revealed synteny map for guinea pig, naked mole-rat, and human. Sci Rep 2023; 13:21055. [PMID: 38030702 PMCID: PMC10687270 DOI: 10.1038/s41598-023-46595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia.
| | - Sergei F Kliver
- Center for Evolutionary Hologenomics, The Globe Institute, The University of Copenhagen, Copenhagen, Denmark
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Jorge Azpurua
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Jorge C Pereira
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russia
| |
Collapse
|
5
|
Lisachov A, Tishakova K, Romanenko S, Lisachova L, Davletshina G, Prokopov D, Kratochvíl L, O Brien P, Ferguson-Smith M, Borodin P, Trifonov V. Robertsonian fusion triggers recombination suppression on sex chromosomes in Coleonyx geckos. Sci Rep 2023; 13:15502. [PMID: 37726346 PMCID: PMC10509250 DOI: 10.1038/s41598-023-39937-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
The classical hypothesis proposes that the lack of recombination on sex chromosomes arises due to selection for linkage between a sex-determining locus and sexually antagonistic loci, primarily facilitated by inversions. However, cessation of recombination on sex chromosomes could be attributed also to neutral processes, connected with other chromosome rearrangements or can reflect sex-specific recombination patterns existing already before sex chromosome differentiation. Three Coleonyx gecko species share a complex X1X1X2X2/X1X2Y system of sex chromosomes evolved via a fusion of the Y chromosome with an autosome. We analyzed synaptonemal complexes and sequenced flow-sorted sex chromosomes to investigate the effect of chromosomal rearrangement on recombination and differentiation of these sex chromosomes. The gecko sex chromosomes evolved from syntenic regions that were also co-opted also for sex chromosomes in other reptiles. We showed that in male geckos, recombination is less prevalent in the proximal regions of chromosomes and is even further drastically reduced around the centromere of the neo-Y chromosome. We highlight that pre-existing recombination patterns and Robertsonian fusions can be responsible for the cessation of recombination on sex chromosomes and that such processes can be largely neutral.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, 625003, Russia.
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia.
| | - Katerina Tishakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Lada Lisachova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Guzel Davletshina
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, 12844, Prague, Czech Republic
| | - Patricia O Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Malcolm Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Pavel Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk, 630090, Russia
| |
Collapse
|
6
|
Proskuryakova AA, Ivanova ES, Makunin AI, Larkin DM, Ferguson-Smith MA, Yang F, Uphyrkina OV, Perelman PL, Graphodatsky AS. Comparative studies of X chromosomes in Cervidae family. Sci Rep 2023; 13:11992. [PMID: 37491593 PMCID: PMC10368622 DOI: 10.1038/s41598-023-39088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
The family Cervidae is the second most diverse in the infraorder Pecora and is characterized by variability in the diploid chromosome numbers among species. X chromosomes in Cervidae evolved through complex chromosomal rearrangements of conserved segments within the chromosome, changes in centromere position, heterochromatic variation, and X-autosomal translocations. The family Cervidae consists of two subfamilies: Cervinae and Capreolinae. Here we build a detailed X chromosome map with 29 cattle bacterial artificial chromosomes of representatives of both subfamilies: reindeer (Rangifer tarandus), gray brocket deer (Mazama gouazoubira), Chinese water deer (Hydropotes inermis) (Capreolinae); black muntjac (Muntiacus crinifrons), tufted deer (Elaphodus cephalophus), sika deer (Cervus nippon) and red deer (Cervus elaphus) (Cervinae). To track chromosomal rearrangements during Cervidae evolution, we summarized new data, and compared them with available X chromosomal maps and chromosome level assemblies of other species. We demonstrate the types of rearrangements that may have underlined the variability of Cervidae X chromosomes. We detected two types of cervine X chromosome-acrocentric and submetacentric. The acrocentric type is found in three independent deer lineages (subfamily Cervinae and in two Capreolinae tribes-Odocoileini and Capreolini). We show that chromosomal rearrangements on the X-chromosome in Cervidae occur at a higher frequency than in the entire Ruminantia lineage: the rate of rearrangements is 2 per 10 million years.
Collapse
Affiliation(s)
- Anastasia A Proskuryakova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090.
| | - Ekaterina S Ivanova
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
- Novosibirsk State University, Pirogova Str. 1, Novosibirsk, Russia, 630090
| | - Alexey I Makunin
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| | - Denis M Larkin
- The Royal Veterinary College, Royal College Street, University of London, London, NW1 0TU, UK
| | - Malcolm A Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Center for Comparative Genomics, University of Cambridge, Cambridge, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Olga V Uphyrkina
- Federal Research Center for Biodiversity of the Terrestrial Biota of East Asia, Vladivostok, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Lavrentiev Ave 8/2, Novosibirsk, Russia, 630090
| |
Collapse
|
7
|
Biltueva LS, Vorobieva NV, Lemskya NA, Perelman PL, Trifonov VA, Panov VV, Abramov AV, Kawada SI, Serdukova NA, Graphodatsky AS. Chromosomal Evolution of the Talpinae. Genes (Basel) 2023; 14:1472. [PMID: 37510376 PMCID: PMC10379030 DOI: 10.3390/genes14071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, the number of mole species with species status confirmed by genetic methods has been continuously increasing. Unfortunately, cytogenetic data are not yet available for all species. Here, for the first time, a GTG-banded karyotype of the small-toothed mole from Vietnam, Euroscaptor parvidens, a representative of the Eastern clade of the genus Euroscaptor, has been described. Through comparative analysis of available Euroscaptor (Euroscaptor parvidens, Euroscaptor klossi, and Euroscaptor malayana) and Oreoscaptor (Oreoscaptor mizura) karyotypes, we found cytogenetic signatures for each of the studied species. Zoo-FISH with sorted chromosomes of the Siberian mole (Talpa altaica) on chromosome sets of the small-toothed mole (E. parvidens), the small Japanese mole (Mogera imaizumii) from the closely related genus, and the Japanese shrew mole (Urotrichus talpoides) from the tribe Urotrichini made it possible to identify syntenic regions between these species. We propose a possible ancestral karyotype of the tribe and, based on it, traced the features of chromosomal rearrangements accompanying the divergence of moles. The low rates of chromosomal evolution within the species of the genus Talpa-T. altaica and T. europaea-and the high rates of karyotypic reshuffling within the Asian genera of the tribe were confirmed. The karyotype of the Japanese mountain mole O. mizura seems to be the most conserved among the Asian moles. The most frequently occurring types of chromosomal rearrangements in moles are the pericentric inversions and amplification of heterochromatin. The pericentric inversions on four pairs of autosomes are shared between the closely related genera Euroscaptor, Oreoscaptor, and Mogera, while many more apomorphic rearrangements have occurred in each lineage additionally. The highest rate of chromosomal changes, with five rearrangements occurring over approximately 7 million years, was recorded in the lineage of the small-toothed mole.
Collapse
Affiliation(s)
- Larisa S Biltueva
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave., 8/2, 630090 Novosibirsk, Russia
| | - Nadezhda V Vorobieva
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave., 8/2, 630090 Novosibirsk, Russia
| | - Natalya A Lemskya
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave., 8/2, 630090 Novosibirsk, Russia
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave., 8/2, 630090 Novosibirsk, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave., 8/2, 630090 Novosibirsk, Russia
| | - Victor V Panov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze st.11, 630091 Novosibirsk, Russia
| | - Alexey V Abramov
- Zoological Institute RAS, 199034 Saint Petersburg, Russia
- Joint Vietnamese-Russian Tropical Research and Technological Centre, Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi 650000, Vietnam
| | - Shin-Ichiro Kawada
- Department of Zoology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba 305-0005, Ibaraki, Japan
| | - Natalya A Serdukova
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave., 8/2, 630090 Novosibirsk, Russia
| | - Alexandr S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Lavrentiev Ave., 8/2, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Beklemisheva VR, Lemskaya NA, Prokopov DY, Perelman PL, Romanenko SA, Proskuryakova AA, Serdyukova NA, Utkin YA, Nie W, Ferguson-Smith MA, Yang F, Graphodatsky AS. Maps of Constitutive-Heterochromatin Distribution for Four Martes Species (Mustelidae, Carnivora, Mammalia) Show the Formative Role of Macrosatellite Repeats in Interspecific Variation of Chromosome Structure. Genes (Basel) 2023; 14:489. [PMID: 36833416 PMCID: PMC9957230 DOI: 10.3390/genes14020489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.
Collapse
Affiliation(s)
- Violetta R. Beklemisheva
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya A. Lemskaya
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry Yu. Prokopov
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Polina L. Perelman
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Svetlana A. Romanenko
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anastasia A. Proskuryakova
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya A. Serdyukova
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yaroslav A. Utkin
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Fentang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Alexander S. Graphodatsky
- Department of Diversity and Evolution of Genomes, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Conservation of Major Satellite DNAs in Snake Heterochromatin. Animals (Basel) 2023; 13:ani13030334. [PMID: 36766223 PMCID: PMC9913375 DOI: 10.3390/ani13030334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Repetitive DNA sequences constitute a sizeable portion of animal genomes, and tandemly organized satellite DNAs are a major part of them. They are usually located in constitutive heterochromatin clusters in or near the centromeres or telomeres, and less frequently in the interstitial parts of chromosome arms. They are also frequently accumulated in sex chromosomes. The function of these clusters is to sustain the architecture of the chromosomes and the nucleus, and to regulate chromosome behavior during mitosis and meiosis. The study of satellite DNA diversity is important for understanding sex chromosome evolution, interspecific hybridization, and speciation. In this work, we identified four satellite DNA families in the genomes of two snakes from different families: Daboia russelii (Viperidae) and Pantherophis guttatus (Colubridae) and determine their chromosomal localization. We found that one family is localized in the centromeres of both species, whereas the others form clusters in certain chromosomes or subsets of chromosomes. BLAST with snake genome assemblies showed the conservation of such clusters, as well as a subtle presence of the satellites in the interspersed manner outside the clusters. Overall, our results show high conservation of satellite DNA in snakes and confirm the "library" model of satellite DNA evolution.
Collapse
|
10
|
Romanenko SA, Prokopov DY, Proskuryakova AA, Davletshina GI, Tupikin AE, Kasai F, Ferguson-Smith MA, Trifonov VA. The Cytogenetic Map of the Nile Crocodile ( Crocodylus niloticus, Crocodylidae, Reptilia) with Fluorescence In Situ Localization of Major Repetitive DNAs. Int J Mol Sci 2022; 23:13063. [PMID: 36361851 PMCID: PMC9656864 DOI: 10.3390/ijms232113063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 01/16/2024] Open
Abstract
Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.
Collapse
Affiliation(s)
- Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Dmitry Yu. Prokopov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Anastasia A. Proskuryakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Guzel I. Davletshina
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | - Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, The National Institute of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki 567-0085, Osaka, Japan
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
- Department of Natural Science, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Abstract
We found the three-dimensional (3D) structure of chromatin at the chromosome level to be highly conserved for more than 50 million y of carnivore evolution. Intrachromosomal contacts were maintained even after chromosome rearrangements within carnivore lineages, demonstrating that the maintenance of 3D chromatin architecture is essential for conserved genome functions. These discoveries enabled the identification of orthologous chromosomal DNA segments among related species, a method we call 3D comparative scaffotyping. The method has application for putative chromosome assignment of chromosome-scale DNA sequence scaffolds produced by de novo genome sequencing. Broadly applied to biodiversity genome sequencing efforts, the approach can reduce costs associated with karyotyping and the physical mapping of DNA segments to chromosomes. High throughput chromatin conformation capture (Hi-C) of leukocyte DNA was used to investigate the evolutionary stability of chromatin conformation at the chromosomal level in 11 species from three carnivore families: Felidae, Canidae, and Ursidae. Chromosome-scale scaffolds (C-scaffolds) of each species were initially used for whole-genome alignment to a reference genome within each family. This approach established putative orthologous relationships between C-scaffolds among the different species. Hi-C contact maps for all C-scaffolds were then visually compared and found to be distinct for a given reference chromosome or C-scaffold within a species and indistinguishable for orthologous C-scaffolds having a 1:1 relationship within a family. The visual patterns within families were strongly supported by eigenvectors from the Hi-C contact maps. Analysis of Hi-C contact maps and eigenvectors across the three carnivore families revealed that most cross-family orthologous subchromosomal fragments have a conserved three-dimensional (3D) chromatin structure and thus have been under strong evolutionary constraint for ∼54 My of carnivore evolution. The most pronounced differences in chromatin conformation were observed for the X chromosome and the red fox genome, whose chromosomes have undergone extensive rearrangements relative to other canids. We also demonstrate that Hi-C contact map pattern analysis can be used to accurately identify orthologous relationships between C-scaffolds and chromosomes, a method we termed “3D comparative scaffotyping.” This method provides a powerful means for estimating karyotypes in de novo sequenced species that have unknown karyotype and no physical mapping information.
Collapse
|
12
|
Beklemisheva VR, Belokopytova PS, Fishman VS, Menzorov AG. Derivation of Ringed Seal ( Phoca hispida) Induced Multipotent Stem Cells. Cell Reprogram 2021; 23:326-335. [PMID: 34788122 DOI: 10.1089/cell.2021.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Induced pluripotent stem (iPS) cells have been produced just for a few species among order Carnivora: snow leopard, Bengal tiger, serval, jaguar, cat, dog, ferret, and American mink. We applied the iPS cell derivation protocol to the ringed seal (Phoca hispida) fibroblasts. The resulting cell line had the expression of pluripotency marker gene Rex1. Differentiation in embryoid body-like structures allowed us to register expression of AFP, endoderm marker, and Cdx2, trophectoderm marker, but not neuronal (ectoderm) markers. The cells readily differentiated into adipocytes and osteocytes, mesoderm cell types of origin. Transcriptome analysis allowed us to conclude that the cell line does not resemble human pluripotent cells, and, therefore, most probably is not pluripotent. Thus, we produced ringed seal multipotent stem cell line capable of differentiation into adipocytes and osteocytes.
Collapse
Affiliation(s)
- Violetta R Beklemisheva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Polina S Belokopytova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Veniamin S Fishman
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Aleksei G Menzorov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
13
|
A rare familial rearrangement of chromosomes 9 and 15 associated with intellectual disability: a clinical and molecular study. Mol Cytogenet 2021; 14:47. [PMID: 34607577 PMCID: PMC8489072 DOI: 10.1186/s13039-021-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022] Open
Abstract
Background There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader–Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. Case presentation We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child’s magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother’s brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. Conclusions We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes. Supplementary Information The online version contains supplementary material available at 10.1186/s13039-021-00565-y.
Collapse
|
14
|
Peart CR, Williams C, Pophaly SD, Neely BA, Gulland FMD, Adams DJ, Ng BL, Cheng W, Goebel ME, Fedrigo O, Haase B, Mountcastle J, Fungtammasan A, Formenti G, Collins J, Wood J, Sims Y, Torrance J, Tracey A, Howe K, Rhie A, Hoffman JI, Johnson J, Jarvis ED, Breen M, Wolf JBW. Hi-C scaffolded short- and long-read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution. Mol Ecol Resour 2021; 21:2455-2470. [PMID: 34097816 PMCID: PMC9732816 DOI: 10.1111/1755-0998.13443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
With the advent of chromatin-interaction maps, chromosome-level genome assemblies have become a reality for a wide range of organisms. Scaffolding quality is, however, difficult to judge. To explore this gap, we generated multiple chromosome-scale genome assemblies of an emerging wild animal model for carcinogenesis, the California sea lion (Zalophus californianus). Short-read assemblies were scaffolded with two independent chromatin interaction mapping data sets (Hi-C and Chicago), and long-read assemblies with three data types (Hi-C, optical maps and 10X linked reads) following the "Vertebrate Genomes Project (VGP)" pipeline. In both approaches, 18 major scaffolds recovered the karyotype (2n = 36), with scaffold N50s of 138 and 147 Mb, respectively. Synteny relationships at the chromosome level with other pinniped genomes (2n = 32-36), ferret (2n = 34), red panda (2n = 36) and domestic dog (2n = 78) were consistent across approaches and recovered known fissions and fusions. Comparative chromosome painting and multicolour chromosome tiling with a panel of 264 genome-integrated single-locus canine bacterial artificial chromosome probes provided independent evaluation of genome organization. Broad-scale discrepancies between the approaches were observed within chromosomes, most commonly in translocations centred around centromeres and telomeres, which were better resolved in the VGP assembly. Genomic and cytological approaches agreed on near-perfect synteny of the X chromosome, and in combination allowed detailed investigation of autosomal rearrangements between dog and sea lion. This study presents high-quality genomes of an emerging cancer model and highlights that even highly fragmented short-read assemblies scaffolded with Hi-C can yield reliable chromosome-level scaffolds suitable for comparative genomic analyses.
Collapse
Affiliation(s)
- Claire R. Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| | - Christina Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Saurabh D. Pophaly
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
- Max Planck institute for Plant Breeding Research, Cologne, Germany
| | - Benjamin A. Neely
- National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina, USA
| | - Frances M. D. Gulland
- Karen Dryer Wildlife Health Center, University of California Davis, Davis, California, USA
| | - David J. Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - William Cheng
- Cytometry Core Facility, Wellcome Sanger Institute, Cambridge, UK
| | - Michael E. Goebel
- Institute of Marine Science, University of California Santa Cruz, Santa Cruz, California, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
| | | | | | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, New York, USA
| | - Joanna Collins
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Jonathan Wood
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Ying Sims
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - James Torrance
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Alan Tracey
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Kerstin Howe
- Tree of Life Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, Cambridge, UK
| | - Jeremy Johnson
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, New York, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Jochen B. W. Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Munchen, Germany
| |
Collapse
|
15
|
Meng Z, Wang Q, Khurshid H, Raza G, Han J, Wang B, Wang K. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:731664. [PMID: 34512706 PMCID: PMC8429501 DOI: 10.3389/fpls.2021.731664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.
Collapse
Affiliation(s)
- Zhuang Meng
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinnan Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
16
|
Lisachov AP, Tishakova KV, Romanenko SA, Molodtseva AS, Prokopov DY, Pereira JC, Ferguson-Smith MA, Borodin PM, Trifonov VA. Whole-chromosome fusions in the karyotype evolution of Sceloporus (Iguania, Reptilia) are more frequent in sex chromosomes than autosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200099. [PMID: 34304596 DOI: 10.1098/rstb.2020.0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus, an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus. Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome-autosome fusions and the evolution of recombination rate. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Artem P Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen 625003, Russia.,Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Katerina V Tishakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna S Molodtseva
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Dmitry Yu Prokopov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia
| | - Jorge C Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Pavel M Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia.,Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
17
|
Karamysheva T, Romanenko S, Makunin A, Rajičić M, Bogdanov A, Trifonov V, Blagojević J, Vujošević M, Orishchenko K, Rubtsov N. New Data on Organization and Spatial Localization of B-Chromosomes in Cell Nuclei of the Yellow-Necked Mouse Apodemus flavicollis. Cells 2021; 10:cells10071819. [PMID: 34359988 PMCID: PMC8305704 DOI: 10.3390/cells10071819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.
Collapse
Affiliation(s)
- Tatyana Karamysheva
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Correspondence: ; Tel.: +7-(383)-363-4963 (ext. 1332)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
| | | | - Marija Rajičić
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.R.); (V.T.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Jelena Blagojević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Mladen Vujošević
- Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, 11060 Belgrade, Serbia; (M.R.); (J.B.); (M.V.)
| | - Konstantin Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Nikolay Rubtsov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.O.); (N.R.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Lisachov A, Andreyushkova D, Davletshina G, Prokopov D, Romanenko S, Galkina S, Saifitdinova A, Simonov E, Borodin P, Trifonov V. Amplified Fragments of an Autosome-Borne Gene Constitute a Significant Component of the W Sex Chromosome of Eremias velox (Reptilia, Lacertidae). Genes (Basel) 2021; 12:779. [PMID: 34065205 PMCID: PMC8160951 DOI: 10.3390/genes12050779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/30/2023] Open
Abstract
Heteromorphic W and Y sex chromosomes often experience gene loss and heterochromatinization, which is frequently viewed as their "degeneration". However, the evolutionary trajectories of the heterochromosomes are in fact more complex since they may not only lose but also acquire new sequences. Previously, we found that the heterochromatic W chromosome of a lizard Eremias velox (Lacertidae) is decondensed and thus transcriptionally active during the lampbrush stage. To determine possible sources of this transcription, we sequenced DNA from a microdissected W chromosome sample and a total female DNA sample and analyzed the results of reference-based and de novo assembly. We found a new repetitive sequence, consisting of fragments of an autosomal protein-coding gene ATF7IP2, several SINE elements, and sequences of unknown origin. This repetitive element is distributed across the whole length of the W chromosome, except the centromeric region. Since it retained only 3 out of 10 original ATF7IP2 exons, it remains unclear whether it is able to produce a protein product. Subsequent studies are required to test the presence of this element in other species of Lacertidae and possible functionality. Our results provide further evidence for the view of W and Y chromosomes as not just "degraded" copies of Z and X chromosomes but independent genomic segments in which novel genetic elements may arise.
Collapse
Affiliation(s)
- Artem Lisachov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
| | - Daria Andreyushkova
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Guzel Davletshina
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Dmitry Prokopov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
| | - Svetlana Galkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7–9, 199034 Saint Petersburg, Russia;
| | - Alsu Saifitdinova
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University of Russia, Moyka Emb. 48, 191186 Saint Petersburg, Russia;
| | - Evgeniy Simonov
- Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Lenina str. 23, 625003 Tyumen, Russia;
| | - Pavel Borodin
- Institute of Cytology and Genetics SB RAS, Acad. Lavrentiev Ave. 10, 630090 Novosibirsk, Russia; (G.D.); (P.B.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Acad. Lavrentiev Ave. 8/2, 630090 Novosibirsk, Russia; (D.A.); (D.P.); (S.R.); (V.T.)
- Novosibirsk State University, Pirogova str. 3, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Lemskaya NA, Romanenko SA, Maksimova YV, Shorina AR, Yudkin DV. Identification of satellited markers by microdissection and fluorescence in situ hybridization: a clinical case of isodicentric chromosome 22. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The presence of small supernumerary marker chromosomes (sSMCs) in a karyotype leads to diagnostic questions because the resulting extra material may cause abnormal development depending on the origin of the duplication/triplication. Because SMCs are so small, their origin cannot be determined by conventional cytogenetic techniques, and new molecular cytogenetic methods are necessary. Here, we applied a target approach to chromosome rearrangement analysis by isolating a chromosome of interest via microdissection and using it in fluorescence in situ hybridization (FISH) as a probe in combination with whole-chromosome painting probes. This approach allows to identify origins of both the euchromatin and repeat-rich regions of a marker.
Case presentation
We report a case of an adult male with congenital atresia of the rectum and anus, anotia, and atresia of the external auditory canal along with hearing loss. Karyotyping and FISH analysis with whole-chromosome painting probes of acrocentric chromosomes and the constructed microdissection library of the marker chromosome reliably identified an additional chromosome in some metaphases: mos 47,XY,+idic(22)(q11.2)[14]/46,XY [23].
Conclusion
We propose to use whole-chromosome libraries and microdissected chromosomes in FISH to identify SMCs enriched with repeated sequences. We show that the methodology is successful in identifying the composition of a satellited marker chromosome.
Collapse
|
20
|
Karyotype Evolution in 10 Pinniped Species: Variability of Heterochromatin versus High Conservatism of Euchromatin as Revealed by Comparative Molecular Cytogenetics. Genes (Basel) 2020; 11:genes11121485. [PMID: 33321928 PMCID: PMC7763226 DOI: 10.3390/genes11121485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 11/19/2022] Open
Abstract
Pinnipedia karyotype evolution was studied here using human, domestic dog, and stone marten whole-chromosome painting probes to obtain comparative chromosome maps among species of Odobenidae (Odobenus rosmarus), Phocidae (Phoca vitulina, Phoca largha, Phoca hispida, Pusa sibirica, Erignathus barbatus), and Otariidae (Eumetopias jubatus, Callorhinus ursinus, Phocarctos hookeri, and Arctocephalus forsteri). Structural and functional chromosomal features were assessed with telomere repeat and ribosomal-DNA probes and by CBG (C-bands revealed by barium hydroxide treatment followed by Giemsa staining) and CDAG (Chromomycin A3-DAPI after G-banding) methods. We demonstrated diversity of heterochromatin among pinniped karyotypes in terms of localization, size, and nucleotide composition. For the first time, an intrachromosomal rearrangement common for Otariidae and Odobenidae was revealed. We postulate that the order of evolutionarily conserved segments in the analyzed pinnipeds is the same as the order proposed for the ancestral Carnivora karyotype (2n = 38). The evolution of conserved genomes of pinnipeds has been accompanied by few fusion events (less than one rearrangement per 10 million years) and by novel intrachromosomal changes including the emergence of new centromeres and pericentric inversion/centromere repositioning. The observed interspecific diversity of pinniped karyotypes driven by constitutive heterochromatin variation likely has played an important role in karyotype evolution of pinnipeds, thereby contributing to the differences of pinnipeds’ chromosome sets.
Collapse
|
21
|
Cherezov RO, Vorontsova JE, Simonova OB. TBP-Related Factor 2 as a Trigger for Robertsonian Translocations and Speciation. Int J Mol Sci 2020; 21:E8871. [PMID: 33238614 PMCID: PMC7700478 DOI: 10.3390/ijms21228871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
Robertsonian (centric-fusion) translocation is the form of chromosomal translocation in which two long arms of acrocentric chromosomes are fused to form one metacentric. These translocations reduce the number of chromosomes while preserving existing genes and are considered to contribute to speciation. We asked whether hypomorphic mutations in genes that disrupt the formation of pericentromeric regions could lead to centric fusion. TBP-related factor 2 (Trf2) encodes an alternative general transcription factor. A decrease of TRF2 expression disrupts the structure of the pericentromeric regions and prevents their association into chromocenter. We revealed several centric fusions in two lines of Drosophila melanogaster with weak Trf2 alleles in genetic experiments. We performed an RNAi-mediated knock-down of Trf2 in Drosophila and S2 cells and demonstrated that Trf2 upregulates expression of D1-one of the major genes responsible for chromocenter formation and nuclear integrity in Drosophila. Our data, for the first time, indicate that Trf2 may be involved in transcription program responsible for structuring of pericentromeric regions and may contribute to new karyotypes formation in particular by promoting centric fusion. Insight into the molecular mechanisms of Trf2 function and its new targets in different tissues will contribute to our understanding of its phenomenon.
Collapse
Affiliation(s)
| | | | - Olga B. Simonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, 119991 Moscow, Russia; (R.O.C.); (J.E.V.)
| |
Collapse
|
22
|
Romanenko SA, Fedorova YE, Serdyukova NA, Zaccaroni M, Stanyon R, Graphodatsky AS. Evolutionary rearrangements of X chromosomes in voles (Arvicolinae, Rodentia). Sci Rep 2020; 10:13235. [PMID: 32764633 PMCID: PMC7413345 DOI: 10.1038/s41598-020-70226-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Euchromatic segments of the X chromosomes of placental mammals are the most conservative elements of the karyotype, only rarely subjected to either inter- or intrachromosomal rearrangements. Here, using microdissection-derived set of region-specific probes of Terricola savii we detailed the evolutionary rearrangements found in X chromosomes in 20 vole species (Arvicolinae, Rodentia). We show that the evolution of X chromosomes in this taxon was accompanied by multiple para- and pericentric inversions and centromere shifts. The contribution of intrachromosomal rearrangements to the karyotype evolution of Arvicolinae species was approximately equivalent in both the separate autosomal conserved segments and the X chromosomes. Intrachromosmal rearrangements and structural reorganization of the X chromosomes was likely accompanied by an accumulation, distribution, and evolution of repeated sequences.
Collapse
Affiliation(s)
| | - Yulia E Fedorova
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - Marco Zaccaroni
- Department of Biology, University of Florence, Florence, Italy
| | - Roscoe Stanyon
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
23
|
Furo IDO, Kretschmer R, O'Brien PC, Pereira JC, Garnero ADV, Gunski RJ, O'Connor RE, Griffin DK, Gomes AJB, Ferguson-Smith MA, de Oliveira EHC. Chromosomal Evolution in the Phylogenetic Context: A Remarkable Karyotype Reorganization in Neotropical Parrot Myiopsitta monachus (Psittacidae). Front Genet 2020; 11:721. [PMID: 32754200 PMCID: PMC7366516 DOI: 10.3389/fgene.2020.00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Myiopsitta monachus is a small Neotropical parrot (Psittaciformes: Arini Tribe) from subtropical and temperate regions of South America. It has a diploid chromosome number 2n = 48, different from other members of the Arini Tribe that have usually 70 chromosomes. The species has the lowest 2n within the Arini Tribe. In this study, we combined comparative chromosome painting with probes generated from chromosomes of Gallus gallus and Leucopternis albicollis, and FISH with bacterial artificial chromosomes (BACs) selected from the genome library of G. gallus with the aim to shed light on the dynamics of genome reorganization in M. monachus in the phylogenetic context. The homology maps showed a great number of fissions in macrochromosomes, and many fusions between microchromosomes and fragments of macrochromosomes. Our phylogenetic analysis by Maximum Parsimony agree with molecular data, placing M. monachus in a basal position within the Arini Tribe, together with Amazona aestiva (short tailed species). In M. monachus many chromosome rearrangements were found to represent autopomorphic characters, indicating that after this species split as an independent branch, an intensive karyotype reorganization took place. In addition, our results show that M. monachus probes generated by flow cytometry provide novel cytogenetic tools for the detection of avian chromosome rearrangements, since this species presents breakpoints that have not been described in other species.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Patricia Caroline O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge C Pereira
- Animal and Veterinary Research Centre (CEVAV), University of Tràs-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | | | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | | | | | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Edivaldo Herculano Correa de Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
24
|
Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes (Basel) 2020; 11:genes11040383. [PMID: 32244767 PMCID: PMC7230465 DOI: 10.3390/genes11040383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/29/2023] Open
Abstract
The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.
Collapse
|
25
|
Complex Structure of Lasiopodomys mandarinus vinogradovi Sex Chromosomes, Sex Determination, and Intraspecific Autosomal Polymorphism. Genes (Basel) 2020; 11:genes11040374. [PMID: 32235544 PMCID: PMC7230192 DOI: 10.3390/genes11040374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022] Open
Abstract
The mandarin vole, Lasiopodomys mandarinus, is one of the most intriguing species among mammals with non-XX/XY sex chromosome system. It combines polymorphism in diploid chromosome numbers, variation in the morphology of autosomes, heteromorphism of X chromosomes, and several sex chromosome systems the origin of which remains unexplained. Here we elucidate the sex determination system in Lasiopodomys mandarinus vinogradovi using extensive karyotyping, crossbreeding experiments, molecular cytogenetic methods, and single chromosome DNA sequencing. Among 205 karyotyped voles, one male and three female combinations of sex chromosomes were revealed. The chromosome segregation pattern and karyomorph-related reproductive performances suggested an aberrant sex determination with almost half of the females carrying neo-X/neo-Y combination. The comparative chromosome painting strongly supported this proposition and revealed the mandarin vole sex chromosome systems originated due to at least two de novo autosomal translocations onto the ancestral X chromosome. The polymorphism in autosome 2 was not related to sex chromosome variability and was proved to result from pericentric inversions. Sequencing of microdissection derived of sex chromosomes allowed the determination of the coordinates for syntenic regions but did not reveal any Y-specific sequences. Several possible sex determination mechanisms as well as interpopulation karyological differences are discussed.
Collapse
|
26
|
Lisachov AP, Giovannotti M, Pereira JC, Andreyushkova DA, Romanenko SA, Ferguson-Smith MA, Borodin PM, Trifonov VA. Chromosome Painting Does Not Support a Sex Chromosome Turnover in Lacerta agilis Linnaeus, 1758. Cytogenet Genome Res 2020; 160:134-140. [DOI: 10.1159/000506321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
Reptiles show a remarkable diversity of sex determination mechanisms and sex chromosome systems, derived from different autosomal pairs. The origin of the ZW sex chromosomes of Lacerta agilis, a widespread Eurasian lizard species, is a matter of discussion: is it a small macrochromosome from the 11-18 group common to all lacertids, or does this species have a unique ZW pair derived from the large chromosome 5? Using independent molecular cytogenetic methods, we investigated the karyotype of L. agilis exigua from Siberia, Russia, to identify the sex chromosomes. FISH with a flow-sorted chromosome painting probe derived from L. strigata and specific to chromosomes 13, 14, and Z confirmed that the Z chromosome of L. agilis is a small macrochromosome, the same as in L. strigata. FISH with the telomeric probe showed an extensive accumulation of the telomere-like repeat in the W chromosome in agreement with previous studies, excluding the possibility that the lineages of L. agilis studied in different works could have different sex chromosome systems due to a putative intra-species polymorphism. Our results reinforce the idea of the stability of the sex chromosomes and lack of evidence for sex-chromosome turnovers in known species of Lacertidae.
Collapse
|
27
|
Comparative Chromosome Mapping of Musk Ox and the X Chromosome among Some Bovidae Species. Genes (Basel) 2019; 10:genes10110857. [PMID: 31671864 PMCID: PMC6896007 DOI: 10.3390/genes10110857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
: Bovidae, the largest family in Pecora infraorder, are characterized by a striking variability in diploid number of chromosomes between species and among individuals within a species. The bovid X chromosome is also remarkably variable, with several morphological types in the family. Here we built a detailed chromosome map of musk ox (Ovibos moschatus), a relic species originating from Pleistocene megafauna, with dromedary and human probes using chromosome painting. We trace chromosomal rearrangements during Bovidae evolution by comparing species already studied by chromosome painting. The musk ox karyotype differs from the ancestral pecoran karyotype by six fusions, one fission, and three inversions. We discuss changes in pecoran ancestral karyotype in the light of new painting data. Variations in the X chromosome structure of four bovid species nilgai bull (Boselaphus tragocamelus), saola (Pseudoryx nghetinhensis), gaur (Bos gaurus), and Kirk's Dikdik (Madoqua kirkii) were further analyzed using 26 cattle BAC-clones. We found the duplication on the X in saola. We show main rearrangements leading to the formation of four types of bovid X: Bovinae type with derived cattle subtype formed by centromere reposition and Antilopinae type with Caprini subtype formed by inversion in XSB3.
Collapse
|
28
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Vodicka R, Rubes J. Comparative Study of the Bush Dog (Speothos venaticus) Karyotype and Analysis of Satellite DNA Sequences and Their Chromosome Distribution in Six Species of Canidae. Cytogenet Genome Res 2019; 159:88-96. [DOI: 10.1159/000503082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/18/2022] Open
Abstract
The bush dog (Speothos venaticus, 2n = 74) is a near threatened species taxonomically classified among South American canids. We revised the bush dog karyotype and performed a comparative sequence analysis of satellite and satellite-like DNAs in 6 canids: the bush dog, domestic dog (Canis familiaris, 2n = 78), grey wolf (C. lupus, 2n = 78), Chinese raccoon dog (Nyctereutes procyonoides procyonoides, 2n = 54+B), red fox (Vulpes vulpes, 2n = 34+B), and arctic fox (V. lagopus, 2n = 48-50) to specify the species position among Canidae. Using FISH with painting and BAC probes, we found that the distribution of canid evolutionarily conserved chromosome segments in the bush dog karyotype is similar to that of the domestic dog and grey wolf. The bush dog karyotype differs by 2 acrocentric chromosome pairs formed by tandem fusions of the canine (29;34) and (26;35) orthologues. An interstitial signal of the telomeric probe was observed in the (26;35) fusion site in the bush dog indicating a recent evolutionary origin of this rearrangement. Sequences and hybridisation patterns of satellite DNAs were compared, and a phylogenetic tree of the 6 canid species was constructed which confirmed the bush dog position close to the wolf-like canids, and apart from the raccoon dog and foxes.
Collapse
|
29
|
Romanenko SA, Lyapunova EA, Saidov AS, O'Brien PCM, Serdyukova NA, Ferguson-Smith MA, Graphodatsky AS, Bakloushinskaya I. Chromosome Translocations as a Driver of Diversification in Mole Voles Ellobius (Rodentia, Mammalia). Int J Mol Sci 2019; 20:E4466. [PMID: 31510061 PMCID: PMC6769443 DOI: 10.3390/ijms20184466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/23/2022] Open
Abstract
The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Elena A Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| | - Abdusattor S Saidov
- Institute of Zoology and Parasitology, Academy of Sciences of Tajikistan, Dushanbe 734025, Tajikistan.
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Natalia A Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
| |
Collapse
|
30
|
Kartavtseva IV, Vasilieva TV, Sheremetyeva IN, Lemskaya NA, Moroldoev IV, Golenishchev FN. Genetic Variability of Three Isolated Populations of the Muya Valley Vole Alexandromys mujanensis Orlov et Kovalskaja, 1978 (Rodentia, Arvicolinae). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419080076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Bakloushinskaya I, Lyapunova EA, Saidov AS, Romanenko SA, O’Brien PC, Serdyukova NA, Ferguson-Smith MA, Matveevsky S, Bogdanov AS. Rapid chromosomal evolution in enigmatic mammal with XX in both sexes, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 (Mammalia, Rodentia). COMPARATIVE CYTOGENETICS 2019; 13:147-177. [PMID: 31275526 PMCID: PMC6597615 DOI: 10.3897/compcytogen.v13i2.34224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 06/01/2023]
Abstract
Evolutionary history and taxonomic position for cryptic species may be clarified by using molecular and cytogenetic methods. The subterranean rodent, the Alay mole vole Ellobiusalaicus Vorontsov et al., 1969 is one of three sibling species constituting the subgenus Ellobius Fischer, 1814, all of which lost the Y chromosome and obtained isomorphic XX sex chromosomes in both males and females. E.alaicus is evaluated by IUCN as a data deficient species because their distribution, biology, and genetics are almost unknown. We revealed specific karyotypic variability (2n = 52-48) in E.alaicus due to different Robertsonian translocations (Rbs). Two variants of hybrids (2n = 53, different Rbs) with E.tancrei Blasius, 1884 were found at the Northern slopes of the Alay Ridge and in the Naryn district, Kyrgyzstan. We described the sudden change in chromosome numbers from 2n = 50 to 48 and specific karyotype structure for mole voles, which inhabit the entrance to the Alay Valley (Tajikistan), and revealed their affiliation as E.alaicus by cytochrome b and fragments of nuclear XIST and Rspo1 genes sequencing. To date, it is possible to expand the range of E.alaicus from the Alay Valley (South Kyrgyzstan) up to the Ferghana Ridge and the Naryn Basin, Tien Shan at the north-east and to the Pamir-Alay Mountains (Tajikistan) at the west. The closeness of E.tancrei and E.alaicus is supported, whereas specific chromosome and molecular changes, as well as geographic distribution, verified the species status for E.alaicus. The case of Ellobius species accented an unevenness in rates of chromosome and nucleotide changes along with morphological similarity, which is emblematic for cryptic species.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Elena A. Lyapunova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| | - Abdusattor S. Saidov
- Pavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of Tajikistan, Dushanbe, TajikistanPavlovsky Institute of Zoology and Parasitology, Academy of Sciences of Republic of TajikistanDushanbeTajikistan
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
- Novosibirsk State University, Novosibirsk, RussiaNovosibirsk State UniversityNovosibirskRussia
| | - Patricia C.M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Natalia A. Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch RAS, Novosibirsk, RussiaInstitute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of SciencesNovosibirskRussia
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, RussiaVavilov Institute of General Genetics, Russian Academy of SciencesMoscowRussia
| | - Alexey S. Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, RussiaKoltzov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
| |
Collapse
|
32
|
Marcos R, Marrinhas C, Malhão F, Canadas A, Santos M, Caniatti M. The cell tube block technique and an immunohistochemistry panel including Wilms tumor 1 to assist in diagnosing cavitary effusions in dogs and cats. Vet Clin Pathol 2019; 48:50-60. [PMID: 30865320 DOI: 10.1111/vcp.12709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cell blocks and immunohistochemistry (IHC) are increasingly recognized as being complementary tools for cytologic diagnostics, especially for neoplastic diseases. OBJECTIVES The study aimed to evaluate the utility of cell tube block (CTB) IHC for refining the diagnosis of effusions in dogs and cats. METHODS Cavitary effusions (n = 25) from dogs and cats classified by cytology as reactive, neoplastic, borderline (suspicious of neoplasia), and chylous were studied. CTB sections were stained with H&E, and immunostained with PAX-5, CD3, pancytokeratin (CK), vimentin, and Wilms tumor 1 protein (WT1) antibodies, according to the cytologic diagnoses. A histologic case series of confirmed normal, reactive, and neoplastic mesothelium and several different carcinomas were included to test the utility of WT1 as a marker of mesothelial cells. RESULTS CTBs had a layered appearance with reduced background staining. CD3 and PAX5 immunolabeling allowed immunophenotype assessment in all of the lymphoma cases. In carcinomatous effusions, neoplastic cells were CK-positive, WT1-negative, and vimentin-negative (except for two cases). Wilms tumor 1 protein was positive in the nuclei of normal, reactive, and neoplastic mesothelial cells, and ovarian carcinomatous cells. Other carcinomas and lymphomas were negative. CONCLUSIONS CTBs are valuable tools to assist in making a diagnosis of cavitary effusions in dogs and cats, and WT1 is a promising marker to differentiate mesothelial from carcinomatous cells.
Collapse
Affiliation(s)
- Ricardo Marcos
- Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS - UP, Porto, Portugal
| | - Carla Marrinhas
- Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS - UP, Porto, Portugal.,Baixo Vouga Veterinary Hospital, Onevet, Águeda, Portugal
| | - Fernanda Malhão
- Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS - UP, Porto, Portugal
| | - Ana Canadas
- Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS - UP, Porto, Portugal
| | - Marta Santos
- Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS - UP, Porto, Portugal
| | - Mario Caniatti
- DIMEVET Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
33
|
Ahmad SF, Martins C. The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses. Cells 2019; 8:E156. [PMID: 30781835 PMCID: PMC6406668 DOI: 10.3390/cells8020156] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/10/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call "B-omics". We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| | - Cesar Martins
- Department of Morphology, Institute of Biosciences at Botucatu, Sao Paulo State University (UNESP), CEP 18618689, Botucatu, SP, Brazil.
| |
Collapse
|
34
|
Romanenko SA, Serdyukova NA, Perelman PL, Trifonov VA, Golenishchev FN, Bulatova NS, Stanyon R, Graphodatsky AS. Multiple intrasyntenic rearrangements and rapid speciation in voles. Sci Rep 2018; 8:14980. [PMID: 30297915 PMCID: PMC6175948 DOI: 10.1038/s41598-018-33300-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/26/2018] [Indexed: 11/09/2022] Open
Abstract
Remarkably stable genomic chromosome elements (evolutionary conserved segments or syntenies) are the basis of large-scale chromosome architecture in vertebrate species. However, these syntenic elements harbour evolutionary important changes through intrachromosomal rearrangements such as inversions and centromere repositioning. Here, using FISH with a set of 20 region-specific probes on a wide array of 28 species, we analyzed evolution of three conserved syntenic regions of the Arvicolinae ancestral karyotype. Inside these syntenies we uncovered multiple, previously cryptic intrachromosomal rearrangements. Although in each of the three conserved blocks we found inversions and centromere repositions, the blocks experienced different types of rearrangements. In two syntenies centromere repositioning predominated, while in the third region, paracentric inversions were more frequent, whereas pericentric inversions were not detected. We found that some of the intrachromosomal rearrangements, mainly paracentric inversions, were synapomorphic for whole arvicoline genera or tribes: genera Alexandromys and Microtus, tribes Ellobini and Myodini. We hypothesize that intrachromosomal rearrangements within conserved syntenic blocks are a major evolutionary force modulating genome architecture in species-rich and rapidly-evolving rodent taxa. Inversions and centromere repositioning may impact speciation and provide a potential link between genome evolution, speciation, and biogeography.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | | | - Polina L Perelman
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Nina Sh Bulatova
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Roscoe Stanyon
- Department of Biology, Anthropology Laboratories, University of Florence, Florence, Italy
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
35
|
Structural and copy number chromosome abnormalities in canine cutaneous mast cell tumours. J Appl Genet 2018; 60:63-70. [DOI: 10.1007/s13353-018-0471-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
|
36
|
Kasai F, Pereira JC, Kohara A, Ferguson-Smith MA. Homologue-specific chromosome sequencing characterizes translocation junctions and permits allelic assignment. DNA Res 2018. [PMID: 29518182 PMCID: PMC6105103 DOI: 10.1093/dnares/dsy007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chromosome translocations can be detected by cytogenetic analysis, but it is hard to characterize the breakpoints at the sequence level. Chromosome sorting by flow cytometry produces flow karyotypes that enable the isolation of abnormal chromosomes and the generation of chromosome-specific DNA. In this study, a derivative chromosome t(9; 14) and its homologous normal chromosomes 9 and 14 from the Ishikawa 3-H-12 cell line were sorted to collect homologue-specific samples. Chromosome sequencing identified the breakpoint junction in the der(9) at 9p24.3 and 14q13.1 and uncovered the formation of a fusion gene, WASH1–NPAS3. Amplicon sequencing targeted for neighbouring genes at the fusion breakpoint revealed that the variant frequencies correlate with the allelic copy number. Sequencing of sorted chromosomes permits the assignment of allelic variants and can lead to the characterization of abnormal chromosomes. We show that allele-specific chromosome sequencing of homologues is a robust technique for distinguishing alleles and this provides an efficient approach for the comprehensive analysis of genomic changes.
Collapse
Affiliation(s)
- Fumio Kasai
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jorge C Pereira
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Arihiro Kohara
- Japanese Collection of Research Bioresources (JCRB) Cell Bank, Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
37
|
Kichigin IG, Lisachov AP, Giovannotti M, Makunin AI, Kabilov MR, O'Brien PCM, Ferguson-Smith MA, Graphodatsky AS, Trifonov VA. First report on B chromosome content in a reptilian species: the case of Anolis carolinensis. Mol Genet Genomics 2018; 294:13-21. [PMID: 30146671 DOI: 10.1007/s00438-018-1483-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 11/26/2022]
Abstract
Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.
Collapse
Affiliation(s)
- Ilya G Kichigin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia.
| | - Artem P Lisachov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Massimo Giovannotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alex I Makunin
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, 630090, Russia
| | - Patricia C M O'Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Malcolm A Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladimir A Trifonov
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
38
|
Sequencing of Supernumerary Chromosomes of Red Fox and Raccoon Dog Confirms a Non-Random Gene Acquisition by B Chromosomes. Genes (Basel) 2018; 9:genes9080405. [PMID: 30103445 PMCID: PMC6116037 DOI: 10.3390/genes9080405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
B chromosomes (Bs) represent a variable addition to the main karyotype in some lineages of animals and plants. Bs accumulate through non-Mendelian inheritance and become widespread in populations. Despite the presence of multiple genes, most Bs lack specific phenotypic effects, although their influence on host genome epigenetic status and gene expression are recorded. Previously, using sequencing of isolated Bs of ruminants and rodents, we demonstrated that Bs originate as segmental duplications of specific genomic regions, and subsequently experience pseudogenization and repeat accumulation. Here, we used a similar approach to characterize Bs of the red fox (Vulpes vulpes L.) and the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray). We confirm the previous findings of the KIT gene on Bs of both species, but demostrate an independent origin of Bs in these species, with two reused regions. Comparison of gene ensembles in Bs of canids, ruminants, and rodents once again indicates enrichment with cell-cycle genes, development-related genes, and genes functioning in the neuron synapse. The presence of B-chromosomal copies of genes involved in cell-cycle regulation and tissue differentiation may indicate importance of these genes for B chromosome establishment.
Collapse
|
39
|
Kukekova AV, Johnson JL, Xiang X, Feng S, Liu S, Rando HM, Kharlamova AV, Herbeck Y, Serdyukova NA, Xiong Z, Beklemischeva V, Koepfli KP, Gulevich RG, Vladimirova AV, Hekman JP, Perelman PL, Graphodatsky AS, O'Brien SJ, Wang X, Clark AG, Acland GM, Trut LN, Zhang G. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat Ecol Evol 2018; 2:1479-1491. [PMID: 30082739 DOI: 10.1038/s41559-018-0611-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/18/2018] [Indexed: 12/30/2022]
Abstract
Strains of red fox (Vulpes vulpes) with markedly different behavioural phenotypes have been developed in the famous long-term selective breeding programme known as the Russian farm-fox experiment. Here we sequenced and assembled the red fox genome and re-sequenced a subset of foxes from the tame, aggressive and conventional farm-bred populations to identify genomic regions associated with the response to selection for behaviour. Analysis of the re-sequenced genomes identified 103 regions with either significantly decreased heterozygosity in one of the three populations or increased divergence between the populations. A strong positional candidate gene for tame behaviour was highlighted: SorCS1, which encodes the main trafficking protein for AMPA glutamate receptors and neurexins and suggests a role for synaptic plasticity in fox domestication. Other regions identified as likely to have been under selection in foxes include genes implicated in human neurological disorders, mouse behaviour and dog domestication. The fox represents a powerful model for the genetic analysis of affiliative and aggressive behaviours that can benefit genetic studies of behaviour in dogs and other mammals, including humans.
Collapse
Affiliation(s)
- Anna V Kukekova
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA.
| | - Jennifer L Johnson
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA
| | - Xueyan Xiang
- China National Genebank, BGI -Shenzhen, Shenzhen, China
| | - Shaohong Feng
- China National Genebank, BGI -Shenzhen, Shenzhen, China
| | - Shiping Liu
- China National Genebank, BGI -Shenzhen, Shenzhen, China
| | - Halie M Rando
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA
| | - Anastasiya V Kharlamova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yury Herbeck
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Zijun Xiong
- China National Genebank, BGI -Shenzhen, Shenzhen, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Violetta Beklemischeva
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA.,Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Rimma G Gulevich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya V Vladimirova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Jessica P Hekman
- Animal Sciences Department, College of ACES, University of Illinois at Urbana, Champaign, IL, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Aleksander S Graphodatsky
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia.,Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.,Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Gregory M Acland
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, USA
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Guojie Zhang
- China National Genebank, BGI -Shenzhen, Shenzhen, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. .,Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Rando HM, Farré M, Robson MP, Won NB, Johnson JL, Buch R, Bastounes ER, Xiang X, Feng S, Liu S, Xiong Z, Kim J, Zhang G, Trut LN, Larkin DM, Kukekova AV. Construction of Red Fox Chromosomal Fragments from the Short-Read Genome Assembly. Genes (Basel) 2018; 9:E308. [PMID: 29925783 PMCID: PMC6027122 DOI: 10.3390/genes9060308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/19/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
The genome of a red fox (Vulpes vulpes) was recently sequenced and assembled using next-generation sequencing (NGS). The assembly is of high quality, with 94X coverage and a scaffold N50 of 11.8 Mbp, but is split into 676,878 scaffolds, some of which are likely to contain assembly errors. Fragmentation and misassembly hinder accurate gene prediction and downstream analysis such as the identification of loci under selection. Therefore, assembly of the genome into chromosome-scale fragments was an important step towards developing this genomic model. Scaffolds from the assembly were aligned to the dog reference genome and compared to the alignment of an outgroup genome (cat) against the dog to identify syntenic sequences among species. The program Reference-Assisted Chromosome Assembly (RACA) then integrated the comparative alignment with the mapping of the raw sequencing reads generated during assembly against the fox scaffolds. The 128 sequence fragments RACA assembled were compared to the fox meiotic linkage map to guide the construction of 40 chromosomal fragments. This computational approach to assembly was facilitated by prior research in comparative mammalian genomics, and the continued improvement of the red fox genome can in turn offer insight into canid and carnivore chromosome evolution. This assembly is also necessary for advancing genetic research in foxes and other canids.
Collapse
Affiliation(s)
- Halie M Rando
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Marta Farré
- Department of Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Michael P Robson
- Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Naomi B Won
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jennifer L Johnson
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Ronak Buch
- Department of Computer Science, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Estelle R Bastounes
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Xueyan Xiang
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Shaohong Feng
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Shiping Liu
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Zijun Xiong
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
| | - Jaebum Kim
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Korea.
| | - Guojie Zhang
- China National Genebank, BGI -Shenzhen, Shenzhen 518083, Guangdong, China.
- Section for Ecology and Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Denis M Larkin
- Department of Comparative Biomedical Science, Royal Veterinary College, London NW1 0TU, UK.
| | - Anna V Kukekova
- Department of Animal Science, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
41
|
Hou L, Xu M, Zhang T, Xu Z, Wang W, Zhang J, Yu M, Ji W, Zhu C, Gong Z, Gu M, Jiang J, Yu H. Chromosome painting and its applications in cultivated and wild rice. BMC PLANT BIOLOGY 2018; 18:110. [PMID: 29879904 PMCID: PMC5991451 DOI: 10.1186/s12870-018-1325-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 05/24/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND The chromosome-specific probe is a fundamental tool of chromosome painting and has been commonly applied in mammalian species. The technology, however, has not been widely applied in plants due to a lack of methodologies for probe development. Identification and labeling of a large number of oligonucleotides (oligos) specific to a single chromosome offers us an opportunity to establish chromosome-specific probes in plants. However, never before has whole chromosome painting been performed in rice. RESULTS We developed a pooled chromosome 9-specific probe in rice, which contains 25,000 oligos based on the genome sequence of a japonica rice (Oryza sativa L., AA, 2n = 2× = 24). Chromosome 9 was easily identified in both japonica and indica rice using this chromosome 9-painting probe. The probe was also successfully used to identify and characterize chromosome 9 in additional lines of O. sativa, a translocation line, two new aneuploids associated with chromosome 9 and a wild rice (Oryza eichingeri A. Peter, CC, 2n = 2× = 24). CONCLUSION The study reveals that a pool of oligos specific to a chromosome is a useful tool for chromosome painting in rice.
Collapse
Affiliation(s)
- Lili Hou
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhihao Xu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Weiyun Wang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Jianxiang Zhang
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Meimei Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Wen Ji
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Cenwen Zhu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Zhiyun Gong
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison|, Madison, WI 53706 USA
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
42
|
Next Generation Sequencing of Chromosome-Specific Libraries Sheds Light on Genome Evolution in Paleotetraploid Sterlet (Acipenser ruthenus). Genes (Basel) 2017; 8:genes8110318. [PMID: 29125582 PMCID: PMC5704231 DOI: 10.3390/genes8110318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/23/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
Several whole genome duplication (WGD) events followed by rediploidization took place in the evolutionary history of vertebrates. Acipenserids represent a convenient model group for investigation of the consequences of WGD as their representatives underwent additional WGD events in different lineages resulting in ploidy level variation between species, and these processes are still ongoing. Earlier, we obtained a set of sterlet (Acipenser ruthenus) chromosome-specific libraries by microdissection and revealed that they painted two or four pairs of whole sterlet chromosomes, as well as additional chromosomal regions, depending on rediploidization status and chromosomal rearrangements after genome duplication. In this study, we employed next generation sequencing to estimate the content of libraries derived from different paralogous chromosomes of sterlet. For this purpose, we aligned the obtained reads to the spotted gar (Lepisosteus oculatus) reference genome to reveal syntenic regions between these two species having diverged 360 Mya. We also showed that the approach is effective for synteny prediction at various evolutionary distances and allows one to clearly distinguish paralogous chromosomes in polyploid genomes. We postulated that after the acipenserid-specific WGD sterlet karyotype underwent multiple interchromosomal rearrangements, but different chromosomes were involved in this process unequally.
Collapse
|
43
|
Romanenko SA, Serdyukova NA, Perelman PL, Pavlova SV, Bulatova NS, Golenishchev FN, Stanyon R, Graphodatsky AS. Intrachromosomal Rearrangements in Rodents from the Perspective of Comparative Region-Specific Painting. Genes (Basel) 2017; 8:E215. [PMID: 28867774 PMCID: PMC5615349 DOI: 10.3390/genes8090215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/31/2023] Open
Abstract
It has long been hypothesized that chromosomal rearrangements play a central role in different evolutionary processes, particularly in speciation and adaptation. Interchromosomal rearrangements have been extensively mapped using chromosome painting. However, intrachromosomal rearrangements have only been described using molecular cytogenetics in a limited number of mammals, including a few rodent species. This situation is unfortunate because intrachromosomal rearrangements are more abundant than interchromosomal rearrangements and probably contain essential phylogenomic information. Significant progress in the detection of intrachromosomal rearrangement is now possible, due to recent advances in molecular biology and bioinformatics. We investigated the level of intrachromosomal rearrangement in the Arvicolinae subfamily, a species-rich taxon characterized by very high rate of karyotype evolution. We made a set of region specific probes by microdissection for a single syntenic region represented by the p-arm of chromosome 1 of Alexandromys oeconomus, and hybridized the probes onto the chromosomes of four arvicolines (Microtus agrestis, Microtus arvalis, Myodes rutilus, and Dicrostonyx torquatus). These experiments allowed us to show the intrachromosomal rearrangements in the subfamily at a significantly higher level of resolution than previously described. We found a number of paracentric inversions in the karyotypes of M. agrestis and M. rutilus, as well as multiple inversions and a centromere shift in the karyotype of M. arvalis. We propose that during karyotype evolution, arvicolines underwent a significant number of complex intrachromosomal rearrangements that were not previously detected.
Collapse
Affiliation(s)
- Svetlana A Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Natalya A Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Polina L Perelman
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Svetlana V Pavlova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Nina S Bulatova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia.
| | | | - Roscoe Stanyon
- Department of Biology, Anthropology Laboratories, University of Florence, 50122 Florence, Italy.
| | - Alexander S Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
- Synthetic Biological Unit, Novosibirsk State University, 630090 Novosibirsk, Russia.
| |
Collapse
|
44
|
Yuan X, Yuan S, Liu Y, Xia Y, Zeng X. Microsatellites mapping for non-model species with chromosomal rearrangement: a case study in the frog Quasipaa boulengeri (Anura: Dicroglossidae). Genome 2017; 60:707-711. [PMID: 28727488 DOI: 10.1139/gen-2016-0200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene mapping is an important resource for understanding the evolution of genes and cytogenetics. Model species with a known genetic map or genome sequence allow for the selection of genetic markers on a desired chromosome, while it is hard to locate these markers on chromosomes of non-model species without such references. A frog species, Quasipaa boulengeri, shows chromosomal rearrangement polymorphisms, making itself a fascinating model for chromosomal speciation mediated by suppressed recombination. However, no markers have been located on its rearranged chromosomes. We present a complete protocol to map microsatellites based on mechanical microdissection and chromosome amplification techniques. Following this protocol, we mapped 71 microsatellites of Q. boulengeri at the chromosome level. In total, eight loci were assigned to rearranged chromosomes, and the other 63 loci might attach to other chromosomes. These microsatellites could be used to compare the gene flow and verify the chromosomal suppressed recombination hypothesis in Q. boulengeri. This integrated protocol could be effectively used to map genes to chromosomes for non-model species.
Collapse
Affiliation(s)
- Xiuyun Yuan
- a Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,b University of Chinese Academy of Sciences, Beijing, China
| | - Siqi Yuan
- a Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,b University of Chinese Academy of Sciences, Beijing, China
| | - Ya Liu
- a Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,b University of Chinese Academy of Sciences, Beijing, China
| | - Yun Xia
- a Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaomao Zeng
- a Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
45
|
Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Rubes J. Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox. Cytogenet Genome Res 2017; 150:118-127. [PMID: 28122375 DOI: 10.1159/000455081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox.
Collapse
Affiliation(s)
- Miluse Vozdova
- Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
46
|
Gladkikh OL, Romanenko SA, Lemskaya NA, Serdyukova NA, O’Brien PCM, Kovalskaya JM, Smorkatcheva AV, Golenishchev FN, Perelman PL, Trifonov VA, Ferguson-Smith MA, Yang F, Graphodatsky AS. Rapid Karyotype Evolution in Lasiopodomys Involved at Least Two Autosome - Sex Chromosome Translocations. PLoS One 2016; 11:e0167653. [PMID: 27936177 PMCID: PMC5147937 DOI: 10.1371/journal.pone.0167653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/17/2016] [Indexed: 11/21/2022] Open
Abstract
The generic status of Lasiopodomys and its division into subgenera Lasiopodomys (L. mandarinus, L. brandtii) and Stenocranius (L. gregalis, L. raddei) are not generally accepted because of contradictions between the morphological and molecular data. To obtain cytogenetic evidence for the Lasiopodomys genus and its subgenera and to test the autosome to sex chromosome translocation hypothesis of sex chromosome complex origin in L. mandarinus proposed previously, we hybridized chromosome painting probes from the field vole (Microtus agrestis, MAG) and the Arctic lemming (Dicrostonyx torquatus, DTO) onto the metaphases of a female Mandarin vole (L. mandarinus, 2n = 47) and a male Brandt's vole (L. brandtii, 2n = 34). In addition, we hybridized Arctic lemming painting probes onto chromosomes of a female narrow-headed vole (L. gregalis, 2n = 36). Cross-species painting revealed three cytogenetic signatures (MAG12/18, 17a/19, and 22/24) that could validate the genus Lasiopodomys and indicate the evolutionary affinity of L. gregalis to the genus. Moreover, all three species retained the associations MAG1bc/17b and 2/8a detected previously in karyotypes of all arvicolins studied. The associations MAG2a/8a/19b, 8b/21, 9b/23, 11/13b, 12b/18, 17a/19a, and 5 fissions of ancestral segments appear to be characteristic for the subgenus Lasiopodomys. We also validated the autosome to sex chromosome translocation hypothesis on the origin of complex sex chromosomes in L. mandarinus. Two translocations of autosomes onto the ancestral X chromosome in L. mandarinus led to a complex of neo-X1, neo-X2, and neo-X3 elements. Our results demonstrate that genus Lasiopodomys represents a striking example of rapid chromosome evolution involving both autosomes and sex chromosomes. Multiple reshuffling events including Robertsonian fusions, chromosomal fissions, inversions and heterochromatin expansion have led to the formation of modern species karyotypes in a very short time, about 2.4 MY.
Collapse
Affiliation(s)
- Olga L. Gladkikh
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana A. Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| | - Natalya A. Lemskaya
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalya A. Serdyukova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Patricia C. M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julia M. Kovalskaya
- Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Polina L. Perelman
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alexander S. Graphodatsky
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
47
|
Makunin AI, Kichigin IG, Larkin DM, O’Brien PCM, Ferguson-Smith MA, Yang F, Proskuryakova AA, Vorobieva NV, Chernyaeva EN, O’Brien SJ, Graphodatsky AS, Trifonov VA. Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing. BMC Genomics 2016; 17:618. [PMID: 27516089 PMCID: PMC4982142 DOI: 10.1186/s12864-016-2933-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/12/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. RESULTS In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide-primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1.42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids. Sequence variation analysis of roe deer B chromosomes revealed a high frequency of mutations and increased heterozygosity due to either amplification within B chromosomes or divergence between different Bs. In contrast, grey brocket deer B chromosomes were found to be more homogeneous and resembled autosomes in patterns of sequence variation. Similar tendencies were observed in repetitive DNA composition. CONCLUSIONS Our data demonstrate independent origins of B chromosomes in the grey brocket and roe deer. We hypothesize that the B chromosomes of these two cervid species represent different stages of B chromosome sequences evolution: probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements.
Collapse
Affiliation(s)
- Alexey I. Makunin
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | | | - Patricia C. M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, Cambridge University, Cambridge, UK
| | | | | | | | - Ekaterina N. Chernyaeva
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Stephen J. O’Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alexander S. Graphodatsky
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir A. Trifonov
- Institute of Molecular and Cell Biology, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
48
|
Kulemzina AI, Proskuryakova AA, Beklemisheva VR, Lemskaya NA, Perelman PL, Graphodatsky AS. Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea). Cytogenet Genome Res 2016; 148:25-34. [PMID: 27088853 DOI: 10.1159/000445459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies.
Collapse
|
49
|
Beklemisheva VR, Perelman PL, Lemskaya NA, Kulemzina AI, Proskuryakova AA, Burkanov VN, Graphodatsky AS. The Ancestral Carnivore Karyotype As Substantiated by Comparative Chromosome Painting of Three Pinnipeds, the Walrus, the Steller Sea Lion and the Baikal Seal (Pinnipedia, Carnivora). PLoS One 2016; 11:e0147647. [PMID: 26821159 PMCID: PMC4731086 DOI: 10.1371/journal.pone.0147647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022] Open
Abstract
Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae–monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.
Collapse
Affiliation(s)
- Violetta R. Beklemisheva
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| | - Polina L. Perelman
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Natalya A. Lemskaya
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia I. Kulemzina
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia A. Proskuryakova
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Vladimir N. Burkanov
- Department of Higher Vertebrates Ecology, Kamchatka Branch of Pacific Geographical Institute of Far East Branch of Russian Academy of Sciences, Petropavlovsk-Kamchatski, Russia
- National Marine Mammal Laboratory, Alaska Fisheries Science Centre, National Marine Fisheries Service, Seattle, Washington, United States of America
| | - Alexander S. Graphodatsky
- Department of Comparative Genomics, Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
50
|
Matveevsky S, Bakloushinskaya I, Tambovtseva V, Romanenko S, Kolomiets O. Analysis of meiotic chromosome structure and behavior in Robertsonian heterozygotes of Ellobius tancrei (Rodentia, Cricetidae): a case of monobrachial homology. COMPARATIVE CYTOGENETICS 2015; 9:691-706. [PMID: 26752380 PMCID: PMC4698581 DOI: 10.3897/compcytogen.v9i4.5674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/13/2015] [Indexed: 05/16/2023]
Abstract
Synaptonemal complex (SC) chains were revealed in semisterile intraspecific F1 hybrids of Ellobius tancrei Blasius, 1884 (2n = 49, NF=56 and 2n=50, NF=56), heterozygous for Robertsonian (Rb) translocations. Chains were formed by Rb submetacentrics with monobrachial homology. Chromosome synapsis in spermatocytes of these hybrids was disturbed, apparently because of the problematic release of the chromosomes from the SC chains. These hybrids suffer from low fertility, and our data support the opinion that this is because a formation of Rb metacentrics with monobrachial homology within different races of the same species might be an initial event for the divergence of chromosomal forms.
Collapse
Affiliation(s)
- Sergey Matveevsky
- N.I. Vavilov Institute of General Genetics, RAS, 3 Gubkin st., Moscow, 119991, Russia
| | - Irina Bakloushinskaya
- N.K. Koltzov Institute of Developmental Biology, RAS, 26 Vavilov st., Moscow, 119334, Russia
| | | | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, Siberian Branch, RAS, 8/2 Av. Acad. Lavrent’ev, Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogov st., Novosibirsk, 630090, Russia
| | - Oxana Kolomiets
- N.I. Vavilov Institute of General Genetics, RAS, 3 Gubkin st., Moscow, 119991, Russia
| |
Collapse
|