1
|
Rinaldi B, Bayat A, Zachariassen LG, Sun JH, Ge YH, Zhao D, Bonde K, Madsen LH, Awad IAA, Bagiran D, Sbeih A, Shah SM, El-Sayed S, Lyngby SM, Pedersen MG, Stenum-Berg C, Walker LC, Krey I, Delahaye-Duriez A, Emrick LT, Sully K, Murali CN, Burrage LC, Plaud Gonzalez JA, Parnes M, Friedman J, Isidor B, Lefranc J, Redon S, Heron D, Mignot C, Keren B, Fradin M, Dubourg C, Mercier S, Besnard T, Cogne B, Deb W, Rivier C, Milani D, Bedeschi MF, Di Napoli C, Grilli F, Marchisio P, Koudijs S, Veenma D, Argilli E, Lynch SA, Au PYB, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Patron Romero L, Li WL, Thorpe E, Hecher L, Johannsen J, Denecke J, McNiven V, Szuto A, Wakeling E, Cruz V, Sency V, Wang H, Piard J, Kortüm F, Herget T, Bierhals T, Condell A, Ben-Zeev B, Kaur S, Christodoulou J, Piton A, Zweier C, Kraus C, Micalizzi A, Trivisano M, Specchio N, Lesca G, Møller RS, Tümer Z, Musgaard M, Gerard B, Lemke JR, Shi YS, Kristensen AS. Gain-of-function and loss-of-function variants in GRIA3 lead to distinct neurodevelopmental phenotypes. Brain 2024; 147:1837-1855. [PMID: 38038360 PMCID: PMC11068105 DOI: 10.1093/brain/awad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors (AMPARs) mediate fast excitatory neurotransmission in the brain. AMPARs form by homo- or heteromeric assembly of subunits encoded by the GRIA1-GRIA4 genes, of which only GRIA3 is X-chromosomal. Increasing numbers of GRIA3 missense variants are reported in patients with neurodevelopmental disorders (NDD), but only a few have been examined functionally. Here, we evaluated the impact on AMPAR function of one frameshift and 43 rare missense GRIA3 variants identified in patients with NDD by electrophysiological assays. Thirty-one variants alter receptor function and show loss-of-function or gain-of-function properties, whereas 13 appeared neutral. We collected detailed clinical data from 25 patients (from 23 families) harbouring 17 of these variants. All patients had global developmental impairment, mostly moderate (9/25) or severe (12/25). Twelve patients had seizures, including focal motor (6/12), unknown onset motor (4/12), focal impaired awareness (1/12), (atypical) absence (2/12), myoclonic (5/12) and generalized tonic-clonic (1/12) or atonic (1/12) seizures. The epilepsy syndrome was classified as developmental and epileptic encephalopathy in eight patients, developmental encephalopathy without seizures in 13 patients, and intellectual disability with epilepsy in four patients. Limb muscular hypotonia was reported in 13/25, and hypertonia in 10/25. Movement disorders were reported in 14/25, with hyperekplexia or non-epileptic erratic myoclonus being the most prevalent feature (8/25). Correlating receptor functional phenotype with clinical features revealed clinical features for GRIA3-associated NDDs and distinct NDD phenotypes for loss-of-function and gain-of-function variants. Gain-of-function variants were associated with more severe outcomes: patients were younger at the time of seizure onset (median age: 1 month), hypertonic and more often had movement disorders, including hyperekplexia. Patients with loss-of-function variants were older at the time of seizure onset (median age: 16 months), hypotonic and had sleeping disturbances. Loss-of-function and gain-of-function variants were disease-causing in both sexes but affected males often carried de novo or hemizygous loss-of-function variants inherited from healthy mothers, whereas affected females had mostly de novo heterozygous gain-of-function variants.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Allan Bayat
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5230Denmark
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jia-Hui Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210032, China
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310030, China
| | - Yu-Han Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210032, China
| | - Dan Zhao
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Kristine Bonde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Laura H Madsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | | | - Duygu Bagiran
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Amal Sbeih
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Syeda Maidah Shah
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Shaymaa El-Sayed
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Signe M Lyngby
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Miriam G Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Charlotte Stenum-Berg
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Louise Claudia Walker
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Andrée Delahaye-Duriez
- Unité fonctionnelle de médecine génomique et génétique clinique, Hôpital Jean Verdier, Assistance Publique des Hôpitaux de Paris, Bondy 93140, France
- NeuroDiderot, UMR 1141, Inserm, Université Paris Cité, Paris 75019, France
- UFR SMBH, Université Sorbonne Paris Nord, Bobigny 93000, France
| | - Lisa T Emrick
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krystal Sully
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julie Ana Plaud Gonzalez
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Mered Parnes
- Division of Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX 77030, USA
- Pediatric Movement Disorders Clinic, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer Friedman
- Rady Children’s Institute for Genomic Medicine, San Diego, CA 92123, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92123, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA 92123, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
| | - Jérémie Lefranc
- Pediatric Neurophysiology Department, CHU de Brest, Brest 29200, France
| | - Sylvia Redon
- Service de Génétique Médicale, CHU de Brest, Brest 29200, France
- Université de Brest, CHU de Brest, UMR 1078, Brest F29200, France
| | - Delphine Heron
- APHP Sorbonne Université, Département de Génétique, Hôpital Armand Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris 75013, France
| | - Cyril Mignot
- APHP Sorbonne Université, Département de Génétique, Hôpital Armand Trousseau and Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, Paris 75013, France
| | - Boris Keren
- Genetic Department, APHP, Sorbonne Université, Pitié-Salpêtrière Hospital, Paris 75013, France
| | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes 35200, France
| | - Christele Dubourg
- Service de Génétique Moléculaire et Génomique, CHU de Rennes, Rennes 35200, France
- Université de Rennes, CNRS, Institut de Genetique et Developpement de Rennes, UMR 6290, Rennes 35200, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, Nantes 44000, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax, Nantes 44000, France
| | - Clotilde Rivier
- Department of Paediatrics, Villefranche-sur-Saône Hospital, Villefranche-sur-Saône 69655, France
| | - Donatella Milani
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Maria Francesca Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Claudia Di Napoli
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Federico Grilli
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Paola Marchisio
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatria Pneumoinfettivologia, Milan 20122, Italy
- University of Milan, Milan 20122, Italy
| | - Suzanna Koudijs
- Department of Neurology, ENCORE, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam 3015, The Netherlands
| | - Danielle Veenma
- Department of Pediatrics, ENCORE, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam 3015, The Netherlands
| | - Emanuela Argilli
- Institute of Human Genetics, University of California, San Francisco, CA 94143, USA
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, CA 94143, USA
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children’s Health Ireland Crumlin, Dublin D12 N512, Ireland
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | - Diane Masser-Frye
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Marilyn Jones
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Leslie Patron Romero
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana 22010, Mexico
| | | | | | - Laura Hecher
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20215, Germany
| | - Jessika Johannsen
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20215, Germany
| | - Jonas Denecke
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20215, Germany
| | - Vanda McNiven
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
- Fred A Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, ON M5G 2C4, Canada
| | - Anna Szuto
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
- Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Emma Wakeling
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Vincent Cruz
- DDC Clinic Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Valerie Sency
- DDC Clinic Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Heng Wang
- DDC Clinic Center for Special Needs Children, Middlefield, OH 44062, USA
| | - Juliette Piard
- Centre de Génétique Humaine, Centre Hospitalier Universitaire, Université de Franche-Comté, Besançon 25000, France
- UMR 1231 GAD, Inserm, Université de Bourgogne Franche-Comté, Dijon 21000, France
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Angelo Condell
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
| | - Bruria Ben-Zeev
- Pediatric Neurology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 4R73+8Q, Israel
| | - Simranpreet Kaur
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria 3052, Australia
- Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales 2050, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NewSouth Wales 2050, Australia
| | - Amelie Piton
- Hôpitaux Universitaires de Strasbourg, Laboratoire de Diagnostic Génétique, Strasbourg 67000, France
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
- Department of Human Genetics, Inselspital Bern, University of Bern, Bern 3010, Switzerland
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome 00165, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome 00165, Italy
| | - Gaetan Lesca
- Department of Medical Genetics, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon 69100, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM U1315, Lyon 69100, France
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund 4293, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense 5230Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Benedicte Gerard
- Laboratoires de diagnostic genetique, Institut de genetique Medicale d'Alsace, Hopitaux Universitaires de Strasbourg, Strasbourg 67000, France
| | - Johannes R Lemke
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Yun Stone Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Department of Neurology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210032, China
- Ministry of Education Key Laboratory of Model Animal for Disease Study, National Resource Center for Mutant Mice, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210032, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai 519031, China
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
2
|
Pal I, Bhattacharyya A, V-Ghaffari B, Williams ED, Xiao M, Rutherford MA, Rubio ME. Female GluA3-KO mice show early onset hearing loss and afferent swellings in ambient sound levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581467. [PMID: 38659964 PMCID: PMC11042237 DOI: 10.1101/2024.02.21.581467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
AMPA-type glutamate receptors (AMPAR) mediate excitatory cochlear transmission. However, the unique roles of AMPAR subunits are unresolved. Lack of subunit GluA3 (Gria3KO) in male mice reduced cochlear output by 8-weeks of age. Since Gria3 is X-linked and considering sex differences in hearing vulnerability, we hypothesized accelerated presbycusis in Gria3KO females. Here, auditory brainstem responses (ABR) were similar in 3-week-old female Gria3WT and Gria3KO mice. However, when raised in ambient sound, ABR thresholds were elevated and wave-1 amplitudes were diminished at 5-weeks and older in Gria3KO. In contrast, these metrics were similar between genotypes when raised in quiet. Paired synapses were similar in number, but lone ribbons and ribbonless synapses were increased in female Gria3KO mice in ambient sound compared to Gria3WT or to either genotype raised in quiet. Synaptic GluA4:GluA2 ratios increased relative to Gria3WT, particularly in ambient sound, suggesting an activity-dependent increase in calcium-permeable AMPARs in Gria3KO. Swollen afferent terminals were observed by 5-weeks only in Gria3KO females reared in ambient sound. We propose that lack of GluA3 induces sex-dependent vulnerability to AMPAR-mediated excitotoxicity.
Collapse
Affiliation(s)
- Indra Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Atri Bhattacharyya
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Babak V-Ghaffari
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Essence D. Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Maolei Xiao
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110
| | - María Eulalia Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
3
|
Peall KJ, Owen MJ, Hall J. Rare genetic brain disorders with overlapping neurological and psychiatric phenotypes. Nat Rev Neurol 2024; 20:7-21. [PMID: 38001363 DOI: 10.1038/s41582-023-00896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Understanding rare genetic brain disorders with overlapping neurological and psychiatric phenotypes is of increasing importance given the potential for developing disease models that could help to understand more common, polygenic disorders. However, the traditional clinical boundaries between neurology and psychiatry result in frequent segregation of these disorders into distinct silos, limiting cross-specialty understanding that could facilitate clinical and biological advances. In this Review, we highlight multiple genetic brain disorders in which neurological and psychiatric phenotypes are observed, but for which in-depth, cross-spectrum clinical phenotyping is rarely undertaken. We describe the combined phenotypes observed in association with genetic variants linked to epilepsy, dystonia, autism spectrum disorder and schizophrenia. We also consider common underlying mechanisms that centre on synaptic plasticity, including changes to synaptic and neuronal structure, calcium handling and the balance of excitatory and inhibitory neuronal activity. Further investigation is needed to better define and replicate these phenotypes in larger cohorts, which would help to gain greater understanding of the pathophysiological mechanisms and identify common therapeutic targets.
Collapse
Affiliation(s)
- Kathryn J Peall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Antunes AS, Martins-de-Souza D. Single-Cell RNA Sequencing and Its Applications in the Study of Psychiatric Disorders. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:329-339. [PMID: 37519459 PMCID: PMC10382703 DOI: 10.1016/j.bpsgos.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022] Open
Abstract
Neuroscience is currently one of the most challenging research fields owing to the enormous complexity of the mammalian nervous system. We are yet to understand precise transcriptional programs that govern cell fate during neurodevelopment, resolve the connectome of the mammalian brain, and determine the etiology of various neurodegenerative and psychiatric disorders. Technological advances in the past decade, notably single-cell RNA sequencing, have enabled huge progress in our understanding of such features. Our current knowledge of the transcriptome is largely derived from bulk RNA sequencing, which reveals only the average gene expression of millions of cells, potentially missing out on minor transcriptome differences between cells detectable only at single-cell resolution. Since 2009, several single-cell RNA sequencing techniques have emerged that enable the accurate classification of neuronal and glial cell subtypes beyond classical molecular markers and electrophysiological features and allow the identification of previously unknown cell types. Furthermore, it enables the interrogation of molecular and disease-relevant mechanisms and offers further possibilities for the discovery of new drug targets and disease biomarkers. This review intends to familiarize the reader with the main single-cell RNA sequencing techniques developed throughout the past decade and discusses their application in the fields of brain cell taxonomy, neurodevelopment, and psychiatric disorders.
Collapse
Affiliation(s)
- André S.L.M. Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
5
|
Agarwal M, Sharma A, Kagoo R A, Bhargava A. Interactions between genes altered during cardiotoxicity and neurotoxicity in zebrafish revealed using induced network modules analysis. Sci Rep 2023; 13:6257. [PMID: 37069190 PMCID: PMC10110561 DOI: 10.1038/s41598-023-33145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
As the manufacturing and development of new synthetic compounds increase to keep pace with the expanding global demand, adverse health effects due to these compounds are emerging as critical public health concerns. Zebrafish have become a prominent model organism to study toxicology due to their genomic similarity to humans, optical clarity, well-defined developmental stages, short generation time, and cost-effective maintenance. It also provides a shorter time frame for in vivo toxicology evaluation compared to the mammalian experimental systems. Here, we used meta-analysis to examine the alteration in genes during cardiotoxicity and neurotoxicity in zebrafish, caused by chemical exposure of any kind. First, we searched the literature comprehensively for genes that are altered during neurotoxicity and cardiotoxicity followed by meta-analysis using ConsensusPathDB. Since constant communication between the heart and the brain is an important physiological phenomenon, we also analyzed interactions among genes altered simultaneously during cardiotoxicity and neurotoxicity using induced network modules analysis in ConsensusPathDB. We observed inflammation and regeneration as the major pathways involved in cardiotoxicity and neurotoxicity. A large number of intermediate genes and input genes anchored in these pathways are molecular regulators of cell cycle progression and cell death and are implicated in tumor manifestation. We propose potential predictive biomarkers for neurotoxicity and cardiotoxicity and the major pathways potentially implicated in the manifestation of a particular toxicity phenotype.
Collapse
Affiliation(s)
- Manusmriti Agarwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India
| | - Ankush Sharma
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India
| | - Andrea Kagoo R
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, 502284, India.
| |
Collapse
|
6
|
Okano S, Makita Y, Miyamoto A, Taketazu G, Kimura K, Fukuda I, Tanaka H, Yanagi K, Kaname T. GRIA3 p.Met661Thr variant in a female with developmental epileptic encephalopathy. Hum Genome Var 2023; 10:4. [PMID: 36726007 PMCID: PMC9892509 DOI: 10.1038/s41439-023-00232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
The X-linked human glutamate receptor subunit 3 (GRIA3) gene (MIM *305915, Xq25) encodes ionotropic α amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor subunit 3, which mediates postsynaptic neurotransmission. Variants in this gene can cause a variety of neurological disorders, primarily reported in male patients. Here, we report a female patient with developmental and epileptic encephalopathy who carries the novel de novo GRIA3 variant NM_007325.5: c.1982T > C: p.Met661Thr.
Collapse
Affiliation(s)
- Satomi Okano
- Department of Pediatrics, Asahikawa Habilitation Center for Children, Hokkaido, Japan
| | - Yoshio Makita
- Department of Genetic Counseling, Asahikawa Medical University Hospital, Hokkaido, Japan.
| | - Akie Miyamoto
- Department of Pediatrics, Asahikawa Habilitation Center for Children, Hokkaido, Japan
| | - Genya Taketazu
- Department of Pediatrics, Asahikawa Kosei Hospital, Hokkaido, Japan
| | - Kayano Kimura
- Department of Pediatrics, Asahikawa Habilitation Center for Children, Hokkaido, Japan
| | - Ikue Fukuda
- Department of Pediatrics, Asahikawa Habilitation Center for Children, Hokkaido, Japan
| | - Hajime Tanaka
- Department of Pediatrics, Asahikawa Habilitation Center for Children, Hokkaido, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Institute for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Hamanaka K, Miyoshi K, Sun JH, Hamada K, Komatsubara T, Saida K, Tsuchida N, Uchiyama Y, Fujita A, Mizuguchi T, Gerard B, Bayat A, Rinaldi B, Kato M, Tohyama J, Ogata K, Shi YS, Saito K, Miyatake S, Matsumoto N. Amelioration of a neurodevelopmental disorder by carbamazepine in a case having a gain-of-function GRIA3 variant. Hum Genet 2022; 141:283-293. [PMID: 35031858 DOI: 10.1007/s00439-021-02416-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
GRIA3 at Xq25 encodes glutamate ionotropic receptor AMPA type 3 (GluA3), a subunit of postsynaptic glutamate-gated ion channels mediating neurotransmission. Hemizygous loss-of-function (LOF) variants in GRIA3 cause a neurodevelopmental disorder (NDD) in male individuals. Here, we report a gain-of-function (GOF) variant at GRIA3 in a male patient. We identified a hemizygous de novo missense variant in GRIA3 in a boy with an NDD: c.1844C > T (p.Ala615Val) using whole-exome sequencing. His neurological signs, such as hypertonia and hyperreflexia, were opposite to those in previous cases having LOF GRIA3 variants. His seizures and hypertonia were ameliorated by carbamazepine, inhibiting glutamate release from presynapses. Patch-clamp recordings showed that the human GluA3 mutant (p.Ala615Val) had slower desensitization and deactivation kinetics. A fly line expressing a human GluA3 mutant possessing our variant and the Lurcher variant, which makes ion channels leaky, showed developmental defects, while one expressing a mutant possessing either of them did not. Collectively, these results suggest that p.Ala615Val has GOF effects. GRIA3 GOF variants may cause an NDD phenotype distinctive from that of LOF variants, and drugs suppressing glutamatergic neurotransmission may ameliorate this phenotype. This study should help in refining the clinical management of GRIA3-related NDDs.
Collapse
Affiliation(s)
- Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Keita Miyoshi
- Invertebrate Genetics Laboratory, Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan.,Division of Invertebrate Genetics, Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Jia-Hui Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takao Komatsubara
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Niigata, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Benedicte Gerard
- Laboratoires de Diagnostic Génétique, Institut Medical d'Alsace, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Allan Bayat
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Jun Tohyama
- Department of Child Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Niigata, Japan.,Niigata University Medical and Dental Hospital, Niigata, Niigata, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School, Nanjing University, Nanjing, China
| | - Kuniaki Saito
- Invertebrate Genetics Laboratory, Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka, Japan.,Division of Invertebrate Genetics, Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.
| |
Collapse
|
8
|
Martinez-Esteve Melnikova A, Pijuan J, Aparicio J, Ramírez A, Altisent-Huguet A, Vilanova-Adell A, Arzimanoglou A, Armstrong J, Palau F, Hoenicka J, San Antonio-Arce V. The p.Glu787Lys variant in the GRIA3 gene causes developmental and epileptic encephalopathy mimicking structural epilepsy in a female patient. Eur J Med Genet 2022; 65:104442. [DOI: 10.1016/j.ejmg.2022.104442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 11/03/2022]
|
9
|
Zhou B, Zhang C, Zheng L, Wang Z, Chen X, Feng X, Zhang Q, Hao S, Wei L, Gu W, Hui L. Case Report: A Novel De Novo Missense Mutation of the GRIA2 Gene in a Chinese Case of Neurodevelopmental Disorder With Language Impairment. Front Genet 2021; 12:794766. [PMID: 34899870 PMCID: PMC8655903 DOI: 10.3389/fgene.2021.794766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Neurodevelopmental disorders with language impairment and behavioral abnormalities (NEDLIB) are a disease caused by heterozygous variants in the glutamate ionotropic receptor AMPA type subunit 2 (GRIA2) gene, which manifest as impaired mental development or developmental delay, behavioral abnormalities including autistic characteristics, and language disorders. Currently, only a few mutations in the GRIA2 gene have been discovered. Methods: A GRIA2 variation was detected in a patient by whole-exome sequencing, and the site was validated by Sanger sequencing from the family. Results: We report a Chinese case of NEDLIB in a girl with language impairment and developmental delay through whole-exome sequencing (WES). Genetic analysis showed that there was a de novo missense mutation, c.1934T > G (p.Leu645Arg), in the GRIA2 gene (NM_001083619.1), which has never been reported before. Conclusion: Our case shows the potential diagnostic role of WES in NEDLIB, expands the GRIA2 gene mutation spectrum, and further deepens the understanding of NEDLIB. Deepening the study of the genetic and clinical heterogeneity, treatment, and prognosis of the disease is still our future challenge and focus.
Collapse
Affiliation(s)
- Bingbo Zhou
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Chuan Zhang
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Lei Zheng
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Zhiqiang Wang
- Center for Men's Health, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Xue Chen
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Xuan Feng
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Qinghua Zhang
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Shengju Hao
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| | - Liwan Wei
- Chigene (Beijing) Translational Medical Research Center, Beijing, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center, Beijing, China
| | - Ling Hui
- Center for Medical Genetics, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Health Hospital, Lanzhou, China
| |
Collapse
|
10
|
Italia M, Ferrari E, Di Luca M, Gardoni F. GluA3-containing AMPA receptors: From physiology to synaptic dysfunction in brain disorders. Neurobiol Dis 2021; 161:105539. [PMID: 34743951 DOI: 10.1016/j.nbd.2021.105539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
In the mammalian brain, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) play a fundamental role in the activation of excitatory synaptic transmission and the induction of different forms of synaptic plasticity. The modulation of the AMPAR tetramer subunit composition at synapses defines the functional properties of the receptor. During the last twenty years, several studies have evaluated the roles played by each subunit, from GluA1 to GluA4, in both physiological and pathological conditions. Here, we have focused our attention on GluA3-containing AMPARs, addressing their functional role in synaptic transmission and synaptic plasticity and their involvement in a variety of brain disorders. Although several aspects remain to be fully understood, GluA3 is a widely expressed and functionally relevant subunit in AMPARs involved in several brain circuits, and its pharmacological modulation could represent a novel approach for the rescue of altered glutamatergic synapses associated with neurodegenerative and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Maria Italia
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy.
| |
Collapse
|
11
|
Rinaldi B, Ge YH, Freri E, Tucci A, Granata T, Estienne M, Sun JH, Gérard B, Bayat A, Efthymiou S, Gervasini C, Shi YS, Houlden H, Marchisio P, Milani D. Myoclonic status epilepticus and cerebellar hypoplasia associated with a novel variant in the GRIA3 gene. Neurogenetics 2021; 23:27-35. [PMID: 34731330 PMCID: PMC8782781 DOI: 10.1007/s10048-021-00666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/01/2021] [Indexed: 11/28/2022]
Abstract
AMPA-type glutamate receptors (AMPARs) are postsynaptic ionotropic receptors which mediate fast excitatory currents. AMPARs have a heterotetrameric structure, variably composed by the four subunits GluA1-4 which are encoded by genes GRIA1-4. Increasing evidence support the role of pathogenic variants in GRIA1-4 genes as causative for syndromic intellectual disability (ID). We report an Italian pedigree where some male individuals share ID, seizures and facial dysmorphisms. The index subject was referred for severe ID, myoclonic seizures, cerebellar signs and short stature. Whole exome sequencing identified a novel variant in GRIA3, c.2360A > G, p.(Glu787Gly). The GRIA3 gene maps to chromosome Xq25 and the c.2360A > G variant was transmitted by his healthy mother. Subsequent analysis in the family showed a segregation pattern compatible with the causative role of this variant, further supported by preliminary functional insights. We provide a detailed description of the clinical evolution of the index subjects and stress the relevance of myoclonic seizures and cerebellar syndrome as cardinal features of his presentation.
Collapse
Affiliation(s)
- Berardo Rinaldi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yu-Han Ge
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Arianna Tucci
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Margherita Estienne
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Jia-Hui Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Bénédicte Gérard
- Laboratoires de diagnostic génétique, Institut Medical d'Alsace, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Allan Bayat
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark.,Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Stephanie Efthymiou
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Cristina Gervasini
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
| | - Henry Houlden
- Department of Neuromuscular disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Paola Marchisio
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
12
|
Sun JH, Chen J, Ayala Valenzuela FE, Brown C, Masser-Frye D, Jones M, Romero LP, Rinaldi B, Li WL, Li QQ, Wu D, Gerard B, Thorpe E, Bayat A, Shi YS. X-linked neonatal-onset epileptic encephalopathy associated with a gain-of-function variant p.R660T in GRIA3. PLoS Genet 2021; 17:e1009608. [PMID: 34161333 PMCID: PMC8259962 DOI: 10.1371/journal.pgen.1009608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/06/2021] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
The X-linked GRIA3 gene encodes the GLUA3 subunit of AMPA-type glutamate receptors. Pathogenic variants in this gene were previously reported in neurodevelopmental diseases, mostly in male patients but rarely in females. Here we report a de novo pathogenic missense variant in GRIA3 (c.1979G>C; p. R660T) identified in a 1-year-old female patient with severe epilepsy and global developmental delay. When exogenously expressed in human embryonic kidney (HEK) cells, GLUA3_R660T showed slower desensitization and deactivation kinetics compared to wildtype (wt) GLUA3 receptors. Substantial non-desensitized currents were observed with the mutant but not for wt GLUA3 with prolonged exposure to glutamate. When co-expressed with GLUA2, the decay kinetics were similarly slowed in GLUA2/A3_R660T with non-desensitized steady state currents. In cultured cerebellar granule neurons, miniature excitatory postsynaptic currents (mEPSCs) were significantly slower in R660T transfected cells than those expressing wt GLUA3. When overexpressed in hippocampal CA1 neurons by in utero electroporation, the evoked EPSCs and mEPSCs were slower in neurons expressing R660T mutant compared to those expressing wt GLUA3. Therefore our study provides functional evidence that a gain of function (GoF) variant in GRIA3 may cause epileptic encephalopathy and global developmental delay in a female subject by enhancing synaptic transmission. Glutamate is the excitatory neurotransmitter in brain, abnormality of which causes excitotoxicity and diseases. Here we identified a pathogenic missense variant in GRIA3 gene in a female patient with severe epilepsy and global developmental delay. The X-linked GRIA3 gene encodes GLUA3, a subunit of glutamate receptors. Through electrophysiological analysis of the mutant GLUA3 in a cell line and mouse neurons, we found this mutant makes strengthened glutamate receptors. This study thus indicates that the variant causes epileptic encephalopathy and global developmental delay by enhancing glutamate signaling in brain.
Collapse
Affiliation(s)
- Jia-Hui Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Jiang Chen
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | | | - Carolyn Brown
- Illumina Inc., San Diego, California, United States of America
| | - Diane Masser-Frye
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, California, United States of America
| | - Marilyn Jones
- Division of Genetics, Department of Pediatrics, UC San Diego School of Medicine, Rady Children’s Hospital, San Diego, California, United States of America
| | - Leslie Patron Romero
- Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, Mexico
| | - Berardo Rinaldi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Wenhui Laura Li
- Breakthrough Genomics Inc., Irvine, California, United States of America
| | - Qing-Qing Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Dan Wu
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Benedicte Gerard
- Laboratoires de diagnostic génétique, Institut Medical d’Alsace, Hôpitaux Universitaire de Strasbourg, Strasbourg, France
| | - Erin Thorpe
- Illumina Inc., San Diego, California, United States of America
- * E-mail: (ET); (AB); (YSS)
| | - Allan Bayat
- Department for Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
- * E-mail: (ET); (AB); (YSS)
| | - Yun Stone Shi
- Ministry of Education Key Laboratory of Model Animal for Disease Study, Department of Neurology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
- * E-mail: (ET); (AB); (YSS)
| |
Collapse
|
13
|
Jazireian P, Sasani ST, Assarzadegan F, Azimian M. TRAILR1 (rs20576) and GRIA3 (rs12557782) are not associated with interferon-β response in multiple sclerosis patients. Mol Biol Rep 2020; 47:9659-9665. [PMID: 33269432 DOI: 10.1007/s11033-020-06026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune-type inflammatory disorder in human central nervous system. Recombinant interferon beta (IFN-β) decreases the number of relapses and postpones disability progression in MS. However, up to 50% of patients treated with interferon beta continue experiencing relapses and/or worsening disability. Single nucleotide polymorphisms in different genes have been known to show significant associations with response to IFN-β in MS patients. In the present work, we examined the potential role of TRAILR1 and GRIA3 genes polymorphisms on response to IFN-β therapy in Iranian MS patients. The DNA was extracted from blood samples by standard procedures from 73 patients diagnosed with Multiple Sclerosis that were either responded to IFN-β or did not. We carried out RFLP -PCR and tetra-primer ARMS-PCR methods to study of rs20576 and rs12557782, respectively. All results were analyzed using the SPSS software. TRAILR1 rs20576 genotype frequencies in responders and non-responders were similar (χ2 = 0.26, P = 0.87, Fisher, s Exact test). Our results showed that response to IFN-β has not association with sex (p = 0.73). Also, genotypic frequencies of GRIA3 rs12557782 had no significant differences between two groups of female population (χ2 = 3.75, p = 0.15). Furthermore, it had not been any statistical differences between responder and non-responder males (χ2 = 0.7, p = 0.4) related to the SNP. Our results analysis revealed no significant association between the studied SNPs (TRAILR1 rs20576 and GRIA3rs 12,557,782) and response to IFN-β in Iranian MS patients.
Collapse
Affiliation(s)
- Parham Jazireian
- Department of Biology, University Campus 2, University of Guilan, Rasht, Iran
| | | | - Farhad Assarzadegan
- Department of Neurology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Azimian
- Rofeydeh Rehabilitation Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
14
|
Arasaratnam CJ, Singh-Bains MK, Waldvogel HJ, Faull RLM. Neuroimaging and neuropathology studies of X-linked dystonia parkinsonism. Neurobiol Dis 2020; 148:105186. [PMID: 33227492 DOI: 10.1016/j.nbd.2020.105186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
X-linked Dystonia Parkinsonism (XDP) is a recessive, genetically inherited neurodegenerative disorder endemic to Panay Island in the Philippines. Clinical symptoms include the initial appearance of dystonia, followed by parkinsonian traits after 10-15 years. The basal ganglia, particularly the striatum, is an area of focus in XDP neuropathology research, as the striatum shows marked atrophy that correlates with disease progression. Thus, XDP shares features of Parkinson's disease symptomatology, in addition to the genetic predisposition and presence of striatal atrophy resembling Huntington's disease. However, further research is required to reveal the detailed pathology and indicators of disease in the XDP brain. First, there are limited neuropathological studies that have investigated neuronal changes and neuroinflammation in the XDP brain. However, multiple neuroimaging studies on XDP patients provide clues to other affected brain regions. Furthermore, molecular pathological studies have elucidated that the main genetic cause of XDP is in the TAF-1 gene, but how this mutation relates to XDP neuropathology still remains to be fully investigated. Hence, we aim to provide an extensive overview of the current literature describing neuropathological changes within the XDP brain, and discuss future research avenues, which will provide a better understanding of XDP neuropathogenesis.
Collapse
Affiliation(s)
- Christine J Arasaratnam
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Malvindar K Singh-Bains
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard L M Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, New Zealand; University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
15
|
GRIA3 missense mutation is cause of an x-linked developmental and epileptic encephalopathy. Seizure 2020; 82:1-6. [PMID: 32977175 DOI: 10.1016/j.seizure.2020.08.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 01/19/2023] Open
Abstract
PURPOSE GRIA3, encoding subunit 3 of glutamate ionotropic AMPA receptor, is associated with X-linked intellectual disability (ID), dysmorphic features, and non-syndromic epilepsy. We aimed to characterize electro-clinical features of patients with GRIA3 variants. METHODS We report a patient carrying a hemizygous missense variant c.2359 G > A (p.Glu787Lys) inGRIA3 gene. Following a literature search, we also reviewed clinical, electrophysiological, radiological, and genetic features of 19 patients with GRIA3 mutations. RESULTS This 26-month-old boy had developmental delay, early onset refractory myoclonic epilepsy, and non-convulsive refractory status epilepticus. In published reports, epilepsy was in 6 of 19 patients carrying different genotypes, though epilepsy and electroencephalogram features were not completely defined. Out of the 6 patients, one presented with generalized tonic-clonic seizures, two with myoclonic and clonic events (one also presented with epileptic spasms), and one with atypical absences and myoclonic jerks. Information on type of epilepsy was unavailable for 3 cases. Epilepsy onset was early in life and there was potential tendency for myoclonic/clonic events. The epilepsy was difficult to treat and prognosis is poor. Severity of ID ranged from mild to severe and was variably associated with bipolar affective disorder and autistic spectrum disorders. Other neurological features included hypotonia, asthenic body habitus with poor muscle bulk, and hyporeflexia. CONCLUSION Our report expands knowledge on the electro-clinical and molecular spectrum of GRIA3 variants. Larger investigations will better define the prevalence of epilepsy, the epileptic phenotype, and syndromic features underlying GRIA3 variants.
Collapse
|
16
|
Piard J, Béreau M, XiangWei W, Wirth T, Amsallem D, Buisson L, Richard P, Liu N, Xu Y, Myers SJ, Traynelis SF, Chelly J, Anheim M, Raynaud M, Van Maldergem L, Yuan H. The GRIA3 c.2477G > A Variant Causes an Exaggerated Startle Reflex, Chorea, and Multifocal Myoclonus. Mov Disord 2020; 35:1224-1232. [PMID: 32369665 PMCID: PMC9190290 DOI: 10.1002/mds.28058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Hemizygous mutations in GRIA3 encoding the GluA3 subunit of the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor are known to be associated with neurodevelopmental disorders, including intellectual disability, hypotonia, an autism spectrum disorder, sleep disturbances, and epilepsy in males. OBJECTIVE To describe a new and consistent phenotype in 4 affected male patients associated with an undescribed deleterious variant in GRIA3. METHODS We evaluated a large French family in which segregate a singular phenotype according to an apparent X-linked mode of inheritance. Molecular analyses using next generation sequencing and in vitro functional studies using 2-electrode voltage clamp recordings on Xenopus laevis oocytes and a β-lactamase reporter assay in transfected human embryonic kidney (HEK293) cells were performed. RESULTS In addition to mild intellectual disability and dysarthria, affected patients presented a tightly consistent early-onset movement disorder combining an exaggerated startle reflex with generalized chorea and multifocal myoclonus. The unreported GRIA3 missense variant c.2477G > A; p.(Gly826Asp) affecting the fourth transmembrane domain of the protein was identified in index patients and their unaffected mothers. Functional studies revealed that variant receptors show decreased current response evoked by agonist (ie, kainic acid and glutamate) and reduced expression on the cell surface in favor of pathogenicity by a loss-of-function mechanism. CONCLUSIONS Taken together, our results suggest that apart from known GRIA3-related disorders, an undescribed mutation-specific singular movement disorder does exist. We thus advocate considering GRIA3 mutations in the differential diagnosis of hyperekplexia and generalized chorea with myoclonus. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Juliette Piard
- Centre de Génétique Humaine, Université de Franche-Comté, CHU, Besançon, France
- Unité de recherche en neurosciences intégratives et cognitives EA481, Université de Franche-Comté, Besançon, France
| | - Matthieu Béreau
- Unité de recherche en neurosciences intégratives et cognitives EA481, Université de Franche-Comté, Besançon, France
- Service de Neurologie, CHU, Besançon, France
| | - Wenshu XiangWei
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Wirth
- Département de Neurologie, Häpital de Hautepierre, Häpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | - Nana Liu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Scott J. Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jameleddine Chelly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Mathieu Anheim
- Département de Neurologie, Häpital de Hautepierre, Häpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Martine Raynaud
- CHRU de Tours, Service de Génétique, Tours, France
- UMR1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Lionel Van Maldergem
- Centre de Génétique Humaine, Université de Franche-Comté, CHU, Besançon, France
- Unité de recherche en neurosciences intégratives et cognitives EA481, Université de Franche-Comté, Besançon, France
- Clinical Investigation Center 1431, National Institute of Health and Medical Research, Besançon, France
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Hsu HY, Chen HW, Han YS. Habitat Partitioning and its Possible Genetic Background Between Two Sympatrically Distributed Eel Species in Taiwan. Zool Stud 2019; 58:e27. [PMID: 31966328 PMCID: PMC6917558 DOI: 10.6620/zs.2019.58-27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022]
Abstract
The geographical distributions of the Japanese eel (Anguilla japonica) and Giant-mottled eel (A. marmorata) overlap in many regions in East Asia and therefore suffer from interspecific competition in the same rivers. After a long period of adaptation, the Japanese eel and Giant-mottled eel may exhibit habitat partitioning in the rivers to diminish the interspecific competition between them. In this study, we conducted a field investigation in the Fengshan River in Taiwan to survey the habitat distributions of the Japanese eel and Giant-mottled eel throughout a river. Moreover, we investigated whether their habitat distributions are related to their swimming and upstream migration. Thus, the mRNA expression levels of several candidate genes that may be associated with the swimming and upstream migration of eel were examined in the glass eels of the Japanese eel and Giant-mottled eel. Field investigation indicated that the Japanese eel mainly inhabited the lower and middle reaches of the Fengshan River, but the Giant- mottled eel was distributed over the middle to upper reaches. The mRNA expression levels of fMYH, dio2, gria3, and neurod1 were higher in the Giant-mottled eel than in the Japanese eel, implying that Giant- mottled eels might have better swimming bursts and more active upstream migration than Japanese eels. These results suggest that there is a habitat partition at which these two eel species coexist in a river, and their habitat distributions may be linked to their swimming bursts and upstream migration. Determining the habitat distributions of freshwater eels is important for developing applicable plans for eel conservation and resource management.
Collapse
Affiliation(s)
- Hsiang-Yi Hsu
- Institute of Fisheries Science, College of Life Science,
National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - Hsiao-Wei Chen
- Institute of Fisheries Science, College of Life Science,
National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science,
National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
18
|
Capetian P, Stanslowsky N, Bernhardi E, Grütz K, Domingo A, Brüggemann N, Naujock M, Seibler P, Klein C, Wegner F. Altered glutamate response and calcium dynamics in iPSC-derived striatal neurons from XDP patients. Exp Neurol 2018; 308:47-58. [PMID: 29944858 DOI: 10.1016/j.expneurol.2018.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/26/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disorder endemic to Panay Island (Philippines). Patients present with generalizing dystonia and parkinsonism. Genetic changes surrounding the TAF1 (TATA-box binding protein associated factor 1) gene have been associated with XDP inducing a degeneration of striatal spiny projection neurons. There is little knowledge about the pathophysiology of this disorder. Our objective was to generate and analyze an in-vitro model of XDP based on striatal neurons differentiated from induced pluripotent stem cells (iPSC). We generated iPSC from patient and healthy control fibroblasts (3 affected, 3 controls), followed by directed differentiation of the cultures towards striatal neurons. Cells underwent characterization of immunophenotype as well as neuronal function, glutamate receptor properties and calcium dynamics by whole-cell patch-clamp recordings and calcium imaging. Furthermore, we evaluated expression levels of AMPA receptor subunits and voltage-gated calcium channels by quantitative real-time PCR. We observed no differences in basic electrophysiological properties. Application of the AMPA antagonist NBQX led to a more pronounced reduction of postsynaptic currents in XDP neurons. There was a higher expression of AMPA receptor subunits in patient-derived neurons. Basal calcium levels were lower in neurons derived from XDP patients and cells with spontaneous calcium transients were more frequent. Our data suggest altered glutamate response and calcium dynamics in striatal XDP neurons.
Collapse
Affiliation(s)
- P Capetian
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University of Lübeck, Germany.
| | - N Stanslowsky
- Department of Neurology, Hannover Medical School, Germany
| | - E Bernhardi
- Institute of Neurogenetics, University of Lübeck, Germany
| | - K Grütz
- Institute of Neurogenetics, University of Lübeck, Germany
| | - A Domingo
- Institute of Neurogenetics, University of Lübeck, Germany
| | - N Brüggemann
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University of Lübeck, Germany
| | - M Naujock
- Department of Neurology, Hannover Medical School, Germany
| | - P Seibler
- Institute of Neurogenetics, University of Lübeck, Germany
| | - C Klein
- Institute of Neurogenetics, University of Lübeck, Germany.
| | - F Wegner
- Department of Neurology, Hannover Medical School, Germany
| |
Collapse
|
19
|
Moretto E, Murru L, Martano G, Sassone J, Passafaro M. Glutamatergic synapses in neurodevelopmental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:328-342. [PMID: 28935587 DOI: 10.1016/j.pnpbp.2017.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders (NDDs) are a group of diseases whose symptoms arise during childhood or adolescence and that impact several higher cognitive functions such as learning, sociability and mood. Accruing evidence suggests that a shared pathogenic mechanism underlying these diseases is the dysfunction of glutamatergic synapses. We summarize present knowledge on autism spectrum disorders (ASD), intellectual disability (ID), Down syndrome (DS), Rett syndrome (RS) and attention-deficit hyperactivity disorder (ADHD), highlighting the involvement of glutamatergic synapses and receptors in these disorders. The most commonly shared defects involve α-amino-3-hydroxy-5-methyl- 4-isoxazole propionic acid receptors (AMPARs), N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), whose functions are strongly linked to synaptic plasticity, affecting both cell-autonomous features as well as circuit formation. Moreover, the major scaffolding proteins and, thus, the general structure of the synapse are often deregulated in neurodevelopmental disorders, which is not surprising considering their crucial role in the regulation of glutamate receptor positioning and functioning. This convergence of defects supports the definition of neurodevelopmental disorders as a continuum of pathological manifestations, suggesting that glutamatergic synapses could be a therapeutic target to ameliorate patient symptomatology.
Collapse
Affiliation(s)
- Edoardo Moretto
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Luca Murru
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Giuseppe Martano
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy
| | - Jenny Sassone
- San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Maria Passafaro
- CNR, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
20
|
Davies B, Brown LA, Cais O, Watson J, Clayton AJ, Chang VT, Biggs D, Preece C, Hernandez-Pliego P, Krohn J, Bhomra A, Twigg SRF, Rimmer A, Kanapin A, Sen A, Zaiwalla Z, McVean G, Foster R, Donnelly P, Taylor JC, Blair E, Nutt D, Aricescu AR, Greger IH, Peirson SN, Flint J, Martin HC. A point mutation in the ion conduction pore of AMPA receptor GRIA3 causes dramatically perturbed sleep patterns as well as intellectual disability. Hum Mol Genet 2018; 26:3869-3882. [PMID: 29016847 PMCID: PMC5639461 DOI: 10.1093/hmg/ddx270] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.
Collapse
Affiliation(s)
- Benjamin Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Ondrej Cais
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Jake Watson
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Amber J Clayton
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Veronica T Chang
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Daniel Biggs
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Christopher Preece
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | | | - Jon Krohn
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Amarjit Bhomra
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, Oxfordshire OX3 9DS, UK
| | | | - Alexander Kanapin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Oncology, University of Oxford, Oxford, Oxfordshire OX3 7DQ, UK
| | | | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Zenobia Zaiwalla
- Department of Neuroscience, John Radcliffe Hospital, Oxford, Oxfordshire OX3 9DU, UK
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, Oxfordshire OX3 7FZ, UK
| | - Russell Foster
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,Department of Statistics, University of Oxford, Oxford, Oxfordshire OX1 3LB, UK
| | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire OX3 7BN, UK.,National Institute for Health Research Oxford Biomedical Research Centre (NIHR Oxford BRC), Oxford, Oxfordshire OX3 7LE, UK
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire OX3 7HE, UK
| | - David Nutt
- Division of Brain Sciences, Department of Medicine, Centre for Neuropsychopharmacology, Imperial College London, London W12 0NN, UK
| | - A Radu Aricescu
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Ingo H Greger
- Medical Research Council (MRC) Laboratory of Molecular Biology, Neurobiology Division, Cambridge, Cambridgeshire CB2 0QH, UK
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, Oxfordshire OX3 9DU, UK
| | - Jonathan Flint
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California-Los Angeles, CA 90095, USA
| | - Hilary C Martin
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
21
|
Iamjan SA, Thanoi S, Watiktinkorn P, Reynolds GP, Nudmamud-Thanoi S. Genetic variation of GRIA3 gene is associated with vulnerability to methamphetamine dependence and its associated psychosis. J Psychopharmacol 2018; 32:309-315. [PMID: 29338492 DOI: 10.1177/0269881117750153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Methamphetamine (METH) is an addictive psychostimulant drug commonly leading to schizophrenia-like psychotic symptoms. Disturbances in glutamatergic neurotransmission have been proposed as neurobiological mechanisms and the α-amino-3 hydroxy-5 methyl-4 isoxazole propionic acid (AMPA) glutamate receptor has been implicated in these processes. Moreover, genetic variants in GRIAs, genes encoding AMPA receptor subunits, have been observed in association with both drug dependence and psychosis. We hypothesized that variation of GRIA genes may be associated with METH dependence and METH-induced psychosis. Genotyping of GRIA1 rs1428920, GRIA2 rs3813296, GRIA3 rs3761554, rs502434 and rs989638 was performed in 102 male Thai controls and 100 METH-dependent subjects (53 with METH-dependent psychosis). We observed no evidence of association with METH dependence and METH-dependent psychosis in the GRIA1 and GRIA2 polymorphisms, nor with single polymorphisms rs3761554 and rs989638 in GRIA3. An association of GRIA3 rs502434 was identified with both METH dependence and METH-dependent psychosis, although this did not withstand correction for multiple testing. Combining the analysis of this site with the previously-demonstrated association with BDNF rs6265 resulted in a highly significant effect. These preliminary findings indicate that genetic variability in GRIA3 may interact with a functional BDNF polymorphism to provide a strong risk factor for the development of METH dependence in the Thai population.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | | | - Gavin P Reynolds
- 2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand.,4 Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| | - Sutisa Nudmamud-Thanoi
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
22
|
Quintela I, Eirís J, Gómez-Lado C, Pérez-Gay L, Dacruz D, Cruz R, Castro-Gago M, Míguez L, Carracedo Á, Barros F. Copy number variation analysis of patients with intellectual disability from North-West Spain. Gene 2017; 626:189-199. [PMID: 28506748 DOI: 10.1016/j.gene.2017.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Intellectual disability (ID) is a complex and phenotypically heterogeneous neurodevelopmental disorder characterized by significant deficits in cognitive and adaptive skills, debuting during the developmental period. In the last decade, microarray-based copy number variation (CNV) analysis has been proved as a strategy particularly useful in the discovery of loci and candidate genes associated with these phenotypes and is widely used in the clinics with a diagnostic purpose. In this study, we evaluated the usefulness of two genome-wide high density SNP microarrays -Cytogenetics Whole-Genome 2.7M SNP array (n=126 patients; Group 1) and CytoScan High-Density SNP array (n=447 patients; Group 2)- in the detection of clinically relevant CNVs in a cohort of ID patients from Galicia (NW Spain). In 159 (27.7%) patients, we detected 186 rare exonic chromosomal imbalances, that were grouped into the following classes: Clinically relevant (67/186; 36.0%), of unknown clinical significance (93/186; 50.0%) and benign (26/186; 14.0%). The 67 pathogenic CNVs were identified in 64 patients, which means an overall diagnostic yield of 11.2%. Overall, we confirmed that ID is a genetically heterogeneous condition and emphasized the importance of using genome-wide high density SNP microarrays in the detection of its genetic causes. Additionally, we provided clinical and molecular data of patients with pathogenic or likely pathogenic CNVs and discussed the potential implication in neurodevelopmental disorders of genes located within these variants.
Collapse
Affiliation(s)
- Inés Quintela
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain
| | - Jesús Eirís
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Carmen Gómez-Lado
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Laura Pérez-Gay
- Hospital Universitario Lucus Augusti, Unidad de Neurología Pediátrica, Departamento de Pediatría, Lugo, Spain
| | - David Dacruz
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Manuel Castro-Gago
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Luz Míguez
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain; King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah, Saudi Arabia
| | - Francisco Barros
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Genetic Studies on the Tripartite Glutamate Synapse in the Pathophysiology and Therapeutics of Mood Disorders. Neuropsychopharmacology 2017; 42:787-800. [PMID: 27510426 PMCID: PMC5312057 DOI: 10.1038/npp.2016.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
Both bipolar disorder (BD) and major depressive disorder (MDD) have high morbidity and share a genetic background. Treatment options for these mood disorders are currently suboptimal for many patients; however, specific genetic variables may be involved in both pathophysiology and response to treatment. Agents such as the glutamatergic modulator ketamine are effective in treatment-resistant mood disorders, underscoring the potential importance of the glutamatergic system as a target for improved therapeutics. Here we review genetic studies linking the glutamatergic system to the pathophysiology and therapeutics of mood disorders. We screened 763 original genetic studies of BD or MDD that investigated genes encoding targets of the pathway/mediators related to the so-called tripartite glutamate synapse, including pre- and post-synaptic neurons and glial cells; 60 papers were included in this review. The findings suggest the involvement of glutamate-related genes in risk for mood disorders, treatment response, and phenotypic characteristics, although there was no consistent evidence for a specific gene. Target genes of high interest included GRIA3 and GRIK2 (which likely play a role in emergent suicidal ideation after antidepressant treatment), GRIK4 (which may influence treatment response), and GRM7 (which potentially affects risk for mood disorders). There was stronger evidence that glutamate-related genes influence risk for BD compared with MDD. Taken together, the studies show a preliminary relationship between glutamate-related genes and risk for mood disorders, suicide, and treatment response, particularly with regard to targets on metabotropic and ionotropic receptors.
Collapse
|
24
|
Bodily PM, Fujimoto MS, Page JT, Clement MJ, Ebbert MTW, Ridge PG. A novel approach for multi-SNP GWAS and its application in Alzheimer's disease. BMC Bioinformatics 2016; 17 Suppl 7:268. [PMID: 27453991 PMCID: PMC4965706 DOI: 10.1186/s12859-016-1093-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have effectively identified genetic factors for many diseases. Many diseases, including Alzheimer's disease (AD), have epistatic causes, requiring more sophisticated analyses to identify groups of variants which together affect phenotype. RESULTS Based on the GWAS statistical model, we developed a multi-SNP GWAS analysis to identify pairs of variants whose common occurrence signaled the Alzheimer's disease phenotype. CONCLUSIONS Despite not having sufficient data to demonstrate significance, our preliminary experimentation identified a high correlation between GRIA3 and HLA-DRB5 (an AD gene). GRIA3 has not been previously reported in association with AD, but is known to play a role in learning and memory.
Collapse
Affiliation(s)
- Paul M Bodily
- Computer Science Department, Brigham Young University, Provo, 84602-6576, UT, USA.
| | - M Stanley Fujimoto
- Computer Science Department, Brigham Young University, Provo, 84602-6576, UT, USA
| | - Justin T Page
- Department of Biology, Brigham Young University, Provo, 84602-6576, UT, USA
| | - Mark J Clement
- Computer Science Department, Brigham Young University, Provo, 84602-6576, UT, USA
| | - Mark T W Ebbert
- Department of Biology, Brigham Young University, Provo, 84602-6576, UT, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, 84602-6576, UT, USA
| |
Collapse
|
25
|
Kumar R, Corbett MA, Van Bon BWM, Gardner A, Woenig JA, Jolly LA, Douglas E, Friend K, Tan C, Van Esch H, Holvoet M, Raynaud M, Field M, Leffler M, Budny B, Wisniewska M, Badura-Stronka M, Latos-Bieleńska A, Batanian J, Rosenfeld JA, Basel-Vanagaite L, Jensen C, Bienek M, Froyen G, Ullmann R, Hu H, Love MI, Haas SA, Stankiewicz P, Cheung SW, Baxendale A, Nicholl J, Thompson EM, Haan E, Kalscheuer VM, Gecz J. Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems. Hum Mol Genet 2015; 24:7171-81. [PMID: 26443594 DOI: 10.1093/hmg/ddv414] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Next generation genomic technologies have made a significant contribution to the understanding of the genetic architecture of human neurodevelopmental disorders. Copy number variants (CNVs) play an important role in the genetics of intellectual disability (ID). For many CNVs, and copy number gains in particular, the responsible dosage-sensitive gene(s) have been hard to identify. We have collected 18 different interstitial microduplications and 1 microtriplication of Xq25. There were 15 affected individuals from 6 different families and 13 singleton cases, 28 affected males in total. The critical overlapping region involved the STAG2 gene, which codes for a subunit of the cohesin complex that regulates cohesion of sister chromatids and gene transcription. We demonstrate that STAG2 is the dosage-sensitive gene within these CNVs, as gains of STAG2 mRNA and protein dysregulate disease-relevant neuronal gene networks in cells derived from affected individuals. We also show that STAG2 gains result in increased expression of OPHN1, a known X-chromosome ID gene. Overall, we define a novel cohesinopathy due to copy number gain of Xq25 and STAG2 in particular.
Collapse
Affiliation(s)
- Raman Kumar
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Mark A Corbett
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | | | - Alison Gardner
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Joshua A Woenig
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Lachlan A Jolly
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Evelyn Douglas
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | - Chuan Tan
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Maureen Holvoet
- Center for Human Genetics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Martine Raynaud
- Centre Hospitalier Régional Universitaire, Service de Génétique, 37000 Tours, France
| | - Michael Field
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Melanie Leffler
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW 2298, Australia
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases and
| | - Marzena Wisniewska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | | | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan 60-355, Poland
| | | | - Jill A Rosenfeld
- Signature Genomic Laboratories, Spokane, WA 99207, USA, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lina Basel-Vanagaite
- Raphael Recanati Genetic Institute and Felsenstein Medical Research Center, Rabin Medical Center, Beilinson Campus, Petah Tikva 49100, Israel
| | | | | | - Guy Froyen
- Human Genome Laboratory, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium and
| | - Reinhard Ullmann
- Department of Human Molecular Genetics and, Bundeswehr Institute of Radiobiology, 80937 Munich, Germany
| | - Hao Hu
- Department of Human Molecular Genetics and
| | - Michael I Love
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne Baxendale
- South Australian Clinical Genetics Service, SA Pathology, North Adelaide, SA 5006, Australia
| | - Jillian Nicholl
- Genetics and Molecular Pathology, SA Pathology, North Adelaide, SA 5006, Australia
| | - Elizabeth M Thompson
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia, South Australian Clinical Genetics Service, SA Pathology, North Adelaide, SA 5006, Australia
| | - Eric Haan
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia, South Australian Clinical Genetics Service, SA Pathology, North Adelaide, SA 5006, Australia
| | | | - Jozef Gecz
- School of Medicine, and the Robinson Research Institute, The University of Adelaide, Adelaide, SA 5000, Australia,
| |
Collapse
|
26
|
Cao GL, Feng T, Chu MX, Di R, Zhang YL, Huang DW, Liu QY, Hu WP, Wang XY. Subtraction suppressive hybridisation analysis of differentially expressed genes associated with puberty in the goat hypothalamus. Reprod Fertil Dev 2015; 28:RD14434. [PMID: 25976271 DOI: 10.1071/rd14434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/13/2015] [Indexed: 01/19/2023] Open
Abstract
The cost of developing replacement nanny goats could be reduced by decreasing the age at puberty because this way nanny goats could be brought into production at an earlier age. The aim of the present study was to screen genes related to puberty to investigate the molecular mechanisms of puberty. Subtracted cDNA libraries were constructed for hypothalami from juvenile (Group A), pubertal (Group B) and age-matched control pubertal (Group E) Jining grey (JG) and Liaoning cashmere (LC) goats using suppression subtractive hybridisation (SSH). Differentially expressed genes were analysed by bioinformatics methods. There were 203 expressed sequence tags (ESTs) in the subtracted cDNA libraries that were differentially expressed between JG and LC goats at the juvenile stage, 226 that were differentially expressed at puberty and 183 that were differentially expressed in the age-matched control group. The differentially expressed ESTs in each subtracted cDNA library were classified as known gene, known EST and unknown EST according to sequence homology in the GenBank non-redundant (NR) and EST database. According to gene function analysis in the COG (Cluster of Orthologous Groups) database, the known genes were grouped into 10 subdivisions in Group A, into seven subdivisions in Group E and into nine subdivisions in Group B under three categories: cellular processes and signalling, information storage and processing, and metabolism. Pathway analysis in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database of known genes revealed that the three pathways that most differentially expressed genes were involved in were metabolic pathways, Parkinson's disease and oxidative phosphorylation. Protein interaction analysis of the high homology genes revealed the most dominant network to be structure of ribosome/protein translation, oxidative phosphorylation and carbohydrate metabolism. The results reveal that the onset of puberty is a complex event involving multiple genes in multiple biological processes. The differentially expressed genes include genes related to both neuroendocrine and energy metabolism.
Collapse
|
27
|
Abstract
Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.
Collapse
Affiliation(s)
- Lenora Volk
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | | | | | | |
Collapse
|
28
|
Di Benedetto D, Musumeci SA, Avola E, Alberti A, Buono S, Scuderi C, Grillo L, Galesi O, Spalletta A, Giudice ML, Luciano D, Vinci M, Bianca S, Romano C, Fichera M. Definition of minimal duplicated region encompassing theXIAPandSTAG2genes in the Xq25 microduplication syndrome. Am J Med Genet A 2014; 164A:1923-30. [DOI: 10.1002/ajmg.a.36570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 03/16/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Daniela Di Benedetto
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | | | - Emanuela Avola
- Unit of Pediatrics and Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Antonino Alberti
- Unit of Pediatrics and Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Serafino Buono
- Unit of Psychology; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Carmela Scuderi
- Unit of Neuromuscular Disease; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Lucia Grillo
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Ornella Galesi
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Angela Spalletta
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Mariangela Lo Giudice
- Unit of Neuromuscular Disease; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Daniela Luciano
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Mirella Vinci
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | | | - Corrado Romano
- Unit of Pediatrics and Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
| | - Marco Fichera
- Laboratory of Medical Genetics; I.R.C.C.S. Associazione Oasi Maria Santissima; Troina Italy
- Medical Genetics; University of Catania; Catania Italy
| |
Collapse
|
29
|
X-exome sequencing in Finnish families with intellectual disability--four novel mutations and two novel syndromic phenotypes. Orphanet J Rare Dis 2014; 9:49. [PMID: 24721225 PMCID: PMC4022384 DOI: 10.1186/1750-1172-9-49] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/31/2014] [Indexed: 01/18/2023] Open
Abstract
Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study.
Collapse
|
30
|
Soto D, Altafaj X, Sindreu C, Bayés A. Glutamate receptor mutations in psychiatric and neurodevelopmental disorders. Commun Integr Biol 2014; 7:e27887. [PMID: 24605182 PMCID: PMC3937208 DOI: 10.4161/cib.27887] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 01/19/2023] Open
Abstract
Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications.
Collapse
Affiliation(s)
- David Soto
- Laboratori de Neurobiologia; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) Feixa Llarga; L'Hospitalet de Llobregat; Barcelona, Spain
| | - Xavier Altafaj
- Institut de Neuropatologia; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Sindreu
- Department of Pharmacology; Universitat de Barcelona; Barcelona, Spain
| | - Alex Bayés
- Molecular Physiology of the Synapse Laboratory; Biomedical Research Institute Sant Pau (IIB Sant Pau); Barcelona, Spain ; Universitat Autònoma de Barcelona; Bellaterra (Cerdanyola del Vallès), Spain
| |
Collapse
|
31
|
Abstract
Our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms underlying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic receptors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins.
Collapse
|
32
|
Calcia A, Gai G, Di Gregorio E, Talarico F, Naretto VG, Migone N, Pepe E, Grosso E, Brusco A. Bilaterally cleft lip and bilateral thumb polydactyly with triphalangeal component in a patient with two de novo deletions of HSA 4q32 and 4q34 involving PDGFC, GRIA2, and FBXO8 genes. Am J Med Genet A 2013; 161A:2656-62. [PMID: 24038848 DOI: 10.1002/ajmg.a.36146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/30/2013] [Indexed: 11/08/2022]
Abstract
We report on a newborn boy with a bilateral cleft of the primary palate, duplicated triphalangeal thumbs, and a patent foramen ovale. During childhood he had moderate developmental delay. Brain MRI at 4 years was normal. The concurrence of non-syndromic clefts of the lip/palate (CL/P) and duplicated thumbs with triphalangeal component has, to our knowledge, not been reported so far. In our case, array-CGH analysis documented two de novo deletions (∼1.2 Mb and ∼400 Kb) of the long arm of chromosome 4, containing four genes: platelet-derived growth factor C (PDGFC), glycine receptor beta subunit (GLRB), glutamate receptor ionotropic AMPA2 (GRIA2), and F-box protein 8 gene (FBXO8). PDGFC codes for a mesenchymal cell growth factor already known to be associated with clefts of the lip. Pdgfc(-/-) mice have skeletal anomalies, and facial schisis resembling human cleft/lip palate. GRIA2 codes for a ligand-activated cation channel that mediates the fast component of postsynaptic excitatory currents in neurons, and may be linked to cognitive dysfunction. FBXO8, a gene of unknown function, is a member of the F-box gene family, among which FBXW4, within the minimal duplicated region associated with human split-hand/foot malformation type 3 (SHFM type 3). The presence of overlapping deletions in patients who do not share the same phenotype of our case suggests incomplete penetrance, and a possible effect of modifier genetic factors.
Collapse
|
33
|
Philippe A, Malan V, Jacquemont ML, Boddaert N, Bonnefont JP, Odent S, Munnich A, Colleaux L, Cormier-Daire V. Xq25 duplications encompassing GRIA3 and STAG2 genes in two families convey recognizable X-linked intellectual disability with distinctive facial appearance. Am J Med Genet A 2013; 161A:1370-5. [PMID: 23637084 DOI: 10.1002/ajmg.a.35307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/30/2012] [Indexed: 11/06/2022]
Abstract
We report here on two patients with Xq25 duplication encompassing GRIA3 gene, encoding glutamate receptor, ionotropic, AMPA subunit 3. The first case of Xq25 duplication was identified using genome-wide array comparative genomic hybridization (array-CGH) in a 24-year-old patient with syndromic intellectual disability. Based on similar facial features, we clinically suspected a second case of Xq25 duplication in a 4-year-old boy with intellectual disabilty. This duplication was confirmed by multiplex ligation-dependent probe amplification (MLPA) of the GRIA3 gene, as well as by fluorescence in situ hybridization (FISH) and further refined by array-CGH. We suggest that Xq25 duplication is responsible for a novel clinically recognizable X-linked intellectual disability. Finally, the review of so far published Xq25 duplications support, in addition to the role of GRIA3 gene, a potential contribution of the duplication of STAG2 (Stromal Antigen 2) gene coding for the subunit SA1 of the cohesin complex in the clinical phenotype.
Collapse
Affiliation(s)
- Anne Philippe
- Université Paris Descartes, INSERM U 781 & Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Utge S, Kronholm E, Partonen T, Soronen P, Ollila HM, Loukola A, Perola M, Salomaa V, Porkka-Heiskanen T, Paunio T. Shared genetic background for regulation of mood and sleep: association of GRIA3 with sleep duration in healthy Finnish women. Sleep 2011; 34:1309-16. [PMID: 21966062 DOI: 10.5665/sleep.1268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Sleeping 7 to 8 hours per night appears to be optimal, since both shorter and longer sleep times are related to increased morbidity and mortality. Depressive disorder is almost invariably accompanied by disturbed sleep, leading to decreased sleep duration, and disturbed sleep may be a precipitating factor in the initiation of depressive illness. Here, we examined whether, in healthy individuals, sleep duration is associated with genes that we earlier found to be associated with depressive disorder. DESIGN Population-based molecular genetic study. SETTING Regression analysis of 23 risk variants for depressive disorder from 12 genes to sleep duration in healthy individuals. PARTICIPANTS Three thousand, one hundred, forty-seven individuals (25-75 y) from population-based Health 2000 and FINRISK 2007 samples. MEASUREMENTS AND RESULTS We found a significant association of rs687577 from GRIA3 on the X-chromosome with sleep duration in women (permutation-based corrected empirical P=0.00001, β=0.27; Bonferroni corrected P=0.0052; f=0.11). The frequency of C/C genotype previously found to increase risk for depression in women was highest among those who slept for 8 hours or less in all age groups younger than 70 years. Its frequency decreased with the lengthening of sleep duration, and those who slept for 9 to 10 hours showed a higher frequency of C/A or A/A genotypes, when compared with the midrange sleepers (7-8 hours) (permutation-based corrected empirical P=0.0003, OR=1.81). CONCLUSIONS The GRIA3 polymorphism that was previously found to be associated with depressive disorder in women showed an association with sleep duration in healthy women. Mood disorders and short sleep may share a common genetic background and biologic mechanisms that involve glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Siddheshwar Utge
- Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Suicide completion rates are significantly higher in males than females in most societies. Although gender differences in suicide rates have been partially explained by environmental and behavioral factors, it is possible that genetic factors, through differential expression between genders, may also help explain gender moderation of suicide risk. This study investigated X-linked genes in suicide completers using a two-step strategy. We first took advantage of the genetic structure of the French-Canadian population and genotyped 722 unrelated French-Canadian male subjects, of whom 333 were suicide completers and 389 were non-suicide controls, using a panel of 37 microsatellite markers spanning the entire X chromosome. Nine haplotype windows and several individual markers were associated with suicide. Significant results aggregated primarily in two regions, one in the long arm and another in the short arm of chromosome X, limited by markers DXS8051 and DXS8102, and DXS1001 and DXS8106, respectively. The second stage of the study investigated differential brain expression of genes mapping to associated regions in Brodmann areas 8/9, 11, 44 and 46, in an independent sample of suicide completers and controls. Six genes within these regions, Rho GTPase-activating protein 6, adaptor-related protein complex 1 sigma 2 subunit, glycoprotein M6B, ribosomal protein S6 kinase 90 kDa polypeptide 3, spermidine/spermine N(1)-acetyltransferase 1 and THO complex 2, were found to be differentially expressed in suicide completers.
Collapse
|
36
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2646] [Impact Index Per Article: 176.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bonnet C, Leheup B, Béri M, Philippe C, Grégoire MJ, Jonveaux P. AberrantGRIA3transcripts with multi-exon duplications in a family with X-linked mental retardation. Am J Med Genet A 2009; 149A:1280-9. [DOI: 10.1002/ajmg.a.32858] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Balanced translocations in mental retardation. Hum Genet 2009; 126:133-47. [PMID: 19347365 DOI: 10.1007/s00439-009-0661-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/23/2009] [Indexed: 12/13/2022]
Abstract
Over the past few decades, the knowledge on genetic defects causing mental retardation has dramatically increased. In this review, we discuss the importance of balanced chromosomal translocations in the identification of genes responsible for mental retardation. We present a database-search guided overview of balanced translocations identified in patients with mental retardation. We divide those in four categories: (1) balanced translocations that helped to identify a causative gene within a contiguous gene syndrome, (2) balanced translocations that led to the identification of a mental retardation gene confirmed by independent methods, (3) balanced translocations disrupting candidate genes that have not been confirmed by independent methods and (4) balanced translocations not reported to disrupt protein coding sequences. It can safely be concluded that balanced translocations have been instrumental in the identification of multiple genes that are involved in mental retardation. In addition, many more candidate genes were identified with a suspected but (as yet?) unconfirmed role in mental retardation. Some balanced translocations do not disrupt a protein coding gene and it can be speculated that in the light of recent findings concerning ncRNA's and ultra-conserved regions, such findings are worth further investigation as these potentially may lead us to the discovery of novel disease mechanisms.
Collapse
|
39
|
Magri C, Gardella R, Valsecchi P, Barlati SD, Guizzetti L, Imperadori L, Bonvicini C, Tura GB, Gennarelli M, Sacchetti E, Barlati S. Study on GRIA2, GRIA3 and GRIA4 genes highlights a positive association between schizophrenia and GRIA3 in female patients. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:745-53. [PMID: 18163426 DOI: 10.1002/ajmg.b.30674] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Impairment of glutamatergic neurotransmission is one of the major hypotheses proposed to explain the neurobiology of schizophrenia. Therefore, the genes involved in the glutamate neurotransmitter system could be considered potential candidate genes for schizophrenia susceptibility. A systematic study on alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor genes has been carried out and the results obtained from the analysis on GRIA2, GRIA3 and GRIA4 are reported. No evidence of association with schizophrenia was found for the GRIA2 and GRIA4 genes; strong evidence of association with schizophrenia was found for GRIA3. This X-linked gene showed a different behavior in the two genders; a positive association with schizophrenia was observed among females but not in males. Female carriers of rs1034428 A allele were found to have a 2.19-fold higher risk of developing schizophrenia compared to non-carriers and 3.28-fold higher risk for developing a non-paranoid phenotype. The analysis at the haplotype level showed that susceptibility to schizophrenia was associated with the specific haplotype rs989638-rs1034428-rs2227098 CAC (P = 0.0008). We conclude that, of the three AMPA genes analyzed here, only GRIA3 seems to be involved in the pathogenesis of schizophrenia, but only in females.
Collapse
Affiliation(s)
- Chiara Magri
- Division of Biology and Genetics, Department of Biomedical Sciences and Biotechnology, Brescia University School of Medicine, Viale Europa, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Silberberg G, Levit A, Collier D, St Clair D, Munro J, Kerwin RW, Tondo L, Floris G, Breen G, Navon R. Stargazin involvement with bipolar disorder and response to lithium treatment. Pharmacogenet Genomics 2008; 18:403-12. [PMID: 18408563 DOI: 10.1097/fpc.0b013e3282f974ca] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Multiple reports have implicated chromosomal region 22q13.1 in both schizophrenia and bipolar disorder. The calcium channel gamma-2 subunit gene (cacng2, Stargazin) located on 22q13.1 was recently reported to be associated with schizophrenia. We aimed to examine the expression levels of Stargazin in post-mortem brain samples of patients with schizophrenia, patients with bipolar disorder (BPD) and healthy controls, test for genetic association between Stargazin and these disorders and test for genetic association between Stargazin and response to lithium treatment. METHODS Expression analysis was carried out by quantitative reverse transcription-PCR in RNA samples from dorsolateral prefrontal cortices of patients with schizophrenia, patients with BPD and controls (n=35 each). Twelve single nucleotide polymorphisms encompassing Stargazin were genotyped in DNA samples from two cohorts, 'Aberdeen' and 'Cagliari' (n=410, 170, respectively). Patients were treated with lithium and divided into groups according to their response. RESULTS A 1.6-fold overexpression of Stargazin was observed in patients with BPD (P=0.000036). No difference in expression was observed in patients with schizophrenia. None of the 12 genotyped single nucleotide polymorphisms were associated with BPD, but three of them were significantly associated with lithium response: one in both cohorts (rs2284017) and two (rs2284018, rs5750285) each in a different cohort. Haplotype analysis revealed significant 'response-protective' and 'response-inhibitive' haplotypes in both cohorts. CONCLUSION Our findings suggest that Stargazin dysregulation may be involved with the pathophysiology of BPD, but not with that of schizophrenia, and that Stargazin polymorphisms may play a role in the response to lithium treatment.
Collapse
Affiliation(s)
- Gilad Silberberg
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Okumura K, Fujimori Y, Takagi A, Murate T, Ozeki M, Yamamoto K, Katsumi A, Matsushita T, Naoe T, Kojima T. Skewed X chromosome inactivation in fraternal female twins results in moderately severe and mild haemophilia B. Haemophilia 2008; 14:1088-93. [PMID: 18540891 DOI: 10.1111/j.1365-2516.2008.01786.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Female carriers of haemophilia B are usually asymptomatic; however, the disease resulting from different pathophysiological mechanisms has rarely been documented in females. In this study, we investigated the mechanisms responsible for haemophilia B in fraternal female twins. We sequenced the factor IX gene (F9) of the propositus, her father, a severe haemophilia B patient and the other family members. X chromosome inactivation was assessed by the methylation-sensitive HpaII-PCR assay using X-linked polymorphisms in human phosphoglycerate kinase 1 gene (PGK1) and glutamate receptor ionotropic AMPA 3 gene (GRIA3). The twins were found to be heterozygotes with a nonsense mutation (p.Arg384X) inherited from their father. The propositus, more severely affected twin, exhibited a significantly higher percentage of inactivation in the maternally derived X chromosome carrying a normal F9. The other twin also showed a skewed maternal X inactivation, resulting in a patient with mild haemophilia B. Thus, the degree of skewing of maternal X inactivation is closely correlated with the coagulation parameters and the clinical phenotypes of the twins. Furthermore, we identified a crossing-over in the Xq25-26 region of the maternal X chromosome of the more severely affected twin. This crossing-over was absent in the other twin, consistent with their fraternal state. Differently skewed X inactivation in the fraternal female twins might cause moderately severe and mild haemophilia B phenotypes, respectively.
Collapse
Affiliation(s)
- K Okumura
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu Y, Arai AC, Rumbaugh G, Srivastava AK, Turner G, Hayashi T, Suzuki E, Jiang Y, Zhang L, Rodriguez J, Boyle J, Tarpey P, Raymond FL, Nevelsteen J, Froyen G, Stratton M, Futreal A, Gecz J, Stevenson R, Schwartz CE, Valle D, Huganir RL, Wang T. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans. Proc Natl Acad Sci U S A 2007; 104:18163-8. [PMID: 17989220 PMCID: PMC2084314 DOI: 10.1073/pnas.0708699104] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Indexed: 11/18/2022] Open
Abstract
Ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (iGluRs) mediate the majority of excitatory synaptic transmission in the CNS and are essential for the induction and maintenance of long-term potentiation and long-term depression, two cellular models of learning and memory. We identified a genomic deletion (0.4 Mb) involving the entire GRIA3 (encoding iGluR3) by using an X-array comparative genomic hybridization (CGH) and four missense variants (G833R, M706T, R631S, and R450Q) in functional domains of iGluR3 by sequencing 400 males with X-linked mental retardation (XLMR). Three variants were found in males with moderate MR and were absent in 500 control males. Expression studies in HEK293 cells showed that G833R resulted in a 78% reduction of iGluR3 due to protein misfolding. Whole-cell recording studies of iGluR3 homomers in HEK293 cells revealed that neither iGluR3-M706T (S2 domain) nor iGluR3-R631S (near channel core) had substantial channel function, whereas R450Q (S1 domain) was associated with accelerated receptor desensitization. When forming heteromeric receptors with iGluR2 in HEK293 cells, all four iGluR3 variants had altered desensitization kinetics. Our study provides the genetic and functional evidence that mutant iGluR3 with altered kinetic properties is associated with moderate cognitive impairment in humans.
Collapse
Affiliation(s)
- Ye Wu
- Institute of Genetic Medicine and Department of Pediatrics
- Department of Pediatrics, Beijing University First Hospital, Beijing 100034, People's Republic of China
| | - Amy C. Arai
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794
| | - Gavin Rumbaugh
- Department of Neuroscience, and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Gillian Turner
- Hunter Genetics and Genetics of Learning Disability (GOLD) Service, University of Newcastle, Callaghan NSW 2308, Australia
| | - Takashi Hayashi
- Department of Neuroscience, and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erika Suzuki
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62794
| | - Yuwu Jiang
- Institute of Genetic Medicine and Department of Pediatrics
- Department of Pediatrics, Beijing University First Hospital, Beijing 100034, People's Republic of China
| | - Lilei Zhang
- Institute of Genetic Medicine and Department of Pediatrics
| | | | - Jackie Boyle
- Hunter Genetics and Genetics of Learning Disability (GOLD) Service, University of Newcastle, Callaghan NSW 2308, Australia
| | - Patrick Tarpey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - F. Lucy Raymond
- Department of Medical Genetics, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 2XY, United Kingdom
| | - Joke Nevelsteen
- Human Genome Laboratory, Department of Human Genetics, Vlaams Instituut voor Biotechnologie, University of Leuven, 3000 Leuven, Belgium
| | - Guy Froyen
- Human Genome Laboratory, Department of Human Genetics, Vlaams Instituut voor Biotechnologie, University of Leuven, 3000 Leuven, Belgium
| | - Mike Stratton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Andy Futreal
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Jozef Gecz
- Department of Genetic Medicine, Women's and Children's Hospital, and Departments of Pediatrics and Molecular Biosciences, University of Adelaide, Adelaide SA 5005, Australia; and
| | | | | | - David Valle
- Institute of Genetic Medicine and Department of Pediatrics
| | - Richard L. Huganir
- Department of Neuroscience, and
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Tao Wang
- Institute of Genetic Medicine and Department of Pediatrics
| |
Collapse
|
43
|
Zhang L, Jie C, Obie C, Abidi F, Schwartz CE, Stevenson RE, Valle D, Wang T. X chromosome cDNA microarray screening identifies a functional PLP2 promoter polymorphism enriched in patients with X-linked mental retardation. Genome Res 2007; 17:641-8. [PMID: 17416750 PMCID: PMC1855181 DOI: 10.1101/gr.5336307] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
X-linked Mental Retardation (XLMR) occurs in 1 in 600 males and is highly genetically heterogeneous. We used a novel human X chromosome cDNA microarray (XCA) to survey the expression profile of X-linked genes in lymphoblasts of XLMR males. Genes with altered expression verified by Northern blot and/or quantitative PCR were considered candidates. To validate this approach, we documented the expected changes of expression in samples from a patient with a known X chromosome microdeletion and from patients with multiple copies of the X chromosome. We used our XCA to survey lymphoblast RNA samples from 43 unrelated XLMR males and found 15 genes with significant (>or=1.5-fold) reduction in expression in at least one proband. Of these, subsequent analysis confirmed altered expression in 12. We followed up one, PLP2, at Xp11.23, which exhibits approximately fourfold decreased expression in two patients. Sequencing analysis in both patients revealed a promoter variant, -113C>A, that alters the core-binding site of the transcription factor ELK1. We showed that PLP2-(-113C>A) is sufficient to cause reduced expression using a luciferase reporter system and is enriched in a cohort of males with probable XLMR (14 of 239, 5.85%) as compared to normal males (9 of 577, 1.56%) (chi2=11.07, P<0.001). PLP2 is expressed abundantly in the pyramidal cells of hippocampus and granular cells of the cerebellum in the brain. We conclude that our XCA screening is an efficient strategy to identify genes that show significant changes in transcript abundance as candidate genes for XLMR.
Collapse
Affiliation(s)
- Lilei Zhang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
| | - Chunfa Jie
- Microarray Core Facility, Johns Hopkins University School of Medicine, Baltimore , Maryland
| | - Cassandra Obie
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
| | - Fatima Abidi
- Greenwood Genetic Center, Greenwood 29646, South Carolina
| | | | | | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
| | - Tao Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland
- Corresponding author.E-mail ; fax (443) 955-7397
| |
Collapse
|
44
|
Laumonnier F, Cuthbert PC, Grant SGN. The role of neuronal complexes in human X-linked brain diseases. Am J Hum Genet 2007; 80:205-20. [PMID: 17236127 PMCID: PMC1785339 DOI: 10.1086/511441] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/28/2006] [Indexed: 01/28/2023] Open
Abstract
Beyond finding individual genes that are involved in medical disorders, an important challenge is the integration of sets of disease genes with the complexities of basic biological processes. We examine this issue by focusing on neuronal multiprotein complexes and their components encoded on the human X chromosome. Multiprotein signaling complexes in the postsynaptic terminal of central nervous system synapses are essential for the induction of neuronal plasticity and cognitive processes in animals. The prototype complex is the N-methyl-D-aspartate receptor complex/membrane-associated guanylate kinase-associated signaling complex (NRC/MASC) comprising 185 proteins and embedded within the postsynaptic density (PSD), which is a set of complexes totaling approximately 1,100 proteins. It is striking that 86% (6 of 7) of X-linked NRC/MASC genes and 49% (19 of 39) of X-chromosomal PSD genes are already known to be involved in human psychiatric disorders. Moreover, of the 69 known proteins mutated in X-linked mental retardation, 19 (28%) encode postsynaptic proteins. The high incidence of involvement in cognitive disorders is also found in mouse mutants and indicates that the complexes are functioning as integrated entities or molecular machines and that disruption of different components impairs their overall role in cognitive processes. We also noticed that NRC/MASC genes appear to be more strongly associated with mental retardation and autism spectrum disorders. We propose that systematic studies of PSD and NRC/MASC genes in mice and humans will give a high yield of novel genes important for human disease and new mechanistic insights into higher cognitive functions.
Collapse
Affiliation(s)
- Frédéric Laumonnier
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | | | | |
Collapse
|
45
|
Chiyonobu T, Hayashi S, Kobayashi K, Morimoto M, Miyanomae Y, Nishimura A, Nishimoto A, Ito C, Imoto I, Sugimoto T, Jia Z, Inazawa J, Toda T. Partial tandem duplication ofGRIA3 in a male with mental retardation. Am J Med Genet A 2007; 143A:1448-55. [PMID: 17568425 DOI: 10.1002/ajmg.a.31798] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic factors underlying mental retardation (MR) are very heterogeneous. Recent studies have identified a number of genes involved in MR, several of which lie on the X-chromosome, but the current understanding of the monogenic causes of MR is far from complete. Investigation of chromosomal rearrangements in patients with MR has proven particularly informative in the search for novel genes. Using array-based comparative genomic hybridization analysis, we identified a small copy number gain at Xq25, which was undetectable by conventional G-band analysis, in a boy with unexplained MR. Further characterization revealed a partial tandem duplication of GRIA3, an alteration also present on one allele in his mother. RT-PCR analysis of lymphoblastoid cell RNA revealed remarkably reduced GRIA3 transcript levels in the patient. The mother, whose cognitive level is normal, also demonstrated remarkably reduced GRIA3 transcript levels in lymphoblastoid cells, and X-chromosome inactivation (XCI) was completely skewed in her peripheral lymphocytes. It is possible that XCI in the brain is not completely skewed and that GRIA3 expression from the normal allele may account for the mother's normal cognitive function. Taken together with previous findings of GRIA3 disruptions in the patients with MR, our study strengthens the idea that GRIA3 is a candidate gene for X-linked MR and that severely reduced GRIA3 expression results in MR.
Collapse
Affiliation(s)
- Tomohiro Chiyonobu
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, 2-2-B9 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pickard BS, Malloy MP, Christoforou A, Thomson PA, Evans KL, Morris SW, Hampson M, Porteous DJ, Blackwood DHR, Muir WJ. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol Psychiatry 2006; 11:847-57. [PMID: 16819533 DOI: 10.1038/sj.mp.4001867] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the search for the biological causes of schizophrenia and bipolar disorder, glutamate neurotransmission has emerged as one of a number of candidate processes and pathways where underlying gene deficits may be present. The analysis of chromosomal rearrangements in individuals diagnosed with neuropsychiatric disorders is an established route to candidate gene identification in both Mendelian and complex disorders. Here we describe a set of genes disrupted by, or proximal to, chromosomal breakpoints (2p12, 2q31.3, 2q21.2, 11q23.3 and 11q24.2) in a patient where chronic schizophrenia coexists with mild learning disability (US: mental retardation). Of these disrupted genes, the most promising candidate is a member of the kainate-type ionotropic glutamate receptor family, GRIK4 (KA1). A subsequent systematic case-control association study on GRIK4 assessed its contribution to psychiatric illness in the karyotypically normal population. This identified two discrete regions of disease risk within the GRIK4 locus: three single single nucleotide polymorphism (SNP) markers with a corresponding underlying haplotype associated with susceptibility to schizophrenia (P=0.0005, odds ratio (OR) of 1.453, 95% CI 1.182-1.787) and two single SNP markers and a haplotype associated with a protective effect against bipolar disorder (P=0.0002, OR of 0.624, 95% CI 0.485-0.802). After permutation analysis to correct for multiple testing, schizophrenia and bipolar disorder haplotypes remained significant (P=0.0430, s.e. 0.0064 and P=0.0190, s.e. 0.0043, respectively). We propose that these convergent cytogenetic and genetic findings provide molecular evidence for common aetiologies for different psychiatric conditions and further support the 'glutamate hypothesis' of psychotic illness.
Collapse
Affiliation(s)
- B S Pickard
- Medical Genetics Section, School of Clinical and Molecular Medicine, Molecular Medicine Centre, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nascimento RMP, Otto PA, de Brouwer APM, Vianna-Morgante AM. UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retardation syndrome. Am J Hum Genet 2006; 79:549-55. [PMID: 16909393 PMCID: PMC1559544 DOI: 10.1086/507047] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/12/2006] [Indexed: 12/24/2022] Open
Abstract
We report a mutation of UBE2A/HR6A, which encodes a ubiquitin-conjugating enzyme (E2), a member of the ubiquitin proteasome pathway, as the cause of a novel X-linked mental retardation (XLMR) syndrome that affects three males in a two-generation family. A single-nucleotide substitution, c.382C-->T in UBE2A, led to a premature UAG stop codon (Q128X). As a consequence, the predicted polypeptide lacks the 25 C-terminal amino acid residues. The importance of this terminal sequence for UBE2 function is inferred by its conservation in vertebrates and in Drosophila. UBE2A mutations do not appear to significantly contribute to XLMR, since no UBE2A mutations were identified in 15 families with nonsyndromic and 4 families with syndromic idiopathic XLMR previously mapped to intervals encompassing this gene. This is the first description of a mutation in a ubiquitin-conjugating enzyme gene as the cause of a human disease.
Collapse
Affiliation(s)
- Rafaella M P Nascimento
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461, 05422-970 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
48
|
Wang QJ, Li QZ, Rao SQ, Lee K, Huang XS, Yang WY, Zhai SQ, Guo WW, Guo YF, Yu N, Zhao YL, Yuan H, Guan J, Leal SM, Han DY, Shen Y. AUNX1, a novel locus responsible for X linked recessive auditory and peripheral neuropathy, maps to Xq23-27.3. J Med Genet 2006; 43:e33. [PMID: 16816020 PMCID: PMC2564562 DOI: 10.1136/jmg.2005.037929] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND We report here the genetic characterisation of a large five generation Chinese family with the phenotypic features of auditory neuropathy and progressive peripheral sensory neuropathy, and the genetic feature of X linked recessive inheritance. Disease onset was at adolescence (at an average age of 13 years for six affected subjects). The degree of hearing impairment varied from mild to severe, with decreased otoacoustic emissions; auditory brainstem responses were lacking from onset. METHODS Two-point and multipoint model based linkage analysis using the MILNK and LINKMAP programs of the FASTLINK software package produced maximum two-point and multipoint LOD scores of 2.41 and 2.41, respectively. RESULTS These findings define a novel X linked auditory neuropathy locus/region (AUNX1, Xq23-q27.3). This region is 42.09 cM long and contains a 28.07 Mb region with flanking markers DXS1220 and DXS8084, according to the Rutgers Combined Linkage-Physical Map, build 35. However, mutation screen of the candidate gene SLC6A14 within the region did not identify the causative genetic determinant for this large Chinese family.
Collapse
|
49
|
Ropers HH. X-linked mental retardation: many genes for a complex disorder. Curr Opin Genet Dev 2006; 16:260-9. [PMID: 16647850 DOI: 10.1016/j.gde.2006.04.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 04/18/2006] [Indexed: 11/26/2022]
Abstract
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR is very heterogeneous, and about two-thirds of patients have clinically indistinguishable non-syndromic (NS-XLMR) forms, which has greatly hampered their molecular elucidation. A few years ago, international consortia overcame this impasse by collecting DNA and cell lines from large cohorts of XLMR families, thereby paving the way for the systematic study of the molecular causes of XLMR. Mutations in known genes might already account for 50% of the families with NS-XLMR, and various genes have been pinpointed that seem to be of particular diagnostic importance. Eventually, even therapy of XLMR might become possible, as suggested by the unexpected plasticity of the neuronal wiring in the brain, and the recent successful drug treatment of a fly model for fragile X syndrome.
Collapse
Affiliation(s)
- Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany.
| |
Collapse
|
50
|
Sellner LN, Price PJ. Segmental isodisomy and skewed X-inactivation resulting in haemophilia B in a female. Br J Haematol 2005; 131:410-1. [PMID: 16225663 DOI: 10.1111/j.1365-2141.2005.05780.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|