1
|
Roth M, Carlsson R, Buizza C, Enström A, Paul G. Pericyte response to ischemic stroke precedes endothelial cell death and blood-brain barrier breakdown. J Cereb Blood Flow Metab 2025; 45:617-629. [PMID: 39053491 PMCID: PMC11571979 DOI: 10.1177/0271678x241261946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024]
Abstract
Stroke is one of the leading causes of death and disability, yet the cellular response to the ischemic insult is poorly understood limiting therapeutic options. Brain pericytes are crucial for maintaining blood-brain barrier (BBB) integrity and are known to be one of the first responders to ischemic stroke. The exact timeline of cellular events after stroke, however, remains elusive. Using the permanent middle cerebral artery occlusion stroke model, we established a detailed timeline of microvascular events after experimental stroke. Our results show that pericytes respond already within 1 hour after the ischemic insult. We find that approximately 30% of the pericyte population dies as early as 1 hour after stroke, while ca 50% express markers that indicate activation. A decrease of endothelial tight junctions, signs of endothelial cell death and reduction in blood vessel length are only detected at time points after the initial pericyte response. Consistently, markers of BBB leakage are observed several hours after pericyte cell death and/or vascular detachment. Our results suggest that the pericyte response to stroke occurs early and precedes both the endothelial response and the BBB breakdown. This highlights pericytes as an important target cell type to develop new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
2
|
Castillo-González J, Buscemi L, Vargas-Rodríguez P, Serrano-Martínez I, Forte-Lago I, Caro M, Price M, Hernández-Cortés P, Hirt L, González-Rey E. Cortistatin exerts an immunomodulatory and neuroprotective role in a preclinical model of ischemic stroke. Pharmacol Res 2024; 210:107501. [PMID: 39521024 DOI: 10.1016/j.phrs.2024.107501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Ischemic stroke is the result of a permanent or transient occlusion of a brain artery, leading to irreversible tissue injury and long-term sequelae. Despite ongoing advancements in revascularization techniques, stroke remains the second leading cause of death worldwide. A comprehensive understanding of the complex and interconnected mechanisms, along with the endogenous mediators that modulate stroke responses is essential for the development of effective interventions. Our study investigates cortistatin, a neuropeptide extensively distributed in the immune and central nervous systems, known for its immunomodulatory properties. With neuroinflammation and peripheral immune deregulation as key pathological features of brain ischemia, cortistatin emerges as a promising therapeutic candidate. To this aim, we evaluated its potential effect in a well-established middle cerebral artery occlusion (MCAO) preclinical stroke model. Our findings indicated that the peripheral administration of cortistatin at 24 h post-stroke significantly reduced neurological damage and enhanced recovery. Importantly, cortistatin-induced neuroprotection was multitargeted, as it modulated the glial reactivity and astrocytic scar formation, facilitated blood-brain barrier recovery, and regulated local and systemic immune dysfunction. Surprisingly, administration of cortistatin at immediate and early post-stroke time points proved to be not beneficial and even detrimental. These results emphasize the importance of understanding the spatio-temporal dynamics of stroke pathology to develop innovative therapeutic strategies with appropriate time windows. Premature interruption of certain neuroinflammatory processes might inadvertently compromise neuroprotective mechanisms. In summary, our study highlights cortistatin as a novel pleiotropic therapeutic approach against ischemic stroke, offering new treatment options for patients who undergo early revascularization intervention but unsuccessful recovery.
Collapse
Affiliation(s)
- J Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - L Buscemi
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | - P Vargas-Rodríguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - I Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain
| | - M Price
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland
| | | | - L Hirt
- University of Lausanne, Lausanne, Switzerland; Lausanne University Hospital, Lausanne, Switzerland.
| | - E González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada 18016, Spain.
| |
Collapse
|
3
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
4
|
Nathal E, Villanueva-Castro E, Ortiz-Plata A, Serrano-Rubio A, Tena Suck ML. Brain Arteriovenous Malformation Hemorrhage and Pituitary Adenoma in a COVID-19-Positive Patient. Cureus 2024; 16:e67644. [PMID: 39314610 PMCID: PMC11417440 DOI: 10.7759/cureus.67644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Brain arteriovenous malformations (AVMs) are usually asymptomatic. They can cause intense pain or bleeding or lead to other serious medical problems. We present a rare case of a woman who presented with a severe headache and was brought to the emergency service for an intracerebral hemorrhage due to a ruptured AVM. During the surgery, a sellar mass was identified that was also resected. AVM showed vasculitis, endarteritis, endothelial damage, leukocyte plug, and damage to the vessel wall with fragmentation of the collagen and actin filaments. The sellar mass showed a non-functioning pituitary adenoma with hemorrhagic foci and necrosis as well as a proteinaceous vs. lipid material deposition with minimal vascular changes such as endothelial hyperplasia with minimal vasculitis and hyperplasia of reticular stellate cells, with positive glial fibrillary acidic protein (GFAP), which expressed low expression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), IL6, IL10, IL17, tumor necrosis factor-alpha (TNFa), HIF1a, factor VIII (FVIII), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and VEGF receptor 2 (VEGFR2). The patient's polymerase chain reaction COVID-19 test was positive, and she died three days after the surgery procedure. In our knowledge of COVID-19 brain lesions and in the literature review, this was a rare case of a double pathology associated with COVID-19 infection characterized by rupture of the AVM with hemorrhages and brain infarcts associated with endarteritis, vessel wall injuries, and pituitary apoplexy.
Collapse
Affiliation(s)
- Edgar Nathal
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Eliezer Villanueva-Castro
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Alma Ortiz-Plata
- Laboratory of Experimental Neuropathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Alejandro Serrano-Rubio
- Department of Neurosurgery, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| | - Martha Lilia Tena Suck
- Department of Neuropathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, MEX
| |
Collapse
|
5
|
Zahoor SM, Ishaq S, Ahmed T. Neurotoxic effects of metals on blood brain barrier impairment and possible therapeutic approaches. VITAMINS AND HORMONES 2024; 126:1-24. [PMID: 39029969 DOI: 10.1016/bs.vh.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Exposure to neurotoxic and heavy metals (Pb2+, As3+, Mn2+, Cd2+, etc) has increased over time and has shown to negatively affect brain health. Heavy metals can cross the blood brain barrier (BBB) in various ways including receptor or carrier-mediated transport, passive diffusion, or transport via gaps in the endothelial cells of the brain. In high concentrations, these metals have been shown to cause structural and functional impairment to the BBB, by inducing oxidative stress, ion dyshomeostasis, tight junction (TJ) loss, astrocyte/pericyte damage and interference of gap junctions. The structural and functional impairment of the BBB results in increased BBB permeability, which ultimately leads to accumulation of these heavy metals in the brain and their subsequent toxicity. As a result of these effects, heavy metals are correlated with various neurological disorders. The pathological effects of these heavy metals can be effectively mitigated via chelation. In addition, it is possible to treat the associated disorders by counteracting the molecular mechanisms associated with the brain and BBB impairment.
Collapse
Affiliation(s)
- Saba Mehak Zahoor
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sara Ishaq
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
6
|
Korszun-Karbowniczak J, Krysiak ZJ, Saluk J, Niemcewicz M, Zdanowski R. The Progress in Molecular Transport and Therapeutic Development in Human Blood-Brain Barrier Models in Neurological Disorders. Cell Mol Neurobiol 2024; 44:34. [PMID: 38627312 PMCID: PMC11021242 DOI: 10.1007/s10571-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described.
Collapse
Affiliation(s)
- Joanna Korszun-Karbowniczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Zuzanna Joanna Krysiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland.
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, Institute of Biochemistry, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
| |
Collapse
|
7
|
Qi L, Wang F, Sun X, Li H, Zhang K, Li J. Recent advances in tissue repair of the blood-brain barrier after stroke. J Tissue Eng 2024; 15:20417314241226551. [PMID: 38304736 PMCID: PMC10832427 DOI: 10.1177/20417314241226551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
The selective permeability of the blood-brain barrier (BBB) enables the necessary exchange of substances between the brain parenchyma and circulating blood and is important for the normal functioning of the central nervous system. Ischemic stroke inflicts damage upon the BBB, triggering adverse stroke outcomes such as cerebral edema, hemorrhagic transformation, and aggravated neuroinflammation. Therefore, effective repair of the damaged BBB after stroke and neovascularization that allows for the unique selective transfer of substances from the BBB after stroke is necessary and important for the recovery of brain function. This review focuses on four important therapies that have effects of BBB tissue repair after stroke in the last seven years. Most of these new therapies show increased expression of BBB tight-junction proteins, and some show beneficial results in terms of enhanced pericyte coverage at the injured vessels. This review also briefly outlines three effective classes of approaches and their mechanisms for promoting neoangiogenesis following a stroke.
Collapse
Affiliation(s)
- Liujie Qi
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Fei Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Xiaojing Sun
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Hang Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, PR China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
8
|
Wang R, Wang J, Zhang Z, Ma B, Sun S, Gao L, Gao G. FGF21 alleviates endothelial mitochondrial damage and prevents BBB from disruption after intracranial hemorrhage through a mechanism involving SIRT6. Mol Med 2023; 29:165. [PMID: 38049769 PMCID: PMC10696847 DOI: 10.1186/s10020-023-00755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Disruption of the BBB is a harmful event after intracranial hemorrhage (ICH), and this disruption contributes to a series of secondary injuries. We hypothesized that FGF21 may have protective effects after intracranial hemorrhage (ICH) and investigated possible underlying molecular mechanisms. METHODS Blood samples of ICH patients were collected to determine the relationship between the serum level of FGF21 and the [Formula: see text]GCS%. Wild-type mice, SIRT6flox/flox mice, endothelial-specific SIRT6-homozygous-knockout mice (eSIRT6-/- mice) and cultured human brain microvascular endothelial cells (HCMECs) were used to determine the protective effects of FGF21 on the BBB. RESULTS We obtained original clinical evidence from patient data identifying a positive correlation between the serum level of FGF21 and [Formula: see text]GCS%. In mice, we found that FGF21 treatment is capable of alleviating BBB damage, mitigating brain edema, reducing lesion volume and improving neurofunction after ICH. In vitro, after oxyhemoglobin injury, we further explored the protective effects of FGF21 on endothelial cells (ECs), which are a significant component of the BBB. Mitochondria play crucial roles during various types of stress reactions. FGF21 significantly improved mitochondrial biology and function in ECs, as evidenced by alleviated mitochondrial morphology damage, reduced ROS accumulation, and restored ATP production. Moreover, we found that the crucial regulatory mitochondrial factor deacylase sirtuin 6 (SIRT6) played an irreplaceable role in the effects of FGF21. Using endothelial-specific SIRT6-knockout mice, we found that SIRT6 deficiency largely diminished these neuroprotective effects of FGF21. Then, we revealed that FGF21 might promote the expression of SIRT6 via the AMPK-Foxo3a pathway. CONCLUSIONS We provide the first evidence that FGF21 is capable of protecting the BBB after ICH by improving SIRT6-mediated mitochondrial homeostasis.
Collapse
Affiliation(s)
- Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
9
|
Xue S, Zhou X, Yang ZH, Si XK, Sun X. Stroke-induced damage on the blood-brain barrier. Front Neurol 2023; 14:1248970. [PMID: 37840921 PMCID: PMC10569696 DOI: 10.3389/fneur.2023.1248970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 10/17/2023] Open
Abstract
The blood-brain barrier (BBB) is a functional phenotype exhibited by the neurovascular unit (NVU). It is maintained and regulated by the interaction between cellular and non-cellular matrix components of the NVU. The BBB plays a vital role in maintaining the dynamic stability of the intracerebral microenvironment as a barrier layer at the critical interface between the blood and neural tissues. The large contact area (approximately 20 m2/1.3 kg brain) and short diffusion distance between neurons and capillaries allow endothelial cells to dominate the regulatory role. The NVU is a structural component of the BBB. Individual cells and components of the NVU work together to maintain BBB stability. One of the hallmarks of acute ischemic stroke is the disruption of the BBB, including impaired function of the tight junction and other molecules, as well as increased BBB permeability, leading to brain edema and a range of clinical symptoms. This review summarizes the cellular composition of the BBB and describes the protein composition of the barrier functional junction complex and the mechanisms regulating acute ischemic stroke-induced BBB disruption.
Collapse
Affiliation(s)
| | | | | | | | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Lee JM, Lee JH, Kim SH, Sim TH, Kim YJ. NXP032 ameliorates cognitive impairment by alleviating the neurovascular aging process in aged mouse brain. Sci Rep 2023; 13:8594. [PMID: 37237085 DOI: 10.1038/s41598-023-35833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023] Open
Abstract
Vascular aging is well known to be associated with the breakdown of the neurovascular unit (NVU), which is essential for maintaining brain homeostasis and linked to higher cognitive dysfunction. Oxidative stress is believed to be a significant cause of the vascular aging process. Vitamin C is easily oxidized under physiological conditions, so it loses its potent antioxidant activity. We developed a DNA aptamer that enhances the function of vitamin C. NXP032 is the binding form of the aptamer and vitamin C. In this study, we investigated the effect of NXP032 on neurovascular stabilization through the changes of PECAM-1, PDGFR-β, ZO-1, laminin, and glial cells involved in maintaining the integrity of the blood-brain barrier (BBB) in aged mice. NXP032 was orally administered daily for 8 weeks. Compared to young mice and NXP032-treated mice, 20-month-old mice displayed cognitive impairments in Y-maze and passive avoidance tests. NXP032 treatment contributed to reducing the BBB damage by attenuating the fragmentation of microvessels and reducing PDGFR-β, ZO-1, and laminin expression, thereby mitigating astrocytes and microglia activation during normal aging. Based on the results, we suggest that NXP032 reduces vascular aging and may be a novel intervention for aging-induced cognitive impairment.
Collapse
Affiliation(s)
- Jae-Min Lee
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joo Hee Lee
- Korea Armed Forces Nursing Academy, Daejeon, 34059, Republic of Korea
| | - So Hee Kim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae Hyeok Sim
- Department of Nursing, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
11
|
Zhou G, Xiang T, Xu Y, He B, Wu L, Zhu G, Xie J, Yao L, Xiao Z. Fruquintinib/HMPL-013 ameliorates cognitive impairments and pathology in a mouse model of cerebral amyloid angiopathy (CAA). Eur J Pharmacol 2023; 939:175446. [PMID: 36470443 DOI: 10.1016/j.ejphar.2022.175446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-β (Aβ) accumulation, and always accompanied by Alzheimer's disease (AD). The mechanisms revealing CAA pathogenesis are still unclear, and it is challenging to develop an efficient therapeutic strategy for its treatment. Vascular endothelial growth factor (VEGF) and its receptors including VEGFR-1,-2,-3 activation are involved in Aβ processing, and modulate numerous cellular events associated with central nervous system (CNS) diseases. In the present study, we attempted to explore the regulatory function of fruquintinib (also named as HMPL-013), a highly selective inhibitor of VEGFR-1,-2,-3 tyrosine kinases, on CAA progression in Tg-SwDI mice. Here, we found that HMPL-013-rich diet consumption for 12 months significantly improved the behavioral performances and cerebral blood flow (CBF) of Tg-SwDI mice compared with the vehicle group. Importantly, HMPL-013 administration considerably reduced Aβ1-40 and Aβ1-42 burden in cortex and hippocampus of Tg-SwDI mice through regulating Aβ metabolism process. Congo red staining confirmed Aβ deposition in vessel walls, reflecting CAA formation, which was, however, strongly ameliorated after HMPL-013 treatment. Neuron death, aberrant glial activation and pro-inflammatory response in brain tissues of Tg-SwDI mice were dramatically alleviated after HMPL-013 consumption. More studies showed that the protective effects of HMPL-013 against CAA might be partially attributed to its regulation on the expression of genes associated with blood vasculature. Intriguingly, VEGF and phosphorylated VEGFR-1,-2 protein expression levels were remarkably decreased by HMPL-013 in cortex and hippocampus of Tg-SwDI mice, which were validated in HMPL-013-treated brain vascular endothelial cells (BVECs) under hypoxia. Finally, we found that VEGF-induced human umbilical vein endothelial cells (HUVEC) proliferation and tube formation were strongly abolished upon HMPL-013 exposure. Collectively, all these findings demonstrated that oral administration of HMPL-013 had therapeutic potential against CAA by reducing Aβ deposition, inflammation and neuron death via suppressing VEGF/VEGFR-1,-2 signaling.
Collapse
Affiliation(s)
- Guijuan Zhou
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China; Department of Rehabilitation Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Tao Xiang
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Yan Xu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Bing He
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Lin Wu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Guanghua Zhu
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Juan Xie
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Lan Yao
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China
| | - Zijian Xiao
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421099, Hunan Province, China.
| |
Collapse
|
12
|
Paz AA, González-Candia A. Potential pharmacological target of tight junctions to improve the BBB permeability in neonatal Hypoxic-Ischemic encephalopathy Diseases. Biochem Pharmacol 2023; 207:115356. [PMID: 36455671 DOI: 10.1016/j.bcp.2022.115356] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Neonatal encephalopathy (NE) is a pathological condition that describes a neurocognitive malfunction in the newborn that arises from fetal, peripartum, or intrapartum events of multifactorial nature, having a poor prognosis and accounting for an incidence of 5-8 per 1000 live births. Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most studied paradigms of NE, caused by a scarce cerebral perfusion and oxygen supply during perinatal life. The cerebral hypoxic-ischemic insult promotes a loss of permeability of the blood-brain barrier (BBB), an essential structural intermediary of blood-brain communication. This permeability disruption is associated with an increase in inflammatory cytokines, an increase of adhesion molecules, and oxidative stress which disturb the tight junction (TJ) performance and enable transcytosis and paracellular leakage, ultimately leading to death from brain cells. In this context, TJs proteins are essential to preserving the barrier mechanical stability and signaling that modulates the brain-blood vessel multicellular domains, known as neurovascular units (NVU). Recent studies have proposed different strategies with neuroprotective effects that allow for maintaining or restoring the integrity and permeability of the BBB. This review identifies and discusses regulator mechanisms and novel aspects of TJs in the BBB disruption induced by cerebral hypoxic insults during the perinatal period, evaluating potential pharmacological strategies to safeguard BBB integrity.
Collapse
Affiliation(s)
- Adolfo A Paz
- Institute of Health Sciences, University O'Higgins, Rancagua, Chile
| | | |
Collapse
|
13
|
Relative Importance of Different Elements of Mitochondrial Oxidative Phosphorylation in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-Associated Retinal Diseases. Cells 2022; 11:cells11244128. [PMID: 36552890 PMCID: PMC9776835 DOI: 10.3390/cells11244128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Mitochondrial dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to investigate the role of different mitochondrial constituents, specifically those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. METHODS Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components: capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: rotenone for complex I, oligomycin for complex V (ATP synthase), and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: Cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). RESULTS Rotenone (1 µM) produced the greatest reduction in Z, followed by FCCP (1 µM), whereas no reduction in Z was observed after oligomycin (1 µM) treatment. We then further deconvoluted the effects of these inhibitors on the Rb, α, and Cm parameters. Rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 h and increased Cm without a significant effect on α. Lastly, of all the inhibitors used, oligomycin had the lowest impact on Rb, as evidenced by the fact that this value became similar to that of the control group at the end of the experiment without noticeable effects on Cm or α. CONCLUSION Our study demonstrates the differential roles of complex I, complex V, and OxPhos coupling in maintaining the barrier functionality of HRECs. We specifically showed that complex I is the most important component in regulating HREC barrier integrity. These observed differences are significant since they could serve as the basis for future pharmacological and gene expression studies aiming to improve the activity of complex I and thereby provide avenues for therapeutic modalities in endothelial-associated retinal diseases.
Collapse
|
14
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
15
|
Garvin J, Semenikhina M, Liu Q, Rarick K, Isaeva E, Levchenko V, Staruschenko A, Palygin O, Harder D, Cohen S. Astrocytic responses to high glucose impair barrier formation in cerebral microvessel endothelial cells. Am J Physiol Regul Integr Comp Physiol 2022; 322:R571-R580. [PMID: 35412389 PMCID: PMC9109795 DOI: 10.1152/ajpregu.00315.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/27/2022]
Abstract
Hyperglycemic conditions are prodromal to blood-brain barrier (BBB) impairment. The BBB comprises cerebral microvessel endothelial cells (CMECs) that are surrounded by astrocytic foot processes. Astrocytes express high levels of gap junction connexin 43 (Cx43), which play an important role in autocrine and paracrine signaling interactions that mediate gliovascular cross talk through secreted products. One of the key factors of the astrocytic "secretome" is vascular endothelial growth factor (VEGF), a potent angiogenic factor that can disrupt BBB integrity. We hypothesize that high-glucose conditions change the astrocytic expression of Cx43 and increase VEGF secretion leading to impairment of CMEC barrier properties in vitro and in vivo. Using coculture of neonatal rat astrocytes and CMEC, we mimic hyperglycemic conditions using high-glucose (HG) feeding media and show a significant decrease in Cx43 expression and the corresponding increase in secreted VEGF. This result was confirmed by the analyses of Cx43 and VEGF protein levels in the brain cortex samples from the type 2 diabetic rat (T2DN). To further characterize inducible changes in BBB, we measured transendothelial cell electrical resistance (TEER) and tight junction protein levels in cocultured conditioned astrocytes with isolated rat CMEC. The coculture monolayer's integrity and permeability were significantly compromised by HG media exposure, which was indicated by decreased TEER without a change in tight junction protein levels in CMEC. Our study provides insight into gliovascular adaptations to increased glucose levels resulting in impaired cellular cross talk between astrocytes and CMEC, which could be one explanation for cerebral BBB disruption in diabetic conditions.
Collapse
Affiliation(s)
- Jodi Garvin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Marharyta Semenikhina
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Qiuli Liu
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin Rarick
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - David Harder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan Cohen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
16
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
17
|
Hypoxia increases expression of selected blood-brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers. Fluids Barriers CNS 2022; 19:1. [PMID: 34983574 PMCID: PMC8725498 DOI: 10.1186/s12987-021-00297-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Brain capillary endothelial cells (BCECs) experience hypoxic conditions during early brain development. The newly formed capillaries are tight and functional before astrocytes and pericytes join the capillaries and establish the neurovascular unit. Brain endothelial cell phenotype markers P-gp (ABCB1), LAT-1(SLC7A5), GLUT-1(SLC2A1), and TFR(TFRC) have all been described to be hypoxia sensitive. Therefore, we hypothesized that monolayers of BCECs, cultured under hypoxic conditions, would show an increase in LAT-1, GLUT-1 and TFR expression and display tight endothelial barriers. Methods and results Primary bovine BCECs were cultured under normoxic and hypoxic conditions. Chronic hypoxia induced HIF-1α stabilization and translocation to the nucleus, as judged by immunocytochemistry and confocal laser scanning imaging. Endothelial cell morphology, claudin-5 and ZO-1 localization and barrier integrity were unaffected by hypoxia, indicating that the tight junctions in the BBB model were not compromised. SLC7A5, SLC2A1, and TFRC-mRNA levels were increased in hypoxic cultures, while ABCB1 remained unchanged as shown by real-time qPCR. P-gp, TfR and GLUT-1 were found to be significantly increased at protein levels. An increase in uptake of [3H]-glucose was demonstrated, while a non-significant increase in the efflux ratio of the P-gp substrate [3H]-digoxin was observed in hypoxic cells. No changes were observed in functional LAT-1 as judged by uptake studies of [3H]-leucine. Stabilization of HIF-1α under normoxic conditions with desferrioxamine (DFO) mimicked the effects of hypoxia on endothelial cells. Furthermore, low concentrations of DFO caused an increase in transendothelial electrical resistance (TEER), suggesting that a slight activation of the HIF-1α system may actually increase brain endothelial monolayer tightness. Moreover, exposure of confluent monolayers to hypoxia resulted in markedly increase in TEER after 24 and 48 h, which corresponded to a higher transcript level of CLDN5. Conclusions Our findings collectively suggest that hypoxic conditions increase some BBB transporters' expression via HIF-1α stabilization, without compromising monolayer integrity. This may in part explain why brain capillaries show early maturation, in terms of barrier tightness and protein expression, during embryogenesis, and provides a novel methodological tool for optimal brain endothelial culture. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00297-6.
Collapse
|
18
|
Pervaiz I, Al-Ahmad AJ. In Vitro Models of the Human Blood-Brain Barrier Utilising Human Induced Pluripotent Stem Cells: Opportunities and Challenges. Methods Mol Biol 2022; 2492:53-72. [PMID: 35733038 DOI: 10.1007/978-1-0716-2289-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The blood-brain barrier (BBB) is a component of the neurovascular unit formed by specialized brain microvascular endothelial cells surrounded by astrocytes end-feet processes, pericytes, and a basement membrane. The BBB plays an important role in the maintenance of brain homeostasis and has seen a growing involvement in the pathophysiology of various neurological diseases. On the other hand, the presence of such a barrier remains an important challenge for drug delivery to treat such illnesses.Since the pioneering work describing the isolation and cultivation of primary brain microvascular cells about 50 years ago until now, the development of an in vitro model of the BBB that is scalable, capable to form tight monolayers, and predictive of drug permeability in vivo remained extremely challenging.The recent description of the use of induced pluripotent stem cells (iPSCs) as a modeling tool for neurological diseases raised momentum into the use of such cells to develop new in vitro models of the BBB. This chapter will provide an exhaustive description of the use of iPSCs as a source of cells for modeling the BBB in vitro, describe the advantages and limitations of such model, as well as describe their prospective use for disease modeling and drug permeability screening platforms.
Collapse
Affiliation(s)
- Iqra Pervaiz
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| |
Collapse
|
19
|
Jha RM, Raikwar SP, Mihaljevic S, Casabella AM, Catapano JS, Rani A, Desai S, Gerzanich V, Simard JM. Emerging therapeutic targets for cerebral edema. Expert Opin Ther Targets 2021; 25:917-938. [PMID: 34844502 PMCID: PMC9196113 DOI: 10.1080/14728222.2021.2010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/20/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Collapse
Affiliation(s)
- Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sudhanshu P. Raikwar
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Sandra Mihaljevic
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Joshua S. Catapano
- Department of Neurosurgery, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Anupama Rani
- Department of Neurobiology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Shashvat Desai
- Department of Neurology, Barrow Neurological Institute and St. Joseph’s Hospital and Medical Center, Phoenix, AZ, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD, USA
| |
Collapse
|
20
|
Astrocyte Gliotransmission in the Regulation of Systemic Metabolism. Metabolites 2021; 11:metabo11110732. [PMID: 34822390 PMCID: PMC8623475 DOI: 10.3390/metabo11110732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Normal brain function highly relies on the appropriate functioning of astrocytes. These glial cells are strategically situated between blood vessels and neurons, provide significant substrate support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules. Astrocytes respond to many metabolic conditions and regulate a wide array of physiological processes, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits counterregulatory mechanisms in order to couple whole-body energy availability with brain function. Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.
Collapse
|
21
|
Kadry H, Noorani B, Bickel U, Abbruscato TJ, Cucullo L. Comparative assessment of in vitro BBB tight junction integrity following exposure to cigarette smoke and e-cigarette vapor: a quantitative evaluation of the protective effects of metformin using small-molecular-weight paracellular markers. Fluids Barriers CNS 2021; 18:28. [PMID: 34158083 PMCID: PMC8220771 DOI: 10.1186/s12987-021-00261-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background The blood–brain barrier (BBB) plays a critical role in protecting the central nervous system (CNS) from blood-borne agents and potentially harmful xenobiotics. Our group’s previous data has shown that tobacco smoke (TS) and electronic cigarettes (EC) affect the BBB integrity, increase stroke incidence, and are considered a risk factor for multiple CNS disorders. Metformin was also found to abrogate the adverse effects of TS and EC. Methods We used sucrose and mannitol as paracellular markers to quantitatively assess TS and EC’s impact on the BBB in-vitro. Specifically, we used a quantitative platform to determine the harmful effects of smoking on the BBB and study the protective effect of metformin. Using a transwell system and iPSCs-derived BMECs, we assessed TS and EC’s effect on sucrose and mannitol permeability with and without metformin pre-treatment at different time points. Concurrently, using immunofluorescence (IF) and Western blot (WB) techniques, we evaluated the expression and distribution of tight junction proteins, including ZO-1, occludin, and claudin-5. Results Our data showed that TS and EC negatively affect sucrose and mannitol permeability starting after 6 h and up to 24 h. The loss of barrier integrity was associated with a reduction of TEER values. While the overall expression level of ZO-1 and occludin was not significantly downregulated, the distribution of ZO-1 was altered, and discontinuation patterns were evident through IF imaging. In contrast to occludin, claudin-5 expression was significantly decreased by TS and EC, as demonstrated by WB and IF data. Conclusion In agreement with previous studies, our data showed the metformin could counteract the negative impact of TS and EC on BBB integrity, thus suggesting the possibility of repurposing this drug to afford cerebrovascular protection.
Collapse
Affiliation(s)
- Hossam Kadry
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| | - Luca Cucullo
- Department of Foundation Medical Studies, Oakland University, William Beaumont School of Medicine586 Pioneer Dr, 460 O'Dowd Hall, Office 415, Rochester, MI, 48309, USA.
| |
Collapse
|
22
|
Guo Y, Dong L, Gong A, Zhang J, Jing L, Ding T, Li PAA, Zhang JZ. Damage to the blood‑brain barrier and activation of neuroinflammation by focal cerebral ischemia under hyperglycemic condition. Int J Mol Med 2021; 48:142. [PMID: 34080644 PMCID: PMC8175066 DOI: 10.3892/ijmm.2021.4975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperglycemia aggravates brain damage caused by cerebral ischemia/reperfusion (I/R) and increases the permeability of the blood‑brain barrier (BBB). However, there are relatively few studies on morphological changes of the BBB. The present study aimed to investigate the effect of hyperglycemia on BBB morphological changes following cerebral I/R injury. Streptozotocin‑induced hyperglycemic and citrate‑buffered saline‑injected normoglycemic rats were subjected to 30 min middle cerebral artery occlusion. Neurological deficits were evaluated. Brain infarct volume was assessed by 2,3,5‑triphenyltetrazolium chloride staining and BBB integrity was evaluated by Evans blue and IgG extravasation following 24 h reperfusion. Changes in tight junctions (TJ) and basement membrane (BM) proteins (claudin, occludin and zonula occludens‑1) were examined using immunohistochemistry and western blotting. Astrocytes, microglial cells and neutrophils were labeled with specific antibodies for immunohistochemistry after 1, 3 and 7 days of reperfusion. Hyperglycemia increased extravasations of Evan's blue and IgG and aggravated damage to TJ and BM proteins following I/R injury. Furthermore, hyperglycemia suppressed astrocyte activation and damaged astrocytic endfeet surrounding cerebral blood vessels following I/R. Hyperglycemia inhibited microglia activation and proliferation and increased neutrophil infiltration in the brain. It was concluded that hyperglycemia‑induced BBB leakage following I/R might be caused by damage to TJ and BM proteins and astrocytic endfeet. Furthermore, suppression of microglial cells and increased neutrophil infiltration to the brain may contribute to the detrimental effects of pre‑ischemic hyperglycemia on the outcome of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Yongzhen Guo
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Lingdi Dong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Ao Gong
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Jingwen Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Li Jing
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Tomas Ding
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Ping-An Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise, College of Health and Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Jian-Zhong Zhang
- Department of Pathology, School of Basic Medical Science, Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
23
|
Guerra MH, Yumnamcha T, Ebrahim AS, Berger EA, Singh LP, Ibrahim AS. Real-Time Monitoring the Effect of Cytopathic Hypoxia on Retinal Pigment Epithelial Barrier Functionality Using Electric Cell-Substrate Impedance Sensing (ECIS) Biosensor Technology. Int J Mol Sci 2021; 22:ijms22094568. [PMID: 33925448 PMCID: PMC8123793 DOI: 10.3390/ijms22094568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Disruption of retinal pigment epithelial (RPE barrier integrity is a hallmark feature of various retinal blinding diseases, including diabetic macular edema and age-related macular degeneration, but the underlying causes and pathophysiology are not completely well-defined. One of the most conserved phenomena in biology is the progressive decline in mitochondrial function with aging leading to cytopathic hypoxia, where cells are unable to use oxygen for energy production. Therefore, this study aimed to thoroughly investigate the role of cytopathic hypoxia in compromising the barrier functionality of RPE cells. We used Electric Cell-Substrate Impedance Sensing (ECIS) system to monitor precisely in real time the barrier integrity of RPE cell line (ARPE-19) after treatment with various concentrations of cytopathic hypoxia-inducing agent, Cobalt(II) chloride (CoCl2). We further investigated how the resistance across ARPE-19 cells changes across three separate parameters: Rb (the electrical resistance between ARPE-19 cells), α (the resistance between the ARPE-19 and its substrate), and Cm (the capacitance of the ARPE-19 cell membrane). The viability of the ARPE-19 cells and mitochondrial bioenergetics were quantified with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and seahorse technology, respectively. ECIS measurement showed that CoCl2 reduced the total impedance of ARPE-19 cells in a dose dependent manner across all tested frequencies. Specifically, the ECIS program’s modelling demonstrated that CoCl2 affected Rb as it begins to drastically decrease earlier than α or Cm, although ARPE-19 cells’ viability was not compromised. Using seahorse technology, all three concentrations of CoCl2 significantly impaired basal, maximal, and ATP-linked respirations of ARPE-19 cells but did not affect proton leak and non-mitochondrial bioenergetic. Concordantly, the expression of a major paracellular tight junction protein (ZO-1) was reduced significantly with CoCl2-treatment in a dose-dependent manner. Our data demonstrate that the ARPE-19 cells have distinct dielectric properties in response to cytopathic hypoxia in which disruption of barrier integrity between ARPE-19 cells precedes any changes in cells’ viability, cell-substrate contacts, and cell membrane permeability. Such differences can be used in screening of selective agents that improve the assembly of RPE tight junction without compromising other RPE barrier parameters.
Collapse
Affiliation(s)
- Michael H. Guerra
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Thangal Yumnamcha
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Abdul-Shukkur Ebrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Elizabeth A. Berger
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA; (M.H.G.); (T.Y.); (A.-S.E.); (E.A.B.); (L.P.S.)
- Department of Pharmacology, School of Medicine, Wayne State University, 540 East Canfield, Gordon Scott Hall (room 7133), Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +1-313-577-7854 (Office) or +1-313-577-7864 (Lab)
| |
Collapse
|
24
|
Jiang W, Sun Y, Wang H, Hu Z, Song J, Meng C, Duan S, Jiang Z, Yu Y, Hu D. HIF-1α Enhances Vascular Endothelial Cell Permeability Through Degradation and Translocation of Vascular Endothelial Cadherin and Claudin-5 in Rats With Burn Injury. J Burn Care Res 2021; 42:258-268. [PMID: 32840299 DOI: 10.1093/jbcr/iraa139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanism underlying burn injury-induced enhanced vascular endothelial permeability and consequent body fluid extravasation is unclear. Here, the rat aortic endothelial cells (RAECs) were treated with the serum derived from rats with burn injury to elucidate the mechanism. Sprague-Dawley (SD) rats were grouped as follows (10 rats/group): control, 2, 4, 8, 12, and 24 hours postburn groups. The heart, liver, kidney, lung, jejunum, and ileum of rats injected with 2% Evans blue (EB) through the tail vein were excised to detect the EB level in each organ. The serum levels of hypoxia-inducible factor-1α (HIF-1α) and endothelin-1 (ET-1) were examined using enzyme-linked immunosorbent assay (ELISA). The effect of serum from 12-hour postburn group on the membrane permeability of RAEC monolayer, as well as on the mRNA and protein levels of ET-1, endothelin receptor A (ETA), ETB, and zonula occludens (ZO-1), was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. The membrane permeability of GV230/HIF-1α-transfected or shRNA-HIF-1α-transfected RAECs, as well as the expression levels of HIF-1α, ET-1, ETA, ETB, vascular endothelial (VE)-cadherin, and claudin-5, was analyzed using qRT-PCR and western blotting, whereas the localization of VE-cadherin and claudin-5 was examined using immunofluorescence. The serum HIF-1α and ET-1 levels in the burn groups, which peaked at 12 hours postburn, were significantly upregulated (P < .01) when compared with those in the control group. Additionally, the serum HIF-1α levels were positively correlated with vascular permeability. Compared with the shRNA-negative control-transfected RAECs, the shRNA-II/HIF-1α-transfected RAECs exhibited downregulated expression of HIF-1α, ET-1, ETA, and ETB (P < .01), and upregulated expression of ZO-1, claudin-5, and VE-cadherin (P < .05). Compared with the GV230-transfected RAECs, the GV230/HIF-1α-transfected RAECs exhibited upregulated expression of HIF-1α, ET-1, ETA, and ETB (P < .01), and downregulated expression of ZO-1, claudin-5, and VE-cadherin (P < .05). The GV230/HIF-1α-transfected RAECs exhibited degradation and translocation of VE-cadherin and claudin-5. In addition to degradation of VE-cadherin and claudin-5, HIF-1α mediated enhanced endothelial cell permeability through upregulation of ET-1, ETA, and ETB, and downregulation of ZO-1 and VE-cadherin in rats with burn injury.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Youjun Sun
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Huan Wang
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Zijian Hu
- 2018 Class of Clinical Medicine (No. 1813010207), The First Clinical College of Anhui Medical University, Hefei, China
| | - Junhui Song
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Chengying Meng
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Shengliang Duan
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Zhiyong Jiang
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Youxin Yu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| | - Delin Hu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University Department of Burn, The First Affiliated Hospital of Anhui Medical University
| |
Collapse
|
25
|
Gifre-Renom L, Jones EAV. Vessel Enlargement in Development and Pathophysiology. Front Physiol 2021; 12:639645. [PMID: 33716786 PMCID: PMC7947306 DOI: 10.3389/fphys.2021.639645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
From developmental stages until adulthood, the circulatory system remodels in response to changes in blood flow in order to maintain vascular homeostasis. Remodeling processes can be driven by de novo formation of vessels or angiogenesis, and by the restructuration of already existing vessels, such as vessel enlargement and regression. Notably, vessel enlargement can occur as fast as in few hours in response to changes in flow and pressure. The high plasticity and responsiveness of blood vessels rely on endothelial cells. Changes within the bloodstream, such as increasing shear stress in a narrowing vessel or lowering blood flow in redundant vessels, are sensed by endothelial cells and activate downstream signaling cascades, promoting behavioral changes in the involved cells. This way, endothelial cells can reorganize themselves to restore normal circulation levels within the vessel. However, the dysregulation of such processes can entail severe pathological circumstances with disturbances affecting diverse organs, such as human hereditary telangiectasias. There are different pathways through which endothelial cells react to promote vessel enlargement and mechanisms may differ depending on whether remodeling occurs in the adult or in developmental models. Understanding the molecular mechanisms involved in the fast-adapting processes governing vessel enlargement can open the door to a new set of therapeutical approaches to be applied in occlusive vascular diseases. Therefore, we have outlined here the latest advances in the study of vessel enlargement in physiology and pathology, with a special insight in the pathways involved in its regulation.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
26
|
Segarra M, Aburto MR, Acker-Palmer A. Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis. Trends Neurosci 2021; 44:393-405. [PMID: 33423792 DOI: 10.1016/j.tins.2020.12.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 10/03/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic platform for exchange of substances between the blood and the brain parenchyma, and it is an essential functional gatekeeper for the central nervous system (CNS). While it is widely recognized that BBB disruption is a hallmark of several neurovascular pathologies, an aspect of the BBB that has received somewhat less attention is the dynamic modulation of BBB tightness to maintain brain homeostasis in response to extrinsic environmental factors and physiological changes. In this review, we summarize how BBB integrity adjusts in critical stages along the life span, as well as how BBB permeability can be altered by common stressors derived from nutritional habits, environmental factors and psychological stress.
Collapse
Affiliation(s)
- Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany.
| | - Maria R Aburto
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Strasse 15, D-60438, Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max-von-Laue-Strasse 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
27
|
Li J, Li C, Yuan W, Wu J, Li J, Li Z, Zhao Y. Targeted Temperature Management Suppresses Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Expression in a Pig Model of Cardiac Arrest. Neurocrit Care 2021; 35:379-388. [PMID: 33403582 PMCID: PMC7785329 DOI: 10.1007/s12028-020-01166-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor subtype 2 (VEGFR-2) pathway has been implicated in ischemia/reperfusion injury. The aim of this study was to clarify whether whole-body hypothermic targeted temperature management (HTTM) inhibits the HIF-1α/VEGF/VEGFR-2 pathway in a swine model of cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). METHODS Twenty-four domestic male Beijing Landrace pigs were used in this study. CA was electrically induced with ventricular fibrillation and left untreated for 8 min. Return of spontaneous circulation (ROSC) was achieved in 16 pigs, which were randomly assigned either to normothermia at 38 °C or to HTTM at 33 °C (each group: n = 8). HTTM was intravascularly induced immediately after ROSC. The core temperature was reduced to 33 °C and maintained for 12 h after ROSC. The serum levels of HIF-1α, VEGF, VEGFR-2, and neuron-specific enolase (NSE) were measured with enzyme immunoassay kits 0.5, 6, 12, and 24 h after ROSC. The expression of HIF-1α, VEGF, and VEGFR-2 in cerebral cortical tissue was measured by RT-PCR and Western blot analysis 24 h after ROSC. Neurological deficit scores and brain cortical tissue water content were evaluated 24 h after ROSC. RESULTS The serum levels of HIF-1α, VEGF, and VEGFR-2 were significantly increased under normothermia within 24 h after ROSC. However, these increases were significantly reduced by HTTM. HTTM also decreased cerebral cortical HIF-1α, VEGF, and VEGFR-2 mRNA and protein expression 24 h after ROSC (all p < 0.05). HTTM pigs had better neurological outcomes and less brain edema than normothermic pigs. CONCLUSION The HIF-1α/VEGF/VEGFR-2 system is activated following CA and CPR. HTTM protects against cerebral injury after ROSC, which may be part of the mechanism by which it inhibits the expression of components of the HIF-1α/VEGF/VEGFR-2 signaling pathway.
Collapse
Affiliation(s)
- Jiebin Li
- Department of Emergency Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730 China
| | - Chunsheng Li
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng, Beijing, 100050 China
| | - Wei Yuan
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020 China
| | - Junyuan Wu
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020 China
| | - Jie Li
- Department of Emergency Medicine, Beijing Fuxing Hospital, Capital Medical University, Beijing, 100038 China
| | - Zhenhua Li
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xicheng, Beijing, 100050 China
| | - Yongzhen Zhao
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020 China
| |
Collapse
|
28
|
Lee BK, Hyun SW, Jung YS. Yuzu and Hesperidin Ameliorate Blood-Brain Barrier Disruption during Hypoxia via Antioxidant Activity. Antioxidants (Basel) 2020; 9:antiox9090843. [PMID: 32916895 PMCID: PMC7555663 DOI: 10.3390/antiox9090843] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Yuzu and its main component, hesperidin (HSP), have several health benefits owing to their anti-inflammatory and antioxidant properties. We examined the effects of yuzu and HSP on blood-brain barrier (BBB) dysfunction during ischemia/hypoxia in an in vivo animal model and an in vitro BBB endothelial cell model, and also investigated the underlying mechanisms. In an in vitro BBB endothelial cell model, BBB permeability was determined by measurement of Evans blue extravasation in vivo and in vitro. The expression of tight junction proteins, such as claudin-5 and zonula occludens-1 (ZO-1), was detected by immunochemistry and western blotting, and the reactive oxygen species (ROS) level was measured by 2'7'-dichlorofluorescein diacetate intensity. Yuzu and HSP significantly ameliorated the increase in BBB permeability and the disruption of claudin-5 and ZO-1 in both in vivo and in vitro models. In bEnd.3 cells, yuzu and HSP were shown to inhibit the disruption of claudin-5 and ZO-1 during hypoxia, and the protective effects of yuzu and HSP on claudin-5 degradation seemed to be mediated by Forkhead box O 3a (FoxO3a) and matrix metalloproteinase (MMP)-3/9. In addition, well-known antioxidants, trolox and N-acetyl cysteine, significantly attenuated the BBB permeability increase, disruption of claudin-5 and ZO-1, and FoxO3a activation during hypoxia, suggesting that ROS are important mediators of BBB dysfunction during hypoxia. Collectively, these results indicate that yuzu and HSP protect the BBB against dysfunction via maintaining integrity of claudin-5 and ZO-1, and these effects of yuzu and HSP appear to be a facet of their antioxidant properties. Our findings may contribute to therapeutic strategies for BBB-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Bo Kyung Lee
- College of Pharmacy, Ajou University, Suwon 16499, Korea, (S.-W.H.)
| | - Soo-Wang Hyun
- College of Pharmacy, Ajou University, Suwon 16499, Korea, (S.-W.H.)
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea, (S.-W.H.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
29
|
Yang D, Shen J, Fan J, Chen Y, Guo X. Paracellular permeability changes induced by multi-walled carbon nanotubes in brain endothelial cells and associated roles of hemichannels. Toxicology 2020; 440:152491. [PMID: 32413421 DOI: 10.1016/j.tox.2020.152491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have promising applications in neurology depending on their unique physicochemical properties. However, there is limited understanding of their impacts on brain microvascular endothelial cells, the cells lining the vessels and maintaining the low and selective permeability of the blood-brain barrier. In this study, we examined the influence of pristine MWCNT (p-MWCNT) and carboxylated MWCNT (c-MWCNT) on permeability and tight junction tightness of murine brain microvascular endothelial cells, and investigated the potential mechanisms in the sight of hemichannel activity. Treatment with p-MWCNT for 24 h at subtoxic concentration (20 μg/mL) decreased the protein expression of occludin, disrupted zonula occludens-1 continuity, and elevated monolayer permeability as quantified by transendothelial electrical resistance and paracellular flux of 4000 Da fluorescein isothiocyanate-dextran conjugates. Moreover, p-MWCNT exposure also increased hemichannel activity with upregulated protein expression and altered subcellular localization of connexin (Cx)43 and pannexin (Panx)1. p-MWCNT-induced elevation in endothelial permeability could be prevented by hemichannel inhibitor carbenoxolone and peptide blocker of Cx43 and Panx1, indicating the crucial role of activated Cx43 and Panx1 hemichannels. Furthermore, Cx43 and Panx1 hemichannel-mediated ATP release might be involved in p-MWCNT-induced rise in endothelial permeability. In contrast, the above effects caused by p-MWCNT were not observed in cells treated with c-MWCNT, the functionalized form with more stable dispersion and a lower tendency to aggregate. Our study contributes further understanding of the impact of MWCNTs on brain endothelial tightness and permeability, which may have important implications for the safety application of MWCNTs in nanomedicine.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jie Shen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Jingpu Fan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Yiyong Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
30
|
Synchrotron Radiation-Based Three-Dimensional Visualization of Angioarchitectural Remodeling in Hippocampus of Epileptic Rats. Neurosci Bull 2019; 36:333-345. [PMID: 31823302 DOI: 10.1007/s12264-019-00450-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Characterizing the three-dimensional (3D) morphological alterations of microvessels under both normal and seizure conditions is crucial for a better understanding of epilepsy. However, conventional imaging techniques cannot detect microvessels on micron/sub-micron scales without angiography. In this study, synchrotron radiation (SR)-based X-ray in-line phase-contrast imaging (ILPCI) and quantitative 3D characterization were used to acquire high-resolution, high-contrast images of rat brain tissue under both normal and seizure conditions. The number of blood microvessels was markedly increased on days 1 and 14, but decreased on day 60 after seizures. The surface area, diameter distribution, mean tortuosity, and number of bifurcations and network segments also showed similar trends. These pathological changes were confirmed by histological tests. Thus, SR-based ILPCI provides systematic and detailed views of cerebrovascular anatomy at the micron level without using contrast-enhancing agents. This holds considerable promise for better diagnosis and understanding of the pathogenesis and development of epilepsy.
Collapse
|
31
|
Rojo Arias JE, Economopoulou M, Juárez López DA, Kurzbach A, Au Yeung KH, Englmaier V, Merdausl M, Schaarschmidt M, Ader M, Morawietz H, Funk RHW, Jászai J. VEGF-Trap is a potent modulator of vasoregenerative responses and protects dopaminergic amacrine network integrity in degenerative ischemic neovascular retinopathy. J Neurochem 2019; 153:390-412. [PMID: 31550048 DOI: 10.1111/jnc.14875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
Retinal hypoxia triggers abnormal vessel growth and microvascular hyper-permeability in ischemic retinopathies. Whereas vascular endothelial growth factor A (VEGF-A) inhibitors significantly hinder disease progression, their benefits to retinal neurons remain poorly understood. Similar to humans, oxygen-induced retinopathy (OIR) mice exhibit severe retinal microvascular malformations and profound neuronal dysfunction. OIR mice are thus a phenocopy of human retinopathy of prematurity, and a proxy for investigating advanced stages of proliferative diabetic retinopathy. Hence, the OIR model offers an excellent platform for assessing morpho-functional responses of the ischemic retina to anti-angiogenic therapies. Using this model, we investigated the retinal responses to VEGF-Trap (Aflibercept), an anti-angiogenic agent recognizing ligands of VEGF receptors 1 and 2 that possesses regulatory approval for the treatment of neovascular age-related macular degeneration, macular edema secondary to retinal vein occlusion and diabetic macular edema. Our results indicate that Aflibercept not only reduces the severity of retinal microvascular aberrations but also significantly improves neuroretinal function. Aflibercept administration significantly enhanced light-responsiveness, as revealed by electroretinographic examinations, and led to increased numbers of dopaminergic amacrine cells. Additionally, retinal transcriptional profiling revealed the concerted regulation of both angiogenic and neuronal targets, including transcripts encoding subunits of transmitter receptors relevant to amacrine cell function. Thus, Aflibercept represents a promising therapeutic alternative for the treatment of further progressive ischemic retinal neurovasculopathies beyond the set of disease conditions for which it has regulatory approval. Cover Image for this issue: doi: 10.1111/jnc.14743.
Collapse
Affiliation(s)
- Jesús E Rojo Arias
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Matina Economopoulou
- Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - David A Juárez López
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Anica Kurzbach
- Medizinische Klinik III, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Kwan H Au Yeung
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Vanessa Englmaier
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marie Merdausl
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Martin Schaarschmidt
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marius Ader
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Saxony, Germany
| | - Henning Morawietz
- Department of Medicine III, University Hospital Carl Gustav Carus, Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Saxony, Germany
| | - Richard H W Funk
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - József Jászai
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
32
|
Halstead MR, Geocadin RG. The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics 2019; 16:1133-1148. [PMID: 31512062 PMCID: PMC6985348 DOI: 10.1007/s13311-019-00779-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.
Collapse
Affiliation(s)
- Michael R Halstead
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA.
| | - Romergryko G Geocadin
- Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| |
Collapse
|
33
|
Lechner J, Hombrebueno JR, Pedrini E, Chen M, Xu H. Sustained intraocular vascular endothelial growth factor neutralisation does not affect retinal and choroidal vasculature in Ins2 Akita diabetic mice. Diab Vasc Dis Res 2019; 16:440-449. [PMID: 31023085 DOI: 10.1177/1479164119843092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to understand the influence of sustained intravitreal vascular endothelial growth factor neutralisation on the retinal and choroidal vasculature in diabetic eyes. Ins2Akita diabetic mice received five intravitreal injections of anti-mouse vascular endothelial growth factor antibody or goat immunoglobulin G (0.2 µg/µL/eye) over a 4-month period. Retinal and choroidal vascular changes were analysed by confocal microscopy of tissue flat-mounts. Retinal gene expression of vascular endothelial growth factor family members (vascular endothelial growth factors A, B, C and D), vascular endothelial growth factor receptors (sVEGFR-1 and VEGFR-2) and tight junctions (claudin 1, 2, 5; occludin and zonula occludens-1) were analysed by quantitative reverse transcription polymerase chain reaction. Vascular endothelial growth factor A and claudin 5 were significantly increased in diabetic retinae. Gene expression was unaffected by anti-vascular endothelial growth factor treatment. The number of acellular vessels was increased in diabetic retinae and reduced following anti-vascular endothelial growth factor treatment. Retinal and choroidal vascular density and area were unaffected by sustained vascular endothelial growth factor neutralisation. Our results suggest that five consecutive intravitreal anti-vascular endothelial growth factor injections do not cause significant vascular changes in the retina and choroid in diabetic and non-diabetic mice.
Collapse
Affiliation(s)
- Judith Lechner
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Jose R Hombrebueno
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Edoardo Pedrini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Heping Xu
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| |
Collapse
|
34
|
Shaligram SS, Winkler E, Cooke D, Su H. Risk factors for hemorrhage of brain arteriovenous malformation. CNS Neurosci Ther 2019; 25:1085-1095. [PMID: 31359618 PMCID: PMC6776739 DOI: 10.1111/cns.13200] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with brain arteriovenous malformation (bAVM) are at risk of intracranial hemorrhage (ICH). Overall, bAVM accounts for 25% of hemorrhagic strokes in adults <50 years of age. The treatment of unruptured bAVMs has become controversial, because the natural history of these patients may be less morbid than invasive therapies. Available treatments include observation, surgical resection, endovascular embolization, stereotactic radiosurgery, or combination thereof. Knowing the risk factors for bAVM hemorrhage is crucial for selecting appropriate therapeutic strategies. In this review, we discussed several biological risk factors, which may contribute to bAVM hemorrhage.
Collapse
Affiliation(s)
- Sonali S Shaligram
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| | - Ethan Winkler
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Daniel Cooke
- Department of Radiology, University of California, San Francisco, California
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative care, University of California, San Francisco, California
| |
Collapse
|
35
|
Activated protein C induces suppression and regression of choroidal neovascularization- A murine model. Exp Eye Res 2019; 186:107695. [PMID: 31201804 DOI: 10.1016/j.exer.2019.107695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/04/2023]
Abstract
Activated protein C (APC) exerts diverse cell signaling pathways which results in multiple distinct cytoprotective actions. These include anti-apoptotic and anti-inflammatory activities and stabilization of endothelial and epithelial barriers. We studied the ability of APC to inhibit the leakage and the growth of newly formed as well as pre-existing choroidal neovascularization (CNV) and examined the ability of APC to stabilize the Retinal Pigmented Epithelium (RPE). We explored the contribution of Tie2 receptor to the protective effects of APC. CNV was induced by laser photocoagulation in C57BL/6J mice. APC was injected intravitreally immediately or 7 days after CNV induction. Neovascularization was evaluated on RPE-choroidal flatmounts using FITC-dextran perfusion and CD31 immunofluorescence. CNV leakage was measured by fluorescein angiography (FA). The ability of APC to stabilize the RPE barrier was evaluated in-vitro by dextran permeability and zonula occludens 1 (ZO1) immunostaining. Tie2 blocking was induced in-vivo by intraperitoneal injection of Tie2 kinase inhibitor and in-vitro by incubation with anti Tie2 antibodies. APC treatment dramatically inhibited the generation of newly formed CNV leakage sites and reversed leakage in 85% of the pre-existing CNV leaking sites. In RPE cell culture, APC induced translocation of ZO1 to the cell membrane, accompanied by reduction in permeability of the monolayer. Inhibition of Tie2 significantly decreased APC protective activities in both the mouse model and the RPE cell culture. Our results show that APC treatment significantly inhibits the leakage and growth of newly formed, as well as pre-existing CNV, and its protective activities are partially mediated via the Tie2 receptor. The data suggest that APC should be further investigated as a possible effective treatment for CNV.
Collapse
|
36
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
37
|
Goasdoue K, Chand KK, Miller SM, Lee KM, Colditz PB, Wixey JA, Bjorkman ST. Seizures Are Associated with Blood-Brain Barrier Disruption in a Piglet Model of Neonatal Hypoxic-Ischaemic Encephalopathy. Dev Neurosci 2019; 40:1-16. [PMID: 31048585 DOI: 10.1159/000499365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/04/2019] [Indexed: 11/19/2022] Open
Abstract
Seizures in the neonatal period are most often symptomatic of central nervous system (CNS) dysfunction and the most common cause is hypoxic-ischaemic encephalopathy (HIE). Seizures are associated with poor long-term outcomes and increased neuropathology. Blood-brain barrier (BBB) disruption and inflammation may contribute to seizures and increased neuropathology but are incompletely understood in neonatal HIE. The aim of this study was to investigate the impact of seizures on BBB integrity in a preclinical model of neonatal hypoxic-ischaemic (HI) injury. Piglets (age: <24 h) were subjected to a 30-min HI insult followed by recovery to 72 h post-insult. Amplitude-integrated electroencephalography (aEEG) was performed and seizure burden and background aEEG pattern were analysed. BBB disruption was evaluated in the parietal cortex and hippocampus by means of immunohistochemistry and Western blot. mRNA and protein expression of tight-junction proteins (zonula-occludens 1 [ZO1], occludin [OCLN], and claudin-5 [CLDN5]) was assessed using quantitative polymerase chain reaction (qPCR) and Western blot. In addition, mRNA from genes associated with BBB disruption vascular endothelial growth factor (VEGF) and matrix metalloproteinase 2 (MMP2) as well as inflammatory cytokines and chemokines was assessed with qPCR. Piglets that developed seizures following HI (HI-Sz) had significantly greater injury, as demonstrated by poorer aEEG background pattern scores, lower neurobehavioural scores, and greater histopathology. HI-Sz animals had severe IgG extravasation into brain tissue and uptake into neurons as well as significantly greater levels of IgG in both brain regions as assessed by Western blot. IgG protein in both brain regions was significantly associated with seizure burden, aEEG pattern scores, and neurobehavioural scores. There was no difference in mRNA expression of the tight junctions, however a significant loss of ZO1 and OCLN protein was observed in the parietal cortex. The inflammatory genes TGFβ, IL1β, IL8, IL6, and TNFα were significantly upregulated in HI-Sz animals. MMP2 was significantly increased in animals with seizures compared with animals without seizures. Increasing our understanding of neuropathology associated with seizure is vital because of the association between seizure and poor outcomes. Investigating the BBB is a major untapped area of research and a potential avenue for novel treatments.
Collapse
Affiliation(s)
- Kate Goasdoue
- The University of Queensland Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Kirat Kishore Chand
- The University of Queensland Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Stephanie Melita Miller
- The University of Queensland Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Kah Meng Lee
- Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul Bernard Colditz
- The University of Queensland Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Julie Anne Wixey
- The University of Queensland Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland, Australia
| | - Stella Tracey Bjorkman
- The University of Queensland Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Queensland, Australia,
| |
Collapse
|
38
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|
39
|
Oxygen-Glucose Deprivation/Reoxygenation-Induced Barrier Disruption at the Human Blood–Brain Barrier is Partially Mediated Through the HIF-1 Pathway. Neuromolecular Med 2019; 21:414-431. [DOI: 10.1007/s12017-019-08531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
40
|
Park JS, You Y, Min JH, Yoo I, Jeong W, Cho Y, Ryu S, Lee J, Kim SW, Cho SU, Oh SK, Ahn HJ, Lee J, Lee IH. Study on the timing of severe blood-brain barrier disruption using cerebrospinal fluid-serum albumin quotient in post cardiac arrest patients treated with targeted temperature management. Resuscitation 2019; 135:118-123. [DOI: 10.1016/j.resuscitation.2018.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
|
41
|
Chen W, Ju XZ, Lu Y, Ding XW, Miao CH, Chen JW. Propofol improved hypoxia-impaired integrity of blood-brain barrier via modulating the expression and phosphorylation of zonula occludens-1. CNS Neurosci Ther 2019; 25:704-713. [PMID: 30680941 PMCID: PMC6515893 DOI: 10.1111/cns.13101] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/04/2018] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Hypoxia may damage blood‐brain barrier (BBB). The neuroprotective effect of propofol has been reported. We aimed to identify whether and how propofol improved hypoxia‐induced impairment of BBB integrity. Methods Mouse brain microvascular endothelial cells (MBMECs) and astrocytes were cocultured to establish in vitro BBB model. The effects of hypoxia and propofol on BBB integrity were examined. Further, zonula occludens‐1 (ZO‐1) expression and phosphorylation, hypoxia‐inducible factor‐1α (HIF‐1α) and vascular endothelial growth factor (VEGF) expression, intracellular calcium concentration and Ca2+/calmodulin‐dependent protein kinase II (CAMKII) activation were measured. Results Hypoxia‐impaired BBB integrity, which was protected by propofol. Hypoxia‐reduced ZO‐1 expression, while induced ZO‐1 phosphorylation. These effects were attenuated by propofol. The expression of HIF‐1α and VEGF was increased by hypoxia and was alleviated by propofol. The hypoxia‐mediated suppression of ZO‐1 and impaired BBB integrity was reversed by HIF‐α inhibitor and VEGF inhibitor. In addition, hypoxia increased the intracellular calcium concentration and induced the phosphorylation of CAMKII, which were mitigated by propofol. The hypoxia‐induced phosphorylation of ZO‐1 and impaired BBB integrity was ameliorated by calcium chelator and CAMKII inhibitor. Conclusion Propofol could protect against hypoxia‐mediated impairment of BBB integrity. The underlying mechanisms may involve the expression and phosphorylation of ZO‐1.
Collapse
Affiliation(s)
- Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xing-Zhu Ju
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yan Lu
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Wei Ding
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang-Hong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Wei Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Sun M, Shinoda Y, Fukunaga K. KY-226 Protects Blood-brain Barrier Function Through the Akt/FoxO1 Signaling Pathway in Brain Ischemia. Neuroscience 2018; 399:89-102. [PMID: 30579831 DOI: 10.1016/j.neuroscience.2018.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/05/2023]
Abstract
KY-226 is a protein tyrosine phosphatase 1B (PTP1B) inhibitor that protects neurons from cerebral ischemic injury. KY-226 restores Akt (protein kinase B) phosphorylation and extracellular signal-regulated kinase (ERK) reduction in transient middle cerebral artery occlusion (tMCAO) damage. However, the mechanisms underlying the neuroprotective effects of KY-226 are unclear. To address this, the effects of KY-226 on blood-brain barrier (BBB) dysfunction were examined in tMCAO mice. KY-226 (10 mg/kg, i.p.) was administered to ICR mice 30 min after 2 h of tMCAO. To assess Akt or ERK involvement, wortmannin (i.c.v.) or U0126 (i.v.), selective inhibitors of PI3K and ERK, respectively, were administered to mice 30 min before ischemia. BBB integrity was assessed by Evans blue leakage 24 h post-reperfusion. The levels of tight junction (TJ) proteins, ZO-1 and occludin, were measured by western blotting; ZO-1 mRNA level was measured by RT-PCR. Compared to vehicle, KY-226 treatment prevented BBB breakdown and reduction in TJ protein levels. KY-226 treatment restored ZO-1 mRNA levels post-reperfusion. Pre-administration of wortmannin or U0126 blocked the protective effects of KY-226 on ZO-1 protein and mRNA reduction in tMCAO mice. In bEnd.3 cells, lipopolysaccharide treatment reduced mRNA and protein levels of ZO-1, an effect rescued by KY-226 treatment. Further, KY-226 treatment restored phosphorylation of pAkt (T308) and its downstream target forkhead box protein O1 (FoxO1) (S256) in bEnd.3 cells. Collectively, we demonstrate that KY-226 protects BBB integrity by restoration of TJ proteins, an effect partly mediated by Akt/FoxO1 pathway activation. Thus, protection of BBB integrity likely underlies KY-226-induced neuroprotection in tMCAO mice.
Collapse
Affiliation(s)
- Meiling Sun
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Japan.
| |
Collapse
|
43
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
44
|
Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and HspB5 from Endothelial RBE4 Cells. Int J Mol Sci 2018; 19:ijms19113659. [PMID: 30463298 PMCID: PMC6274958 DOI: 10.3390/ijms19113659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Human amylin is a 37-residue peptide hormone (hA1-37) secreted by β-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer’s disease, alone or co-deposited with β-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal “cross-talk”. We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17–29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17–29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17–29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17–29 (20 µM). We found a complete inhibition of hA17–29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.
Collapse
|
45
|
Farjood F, Vargis E. Novel devices for studying acute and chronic mechanical stress in retinal pigment epithelial cells. LAB ON A CHIP 2018; 18:3413-3424. [PMID: 30328441 DOI: 10.1039/c8lc00659h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration (AMD). Overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic protein, by retinal pigment epithelial (RPE) cells is a key stimulator of CNV. Mechanical stress occurs during different stages of AMD and is a possible inducer of VEGF expression in RPE cells. However, robust and realistic approaches to studying acute and chronic mechanical stress under various AMD stages do not exist. The majority of previous work has studied cyclic stretching of RPE cells grown on flexible substrates, but an ideal model must be able to mimic localized and continuous stretching of the RPE as would occur in AMD in vivo. To bridge this gap, we developed two in vitro devices to model chronic and acute mechanical stress on RPE cells during different stages of AMD. In one device, high levels of continuous mechanical stress were applied to focal regions of the RPE monolayer by stretching the underlying silicon substrate to study the role of chronic mechanical stimulation. In the second device, RPE cells were grown on porous plastic substrates and acute stress was studied by stretching small areas. Using these devices, we studied the effect of mechanical stress on VEGF expression in RPE cells. Our results suggest that mechanical stress in RPE cells induces VEGF expression and promotes in vitro angiogenesis. These results confirm the hypothesis that mechanical stress is involved in the initiation and progression of CNV.
Collapse
Affiliation(s)
- Farhad Farjood
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322, USA.
| | | |
Collapse
|
46
|
Leduc-Galindo D, Qvist P, Tóth AE, Fryland T, Nielsen MS, Børglum AD, Christensen JH. The effect of hypoxia on ZEB1 expression in a mimetic system of the blood-brain barrier. Microvasc Res 2018; 122:131-135. [PMID: 30144413 DOI: 10.1016/j.mvr.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/09/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023]
Abstract
The blood-brain barrier consists of a tightly sealed monolayer of endothelial cells being vital in maintaining a stable intracerebral microenvironment. The barrier is receptive to leakage upon exposure to environmental factors, like hypoxia, and its disruption has been suggested as a constituent in the pathophysiology of both neurological and psychiatric disorders. The schizophrenia associated ZEB1 gene encodes a transcription factor susceptible to transcriptional control by a hypoxia induced factor, HIF1A, known to be implicated in blood-brain barrier dysfunction. However, whether ZEB1 is also implicated in maintaining blood-brain barrier integrity upon hypoxia is unknown. Here we assessed Hif1a, Zo1 and Zeb1 mRNA expression and ZO1 protein abundancy in a mimetic system of the in vivo blood-brain barrier comprising mouse brain endothelial cells subjected to the norm- and proven hypoxic conditions. Despite that, Hif1a mRNA expression was significantly increased, clearly indicating that the oxygen-deprived environment introduced a hypoxia response in the cells, we found no hypoxia-induced changes in neither ZO1 abundancy nor in the expression of Zo1 and Zeb1 mRNA. However, independent of hypoxia status, we found that Zeb1 and Zo1 mRNA expression is highly correlated. Further studies are warranted that investigate the implication of the ZEB1/ZO1 axis in blood-brain barrier maintenance under different physiological conditions.
Collapse
Affiliation(s)
- Desiree Leduc-Galindo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; iPSYCH, the Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; iPSYCH, the Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Andrea E Tóth
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tue Fryland
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; iPSYCH, the Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | | | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; iPSYCH, the Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; iPSYCH, the Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark; iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
47
|
Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am J Physiol Cell Physiol 2018; 315:C343-C356. [PMID: 29949404 DOI: 10.1152/ajpcell.00095.2018] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely controls cerebral homeostasis. It also plays a central role in the regulation of blood-to-brain flux of endogenous and exogenous xenobiotics and associated metabolites. This is accomplished by molecular characteristics of brain microvessel endothelial cells such as tight junction protein complexes and functional expression of influx and efflux transporters. One of the pathophysiological features of ischemic stroke is disruption of the BBB, which significantly contributes to development of brain injury and subsequent neurological impairment. Biochemical characteristics of BBB damage include decreased expression and altered organization of tight junction constituent proteins as well as modulation of functional expression of endogenous BBB transporters. Therefore, there is a critical need for development of novel therapeutic strategies that can protect against BBB dysfunction (i.e., vascular protection) in the setting of ischemic stroke. Such strategies include targeting tight junctions to ensure that they maintain their correct structure or targeting transporters to control flux of physiological substrates for protection of endothelial homeostasis. In this review, we will describe the pathophysiological mechanisms in cerebral microvascular endothelial cells that lead to BBB dysfunction following onset of stroke. Additionally, we will utilize this state-of-the-art knowledge to provide insights on novel pharmacological strategies that can be developed to confer BBB protection in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Wazir Abdullahi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Dinesh Tripathi
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona , Tucson, Arizona
| |
Collapse
|
48
|
Pena-Philippides JC, Gardiner AS, Caballero-Garrido E, Pan R, Zhu Y, Roitbak T. Inhibition of MicroRNA-155 Supports Endothelial Tight Junction Integrity Following Oxygen-Glucose Deprivation. J Am Heart Assoc 2018; 7:e009244. [PMID: 29945912 PMCID: PMC6064884 DOI: 10.1161/jaha.118.009244] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/28/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Brain microvascular endothelial cells form a highly selective blood brain barrier regulated by the endothelial tight junctions. Cerebral ischemia selectively targets tight junction protein complexes, which leads to significant damage to cerebral microvasculature. Short noncoding molecules called microRNAs are implicated in the regulation of various pathological states, including endothelial barrier dysfunction. In the present study, we investigated the influence of microRNA-155 (miR-155) on the barrier characteristics of human primary brain microvascular endothelial cells (HBMECs). METHODS AND RESULTS Oxygen-glucose deprivation was used as an in vitro model of ischemic stroke. HBMECs were subjected to 3 hours of oxygen-glucose deprivation, followed by transfections with miR-155 inhibitor, mimic, or appropriate control oligonucleotides. Intact normoxia control HBMECs and 4 oxygen-glucose deprivation-treated groups of cells transfected with appropriate nucleotide were subjected to endothelial monolayer electrical resistance and permeability assays, cell viability assay, assessment of NO and human cytokine/chemokine release, immunofluorescence microscopy, Western blot, and polymerase chain reaction analyses. Assessment of endothelial resistance and permeability demonstrated that miR-155 inhibition improved HBMECs monolayer integrity. In addition, miR-155 inhibition significantly increased the levels of major tight junction proteins claudin-1 and zonula occludens protein-1, while its overexpression reduced these levels. Immunoprecipitation and colocalization analyses detected that miR-155 inhibition supported the association between zonula occludens protein-1 and claudin-1 and their stabilization at the HBMEC membrane. Luciferase reporter assay verified that claudin-1 is directly targeted by miR-155. CONCLUSIONS Based on these results, we conclude that miR-155 inhibition-induced strengthening of endothelial tight junctions after oxygen-glucose deprivation is mediated via its direct target protein claudin-1.
Collapse
Affiliation(s)
| | | | | | - Rong Pan
- Department of Pharmaceutical Sciences, University of New Mexico HSC, Albuquerque, NM
| | - Yiliang Zhu
- Divsion of Epidemiology, Biostatistics, and Preventive/Internal Medicine, University of New Mexico HSC, Albuquerque, NM
| | - Tamara Roitbak
- Department of Neurosurgery, University of New Mexico HSC, Albuquerque, NM
| |
Collapse
|
49
|
Luo PL, Wang YJ, Yang YY, Yang JJ. Hypoxia-induced hyperpermeability of rat glomerular endothelial cells involves HIF-2α mediated changes in the expression of occludin and ZO-1. ACTA ACUST UNITED AC 2018; 51:e6201. [PMID: 29791586 PMCID: PMC5972023 DOI: 10.1590/1414-431x20186201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/05/2018] [Indexed: 01/11/2023]
Abstract
This study aimed to investigate the role of hypoxia-inducible factor-2α (HIF-2α) in the expression of tight junction proteins and permeability alterations in rat glomerular endothelial cells (rGENCs) under hypoxia conditions. The expression level of HIF-2α and tight junction proteins (occludin and ZO-1) in rGENCs were examined following 5% oxygen density exposure at different treatment times. HIF-2α lentivirus transfection was used to knockdown HIF-2α expression. Cells were divided into four groups: 1) control group (rGENCs were cultured under normal oxygen conditions), 2) hypoxia group (rGENCs were cultured under hypoxic conditions), 3) negative control group (rGENCs were infected with HIF-2α lentivirus negative control vectors and cultured under hypoxic conditions), and 4) Len group (rGENCs were transfected with HIF-2α lentivirus and cultured under hypoxic conditions). The hypoxia, negative control, and Len groups were kept in a hypoxic chamber (5% O2, 5% CO2, and 90% N2) for 24 h and the total content of occludin and ZO-1, and the permeability of rGENCs were assessed. With increasing hypoxia time, the expression of HIF-2α gradually increased, while the expression of occludin decreased, with a significant difference between groups. ZO-1 expression gradually decreased under hypoxia conditions, but the difference between the 24 and 48 h groups was not significant. The permeability of cells increased following 24-h exposure to hypoxia compared to the control group (P<0.01). The knockdown of HIF-2α expression significantly increased occludin and ZO-1 content compared with hypoxia and negative control groups (P<0.01), while permeability was reduced (P<0.01). Hypoxia increased HIF-2α content, inducing permeability of rGENCs through the reduced expression of occludin and ZO-1.
Collapse
Affiliation(s)
- Peng-Li Luo
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| | - Yan-Jun Wang
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| | - Yan-Yan Yang
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| | - Jia-Jia Yang
- Department of Nephrology, Hospital of Qinghai University, Xining, China
| |
Collapse
|
50
|
Coronado-Velázquez D, Betanzos A, Serrano-Luna J, Shibayama M. An In Vitro Model of the Blood-Brain Barrier: Naegleria fowleri Affects the Tight Junction Proteins and Activates the Microvascular Endothelial Cells. J Eukaryot Microbiol 2018; 65:804-819. [PMID: 29655298 DOI: 10.1111/jeu.12522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Naegleria fowleri causes a fatal disease known as primary amoebic meningoencephalitis. This condition is characterized by an acute inflammation that originates from the free passage of peripheral blood cells to the central nervous system through the alteration of the blood-brain barrier. In this work, we established models of the infection in rats and in a primary culture of endothelial cells from rat brains with the aim of evaluating the activation and the alterations of these cells by N. fowleri. We proved that the rat develops the infection similar to the mouse model. We also found that amoebic cysteine proteases produced by the trophozoites and the conditioned medium induced cytopathic effect in the endothelial cells. In addition, N. fowleri can decrease the transendothelial electrical resistance by triggering the destabilization of the tight junction proteins claudin-5, occludin, and ZO-1 in a time-dependent manner. Furthermore, N. fowleri induced the expression of VCAM-1 and ICAM-1 and the production of IL-8, IL-1β, TNF-α, and IL-6 as well as nitric oxide. We conclude that N. fowleri damaged the blood-brain barrier model by disrupting the intercellular junctions and induced the presence of inflammatory mediators by allowing the access of inflammatory cells to the olfactory bulbs.
Collapse
Affiliation(s)
- Daniel Coronado-Velázquez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, Mexico City, 07360, Mexico
| |
Collapse
|