1
|
Lim JH, Neuwirth A, Chung KJ, Grossklaus S, Soehnlein O, Hajishengallis G, Chavakis T. Formyl peptide receptor 2 regulates dendritic cell metabolism and Th17 cell differentiation during neuroinflammation. Front Immunol 2024; 15:1354074. [PMID: 39148732 PMCID: PMC11324504 DOI: 10.3389/fimmu.2024.1354074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2 KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1β, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.
Collapse
Affiliation(s)
- Jong-Hyung Lim
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ales Neuwirth
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Grossklaus
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
4
|
Wickstead ES, Elliott BT, Pokorny S, Biggs C, Getting SJ, McArthur S. Stimulation of the Pro-Resolving Receptor Fpr2 Reverses Inflammatory Microglial Activity by Suppressing NFκB Activity. Int J Mol Sci 2023; 24:15996. [PMID: 37958978 PMCID: PMC10649357 DOI: 10.3390/ijms242115996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Neuroinflammation driven primarily by microglia directly contributes to neuronal death in many neurodegenerative diseases. Classical anti-inflammatory approaches aim to suppress pro-inflammatory mediator production, but exploitation of inflammatory resolution may also be of benefit. A key driver of peripheral inflammatory resolution, formyl peptide receptor 2 (Fpr2), is expressed by microglia, but its therapeutic potential in neurodegeneration remains unclear. Here, we studied whether targeting of Fpr2 could reverse inflammatory microglial activation induced by the potent bacterial inflammogen lipopolysaccharide (LPS). Exposure of murine primary or immortalised BV2 microglia to LPS triggered pro-inflammatory phenotypic change and activation of ROS production, effects significantly attenuated by subsequent treatment with the Fpr2 agonist C43. Mechanistic studies showed C43 to act through p38 MAPK phosphorylation and reduction of LPS-induced NFκB nuclear translocation via prevention of IκBα degradation. Here, we provide proof-of-concept data highlighting Fpr2 as a potential target for control of microglial pro-inflammatory activity, suggesting that it may be a promising therapeutic target for the treatment of neuroinflammatory disease.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
- Icahn School of Medicine at Mount Sinai, Department of Neurology, Simon Hess Medical and Science Building, New York, NY 10029, USA
| | - Bradley T. Elliott
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Sarah Pokorny
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| | - Christopher Biggs
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Stephen J. Getting
- School of Life Sciences, College of Liberal Arts & Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
5
|
Lorenzini I, Alsop E, Levy J, Gittings LM, Lall D, Rabichow BE, Moore S, Pevey R, Bustos LM, Burciu C, Bhatia D, Singer M, Saul J, McQuade A, Tzioras M, Mota TA, Logemann A, Rose J, Almeida S, Gao FB, Marks M, Donnelly CJ, Hutchins E, Hung ST, Ichida J, Bowser R, Spires-Jones T, Blurton-Jones M, Gendron TF, Baloh RH, Van Keuren-Jensen K, Sattler R. Moderate intrinsic phenotypic alterations in C9orf72 ALS/FTD iPSC-microglia despite the presence of C9orf72 pathological features. Front Cell Neurosci 2023; 17:1179796. [PMID: 37346371 PMCID: PMC10279871 DOI: 10.3389/fncel.2023.1179796] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.
Collapse
Affiliation(s)
- Ileana Lorenzini
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Eric Alsop
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jennifer Levy
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Lauren M. Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Deepti Lall
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Benjamin E. Rabichow
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Stephen Moore
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Ryan Pevey
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lynette M. Bustos
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Camelia Burciu
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Divya Bhatia
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mo Singer
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Justin Saul
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Makis Tzioras
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A. Mota
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
| | - Amber Logemann
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Jamie Rose
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Michael Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Christopher J. Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States
| | - Shu-Ting Hung
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Justin Ichida
- Department of Stem Cell Biology Regenerative Medicine, USC Keck School of Medicine, Los Angeles, CA, United States
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Tara Spires-Jones
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Brain Discovery Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Robert H. Baloh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Regenerative Medicine Institute, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
6
|
Poppell M, Hammel G, Ren Y. Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. Int J Mol Sci 2023; 24:5925. [PMID: 36982999 PMCID: PMC10059890 DOI: 10.3390/ijms24065925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Macrophages can be characterized as a very multifunctional cell type with a spectrum of phenotypes and functions being observed spatially and temporally in various disease states. Ample studies have now demonstrated a possible causal link between macrophage activation and the development of autoimmune disorders. How these cells may be contributing to the adaptive immune response and potentially perpetuating the progression of neurodegenerative diseases and neural injuries is not fully understood. Within this review, we hope to illustrate the role that macrophages and microglia play as initiators of adaptive immune response in various CNS diseases by offering evidence of: (1) the types of immune responses and the processes of antigen presentation in each disease, (2) receptors involved in macrophage/microglial phagocytosis of disease-related cell debris or molecules, and, finally, (3) the implications of macrophages/microglia on the pathogenesis of the diseases.
Collapse
Affiliation(s)
| | | | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|
7
|
Patel AG, Nehete PN, Krivoshik SR, Pei X, Cho EL, Nehete BP, Ramani MD, Shao Y, Williams LE, Wisniewski T, Scholtzova H. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer's disease pathology in aged squirrel monkeys. Brain 2021; 144:2146-2165. [PMID: 34128045 PMCID: PMC8502485 DOI: 10.1093/brain/awab129] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease is the most common cause of dementia and the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The failure rate of clinical trials is very high, in part due to the premature translation of successful results in transgenic mouse models to patients. Extensive evidence suggests that dysregulation of innate immunity and microglia/macrophages plays a key role in Alzheimer's disease pathogenesis. Activated resident microglia and peripheral macrophages can display protective or detrimental phenotypes depending on the stimulus and environment. Toll-like receptors (TLRs) are a family of innate immune regulators known to play an important role in governing the phenotypic status of microglia. We have shown in multiple transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA) while promoting cognitive benefits. In the current study we have used a non-human primate model of sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. The major complications in current immunotherapeutic trials for Alzheimer's disease are amyloid-related imaging abnormalities, which are linked to the presence and extent of CAA; hence, the prominence of CAA in elderly squirrel monkeys makes them a valuable model for studying the safety of the CpG ODN-based concept of immunomodulation. We demonstrate that long-term use of Class B CpG ODN 2006 induces a favourable degree of innate immunity stimulation without producing excessive or sustained inflammation, resulting in efficient amelioration of both CAA and tau Alzheimer's disease-related pathologies in association with behavioural improvements and in the absence of microhaemorrhages in aged elderly squirrel monkeys. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. The present evidence together with our earlier, extensive preclinical research, validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach, increasing the likelihood of CpG ODN therapeutic efficacy in future clinical trials.
Collapse
Affiliation(s)
- Akash G Patel
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Pramod N Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Sara R Krivoshik
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Xuewei Pei
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Elizabeth L Cho
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Bharti P Nehete
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Margish D Ramani
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongzhao Shao
- Division of Biostatistics, Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Lawrence E Williams
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA
| | - Henrieta Scholtzova
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
- Department of Comparative Medicine, the University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| |
Collapse
|
8
|
Wickstead ES, Irving MA, Getting SJ, McArthur S. Exploiting formyl peptide receptor 2 to promote microglial resolution: a new approach to Alzheimer's disease treatment. FEBS J 2021; 289:1801-1822. [PMID: 33811735 DOI: 10.1111/febs.15861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease and dementia are among the most significant current healthcare challenges given the rapidly growing elderly population, and the almost total lack of effective therapeutic interventions. Alzheimer's disease pathology has long been considered in terms of accumulation of amyloid beta and hyperphosphorylated tau, but the importance of neuroinflammation in driving disease has taken greater precedence over the last 15-20 years. Inflammatory activation of the primary brain immune cells, the microglia, has been implicated in Alzheimer's pathogenesis through genetic, preclinical, imaging and postmortem human studies, and strategies to regulate microglial activity may hold great promise for disease modification. Neuroinflammation is necessary for defence of the brain against pathogen invasion or damage but is normally self-limiting due to the engagement of endogenous pro-resolving circuitry that terminates inflammatory activity, a process that appears to fail in Alzheimer's disease. Here, we discuss the potential for a major regulator and promoter of resolution, the receptor FPR2, to restrain pro-inflammatory microglial activity, and propose that it may serve as a valuable target for therapeutic investigation in Alzheimer's disease.
Collapse
Affiliation(s)
| | - Murray A Irving
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| | - Stephen J Getting
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Simon McArthur
- Institute of Dentistry, Barts and the London School of Medicine & Dentistry, Blizard Institute, Queen Mary, University of London, UK
| |
Collapse
|
9
|
Salas-Hernández A, Espinoza-Pérez C, Vivar R, Espitia-Corredor J, Lillo J, Parra-Flores P, Sánchez-Ferrer CF, Peiró C, Díaz-Araya G. Resolvin D1 and E1 promote resolution of inflammation in rat cardiac fibroblast in vitro. Mol Biol Rep 2021; 48:57-66. [PMID: 33459958 DOI: 10.1007/s11033-020-06133-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
Cardiac fibroblasts (CFs) have a key role in the inflammatory response after cardiac injury and are necessary for wound healing. Resolvins are potent agonists that control the duration and magnitude of inflammation. They decrease mediators of pro-inflammatory expression, reduce neutrophil migration to inflammation sites, promote the removal of microbes and apoptotic cells, and reduce exudate. However, whether resolvins can prevent pro-inflammatory-dependent effects in CFs is unknown. Thus, the present work was addressed to study whether resolvin D1 and E1 (RvD1 and RvE1) can prevent pro-inflammatory effects on CFs after lipopolysaccharide (LPS) challenge. For this, CFs were stimulated with LPS, in the presence or absence of RvD1 or RvE1, to analyze its effects on intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), monocyte adhesion and the cytokine levels of tumor necrosis factor alpha (TNF-α), interleukin-6(IL-6), interleukin-1beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10). Our results showed that CFs are expressing ALX/FPR2 and ChemR23, RvD1 and RvE1 receptors, respectively. RvD1 and RvE1 prevent the increase of ICAM-1 and VCAM-1 protein levels and the adhesion of spleen mononuclear cells to CFs induced by LPS. Finally, RvD1, but not RvE1, prevents the LPS-induced increase of IL-6, MCP-1, TNF-α, and IL-10. In conclusion, our findings provide evidence that in CFs, RvD1 and RvE1 might actively participate in the prevention of inflammatory response triggered by LPS.
Collapse
Affiliation(s)
- Aimeé Salas-Hernández
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago, Chile.,Department of Pharmacology, Toxicology and Pharmacodependence, Pharmacy Faculty, University of Costa Rica, San José, Costa Rica
| | - Claudio Espinoza-Pérez
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Raúl Vivar
- Pharmacology Program, Biomedical Sciences Institute, University of Chile, Independencia 1027, Independencia, Santiago, Chile
| | - Jenaro Espitia-Corredor
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - José Lillo
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Pablo Parra-Flores
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago, Chile
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Concepción Peiró
- Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid and Instituto de Investigación Sanitaria Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Guillermo Díaz-Araya
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Independencia, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santos Dumont 964, Independencia, Santiago, Chile.
| |
Collapse
|
10
|
Korimová A, Dubový P. N-Formylated Peptide Induces Increased Expression of Both Formyl Peptide Receptor 2 (Fpr2) and Toll-Like Receptor 9 (TLR9) in Schwannoma Cells-An In Vitro Model for Early Inflammatory Profiling of Schwann Cells. Cells 2020; 9:cells9122661. [PMID: 33322305 PMCID: PMC7763069 DOI: 10.3390/cells9122661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Following nerve injury, disintegrated axonal mitochondria distal to the injury site release mitochondrial formylated peptides and DNA that can induce activation and inflammatory profiling of Schwann cells via formyl peptide receptor 2 (Fpr2) and toll-like receptor 9 (TLR9), respectively. We studied RT4 schwannoma cells to investigate the regulation of Fpr2 and TLR9 after stimulation with fMLF as a prototypical formylated peptide. RT4 cells were treated with fMLF at various concentrations and times with and without pretreatment with inhibitors (chloroquine for activated TLR9, PBP10 for Fpr2). Western blots of Fpr2, TLR9, p-p38, p-NFκB, and IL-6 were compared in relation to inflammatory profiling of RT4 cells and chemokine receptors (CCR2, CXCR4) as potential co-receptors of Fpr2. fMLF stimulation upregulated Fpr2 in RT4 cells at low concentrations (10 nM and 100 nM) but higher concentrations were required (10 µM and 50 µM) when the cells were pretreated with an activated TLR9 inhibitor. Moreover, the higher concentrations of fMLF could modulate TLR9 and inflammatory markers. Upregulation of Fpr2 triggered by 10 nM and 100 nM fMLF coincided with higher levels of chemokine receptors (CCR2, CXCR4) and PKCβ. Treating RT4 cells with fMLF, as an in vitro model of Schwann cells, uncovered Schwann cells’ complex responses to molecular patterns of release from injured axonal mitochondria.
Collapse
|
11
|
Formyl Peptide Receptor 1 Signaling in Acute Inflammation and Neural Differentiation Induced by Traumatic Brain Injury. BIOLOGY 2020; 9:biology9090238. [PMID: 32825368 PMCID: PMC7563302 DOI: 10.3390/biology9090238] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a shocking disease frequently followed by behavioral disabilities, including risk of cerebral atrophy and dementia. N-formylpeptide receptor 1 (FPR1) is expressed in cells and neurons in the central nervous system. It is involved in inflammatory processes and during the differentiation process in the neural stem cells. We investigate the effect of the absence of Fpr1 gene expression in mice subjected to TBI from the early stage of acute inflammation to neurogenesis and systematic behavioral testing four weeks after injury. C57BL/6 animals and Fpr1 KO mice were subjected to TBI and sacrificed 24 h or four weeks after injury. Twenty-four hours after injury, TBI Fpr1 KO mice showed reduced histological impairment, tissue damage and acute inflammation (MAPK activation, NF-κB signaling induction, NRLP3 inflammasome pathway activation and oxidative stress increase). Conversely, four weeks after TBI, the Fpr1 KO mice showed reduced survival of the proliferated cells in the Dentate Gyrus compared to the WT group. Behavioral analysis confirmed this trend. Moreover, TBI Fpr1 KO animals displayed reduced neural differentiation (evaluated by beta-III tubulin expression) and upregulation of astrocyte differentiation (evaluated by GFAP expression). Collectively, our study reports that, immediately after TBI, Fpr1 increased acute inflammation, while after four weeks, Fpr1 promoted neurogenesis.
Collapse
|
12
|
Reversal of β-Amyloid-Induced Microglial Toxicity In Vitro by Activation of Fpr2/3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2139192. [PMID: 32617132 PMCID: PMC7313167 DOI: 10.1155/2020/2139192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022]
Abstract
Microglial inflammatory activity is thought to be a major contributor to the pathology of neurodegenerative conditions such as Alzheimer's disease (AD), and strategies to restrain their behaviour are under active investigation. Classically, anti-inflammatory approaches are aimed at suppressing proinflammatory mediator production, but exploitation of inflammatory resolution, the endogenous process whereby an inflammatory reaction is terminated, has not been fully investigated as a therapeutic approach in AD. In this study, we sought to provide proof-of-principle that the major proresolving actor, formyl peptide receptor 2, Fpr2, could be targeted to reverse microglial activation induced by the AD-associated proinflammatory stimulus, oligomeric β-amyloid (oAβ). The immortalised murine microglial cell line BV2 was employed as a model system to investigate the proresolving effects of the Fpr2 ligand QC1 upon oAβ-induced inflammatory, oxidative, and metabolic behaviour. Cytotoxic behaviour of BV2 cells was assessed through the use of cocultures with retinoic acid-differentiated human SH-SY5Y cells. Stimulation of BV2 cells with oAβ at 100 nM did not induce classical inflammatory marker production but did stimulate production of reactive oxygen species (ROS), an effect that could be reversed by subsequent treatment with the Fpr2 ligand QC1. Further investigation revealed that oAβ-induced ROS production was associated with NADPH oxidase activation and a shift in BV2 cell metabolic phenotype, activating the pentose phosphate pathway and NADPH production, changes that were again reversed by QC1 treatment. Microglial oAβ-stimulated ROS production was sufficient to induce apoptosis of bystander SH-SY5Y cells, an effect that could be prevented by QC1 treatment. In this study, we provide proof-of-concept data that indicate exploitation of the proresolving receptor Fpr2 can reverse damaging oAβ-induced microglial activation. Future strategies that are aimed at restraining neuroinflammation in conditions such as AD should examine proresolving actors as a mechanism to harness the brain's endogenous healing pathways and limit neuroinflammatory damage.
Collapse
|
13
|
Morse SV, Boltersdorf T, Chan TG, Gavins FNE, Choi JJ, Long NJ. In vivo delivery of a fluorescent FPR2/ALX-targeted probe using focused ultrasound and microbubbles to image activated microglia. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00140f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeted imaging agent labels activated microglia when delivered into the brain with focused ultrasound and microbubbles – a tool to investigate inflammation in neurological disorders.
Collapse
Affiliation(s)
| | - Tamara Boltersdorf
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London
- UK
| | - Tiffany G. Chan
- Department of Bioengineering
- Imperial College London
- London
- UK
- Department of Chemistry
| | | | - James J. Choi
- Department of Bioengineering
- Imperial College London
- London
- UK
| | - Nicholas J. Long
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London
- UK
| |
Collapse
|
14
|
Yagensky O, Kohansal-Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, Härtig W, Urlaub H, Chua JJ. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. eLife 2019; 8:47498. [PMID: 31453805 PMCID: PMC6739868 DOI: 10.7554/elife.47498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease is the most prevalent neurodegenerative disorder leading to progressive cognitive decline. Despite decades of research, understanding AD progression at the molecular level, especially at its early stages, remains elusive. Here, we identified several presymptomatic AD markers by investigating brain proteome changes over the course of neurodegeneration in a transgenic mouse model of AD (3×Tg-AD). We show that one of these markers, heme-binding protein 1 (Hebp1), is elevated in the brains of both 3×Tg-AD mice and patients affected by rapidly-progressing forms of AD. Hebp1, predominantly expressed in neurons, interacts with the mitochondrial contact site complex (MICOS) and exhibits a perimitochondrial localization. Strikingly, wildtype, but not Hebp1-deficient, neurons showed elevated cytotoxicity in response to heme-induced apoptosis. Increased survivability in Hebp1-deficient neurons is conferred by blocking the activation of the mitochondrial-associated caspase signaling pathway. Taken together, our data highlight a role of Hebp1 in progressive neuronal loss during AD progression.
Collapse
Affiliation(s)
- Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Saravanan Gunaseelan
- Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tamara Rabe
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Saima Zafar
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.,Clinical Dementia Center, Department of Neurology, German Center for Neurodegenerative Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center, Department of Neurology, German Center for Neurodegenerative Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - John Je Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Wu J, Ding DH, Li QQ, Wang XY, Sun YY, Li LJ. Lipoxin A4 Regulates Lipopolysaccharide-Induced BV2 Microglial Activation and Differentiation via the Notch Signaling Pathway. Front Cell Neurosci 2019; 13:19. [PMID: 30778288 PMCID: PMC6369213 DOI: 10.3389/fncel.2019.00019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory responses contribute to the pathogenesis of various neurological diseases, and microglia plays an important role in the process. Activated microglia can differentiate into the pro-inflammatory, tissue-damaging M1 phenotype or the anti-inflammatory, tissue-repairing M2 phenotype. Regulating microglia differentiation, hence limiting a harmful response, might help improve the prognosis of inflammation-related nervous system diseases. The present study aimed 1. to observe the anti-inflammatory effect of lipoxin A4 (LXA4) on the inflammatory response associated to lipopolysaccharide (LPS)-induced microglia activation, 2. to clarify that LXA4 modulates the activation and differentiation of microglia induced by LPS stimulation, 3. to determine whether LXA4 regulates the activation and differentiation of microglia through the Notch signaling pathway, 4. to provide a foundation for the use of LXA4 for the treatment of inflammatory related neurological diseases. To construct a model of cellular inflammation, immortalized murine BV2 microglia cells were provided 200 ng/ml LPS. To measure the mRNA and protein levels of inflammatory factors (interleukin [IL]-1β, IL-10, and tumor necrosis factor [TNF]-α) and M1 and M2 microglia markers (inducible nitric oxide synthase [iNOS], cluster of differentiation [CD]32, arginase [Arg]1, and CD206), we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), immunofluorescence, or flow cytometry. To determine the mRNA and protein levels of Notch signaling components (Notch1, Hes1, and Hes5), we performed qRT-PCR and western blot. LXA4 inhibits the expression of Notch1 and Hes1 associated with M1 type microglial differentiation and decreases the M1 type microglia marker iNOS and related inflammatory factors IL-1β and TNF-α. Moreover, LXA4 upregulates the expression of the M2-associated Hes5, as well as the expression of the M2 microglia marker Arg1 and the associated inflammatory factor IL-10. These effects are blocked by the administration of the γ-secretase inhibitor DAPT, a specific blocker of the Notch signaling pathway. LXA4 inhibits the microglia activation induced by LPS and the differentiation into M1 type with pro-inflammatory effect, while promoting the differentiation to M2 type with anti-inflammatory effect. LXA4 downregulates the inflammatory mediators IL-1β, TNF-α, and iNOS, while upregulating the anti-inflammatory mediator IL-10, which acts through the Notch signaling pathway.
Collapse
Affiliation(s)
- Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan-Hua Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian-Qian Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Yu Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Ying Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan-Jun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Abstract
Genetically encoded calcium indicators (GECIs) have become widely used for Ca2+ imaging in cultured cells as well as in living organisms. Transduction of microglia with viral vectors encoding GECIs provides a convenient means to label microglia for in vivo Ca2+ imaging. We describe a method using microglia-specific microRNA-9-regulated viral vector, to label microglial cells with a ratiometric GECI (Twitch-2B). This method enables longitudinal recording of both transient and sustained elevations of Ca2+ in microglia in live animals.
Collapse
Affiliation(s)
- Yajie Liang
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Immunomodulation via Toll-like Receptor 9: An Adjunct Therapy Strategy against Alzheimer's Disease? J Neurosci 2018; 37:4864-4867. [PMID: 28490638 DOI: 10.1523/jneurosci.0579-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022] Open
|
18
|
Feng G, Sun Y, Liu S, Song F, Pi Z, Liu Z. Stepwise targeted matching strategy from in vitro to in vivo based on ultra-high performance liquid chromatography tandem mass spectrometry technology to quickly identify and screen pharmacodynamic constituents. Talanta 2018; 194:619-626. [PMID: 30609581 DOI: 10.1016/j.talanta.2018.10.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/13/2018] [Accepted: 10/22/2018] [Indexed: 12/23/2022]
Abstract
The study of in vivo pharmacodynamic constituents (PCs) of traditional Chinese medicine (TCM) is important for providing new clues for TCM applications in clinical therapies in modern medicine. However, detecting and identifying PCs from complex biological samples remain a challenge. In this study, a practical and novel stepwise targeted matching and longitudinal analysis strategy from in vitro to in vivo was developed. This strategy combined with ultra-high performance liquid chromatography tandem mass spectrometry was applied to quickly discover PCs in TCM. This approach was developed based on a core perception that all drugs taken orally might be transformed progressively and orderly from the intestinal tract, liver, and blood to the target organ. Based on this core perception, stepwise targeted matching was orderly and efficiently accomplished by multiple screening processes that were based on a stepwise enriched in-house library. Ginseng (Panax ginseng) was set as the example of herbal medicine for validating the reliability and availability of this approach. By applying this novel strategy to the stepwise screening of metabolites, we successfully identified 113 metabolites, among which 59 compounds were defined as prototypes. Based on the in vivo metabolites, network pharmacology analysis was applied to screen the PCs of ginseng and clarified the action mechanism of ginseng for the treatment of Alzheimer's disease (AD). A total of 27 herbal constituents and 64 related targets shared commonly by compounds and AD were integrated via target network pharmacology analysis. These results demonstrated that this original approach will greatly improve high-throughput screening of metabolites and PCs on AD. It also can explicate the mechanism of action of TCM. Furthermore, this strategy is practicable to identify metabolites and screen PCs in other herbal medicines.
Collapse
Affiliation(s)
- Guifang Feng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Yufei Sun
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
19
|
Haque ME, Kim IS, Jakaria M, Akther M, Choi DK. Importance of GPCR-Mediated Microglial Activation in Alzheimer's Disease. Front Cell Neurosci 2018; 12:258. [PMID: 30186116 PMCID: PMC6110855 DOI: 10.3389/fncel.2018.00258] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder associated with impairment of cognition, memory deficits and behavioral abnormalities. Accumulation of amyloid beta (Aβ) is a characteristic hallmark of AD. Microglia express several GPCRs, which, upon activation by modulators, mediate microglial activation and polarization phenotype. This GPCR-mediated microglial activation has both protective and detrimental effects. Microglial GPCRs are involved in amyloid precursor protein (APP) cleavage and Aβ generation. In addition, microglial GPCRs are featured in the regulation of Aβ degradation and clearance through microglial phagocytosis and chemotaxis. Moreover, in response to Aβ binding on microglial Aβ receptors, they can trigger multiple inflammatory pathways. However, there is still a lack of insight into the mechanistic link between GPCR-mediated microglial activation and its pathological consequences in AD. Currently, the available drugs for the treatment of AD are mostly symptomatic and dominated by acetylcholinesterase inhibitors (AchEI). The selection of a specific microglial GPCR that is highly expressed in the AD brain and capable of modulating AD progression through Aβ generation, degradation and clearance will be a potential source of therapeutic intervention. Here, we have highlighted the expression and distribution of various GPCRs connected to microglial activation in the AD brain and their potential to serve as therapeutic targets of AD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - In-Su Kim
- Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease, Konkuk University, Chungju, South Korea
| | - Md Jakaria
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju, South Korea.,Department of Integrated Bioscience and Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease, Konkuk University, Chungju, South Korea
| |
Collapse
|
20
|
Increase in soluble protein oligomers triggers the innate immune system promoting inflammation and vascular dysfunction in the pathogenesis of sepsis. Clin Sci (Lond) 2018; 132:1433-1438. [PMID: 30021912 DOI: 10.1042/cs20180368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022]
Abstract
Sepsis is a profoundly morbid and life-threatening condition, and an increasingly alarming burden on modern healthcare economies. Patients with septic shock exhibit persistent hypotension despite adequate volume resuscitation requiring pharmacological vasoconstrictors, but the molecular mechanisms of this phenomenon remain unclear. The accumulation of misfolded proteins is linked to numerous diseases, and it has been observed that soluble oligomeric protein intermediates are the primary cytotoxic species in these conditions. Oligomeric protein assemblies have been shown to bind and activate a variety of pattern recognition receptors (PRRs) including formyl peptide receptor (FPR). While inhibition of endoplasmic reticulum (ER) stress and stabilization of protein homeostasis have been promising lines of inquiry regarding sepsis therapy, little attention has been given to the potential effects that the accumulation of misfolded proteins may have in driving sepsis pathogenesis. Here we propose that in sepsis, there is an accumulation of toxic misfolded proteins in the form of soluble protein oligomers (SPOs) that contribute to the inflammation and vascular dysfunction observed in sepsis via the activation of one or more PRRs including FPR. Our laboratory has shown increased levels of SPOs in the heart and intrarenal arteries of septic mice. We have also observed that exposure of resistance arteries and vascular smooth muscle cells to SPOs is associated with increased mitogen-activated protein kinase (MAPK) signaling including phosphorylated extracellular signal-regulated kinase (p-ERK) and p-P38 MAPK pathways, and that this response is abolished with the knockout of FPR. This hypothesis has promising clinical implications as it proposes a novel mechanism that can be exploited as a therapeutic target in sepsis.
Collapse
|
21
|
Early minor stimulation of microglial TLR2 and TLR4 receptors attenuates Alzheimer's disease-related cognitive deficit in rats: behavioral, molecular, and electrophysiological evidence. Neurobiol Aging 2018; 70:203-216. [PMID: 30031930 DOI: 10.1016/j.neurobiolaging.2018.06.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/26/2018] [Accepted: 06/18/2018] [Indexed: 11/20/2022]
Abstract
At early stages of Alzheimer's disease (AD), soluble amyloid beta (Aβ) accumulates in brain while microglia are in resting state. Microglia can recognize Aβ long after formation of plaques and release neurotoxic mediators. We examined impact of early minor activation of microglia by Toll-like receptors (TLRs) 2 and 4 agonists on Alzheimer's disease-related disturbed synaptic function and spatial memory in rats. Microglial BV-2 cells were treated by 0.1, 1, and 10 μg/mL of the TLRs ligands lipopolysaccharide, monophosphoryl lipid A (MPL), and Pam3Cys for 24 hours. Culture medium was then changed with media containing 1-μM Aβ. Tumour necrosis factor (TNF)-α and CCL3 levels were measured in the supernatant, 24 hours thereafter. One μg of TLRs ligands which was able to release low level of TNF-α and CCL3, was administered intracerebroventricularly (i.c.v) to adult male rats every 3 days for 24 days. At the half of the treatment period, Aβ1-42 was infused i.c.v (0.075 μg/hour) for 2 weeks. Finally, the following factors were measured: memory performance by Morris water maze, postsynaptic potentials of dentate gyrus following perforant pathway stimulation, hippocampal inflammatory cytokines interleukin 1 (IL-1)β and TNF-α, anti-inflammatory cytokines IL-10 and TGF-1β, microglia marker arginase 1, Aβ deposits, and the receptor involved in Aβ clearance, formyl peptide receptor 2 (FPR2). TLRs ligands caused dose-dependent release of TNF-α and CCL3 by BV-2 cells. Aβ-treated cells did not release TNF-α and CCL3, whereas those pretreated with MPL and Pam3Cys significantly released these cytokines in response to Aβ. Low-dose TLRs ligands improved the disturbance in spatial and working memory; restored the impaired long-term potentiation induced by Aβ; decreased TNF-α, and Aβ deposits; enhanced TGF-1β, IL-10, and arginase 1 in the hippocampus of Aβ-treated rats; and increased polarization of hippocampal microglia to the anti-inflammatory phenotype. The ligands increased formyl peptide receptor 2 in both BV-2 cells and hippocampus/cortex of Aβ-treated rats. Microglia can sense/clear soluble Aβ by early low-dose MPL and Pam3Cys and safeguard synaptic function and memory in rats.
Collapse
|
22
|
Lipoxin A 4 Attenuates the Inflammatory Response in Stem Cells of the Apical Papilla via ALX/FPR2. Sci Rep 2018; 8:8921. [PMID: 29892010 PMCID: PMC5995968 DOI: 10.1038/s41598-018-27194-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Similar to the onset phase of inflammation, its resolution is a process that unfolds in a manner that is coordinated and regulated by a panel of mediators. Lipoxin A4 (LXA4) has been implicated as an anti-inflammatory, pro-resolving mediator. We hypothesized that LXA4 attenuates or prevents an inflammatory response via the immunosuppressive activity of Stem Cells of the Apical Papilla (SCAP). Here, we report for the first time in vitro that in a SCAP population, lipoxin receptor ALX/FPR2 was constitutively expressed and upregulated after stimulation with lipopolysaccharide and/or TNF-α. Moreover, LXA4 significantly enhanced proliferation, migration, and wound healing capacity of SCAP through the activation of its receptor, ALX/FPR2. Cytokine, chemokine and growth factor secretion by SCAP was inhibited in a dose dependent manner by LXA4. Finally, LXA4 enhanced immunomodulatory properties of SCAP towards Peripheral Blood Mononuclear Cells. These findings provide the first evidence that the LXA4-ALX/FPR2 axis in SCAP regulates inflammatory mediators and enhances immunomodulatory properties. Such features of SCAP may also support the role of these cells in the resolution phase of inflammation and suggest a novel molecular target for ALX/FPR2 receptor to enhance a stem cell-mediated pro-resolving pathway.
Collapse
|
23
|
Yao P, Zhuo S, Mei H, Chen X, Li N, Zhu T, Chen S, Wang J, Hou R, Le Y. Androgen alleviates neurotoxicity of β-amyloid peptide (Aβ) by promoting microglial clearance of Aβ and inhibiting microglial inflammatory response to Aβ. CNS Neurosci Ther 2017; 23:855-865. [PMID: 28941188 PMCID: PMC6492702 DOI: 10.1111/cns.12757] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
AIMS Lower androgen level in elderly men is a risk factor of Alzheimer's disease (AD). It has been reported that androgen reduces amyloid peptides (Aβ) production and increases Aβ degradation by neurons. Activated microglia are involved in AD by either clearing Aβ deposits through uptake of Aβ or releasing cytotoxic substances and pro-inflammatory cytokines. Here, we investigated the effect of androgen on Aβ uptake and clearance and Aβ-induced inflammatory response in microglia, on neuronal death induced by Aβ-activated microglia, and explored underlying mechanisms. METHODS Intracellular and extracellular Aβ were examined by immunofluorescence staining and Western blot. Amyloid peptides (Aβ) receptors, Aβ degrading enzymes, and pro-inflammatory cytokines were detected by RT-PCR, real-time PCR, and ELISA. Phosphorylation of MAP kinases and NF-κB was examined by Western blot. RESULTS We found that physiological concentrations of androgen enhanced Aβ42 uptake and clearance, suppressed Aβ42 -induced IL-1β and TNFα expression by murine microglia cell line N9 and primary microglia, and alleviated neuronal death induced by Aβ42 -activated microglia. Androgen administration also reduced Aβ42 -induced IL-1β expression and neuronal death in murine hippocampus. Mechanistic studies revealed that androgen promoted microglia to phagocytose and degrade Aβ42 through upregulating formyl peptide receptor 2 and endothelin-converting enzyme 1c expression, and inhibited Aβ42 -induced pro-inflammatory cytokines expression via suppressing MAPK p38 and NF-κB activation by Aβ42 , in an androgen receptor independent manner. CONCLUSION Our study demonstrates that androgen promotes microglia to phagocytose and clear Aβ42 and inhibits Aβ42 -induced inflammatory response, which may play an important role in reducing the neurotoxicity of Aβ.
Collapse
Affiliation(s)
- Peng‐Le Yao
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Shu Zhuo
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Hong Mei
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Xiao‐Fang Chen
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Na Li
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Teng‐Fei Zhu
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Shi‐Ting Chen
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Ji‐Ming Wang
- Cancer and Inflammation ProgramCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMDUSA
| | - Rui‐Xing Hou
- Ruihua Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Ying‐Ying Le
- Key Laboratory of Food Safety ResearchChinese Academy of SciencesInstitute for Nutritional SciencesShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesShanghaiChina
- Ruihua Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
24
|
Qian M, Shen X, Wang H. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:471-82. [PMID: 26119306 DOI: 10.1007/s10571-015-0232-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.
Collapse
Affiliation(s)
- Meng Qian
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Xiaoqiang Shen
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Huanhuan Wang
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China.
| |
Collapse
|
25
|
Biofilm-associated bacterial amyloids dampen inflammation in the gut: oral treatment with curli fibres reduces the severity of hapten-induced colitis in mice. NPJ Biofilms Microbiomes 2015; 1. [PMID: 26855788 PMCID: PMC4739805 DOI: 10.1038/npjbiofilms.2015.19] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background/objectives: A disruption of epithelial barrier function can lead to intestinal inflammation. Toll-like receptor (TLR) 2 activation by microbial products promotes intestinal epithelial integrity and overall gut health. Several bacterial species, including enteric bacteria, actively produce amyloid proteins as a part of their biofilms. Recognition of amyloid fibres found in enteric biofilms, termed curli, by the Toll-like receptor (TLR)2/1 complex reinforces barrier function. Here, we investigated the effect of purified curli fibres on inflammation in a mouse model of acute colitis. Methods: Bone marrow–derived macrophages as well as lamina propria cells were treated with curli fibres of both pathogenic Salmonella enterica serovar Typhimurium and commensal Escherichia coli Nissle 1917 biofilms. Mice were given 0.1 or 0.4 mg of purified curli orally 1 day post administration of 1% 2,4,6-trinitrobenzene sulphonic acid (TNBS) enema. Histopathological analysis was performed on distal colonic tissue taken 6 days post TNBS enema. RNA extracted from colonic tissue was subjected to RT-PCR. Results: Here we show that curli fibres of both pathogenic and commensal bacteria are recognised by TLR2 leading to the production of IL-10, immunomodulatory cytokine of intestinal homeostasis. Treatment of mice with a single dose of curli heightens transcript levels of Il10 in the colon and ameliorates the disease pathology in TNBS-induced colitis. Curli treatment is comparable to the treatment with anti-tumour necrosis factor alpha (anti-TNFα) antibodies, a treatment known to reduce the severity of acute colitis in humans and mice. Conclusion: These results suggest that the bacterial amyloids had a role in helping to maintain immune homeostasis in the intestinal mucosa via the TLR2/IL-10 axis. Furthermore, bacterial amyloids may be a potential candidate therapeutic to treat intestinal inflammatory disorders owing to their remarkable immunomodulatory activity.
Collapse
|
26
|
Abstract
The past two decades of research into the pathogenesis of Alzheimer disease (AD) have been driven largely by the amyloid hypothesis; the neuroinflammation that is associated with AD has been assumed to be merely a response to pathophysiological events. However, new data from preclinical and clinical studies have established that immune system-mediated actions in fact contribute to and drive AD pathogenesis. These insights have suggested both novel and well-defined potential therapeutic targets for AD, including microglia and several cytokines. In addition, as inflammation in AD primarily concerns the innate immune system - unlike in 'typical' neuroinflammatory diseases such as multiple sclerosis and encephalitides - the concept of neuroinflammation in AD may need refinement.
Collapse
|
27
|
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer's disease. Cell Mol Neurobiol 2015; 35:71-83. [PMID: 25149075 DOI: 10.1007/s10571-014-0101-6] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Amyloid β (Aβ) plays a pivotal role in the progression of Alzheimer's disease (AD) through its neurotoxic and inflammatory effects. On one hand, Aβ binds to microglia and activates them to produce inflammatory mediators. On the other hand, Aβ is cleared by microglia through receptor-mediated phagocytosis and degradation. This review focuses on microglial membrane receptors that bind Aβ and contribute to microglial activation and/or Aβ phagocytosis and clearance. These receptors can be categorized into several groups. The scavenger receptors (SRs) include scavenger receptor A-1 (SCARA-1), MARCO, scavenger receptor B-1 (SCARB-1), CD36 and the receptor for advanced glycation end product (RAGE). The G protein-coupled receptors (GPCRs) are formyl peptide receptor 2 (FPR2) and chemokine-like receptor 1 (CMKLR1). There are also toll-like receptors (TLRs) including TLR2, TLR4, and the co-receptor CD14. Functionally, SCARA-1 and CMKLR1 are involved in the uptake of Aβ, and RAGE is responsible for the activation of microglia and production of proinflammatory mediators following Aβ binding. CD36, CD36/CD47/α6β1-intergrin, CD14/TLR2/TLR4, and FPR2 display both functions. Additionally, MARCO and SCARB-1 also exhibit the ability to bind Aβ and may be involved in the progression of AD. Here, we focus on the expression and distribution of these receptors in microglia and their roles in microglia interaction with Aβ. Finally, we discuss the potential therapeutic value of these receptors in AD.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China,
| | | |
Collapse
|
28
|
Formyl peptide receptor as a novel therapeutic target for anxiety-related disorders. PLoS One 2014; 9:e114626. [PMID: 25517119 PMCID: PMC4269406 DOI: 10.1371/journal.pone.0114626] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/11/2014] [Indexed: 01/09/2023] Open
Abstract
Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3-/- mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface.
Collapse
|
29
|
Lee HY, Kim SD, Baek SH, Choi JH, Bae YS. Role of formyl peptide receptor 2 on the serum amyloid A-induced macrophage foam cell formation. Biochem Biophys Res Commun 2013; 433:255-9. [DOI: 10.1016/j.bbrc.2013.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 02/04/2023]
|
30
|
Yuan L, Zhou X, Li D, Ma W, Yu H, Xi Y, Xiao R. Pattern recognition receptors involved in the inflammatory attenuating effects of soybean isoflavone in β-amyloid peptides 1-42 treated rats. Neurosci Lett 2012; 506:266-70. [PMID: 22133809 DOI: 10.1016/j.neulet.2011.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/14/2011] [Accepted: 11/13/2011] [Indexed: 11/19/2022]
Abstract
Pattern recognition receptors (PRRs) play important roles in the inflammatory responses to Alzheimer's disease (AD). Our previous study indicated that soybean isoflavone (SIF) exhibited anti-inflammatory effect in rats treated by β-amyloid peptides1-42 (Aβ1-42). In present study, we further detected the effects of SIF against inflammation caused by Aβ1-42 treatment in rats. Serum inflammatory mediators and neurotrophic factors including transforming growth factor-β (TGF-β), inducible nitric oxide synthase (iNOS), brain-derived neurotrophic factor (BDNF) and S100β were detected by enzyme-like immunosorbent assay (ELISA). Reverse transcription-polymerase chain reaction (RT-PCR) and western blot methods were applied for detecting mRNA and protein expression of interleukin-1β (IL-1β), iNOS, tumor necrosis factor-α (TNF-α), TGF-β, BDNF, S100β, myeloid differentiation factor88 (Myd88), Toll-like receptor2 (TLR2), formyl peptide receptors (FPRs), inhibitor κB kinase (IKK) and inhibitor κB-α (IκB-α) in rat's brain tissue. Our results indicated that SIF could reduce the production of IL-1β, TNF-α and iNOS induced by Aβ1-42 in serum and brain of rats. SIF also significantly reversed Aβ1-42-induced up-regulation of TLR2, FPR, Myd88, IKK and decreased IκB-α mRNA and protein expressions in rats. These results suggested that TLR2 and FPR might involve in the inflammatory process induced by Aβ1-42 treatment, and SIF was an efficiency compound in reversing the inflammation caused by Aβ1-42 treatment.
Collapse
Affiliation(s)
- Linhong Yuan
- Department of Nutrition and Food Hygiene, Capital Medical University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Aspirin-triggered lipoxin A4 attenuates LPS-induced pro-inflammatory responses by inhibiting activation of NF-κB and MAPKs in BV-2 microglial cells. J Neuroinflammation 2011; 8:95. [PMID: 21831303 PMCID: PMC3162900 DOI: 10.1186/1742-2094-8-95] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/10/2011] [Indexed: 12/12/2022] Open
Abstract
Background Microglial activation plays an important role in neurodegenerative diseases through production of nitric oxide (NO) and several pro-inflammatory cytokines. Lipoxins (LXs) and aspirin-triggered LXs (ATLs) are considered to act as 'braking signals' in inflammation. In the present study, we investigated the effect of aspirin-triggered LXA4 (ATL) on infiammatory responses induced by lipopolysaccharide (LPS) in murine microglial BV-2 cells. Methods BV-2 cells were treated with ATL prior to LPS exposure, and the effects of such treatment production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) were analysed by Griess reaction, ELISA, western blotting and quantitative RT-PCR. Moreover, we investigated the effects of ATL on LPS-induced nuclear factor-κB (NF-κB) activation, phosphorylation of mitogen-activated protein kinases (MAPKs) and activator protein-1 (AP-1) activation. Results ATL inhibited LPS-induced production of NO, IL-1β and TNF-α in a concentration-dependent manner. mRNA expressions for iNOS, IL-1β and TNF-α in response to LPS were also decreased by ATL. These effects were inhibited by Boc-2 (a LXA4 receptor antagonist). ATL significantly reduced nuclear translocation of NF-κB p65, degradation of the inhibitor IκB-α, and phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAPK in BV-2 cells activated with LPS. Furthermore, the DNA binding activity of NF-κB and AP-1 was blocked by ATL. Conclusions This study indicates that ATL inhibits NO and pro-inflammatory cytokine production at least in part via NF-κB, ERK, p38 MAPK and AP-1 signaling pathways in LPS-activated microglia. Therefore, ATL may have therapeutic potential for various neurodegenerative diseases.
Collapse
|
32
|
Proinflammatory Stimulants Promote the Expression of a Promiscuous G Protein-Coupled Receptor, mFPR2, in Microvascular Endothelial Cells. Inflammation 2011; 35:656-64. [DOI: 10.1007/s10753-011-9358-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Eichhoff G, Brawek B, Garaschuk O. Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1014-24. [PMID: 21056596 DOI: 10.1016/j.bbamcr.2010.10.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/13/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
In the healthy adult brain microglia, the main immune-competent cells of the CNS, have a distinct (so-called resting or surveying) phenotype. Resting microglia can only be studied in vivo since any isolation of brain tissue inevitably triggers microglial activation. Here we used in vivo two-photon imaging to obtain a first insight into Ca(2+) signaling in resting cortical microglia. The majority (80%) of microglial cells showed no spontaneous Ca(2+) transients at rest and in conditions of strong neuronal activity. However, they reliably responded with large, generalized Ca(2+) transients to damage of an individual neuron. These damage-induced responses had a short latency (0.4-4s) and were localized to the immediate vicinity of the damaged neuron (< 50 μm cell body-to-cell body distance). They were occluded by the application of ATPγS as well as UDP and 2-MeSADP, the agonists of metabotropic P2Y receptors, and they required Ca(2+) release from the intracellular Ca(2+) stores. Thus, our in vivo data suggest that microglial Ca(2+) signals occur mostly under pathological conditions and identify a Ca(2+) store-operated signal, which represents a very sensitive, rapid, and highly localized response of microglial cells to brain damage. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Gerhard Eichhoff
- Institute of Physiology II, University of Tübingen, Keplerstr. 15, 72074 Tübingen, Germany
| | | | | |
Collapse
|
34
|
Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci 2010; 30:11848-57. [PMID: 20810904 DOI: 10.1523/jneurosci.2985-10.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Locus ceruleus (LC) is the main subcortical site of norepinephrine synthesis. In Alzheimer's disease (AD) patients and rodent models, degeneration of LC neurons and reduced levels of norepinephrine in LC projection areas are significantly correlated with the increase in amyloid plaques, neurofibrillary tangles, and severity of dementia. Activated microglia play a pivotal role in the progression of AD by either clearing amyloid beta peptide (Abeta) deposits through uptake of Abeta or releasing cytotoxic substances and proinflammatory cytokines. Here, we investigated the effect of norepinephrine on Abeta uptake and clearance by murine microglia and explored the underlying mechanisms. We found that murine microglia cell line N9 and primary microglia expressed beta(2) adrenergic receptor (AR) but not beta(1) and beta(3)AR. Norepinephrine and isoproterenol upregulated the expression of Abeta receptor mFPR2, a mouse homolog of human formyl peptide receptor FPR2, through activation of beta(2)AR in microglia. Norepinephrine also induced mFPR2 expression in mouse brain. Activation of beta(2)AR in microglia promoted Abeta(42) uptake through upregulation of mFPR2 and enhanced spontaneous cell migration but had no effect on cell migration in response to mFPR2 agonists. Furthermore, activation of beta(2)AR on microglia induced the expression of insulin-degrading enzyme and increased the degradation of Abeta(42). Mechanistic studies showed that isoproterenol induced mFPR2 expression through ERK1/2-NF-kappaB and p38-NF-kappaB signaling pathways. These findings suggest that noradrenergic innervation from LC is needed to maintain adequate Abeta uptake and clearance by microglia, and norepinephrine is a link between neuron and microglia to orchestrate the host response to Abeta in AD.
Collapse
|
35
|
Dufton N, Perretti M. Therapeutic anti-inflammatory potential of formyl-peptide receptor agonists. Pharmacol Ther 2010; 127:175-88. [PMID: 20546777 DOI: 10.1016/j.pharmthera.2010.04.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/25/2010] [Indexed: 12/22/2022]
Abstract
The need for novel anti-inflammatory drugs justifies the search for innovative targets that could satisfy this goal. For quite some time now, we have proposed the study of endogenous anti-inflammation as a distinctive approach to the discovery of new drugs. This approach requires development of new compounds that activate specific receptor targets to downregulate the cellular and tissue pathways operative in the host during inflammation. Here we dwell on a family of G-protein coupled receptors (GPCR) termed FPRs, acronym for formyl-peptide receptors. With three and seven members in man and mouse, respectively, these receptors harness many biological functions, spanning odour perception and hair growth, to the control of multiple facets (pain; cell migration; oxidative burst; xenobiotic engulfment) of the inflammatory reaction. We focus on FPR biology with particular attention to molecules able to produce pharmacological effects by interacting with these GPCRs, describing endogenous agonists of FPRs and, more relevantly, the current development of synthetic agonists. Besides being potential leads for the development of the anti-inflammatory therapeutics of the future, these compounds could also help clarify the properties and roles that each FPR might play in the complex network of pathways that is inflammation. We conclude that FPR2 agonists could be valid warhorses for defining a novel philosophy for anti-inflammatory drug discovery programmes: mimicking - with new compounds - the way our body disposes of inflammation could be a viable approach to regulate aberrant inflammatory responses as in the case of several chronic rheumatic and cardiovascular pathologies.
Collapse
Affiliation(s)
- Neil Dufton
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
36
|
Quantitative Analysis of Promoter Activity by Green Fluorescent Protein (GFP) Target/Reporter Strategy in a Novel Transgenic alx/fpr-rs2 Null Mouse. Inflamm Res 2009. [DOI: 10.1007/bf03354231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
37
|
Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Inflammation in Alzheimer's disease: Amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 2009; 87:181-94. [DOI: 10.1016/j.pneurobio.2009.01.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Gao X, Hu X, Qian L, Yang S, Zhang W, Zhang D, Wu X, Fraser A, Wilson B, Flood PM, Block M, Hong JS. Formyl-methionyl-leucyl-phenylalanine-induced dopaminergic neurotoxicity via microglial activation: a mediator between peripheral infection and neurodegeneration? ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:593-598. [PMID: 18470306 PMCID: PMC2367670 DOI: 10.1289/ehp.11031] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 01/28/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Parkinson disease (PD), a chronic neurodegenerative disease, has been proposed to be a multifactorial disorder resulting from a combination of environmental mechanisms (chemical, infectious, and traumatic), aging, and genetic deficits. Microglial activation is important in the pathogenesis of PD. OBJECTIVES We investigated dopaminergic (DA) neurotoxicity and the underlying mechanisms of formyl-methionyl-leucyl-phenylalanine (fMLP), a bacteria-derived peptide, in relation to PD. METHODS We measured DA neurotoxicity using a DA uptake assay and immunocytochemical staining (ICC) in primary mesencephalic cultures from rodents. Microglial activation was observed via ICC, flow cytometry, and superoxide measurement. RESULTS fMLP can cause selective DA neuronal loss at concentrations as low as 10(-13) M. Further, fMLP (10(-13) M) led to a significant reduction in DA uptake capacity in neuron/glia (N/G) cultures, but not in microglia-depleted cultures, indicating an indispensable role of microglia in fMLP-induced neurotoxicity. Using ICC of a specific microglial marker, OX42, we observed morphologic changes in activated microglia after fMLP treatment. Microglial activation after fMLP treatment was confirmed by flow cytometry analysis of major histocompatibility antigen class II expression on a microglia HAPI cell line. Mechanistic studies revealed that fMLP (10(-13) M)-induced increase in the production of extracellular superoxide from microglia is critical in mediating fMLP-elicited neurotoxicity. Pharmacologic inhibition of NADPH oxidase (PHOX) with diphenylene-iodonium or apocynin abolished the DA neurotoxicity of fMLP. N/G cultures from PHOX-deficient (gp91PHOX-/ -) mice were also insensitive to fMLP-induced DA neurotoxicity. CONCLUSION fMLP (10(-13) M) induces DA neurotoxicity through activation of microglial PHOX and subsequent production of superoxide, suggesting a role of fMLP in the central nervous system inflammatory process.
Collapse
Affiliation(s)
- Xi Gao
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Xiaoming Hu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sufen Yang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Wei Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Dan Zhang
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Xuefei Wu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison Fraser
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Belinda Wilson
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Patrick M Flood
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michelle Block
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
39
|
Thellung S, Villa V, Corsaro A, Pellistri F, Venezia V, Russo C, Aceto A, Robello M, Florio T. ERK1/2 and p38 MAP kinases control prion protein fragment 90-231-induced astrocyte proliferation and microglia activation. Glia 2007; 55:1469-85. [PMID: 17705195 DOI: 10.1002/glia.20559] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Astrogliosis and microglial activation are a common feature during prion diseases, causing the release of chemoattractant and proinflammatory factors as well as reactive free radicals, involved in neuronal degeneration. The recombinant protease-resistant domain of the prion protein (PrP90-231) displays in vitro neurotoxic properties when refolded in a beta-sheet-rich conformer. Here, we report that PrP90-231 induces the secretion of several cytokines, chemokines, and nitric oxide (NO) release, in both type I astrocytes and microglial cells. PrP90-231 elicited in both cell types the activation of ERK1/2 MAP kinase that displays, in astrocytes, a rapid kinetics and a proliferative response. Conversely, in microglia, PrP90-231-dependent MAP kinase activation was delayed and long lasting, inducing functional activation and growth arrest. In microglial cells, NO release, dependent on the expression of the inducible NO synthase (iNOS), and the secretion of the chemokine CCL5 were Ca(2+) dependent and under the control of the MAP kinases ERK1/2 and p38: ERK1/2 inhibition, using PD98059, reduced iNOS expression, while p38 blockade by PD169316 inhibited CCL5 release. In summary, we demonstrate that glial cells are activated by extracellular misfolded PrP90-231 resulting in a proliferative/secretive response of astrocytes and functional activation of microglia, both dependent on MAP kinase activation. In particular, in microglia, PrP90-231 activated a complex signalling cascade involved in the regulation of NO and chemokine release. These data argue in favor of a causal role for misfolded prion protein in sustaining glial activation and, possibly, glia-mediated neuronal death.
Collapse
Affiliation(s)
- Stefano Thellung
- Department of Oncology, Biology and Genetics, University of Genova, Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Afkhami-Goli A, Noorbakhsh F, Keller AJ, Vergnolle N, Westaway D, Jhamandas JH, Andrade-Gordon P, Hollenberg MD, Arab H, Dyck RH, Power C. Proteinase-activated receptor-2 exerts protective and pathogenic cell type-specific effects in Alzheimer's disease. THE JOURNAL OF IMMUNOLOGY 2007; 179:5493-503. [PMID: 17911636 DOI: 10.4049/jimmunol.179.8.5493] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteinase-activated receptors (PARs) are a novel family of G protein-coupled receptors, and their effects in neurodegenerative diseases remain uncertain. Alzheimer's disease (AD) is a neurodegenerative disorder defined by misfolded protein accumulation with concurrent neuroinflammation and neuronal death. We report suppression of proteinase-activated receptor-2 (PAR2) expression in neurons of brains from AD patients, whereas PAR2 expression was increased in proximate glial cells, together with up-regulation of proinflammatory cytokines and chemokines and reduced IL-4 expression (p < 0.05). Glial PAR2 activation increased expression of formyl peptide receptor-2 (p < 0.01), a cognate receptor for a fibrillar 42-aa form of beta-amyloid (Abeta(1-42)), enhanced microglia-mediated proinflammatory responses, and suppressed astrocytic IL-4 expression, resulting in neuronal death (p < 0.05). Conversely, neuronal PAR2 activation protected human neurons against the toxic effects of Abeta(1-42) (p < 0.05), a key component of AD neuropathogenesis. Amyloid precursor protein-transgenic mice, displayed glial fibrillary acidic protein and IL-4 induction (p < 0.05) in the absence of proinflammatory gene up-regulation and neuronal injury, whereas PAR2 was up-regulated at this early stage of disease progression. PAR2-deficient mice, after hippocampal Abeta(1-42) implantation, exhibited enhanced IL-4 induction and less neuroinflammation (p < 0.05), together with improved neurobehavioral outcomes (p < 0.05). Thus, PAR2 exerted protective properties in neurons, but its activation in glia was pathogenic with secretion of neurotoxic factors and suppression of astrocytic anti-inflammatory mechanisms contributing to Abeta(1-42)-mediated neurodegeneration.
Collapse
MESH Headings
- Aged
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Alzheimer Disease/prevention & control
- Amyloid beta-Peptides/toxicity
- Animals
- Astrocytes/metabolism
- Cell Line
- Cells, Cultured
- Female
- Humans
- Macrophages/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neuroglia/metabolism
- Neuroglia/pathology
- Neurons/metabolism
- Neurons/pathology
- Peptide Fragments/toxicity
- Rats
- Receptor, PAR-2/biosynthesis
- Receptor, PAR-2/deficiency
- Receptor, PAR-2/genetics
- Receptor, PAR-2/physiology
- Receptors, Formyl Peptide/biosynthesis
- Receptors, Formyl Peptide/genetics
- Receptors, Lipoxin/biosynthesis
- Receptors, Lipoxin/genetics
Collapse
Affiliation(s)
- Amir Afkhami-Goli
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Iribarren P, Chen K, Gong W, Cho EH, Lockett S, Uranchimeg B, Wang JM. Interleukin 10 and TNFalpha synergistically enhance the expression of the G protein-coupled formylpeptide receptor 2 in microglia. Neurobiol Dis 2007; 27:90-8. [PMID: 17544285 PMCID: PMC1989777 DOI: 10.1016/j.nbd.2007.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 04/11/2007] [Accepted: 04/27/2007] [Indexed: 11/28/2022] Open
Abstract
Microglia are important participants in inflammatory responses in the central nervous system. We previously observed that tumor necrosis factor alpha (TNFalpha) induces the expression of the formylpeptide receptor mFPR2 on microglial cells. This chemoattractant receptor mediates microglial cell chemotaxis in response to a variety of peptides, including amyloid beta peptide (Abeta(42)), a major pathogenic factor in Alzheimer's disease (AD). In search for agents that regulate microglial activation, we unexpectedly found that IL-10 enhanced the expression of mFPR2 on TNFalpha-activated microglia. This was associated with a markedly increased microglial chemotaxis to Abeta(42) and its endocytosis via mFPR2. Mechanistic studies revealed that the synergistic effect of IL-10 on TNFalpha-induction of mFPR2 in microglia was dependent on activation of p38 MAPK. Our results suggest that IL-10 may affect the pathogenic process of AD by up-regulating mFPR2 and thus favoring the recognition and internalization of Abeta(42) by activated microglial cells.
Collapse
Affiliation(s)
- Pablo Iribarren
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chen K, Iribarren P, Huang J, Zhang L, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM. Induction of the formyl peptide receptor 2 in microglia by IFN-gamma and synergy with CD40 ligand. THE JOURNAL OF IMMUNOLOGY 2007; 178:1759-66. [PMID: 17237425 DOI: 10.4049/jimmunol.178.3.1759] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human formyl peptide receptor (FPR)-like 1 (FPRL1) and its mouse homologue mFPR2 are functional receptors for a variety of exogenous and host-derived chemotactic peptides, including amyloid beta 1-42 (Abeta(42)), a pathogenic factor in Alzheimer's disease. Because mFPR2 in microglial cells is regulated by proinflammatory stimulants including TLR agonists, in this study we investigated the capacity of IFN-gamma and the CD40 ligand (CD40L) to affect the expression and function of mFPR2. We found that IFN-gamma, when used alone, induced mFPR2 mRNA expression in a mouse microglial cell line and primary microglial cells in association with increased cell migration in response to mFPR2 agonists, including Abeta(42). IFN-gamma also increased the endocytosis of Abeta(42) by microglial cells via mFPR2. The effect of IFN-gamma on mFPR2 expression in microglial cells was dependent on activation of MAPK and IkappaB-alpha. IFN-gamma additionally increased the expression of CD40 by microglial cells and soluble CD40L significantly promoted cell responses to IFN-gamma during a 6-h incubation period by enhancing the activation of MAPK and IkappaB-alpha signaling pathways. We additionally found that the effect of IFN-gamma and its synergy with CD40L on mFPR2 expression in microglia was mediated in part by TNF-alpha. Our results suggest that IFN-gamma and CD40L, two host-derived factors with increased concentrations in inflammatory central nervous system diseases, may profoundly affect microglial cell responses in the pathogenic process in which mFPR2 agonist peptides are elevated.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi KI. Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 2006; 129:3006-19. [PMID: 16984903 PMCID: PMC2445613 DOI: 10.1093/brain/awl249] [Citation(s) in RCA: 392] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deposits of amyloid beta-protein (Abeta) in neuritic plaques and cerebral vessels are a pathological hallmark of Alzheimer's disease. Fibrillar Abeta deposits are closely associated with inflammatory responses such as activated microglia in brain with this disease. Increasing lines of evidence support the hypothesis that activated microglia, innate immune cells in the CNS, play a pivotal role in the progression of the disease: either clearing Abeta deposits by phagocytic activity or releasing cytotoxic substances and pro-inflammatory cytokines. Toll-like receptors (TLRs) are a family of pattern-recognition receptors in the innate immune system. Exogenous and endogenous TLR ligands activate microglia. To investigate the role of TLR4 in the amyloidogenesis in vivo, we determined the amounts of cerebral Abeta in Alzheimer's disease mouse models with different genotypes of TLR4 using three distinct methods. We show that mouse models (Mo/Hu APPswe PS1dE9 mice) homozygous for a destructive mutation of TLR4 (Tlr(Lps-d)/Tlr(Lps-d)) had increases in diffuse and fibrillar Abeta deposits by immunocytochemistry, fibrillar Abeta deposits by thioflavine-S staining and buffer-soluble and insoluble Abeta by ELISA in the cerebrum, as compared with TLR4 wild-type mouse models. Although the differences in these parameters were less significant, mouse models heterozygous for the mutation (Tlr(Lps-d)/) showed co-dominant phenotypes. Consistent with these observations in vivo, cultured microglia derived from Tlr(Lps-d)/Tlr(Lps-d) mice failed to show an increase in Abeta uptake after stimulation with a TLR4 ligand but not with a TLR9 ligand in vitro. Furthermore, activation of microglia (BV-2 cell) with a TLR2, TLR4 or TLR9 ligand, markedly boosted ingestion of Abeta in vitro. These results suggest that TLR signalling pathway(s) may be involved in clearance of Abeta-deposits in the brain and that TLRs can be a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Kazuki Tahara
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Hong-Duck Kim
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Jing-Ji Jin
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL
| | - J. Adam Maxwell
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL
| | - Ling Li
- Department of Medicine, Schools of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ken-ichiro Fukuchi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL
| |
Collapse
|
44
|
Xiang Z, Chen M, Ping J, Dunn P, Lv J, Jiao B, Burnstock G. Microglial morphology and its transformation after challenge by extracellular ATP in vitro. J Neurosci Res 2006; 83:91-101. [PMID: 16323207 DOI: 10.1002/jnr.20709] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The novel morphological characteristics of N9 microglial cells and primary cultured rat microglial cells were examined using the bitotin-IB4 and streptavidin-FITC system. Numerous fine, long processes of both microglial cell preparations formed a network, beginning after 30 min in culture. Dye coupling studies did not show communication between neighbouring cells via the processes in normal conditions. The network of microglial cell processes was well formed into a 'resting state' by 16-24 hr after re-plating. After being challenged by 3 mM ATP the microglial cells were activated, became amoeboid-like cells within 2 hr and finally floated in the culture medium. The complicated network of processes did not retract to the microglial cell body. Flow cytometry analysis showed that the majority of these floating cells were alive and could recover to the resting state after ATP was removed from the culture medium.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Molecular Biology, Second Military Medical University Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho EH, Lockett S, Dunlop NM, Wang JM. Activation of Toll-like Receptor 2 on Microglia Promotes Cell Uptake of Alzheimer Disease-associated Amyloid β Peptide. J Biol Chem 2006; 281:3651-9. [PMID: 16339765 DOI: 10.1074/jbc.m508125200] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human G-protein-coupled formyl peptide receptor-like 1 (FPRL1) and its mouse homologue mFPR2 mediate the chemotactic activity of a variety of polypeptides associated with inflammation and bacterial infection, including the 42-amino acid form of amyloid beta peptide (Abeta42), a pathogenic factor in Alzheimer disease. Because mFPR2 was inducible in mouse microglial cells by proinflammatory stimulants, such as bacterial lipopolysaccharide, a ligand for the Toll-like receptor 4 (TLR4), we investigated the role of TLR2 in the regulation of mFPR2. We found that a TLR2 agonist, peptidoglycan (PGN) derived from Gram-positive bacterium Staphylococcus aureus, induced considerable mFpr2 mRNA expression in a mouse microglial cell line and primary microglial cells. This was associated with a markedly increased chemotaxis of the cells in response to mFPR2 agonist peptides. In addition, activation of TLR2 markedly enhanced mFPR2-mediated uptake of Abeta42 by microglia. Studies of the mechanistic basis showed that PGN activates MAPK and IkappaBalpha, and the effect of PGN on induction of mFPR2 was dependent on signaling pathways via ERK1/2 and p38 MAPKs. The use of TLR2 on microglial cells by PGN was supported by the fact that N9 cells transfected with short interfering RNA targeting mouse TLR2 failed to show increased expression of functional mFPR2 after stimulation with PGN. Our results demonstrated a potentially important role for TLR2 in microglial cells of promoting cell responses to chemoattractants produced in lesions of inflammatory and neurodegenerative diseases in the brain.
Collapse
Affiliation(s)
- Keqiang Chen
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Iribarren P, Chen K, Hu J, Zhang X, Gong W, Wang JM. IL-4 Inhibits the Expression of Mouse Formyl Peptide Receptor 2, a Receptor for Amyloid β1–42, in TNF-α-Activated Microglia. THE JOURNAL OF IMMUNOLOGY 2005; 175:6100-6. [PMID: 16237106 DOI: 10.4049/jimmunol.175.9.6100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microglia are phagocytic cells in the CNS and actively participate in proinflammatory responses in neurodegenerative diseases. We have previously shown that TNF-alpha up-regulated the expression of formyl peptide receptor 2 (mFPR2) in mouse microglial cells, resulting in increased chemotactic responses of such cells to mFPR2 agonists, including amyloid beta1-42 (Abeta42), a critical pathogenic agent in Alzheimer's disease. In the present study, we found that IL-4, a Th2-type cytokine, markedly inhibited TNF-alpha-induced expression of mFPR2 in microglial cells by attenuating activation of ERK and p38 MAPK as well as NF-kappaB. The effect of IL-4 was not dependent on Stat6 but rather required the protein phosphatase 2A (PP2A) as demonstrated by the capacity of PP2A small interfering RNA to reverse the effect of IL-4 in TNF-alpha-activated microglia. Since both IL-4 and TNF-alpha are produced in the CNS under pathophysiological conditions, our results suggest that IL-4 may play an important role in the maintenance of CNS homeostasis by limiting microglial activation by proinflammatory stimulants.
Collapse
Affiliation(s)
- Pablo Iribarren
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
47
|
Iribarren P, Chen K, Hu J, Gong W, Cho EH, Lockett S, Uranchimeg B, Wang JM. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 1-42 peptide by up-regulating the expression of the G-protein- coupled receptor mFPR2. FASEB J 2005; 19:2032-4. [PMID: 16219804 DOI: 10.1096/fj.05-4578fje] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human G protein-coupled formyl peptide receptor like 1 (FPRL1) and its mouse homologue murine formyl peptide receptor 2 (mFPR2) mediate the chemotactic activity of amyloid beta 1-42 (Abeta42), a key pathogenic peptide in Alzheimer's disease (AD). Since mFPR2 is up-regulated in mouse microglia by lipopolysaccharide (LPS), a Toll-like receptor 4 ligand, we investigated the capacity of CpG-containing oligodeoxynucleotide (ODN), a Toll-like receptor (TLR) 9 ligand, to regulate the expression of mFPR2 in mouse microglia. CpG ODN markedly enhanced the expression and function of mFPR2 in microglial cells, which exhibited increased chemotactic responses to mFPR2 agonists, including Abeta42. The effect of CpG ODN is dependent on activation of p38 MAPK. Further studies showed that CpG ODN-treated microglia increased their capacity to endocytose Abeta42 through mFPR2, as this process was abrogated by pertussis toxin, a Gi protein inhibitor, and W peptide, another potent mFPR2 agonist. Our results suggest that TLR9 may play an important role in promoting microglial recognition of Abeta42, thus affecting the pathogenic process of AD.
Collapse
Affiliation(s)
- Pablo Iribarren
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bi XL, Yang JY, Dong YX, Wang JM, Cui YH, Ikeshima T, Zhao YQ, Wu CF. Resveratrol inhibits nitric oxide and TNF-alpha production by lipopolysaccharide-activated microglia. Int Immunopharmacol 2005; 5:185-93. [PMID: 15589480 DOI: 10.1016/j.intimp.2004.08.008] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 05/28/2004] [Accepted: 08/30/2004] [Indexed: 11/28/2022]
Abstract
Upon activation, brain macrophages, the microglia, release proinflammatory mediators that play important roles in eliciting neuroinflammatory responses associated with neurodegenerative diseases. As resveratrol, an antioxidant component of grape, has been reported to exert anti-inflammatory activities on macrophages, we investigated its effects on the production of TNF-alpha (TNF-alpha) and nitric oxide (NO) by lipopolysaccharide (LPS)-activated microglia. Exposure of cultured rat cortical microglia and a mouse microglial cell line N9 to LPS increased their release of TNF-alpha and NO, which was significantly inhibited by resveratrol. Further studies revealed that resveratrol suppressed LPS-induced degradation of IkappaBalpha, expression of iNOS and phosphorylation of p38 mitogen-activated protein kinases (MAPKs) in N9 microglial cells. These results demonstrate a potent suppressive effect of resveratrol on proinflammatory responses of microglia, suggesting a therapeutic potential for this compound in neurodegenerative diseases accompanied by microglial activation.
Collapse
Affiliation(s)
- Xiu Li Bi
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Le Y, Yu X, Ruan L, Wang O, Qi D, Zhu J, Lu X, Kong Y, Cai K, Pang S, Shi X, Wang JM. The immunopharmacological properties of transforming growth factor beta. Int Immunopharmacol 2005; 5:1771-82. [PMID: 16275614 DOI: 10.1016/j.intimp.2005.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 06/28/2005] [Accepted: 07/18/2005] [Indexed: 02/02/2023]
Abstract
Transforming growth factor-beta (TGF-beta) family members are multifunctional molecules, which play pivotal roles in regulating cell proliferation, differentiation, migration, development, tissue remodeling and repair. These events are closely associated with host immune responses and inflammation. Despite some controversies on their function in controlling dendritic and T regulatory cell development and activity, the importance of TGF-betas in the progress of autoimmunity and inflammatory diseases has been well appreciated and new aspects of their contribution continue to be recognized. Since one of the major biological properties of TGF-betas is its capacity to potently suppress immune responses, they are considered as candidates for the development of therapeutic agents to fend off undesirable damage associated with immune and inflammatory conditions.
Collapse
Affiliation(s)
- Yingying Le
- Laboratory of Immunologic and Inflammatory Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rempel JD, Quina LA, Blakely-Gonzales PK, Buchmeier MJ, Gruol DL. Viral induction of central nervous system innate immune responses. J Virol 2005; 79:4369-81. [PMID: 15767437 PMCID: PMC1061546 DOI: 10.1128/jvi.79.7.4369-4381.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ability of the central nervous system (CNS) to generate innate immune responses was investigated in an in vitro model of CNS infection. Cultures containing CNS cells were infected with mouse hepatitis virus-JHM, which causes fatal encephalitis in mice. Immunostaining indicated that viral infection had a limited effect on culture characteristics, overall cell survival, or cell morphology at the early postinfection times studied. Results from Affymetrix gene array analysis, assessed on RNA isolated from virally and sham-infected cultures, were compared with parallel protein assays for cytokine, chemokine, and cell surface markers. Of the 126 transcripts found to be differentially expressed between viral and sham infections, the majority were related to immunological responses. Virally induced increases in interleukin-6 and tumor necrosis factor alpha mRNA and protein expression correlated with the genomic induction of acute-phase proteins. Genomic and protein analysis indicated that viral infection resulted in prominent expression of neutrophil and macrophage chemotactic proteins. In addition, mRNA expression of nonclassical class I molecules H2-T10, -T17, -M2, and -Q10, were enhanced three- to fivefold in virus-infected cells compared to sham-infected cells. Thus, upon infection, resident brain cells induced a breadth of innate immune responses that could be vital in directing the outcome of the infection and, in vivo, would provide signals which would summon the peripheral immune system to respond to the infection. Further understanding of how these innate responses participate in immune protection or immunopathology in the CNS will be critical in efforts to intervene in severe encephalitis.
Collapse
Affiliation(s)
- J D Rempel
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|