1
|
Liu Y, Olivers C, Van Lange PAM. Love and hate do not modulate the attentional blink but improve overall performance. Cogn Emot 2024; 38:1001-1014. [PMID: 38594871 DOI: 10.1080/02699931.2024.2338203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
How may feelings of love and hate impact people's attention? We used a modified Attentional Blink (AB) task in which 300 participants were asked to categorise a name representing a person towards whom they felt either hate, love, or neutral (first target) plus identify a number word (second target), both embedded in a rapidly presented stream of other words. The lag to the second target was systematically varied. Contrary to our hypothesis, results revealed that both hated and loved names resulted in higher accuracy for the second target than neutral names, which was largely independent of lag. Also, there we observed no sustained transfer effects of love and hate onto neutral name trials. The findings differ from prior research on attentional blink and transient, non-personal, stimulus-driven emotions, suggesting that interpersonal feelings activate different attention-relevant mechanisms. Relevant to future research, we speculate that love and hate are motivators of goal-directed behaviour that facilitate subsequent information processing.
Collapse
Affiliation(s)
- Yi Liu
- Department of Experimental and Applied Psychology, Institute for Brain and Behaviour Amsterdam (IBBA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Christian Olivers
- Department of Experimental and Applied Psychology, Institute for Brain and Behaviour Amsterdam (IBBA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul A M Van Lange
- Department of Experimental and Applied Psychology, Institute for Brain and Behaviour Amsterdam (IBBA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Martín-Signes M, Paz-Alonso PM, Thiebaut de Schotten M, Chica AB. Integrating brain function and structure in the study of the human attentional networks: a functionnectome study. Brain Struct Funct 2024; 229:1665-1679. [PMID: 38969933 PMCID: PMC11374869 DOI: 10.1007/s00429-024-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/16/2024] [Indexed: 07/07/2024]
Abstract
Attention is a heterogeneous function theoretically divided into different systems. While functional magnetic resonance imaging (fMRI) has extensively characterized their functioning, the role of white matter in cognitive function has gained recent interest due to diffusion-weighted imaging advancements. However, most evidence relies on correlations between white matter properties and behavioral or cognitive measures. This study used a new method that combines the signal from distant voxels of fMRI images using the probability of structural connection given by high-resolution normative tractography. We analyzed three fMRI datasets with a visual perceptual task and three attentional manipulations: phasic alerting, spatial orienting, and executive attention. The phasic alerting network engaged temporal areas and their communication with frontal and parietal regions, with left hemisphere dominance. The orienting network involved bilateral fronto-parietal and midline regions communicating by association tracts and interhemispheric fibers. The executive attention network engaged a broad set of brain regions and white matter tracts connecting them, with a particular involvement of frontal areas and their connections with the rest of the brain. These results partially confirm and extend previous knowledge on the neural substrates of the attentional system, offering a more comprehensive understanding through the integration of structure and function.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Centre (CIMCYC), University of Granada, Granada, 18071, Spain.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, 33000, France.
| | - Pedro M Paz-Alonso
- BCBL. Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, 33000, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Ana B Chica
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Centre (CIMCYC), University of Granada, Granada, 18071, Spain
| |
Collapse
|
3
|
Luna FG, Lupiáñez J, König S, Garscha U, Fischer R. Can transcutaneous auricular vagus nerve stimulation mitigate vigilance loss? Examining the effects of stimulation at individualized versus constant current intensity. Psychophysiology 2024:e14670. [PMID: 39169561 DOI: 10.1111/psyp.14670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
According to the arousal model of vigilance, the locus coeruleus-norepinephrine (LC-NE) system modulates sustained attention over long periods by regulating physiological arousal. Recent research has proposed that transcutaneous auricular vagus nerve stimulation (taVNS) modulates indirect physiological markers of LC-NE activity, although its effects on vigilance have not yet been examined. Aiming to develop a safe and noninvasive procedure to prevent vigilance failures in prolonged tasks, the present study examined whether taVNS can mitigate vigilance loss while modulating indirect markers of LC-NE activity. Following a preregistered protocol (https://osf.io/tu2xy/), 50 participants completed three repeated sessions in a randomized order, in which either active taVNS at individualized intensity set by participant, active taVNS set at 0.5 mA for all participants, or sham taVNS, was delivered while performing an attentional and vigilance task (i.e., ANTI-Vea). Changes in salivary alpha-amylase and cortisol concentrations were measured as markers of LC-NE activity. Self-reports of feelings associated with stimulation and guessing rate of active/sham conditions supported the efficacy of the single-blind procedure. Contrary to our predictions, the observed vigilance decrement was not modulated by active taVNS. Pairwise comparisons showed a mitigation by active taVNS on cortisol reduction across time. Interestingly, Spearman's correlational analyses showed some interindividual effects of taVNS on indirect markers of LC-NE, evidenced by positive associations between changes in salivary alpha-amylase and cortisol in active but not sham taVNS. We highlight the relevance of replicating and extending the present outcomes, investigating further parameters of stimulation and its effects on other indirect markers of LC-NE activity.
Collapse
Affiliation(s)
- Fernando G Luna
- Institute of Psychology, University of Greifswald, Greifswald, Germany
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Juan Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center, University of Granada, Granada, Spain
| | - Stefanie König
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Ulrike Garscha
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rico Fischer
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Jung JY, Yoo YJ, Yoon MJ, Hong BY, Kim TW, Park GY, Lee JI, Lee SH, Im S, Lim SH. The integrity of thalamo-dorsolateral prefrontal cortex tract: a key factor in residual consciousness in disorders of consciousness patients. Front Neurol 2024; 15:1373750. [PMID: 39206298 PMCID: PMC11349516 DOI: 10.3389/fneur.2024.1373750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background The mesocircuit model describes a complex network that includes the prefrontal cortical-striatopallidal-thalamo-cortical loop systems and is involved in the mechanism underlying consciousness in patients with disorders of consciousness (DoC). Inhibitory signals to the thalamus become hyperactive in DoC patients, leading to a loss of consciousness. Reactivating this mesocircuit system is important for recovering consciousness in these patients. We investigated how the residual integrity of the thalamo-dorsolateral prefrontal cortex tract (TDLPFCT) influences consciousness in patients with DoC. Methods This retrospective case-control study included three groups: prolonged DoC (n = 20), stroke without DoC (n = 20), and healthy controls (n = 20). Diffusion tensor imaging (DTI) was performed at least 4 weeks after the onset. Thalamo-DLPFC tracts were reconstructed using diffusion tensor tractography, and fractional anisotropy (FA) and tract volume (TV) were measured for each hemisphere. Consciousness was assessed using the revised coma recovery scale (CRS-R) within a week of brain imaging. Results Significant differences in DLPFCT TV were observed across all three groups, in both affected and less-affected lobes, with the DoC group showing the greatest reduction. A significant correlation was found between the TV of the less-affected TDLPFCT and CRS-R score. Conclusion The integrity of the TDLPFCT, particularly in the less affected hemisphere, is associated with consciousness levels in patients with prolonged DoC. This finding suggests its potential importance in assessing prognosis and further developing therapeutic strategies for patients with DoC.
Collapse
Affiliation(s)
- Ji Yoon Jung
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun Jie Yoo
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Jeong Yoon
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tae-Woo Kim
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Gyeonggi-do, Republic of Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong In Lee
- Department of Rehabilitation Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo-Hwan Lee
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Institute for Basic Medical Science, Catholic Medical Center, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
5
|
He S, Wan H, Du Z, Han L. Impact of sidewall information on drivers' visual load among different lanes: Traditional guiding facilities and decorated pattern. TRAFFIC INJURY PREVENTION 2024; 25:1002-1012. [PMID: 39121357 DOI: 10.1080/15389588.2024.2349811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 08/11/2024]
Abstract
OBJECTIVES This research aims to: (i) compare the effects of different sidewall entrainment facilities on drivers' visual behavior; (ii) compare the effects of the same sight entrainment facilities on drivers in different lanes; (iii) give recommendations for engineering applications based on the results of the study. METHODS The study designed four different scenes, each with symmetrically designed visual facilities on the both sidewalls of the tunnel, scene a represents a typical urban tunnel in China (horizontal stripes on sidewalls), scene b includes vertical stripes on sidewalls in addition to scene a, scene c introduces an LED-arch based on scene b, and scene d features a rhythmic pattern (Wave pattern on sidewalls). 30 participants, 21 men and 9 women, aged 21-54, drove the four scenes. Eye movement data of participants in each lane for different scenes were collected using an eye-tracking device. Visual performance indicators including fixation duration, number of fixations, saccade duration, and saccade amplitude were utilized to comprehensively evaluate drivers' visual behavior. Factor analysis was employed to analyze the impact of different visual guiding facilities on drivers' visual searching abilities. RESULTS There is a significant effect of sidewall guiding facilities and lane location on drivers' visual behavior and loading. Across scenes, drivers' visual load is ranked as follows, from highest to lowest: scene a (baseline) > scene b (horizontal stripes added to scene a) > scene c (LED-arch added to scene b) > scene d (Wave pattern). Furthermore, under the same scene, drivers' visual load in each lane is ranked in descending order: Middle lane > Right lane > Left lane. CONCLUSION Due to the effect of the tunnel structure on the drivers' visual field, drivers in the left lane have the highest visual load in any scenario compared to the other two lanes, which can be ameliorated but not eliminated. Traditional guiding facilities and decorated pattern both improve the visual behavior and reduce drivers' visual load in urban tunnels, especially in scene c and scene d, but scene d should not be used for the entire length of the tunnel in order to prevent driver distraction. In engineering practice, scene c (LED-arch added to scene b) can be set up in general sections of urban tunnels, and decorated pattern can be added to fatigue reminder regions to alleviate driving fatigue.
Collapse
Affiliation(s)
- Shiming He
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China
| | - Hongliang Wan
- School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Zhigang Du
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China
| | - Lei Han
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China
| |
Collapse
|
6
|
Collée M, Rajkumar R, Farrher E, Hagen J, Ramkiran S, Schnellbächer GJ, Khudeish N, Shah NJ, Veselinović T, Neuner I. Predicting performance in attention by measuring key metabolites in the PCC with 7T MRS. Sci Rep 2024; 14:17099. [PMID: 39048626 PMCID: PMC11269673 DOI: 10.1038/s41598-024-67866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
The posterior cingulate cortex (PCC) is a key hub of the default mode network and is known to play an important role in attention. Using ultra-high field 7 Tesla magnetic resonance spectroscopy (MRS) to quantify neurometabolite concentrations, this exploratory study investigated the effect of the concentrations of myo-inositol (Myo-Ins), glutamate (Glu), glutamine (Gln), aspartate or aspartic acid (Asp) and gamma-amino-butyric acid (GABA) in the PCC on attention in forty-six healthy participants. Each participant underwent an MRS scan and cognitive testing, consisting of a trail-making test (TMT A/B) and a test of attentional performance. After a multiple regression analysis and bootstrapping for correction, the findings show that Myo-Ins and Asp significantly influence (p < 0.05) attentional tasks. On one hand, Myo-Ins shows it can improve the completion times of both TMT A and TMT B. On the other hand, an increase in aspartate leads to more mistakes in Go/No-go tasks and shows a trend towards enhancing reaction time in Go/No-go tasks and stability of alertness without signal. No significant (p > 0.05) influence of Glu, Gln and GABA was observed.
Collapse
Affiliation(s)
- M Collée
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - R Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - E Farrher
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - J Hagen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - S Ramkiran
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - G J Schnellbächer
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N Khudeish
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - N J Shah
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Institute of Neuroscience and Medicine 11, INM-11, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - T Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - I Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- JARA - BRAIN - Translational Medicine, Aachen, Germany.
| |
Collapse
|
7
|
Mitchell AG, Ahmad Khan A, Stocks H, McIntosh RD. Beyond bias: A registered examination of the validity of using line bisection to measure non-lateralised attention. Q J Exp Psychol (Hove) 2024:17470218241254761. [PMID: 38706127 DOI: 10.1177/17470218241254761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Line bisection is a task widely used to assess lateral asymmetries of attention, in which participants are asked to mark the midpoint of a horizontal line. The directional bisection error (DBE) from the objective midpoint of the line is the traditional measure of performance. However, an alternative method of studying the bisection behaviour, the endpoint weightings method, has been proposed. This method produces two measures of performance: endpoint weightings bias (EWB) and endpoint weightings sum (EWS). While EWB measures attentional asymmetry, it has been suggested that EWS quantifies the total (non-lateralised) attention allocated to the task. If EWS provides a valid index of non-lateralised attention, then changes in tonic and phasic arousal should systematically affect EWS. In this article, we formally tested this prediction, using time on task to manipulate tonic arousal and unpredictable auditory tones, presented simultaneously with line stimuli, to manipulate phasic arousal. Our registered analyses revealed that neither of our manipulations for tonic or phasic arousal significantly influenced EWS. Therefore, the null hypotheses cannot be rejected. An exploratory analysis of all trials and conditions revealed a significant reduction in EWS with time spent on task. However, the lack of any significant effect of the alerting tone on EWS suggests that EWS may not be a valid measure of generalised attention to the task.
Collapse
Affiliation(s)
- Alexandra G Mitchell
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Aimal Ahmad Khan
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Helen Stocks
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| | - Robert D McIntosh
- Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
9
|
Hu N, Long Q, Wang L, Hu X, Wang X, Ma R, Bai Y, Qian C, Chen A. Task-general or specific: The alertness modulates post-error adjustment. Behav Brain Res 2024; 466:114990. [PMID: 38582411 DOI: 10.1016/j.bbr.2024.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Previous studies have shown that alertness is closely related to executive control function, but its impact on components of post-error adjustment is unknown. This study applied the Attentional Networks Test and the Four-choice Flanker task with three response stimulus intervals (RSIs) to explore the correlation between alertness and post-error adjustment. The linear mixed-effects model of alertness and RSI on the post-error processing indicators showed a significant negative correlation between the alertness and post-error slowing (PES) under 200 ms RSI , as well as between alertness and post-error improvement in accuracy (PIA) under both 700 ms RSI and 1200 ms RSI. Participants with lower alertness showed larger post-error slowing in the early stages, while those with higher alertness had smaller PIA in later stages. This study revealed the effects of alertness on different processing components of post-error adjustment. The control strategies utilized by individuals with high and low levels of alertness differed in preparation for performance monitoring. Alertness improved post-error response speed in a task-unspecific manner, but not post-error adaptation.
Collapse
Affiliation(s)
- Na Hu
- School of Preschool & Special Education, Kunming University, Kunming 650214, China
| | - Quanshan Long
- Faculty of Education, Yunnan Normal University, Kunming 650214, China
| | - Lijun Wang
- Institute of Psychology & Behavior, Henan University, Kaifeng 475001, China
| | - Xueping Hu
- Anhui Engineering Research Center for Intelligent Computing and Application on Cognitive Behavior, Faculty of Education, Huaibei Normal University, Huaibei 23500, China
| | - Xiaoxi Wang
- School of Preschool & Special Education, Kunming University, Kunming 650214, China
| | - Ruimin Ma
- School of Preschool & Special Education, Kunming University, Kunming 650214, China
| | - Yuqing Bai
- School of Preschool & Special Education, Kunming University, Kunming 650214, China
| | - Chen Qian
- School of Preschool & Special Education, Kunming University, Kunming 650214, China
| | - Antao Chen
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
10
|
Gioiosa Maurno N, Phillips-Silver J, Daza González MT. Research of visual attention networks in deaf individuals: a systematic review. Front Psychol 2024; 15:1369941. [PMID: 38800679 PMCID: PMC11120974 DOI: 10.3389/fpsyg.2024.1369941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The impact of deafness on visual attention has been widely discussed in previous research. It has been noted that deficiencies and strengths of previous research can be attributed to temporal or spatial aspects of attention, as well as variations in development and clinical characteristics. Visual attention is categorized into three networks: orienting (exogenous and endogenous), alerting (phasic and tonic), and executive control. This study aims to contribute new neuroscientific evidence supporting this hypothesis. This paper presents a systematic review of the international literature from the past 15 years focused on visual attention in the deaf population. The final review included 24 articles. The function of the orienting network is found to be enhanced in deaf adults and children, primarily observed in native signers without cochlear implants, while endogenous orienting is observed only in the context of gaze cues in children, with no differences found in adults. Results regarding alerting and executive function vary depending on clinical characteristics and paradigms used. Implications for future research on visual attention in the deaf population are discussed.
Collapse
Affiliation(s)
- Nahuel Gioiosa Maurno
- Department of Psychology, University of Almería, Almería, Spain
- CIBIS Research Center, University of Almería, Almería, Spain
| | | | - María Teresa Daza González
- Department of Psychology, University of Almería, Almería, Spain
- CIBIS Research Center, University of Almería, Almería, Spain
| |
Collapse
|
11
|
Hocking DR, Sun X, Haebich K, Darke H, North KN, Vivanti G, Payne JM. Delineating Visual Habituation Profiles in Preschoolers with Neurofibromatosis Type 1 and Autism Spectrum Disorder: A Cross-Syndrome Study. J Autism Dev Disord 2024; 54:1998-2011. [PMID: 36877426 DOI: 10.1007/s10803-023-05913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 03/07/2023]
Abstract
Atypical habituation to repetitive information has been commonly reported in Autism Spectrum Disorder (ASD) but it is not yet clear whether similar abnormalities are present in Neurofibromatosis Type 1 (NF1). We employed a cross-syndrome design using a novel eye tracking paradigm to measure habituation in preschoolers with NF1, children with idiopathic ASD and typically developing (TD) children. Eye movements were recorded to examine fixation duration to simultaneously presented repeating and novel stimuli. Children with NF1 showed a bias for longer look durations to repeating stimuli at the expense of novel stimuli, and slower habituation in NF1 was associated with elevated ASD traits. These findings could indicate aberrant modulation of bottom-up attentional networks that interact with the emergence of ASD phenotypes.
Collapse
Affiliation(s)
- Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
| | - Xiaoyun Sun
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Kristina Haebich
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Hayley Darke
- Murdoch Children's Research Institute, Parkville, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Giacomo Vivanti
- A.J. Drexel Autism Institute, Drexel University, 3020 Market Street, Suite 560, 19104-3734, Philadelphia, PA, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Dietze N, Horstmann G, Poth CH. Alerting effects require the absence of surprise. Acta Psychol (Amst) 2024; 245:104239. [PMID: 38582020 DOI: 10.1016/j.actpsy.2024.104239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024] Open
Abstract
Ongoing actions are interrupted for a brief period of time whenever salient and expectancy-discrepant stimuli (surprise stimuli) interfere with the present task set. By contrast, salient stimuli (alerting cues) preceding targets can facilitate behaviour by reducing time to initiate actions. Both phenomena seem to be at odds with each other as actions are either impaired or facilitated. Therefore, in the present study, we asked how surprise and alerting effects interact. In two experiments, participants performed choice reaction tasks without any prior knowledge of the impending alerting cue. After a baseline period of trials without an alerting cue, the alerting cue was presented for the first time. It was found that the initial presentation of the alerting cue significantly slowed down reaction times. However, after just a single trial this impairment went away. This reveals that the beneficial effects of alerting for action presuppose that alerting cues are expected and represented in the top-down task set. As such, the present findings challenge the standard view of phasic alerting as a bottom-up and entirely stimulus-driven phenomenon.
Collapse
Affiliation(s)
- Niklas Dietze
- Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany.
| | - Gernot Horstmann
- Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - Christian H Poth
- Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Dietze N, Poth CH. Phasic alerting in visual search tasks. Atten Percept Psychophys 2024; 86:707-716. [PMID: 38240893 PMCID: PMC11062964 DOI: 10.3758/s13414-024-02844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Many tasks require one to search for and find important objects in the visual environment. Visual search is strongly supported by cues indicating target objects to mechanisms of selective attention, which enable one to prioritise targets and ignore distractor objects. Besides selective attention, a major influence on performance across cognitive tasks is phasic alertness, a temporary increase of arousal induced by warning stimuli (alerting cues). Alerting cues provide no specific information on whose basis selective attention could be deployed, but have nevertheless been found to speed up perception and simple actions. It is still unclear, however, how alerting affects visual search. Therefore, in the present study, participants performed a visual search task with and without preceding visual alerting cues. Participants had to report the orientation of a target among several distractors. The target saliency was low in Experiment 1 and high in Experiment 2. In both experiments, we found that visual search was faster when a visual alerting cue was presented before the target display. Performance benefits occurred irrespective of how many distractors had been presented along with the target. Taken together, the findings reveal that visual alerting supports visual search independently of the complexity of the search process and the demands for selective attention.
Collapse
Affiliation(s)
- Niklas Dietze
- Department of Psychology, Neuro‑Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, P.O. box 10 01 31, 33501, Bielefeld, Germany.
| | - Christian H Poth
- Department of Psychology, Neuro‑Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, P.O. box 10 01 31, 33501, Bielefeld, Germany
| |
Collapse
|
14
|
Wang L, Meng Q, Lipowski M. The Effect of Emotion on Time Perception in Youth Athletes with Different Alerting Efficiencies. Psychol Res Behav Manag 2024; 17:1255-1269. [PMID: 38524284 PMCID: PMC10959118 DOI: 10.2147/prbm.s445151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Time perception plays a critical role in executing movements in various competitions. However, less research has been conducted on the alerting component of attention in the processing of time perception, and that the effects of emotion on the alerting network show inconsistent effects. This study is aimed to explore the factors that may influence time perception in youth athletes and these relationships. Methods A total of 225 participants were recruited to assess alerting efficiency using the Attention Network Test and were divided into high and low alerting efficiency groups based on the front and back 27% of the ranked alerting scores as a dividing metric, and subsequently participants completed Time replication task under different emotionally induced conditions. Results Alerting efficiency had a significant effect on time perception, with the high alerting efficiency subjects having higher time estimation accuracy [F (1106) = 6.32, p = 0.013, η2p = 0.10] and being more inclined to overestimate time perception [F (1106) = 12.64, p = 0.001, η2 p = 0.11]. An interaction was found between emotion and alerting efficiency on time replication ratio [F (2106) = 3.59, p = 0.031, η2p = 0.08], and further simple effects analyses found that the low alerting efficiency subjects tended to overestimate time in the anger state relative to the happy and neutral states [F (2106) = 5.93, p < 0.01, η2p = 0.10]. Conclusion These findings suggest that high alerting efficiency in youth athletes is associated with greater time perception response advantage; The time perception of low alerting efficiency youth athletes was more likely to be affected by emotions. This study provides a reference for the training of time perception and specialized perceptual ability of youth athletes, enriches the index system of psychological selection of youth athletes.
Collapse
Affiliation(s)
- Lian Wang
- Department of Physical Education, Chengdu Sport University, Chengdu, People’s Republic of China
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Qiao Meng
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Mariusz Lipowski
- Faculty of Social and Humanities, WSB Merito University Gdansk, Gdańsk, Poland
| |
Collapse
|
15
|
Kubera KM, Rashidi M, Schmitgen MM, Barth A, Hirjak D, Otte ML, Sambataro F, Calhoun VD, Wolf RC. Functional network interactions in patients with schizophrenia with persistent auditory verbal hallucinations: A multimodal MRI fusion approach using three-way pICA. Schizophr Res 2024; 265:20-29. [PMID: 37024417 DOI: 10.1016/j.schres.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 04/08/2023]
Abstract
Over the last decade, there have been an increasing number of functional magnetic resonance imaging (fMRI) studies examining brain activity in schizophrenia (SZ) patients with persistent auditory verbal hallucinations (AVH) using either task-based or resting-state fMRI (rs-fMRI) paradigms. Such data have been conventionally collected and analyzed as distinct modalities, disregarding putative crossmodal interactions. Recently, it has become possible to incorporate two or more modalities in one comprehensive analysis to uncover hidden patterns of neural dysfunction not sufficiently captured by separate analysis. A novel multivariate fusion approach to multimodal data analysis, i.e., parallel independent component analysis (pICA), has been previously shown to be a powerful tool in this regard. We utilized three-way pICA to study covarying components among fractional amplitude of low-frequency fluctuations (fALFF) for rs-MRI and task-based activation computed from an alertness and a working memory (WM) paradigm of 15 SZ patients with AVH, 16 non-hallucinating SZ patients (nAVH), and 19 healthy controls (HC). The strongest connected triplet (false discovery rate (FDR)-corrected pairwise correlations) comprised a frontostriatal/temporal network (fALFF), a temporal/sensorimotor network (alertness task), and a frontoparietal network (WM task). Frontoparietal and frontostriatal/temporal network strength significantly differed between AVH patients and HC. Phenomenological features such as omnipotence and malevolence of AVH were associated with temporal/sensorimotor and frontoparietal network strength. The transmodal data confirm a complex interplay of neural systems subserving attentional processes and cognitive control interacting with speech and language processing networks. In addition, the data emphasize the importance of sensorimotor regions modulating specific symptom dimensions of AVH.
Collapse
Affiliation(s)
- Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Mahmoud Rashidi
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Anja Barth
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Luise Otte
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany
| | - Fabio Sambataro
- Department of Neuroscience (DNS), University of Padua, Padua, Italy; Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Germany.
| |
Collapse
|
16
|
Matuz A, Darnai G, Zsidó AN, Janszky J, Csathó Á. Structural neural correlates of mental fatigue and reward-induced improvement in performance. Biol Futur 2024; 75:93-104. [PMID: 37889452 DOI: 10.1007/s42977-023-00187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Neuroimaging studies investigating the association between mental fatigue (henceforth fatigue) and brain physiology have identified many brain regions that may underly the cognitive changes induced by fatigue. These studies focused on the functional changes and functional connectivity of the brain relating to fatigue. The structural correlates of fatigue, however, have received little attention. To fill this gap, this study explored the associations of fatigue with cortical thickness of frontal and parietal regions. In addition, we aimed to explore the associations between reward-induced improvement in performance and neuroanatomical markers in fatigued individuals. Thirty-nine healthy volunteers performed the psychomotor vigilance task for 15 min (i.e., 3 time-on-task blocks of 5 min) out of scanner; followed by an additional rewarded block of the task lasting 5 min. Baseline high-resolution T1-weigthed MR images were obtained. Reaction time increased with time-on-task but got faster again in the rewarded block. Participants' subjective fatigue increased during task performance. In addition, we found that higher increase in subjective mental fatigue was associated with the cortical thickness of the following areas: bilateral precuneus, right precentral gyrus; right pars triangularis and left superior frontal gyrus. Our results suggest that individual differences in subjective mental fatigue may be explained by differences in the degree of cortical thickness of areas that are associated with motor processes, executive functions, intrinsic alertness and are parts of the default mode network.
Collapse
Affiliation(s)
- András Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary.
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Gergely Darnai
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Szigeti Str. 12, Pécs, 7624, Hungary
| | - András N Zsidó
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Psychology, Faculty of Humanities, University of Pécs, Pécs, Hungary
| | - József Janszky
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Szigeti Str. 12, Pécs, 7624, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Árpád Csathó
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
17
|
Palmero LB, Martínez-Pérez V, Tortajada M, Campoy G, Fuentes LJ. Testing the modulation of self-related automatic and others-related controlled processing by chronotype and time-of-day. Conscious Cogn 2024; 118:103633. [PMID: 38199190 DOI: 10.1016/j.concog.2023.103633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 12/17/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
We assessed whether self-related automatic and others-related controlled processes are modulated by chronotype and time-of-day. Here, a shape-label matching task composed of three geometrical shapes arbitrarily associated with you, friend, and stranger was used. Twenty Morning-types, and twenty Evening-types performed the task at the optimal and non-optimal times of day (i.e., 8 AM, or 8:30 PM). Morning-types did not exhibit noticeable synchrony effects, thus proving the better adaptation of these participants to non-optimal moments of the day as compared to Evening-types. Contrary to our predictions regarding the absence of automatic-processing modulation and the presence of controlled-processing influences by time-of-day, we found an influence on self-related but not others-related processing only in Evening-type participants. Although brain structures are not directly tackled, we argue that such modulation may be due to the dependence of the activation of the ventromedial prefrontal cortex (VMPFC), an essential component of the self-attention network on circadian rhythms.
Collapse
Affiliation(s)
- Lucía B Palmero
- Departamento de Psicología Básica y Metodología, Facultad de Psicología y Logopedia, Universidad de Murcia, Murcia, Spain.
| | - Víctor Martínez-Pérez
- Departamento de Psicología Básica y Metodología, Facultad de Psicología y Logopedia, Universidad de Murcia, Murcia, Spain
| | - Miriam Tortajada
- Departamento de Psicología Básica y Metodología, Facultad de Psicología y Logopedia, Universidad de Murcia, Murcia, Spain
| | - Guillermo Campoy
- Departamento de Psicología Básica y Metodología, Facultad de Psicología y Logopedia, Universidad de Murcia, Murcia, Spain
| | - Luis J Fuentes
- Departamento de Psicología Básica y Metodología, Facultad de Psicología y Logopedia, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
18
|
Wang K, Fang Y, Guo Q, Shen L, Chen Q. Superior Attentional Efficiency of Auditory Cue via the Ventral Auditory-thalamic Pathway. J Cogn Neurosci 2024; 36:303-326. [PMID: 38010315 DOI: 10.1162/jocn_a_02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Auditory commands are often executed more efficiently than visual commands. However, empirical evidence on the underlying behavioral and neural mechanisms remains scarce. In two experiments, we manipulated the delivery modality of informative cues and the prediction violation effect and found consistently enhanced RT benefits for the matched auditory cues compared with the matched visual cues. At the neural level, when the bottom-up perceptual input matched the prior prediction induced by the auditory cue, the auditory-thalamic pathway was significantly activated. Moreover, the stronger the auditory-thalamic connectivity, the higher the behavioral benefits of the matched auditory cue. When the bottom-up input violated the prior prediction induced by the auditory cue, the ventral auditory pathway was specifically involved. Moreover, the stronger the ventral auditory-prefrontal connectivity, the larger the behavioral costs caused by the violation of the auditory cue. In addition, the dorsal frontoparietal network showed a supramodal function in reacting to the violation of informative cues irrespective of the delivery modality of the cue. Taken together, the results reveal novel behavioral and neural evidence that the superior efficiency of the auditory cue is twofold: The auditory-thalamic pathway is associated with improvements in task performance when the bottom-up input matches the auditory cue, whereas the ventral auditory-prefrontal pathway is involved when the auditory cue is violated.
Collapse
Affiliation(s)
- Ke Wang
- South China Normal University, Guangzhou, China
| | - Ying Fang
- South China Normal University, Guangzhou, China
| | - Qiang Guo
- Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Lu Shen
- South China Normal University, Guangzhou, China
| | - Qi Chen
- South China Normal University, Guangzhou, China
| |
Collapse
|
19
|
Fu S, Liu F, Zhi X, Wang Y, Liu Y, Chen H, Wang Y, Luo M. Applications of functional near-infrared spectroscopy in non-drug therapy of traditional Chinese medicine: a review. Front Neurosci 2024; 17:1329738. [PMID: 38333602 PMCID: PMC10851877 DOI: 10.3389/fnins.2023.1329738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Non-drug therapies of traditional Chinese medicine (TCM), including acupuncture, massage, tai chi chuan, and Baduanjin, have emerged as widespread interventions for the treatment of various diseases in clinical practice. In recent years, preliminary studies on the mechanisms of non-drug therapies of TCM have been mostly based on functional near-infrared spectroscopy (fNIRS) technology. FNIRS is an innovative, non-invasive tool to monitor hemodynamic changes in the cerebral cortex. Our review included clinical research conducted over the last 10 years, establishing fNIRS as a reliable and stable neuroimaging technique. This review explores new applications of this technology in the field of neuroscience. First, we summarize the working principles of fNIRS. We then present preventive research on the use of fNIRS in healthy individuals and therapeutic research on patients undergoing non-drug therapies of TCM. Finally, we emphasize the potential for encouraging future advancements in fNIRS studies to establish a theoretical framework for research in related fields.
Collapse
Affiliation(s)
- Shifang Fu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fanqi Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhi
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yijia Liu
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- Department of Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanguo Wang
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingchi Luo
- Traditional Chinese Medicine Rehabilitation Center, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Schnebelen D, Reynaud E, Ouimet MC, Seguin P, Navarro J. A neuroergonomics approach to driver's cooperation with Lane Departure Warning Systems. Behav Brain Res 2024; 456:114699. [PMID: 37802390 DOI: 10.1016/j.bbr.2023.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Lane Departure Warning Systems (LDWS) are automation that warn drivers in case of immediate lane departure. While LDWS are associated with increased road safety, little is known about the neural aspects of the cooperation between an LDWS and the driver behind the wheel. The present study addresses this issue by combining fMRI and driving simulation for experienced and novice drivers. The results reveal brain areas activated immediately after warning: it involves areas linked to the alertness network (midbrain, thalamus, anterior cingulate cortex), to motor actions and planning (motor and premotor cortexes; BA4/6 -cerebellum) and to attentional redirection (superior frontal cortex; BA10). There were no differences between experienced and novice drivers in this network of cerebral areas. However, prior driving experience mediates the number of lane departures. The results allow for refining a model of cooperation proposed earlier in the literature, by adding a cerebral dimension.
Collapse
Affiliation(s)
- Damien Schnebelen
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), University Lyon 2, 69676 Bron, France
| | - Emanuelle Reynaud
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), University Lyon 2, 69676 Bron, France
| | - Marie Claude Ouimet
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | - Perrine Seguin
- Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, CRNL, Lyon, France
| | - Jordan Navarro
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), University Lyon 2, 69676 Bron, France; Institut Universitaire de France, France.
| |
Collapse
|
21
|
Hu Y, Hu L, Wang Y, Luo X, Zhao X, He L. The effects of non-invasive brain stimulation on disorder of consciousness in patients with brain injury: A systematic review and meta-analysis of randomized controlled trial. Brain Res 2024; 1822:148633. [PMID: 37839670 DOI: 10.1016/j.brainres.2023.148633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Disorders of consciousness (DOC) result from neural system injury and manifest as changes in arousal or awareness. This systematic review and meta-analysis aimed to investigate the therapeutic effects of non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), on consciousness dysfunction in patients with brain disorders. METHODS Literature was systematically searched in Medline, Embase, Cochrane database, Web of Science, EBSCO from inception to May 2023. Only randomized controlled trial with NIBS as an intervention and participants with DOC were included. RESULTS A total of 7 studies with 313 participants were included for meta-analysis. Compared with sham- or placebo-stimulation, NIBS can improve the Coma Recovery Scale-Revised scores significantly (mean difference [MD] = 1.96, 95 % confidence interval [CI] = [1.49; 2.43], P <.0001). CONCLUSION NIBS has a significant positive effect in enhancing the symptoms of DOC. Nevertheless, it is imperative for further investigations comprising high-quality research designs and larger sample sizes in order to comprehensively elucidate the effects of NIBS techniques on diverse targets of stimulation within the population of individuals suffering from DOC.
Collapse
Affiliation(s)
- Yu Hu
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Linzhe Hu
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Yuchan Wang
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Xiaozhou Luo
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Xin Zhao
- Department of Rehabilitation Medicine, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 82 Qinglong Street, Chengdu 610014, China.
| | - Lin He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, GuoXueXiang 37, Chengdu 610041, China.
| |
Collapse
|
22
|
Gangemi A, De Luca R, Fabio RA, Lauria P, Rifici C, Pollicino P, Marra A, Olivo A, Quartarone A, Calabrò RS. Effects of Virtual Reality Cognitive Training on Neuroplasticity: A Quasi-Randomized Clinical Trial in Patients with Stroke. Biomedicines 2023; 11:3225. [PMID: 38137446 PMCID: PMC10740852 DOI: 10.3390/biomedicines11123225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive Rehabilitation (CR) is a therapeutic approach designed to improve cognitive functioning after a brain injury, including stroke. Two major categories of techniques, namely traditional and advanced (including virtual reality-VR), are widely used in CR for patients with various neurological disorders. More objective outcome measures are needed to better investigate cognitive recovery after a stroke. In the last ten years, the application of electroencephalography (EEG) as a non-invasive and portable neuroimaging method has been explored to extract the hallmarks of neuroplasticity induced by VR rehabilitation approaches, particularly within the chronic stroke population. The aim of this study is to investigate the neurophysiological effects of CR conducted in a virtual environment using the VRRS device. Thirty patients with moderate-to-severe ischemic stroke in the chronic phase (at least 6 months after the event), with a mean age of 58.13 (±8.33) for the experimental group and 57.33 (±11.06) for the control group, were enrolled. They were divided into two groups: an experimental group and a control group, receiving neurocognitive stimulation using VR and the same amount of conventional neurorehabilitation, respectively. To study neuroplasticity changes after the training, we focused on the power band spectra of theta, alpha, and beta EEG rhythms in both groups. We observed that when VR technology was employed to amplify the effects of treatments on cognitive recovery, significant EEG-related neural improvements were detected in the primary motor circuit in terms of power spectral density and time-frequency domains. Indeed, EEG analysis suggested that VR resulted in a significant increase in both the alpha band power in the occipital areas and the beta band power in the frontal areas, while no significant variations were observed in the theta band power. Our data suggest the potential effectiveness of a VR-based rehabilitation approach in promoting neuroplastic changes even in the chronic phase of ischemic stroke.
Collapse
Affiliation(s)
- Antonio Gangemi
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Rosaria De Luca
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Rosa Angela Fabio
- Department of Economics, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Paola Lauria
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Carmela Rifici
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Patrizia Pollicino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Angela Marra
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Antonella Olivo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113, Cda Casazza, 98124 Messina, Italy; (A.G.); (R.D.L.); (P.L.); (C.R.); (P.P.); (A.M.); (A.O.); (A.Q.)
| |
Collapse
|
23
|
Ezzedini S, Ben Jebara S, Abidi M, de Marco G. Influence of Mental Training of Attentional Control on Autonomic Arousal Within the Framework of the Temporal Preparation of a Force Task. Cogn Sci 2023; 47:e13391. [PMID: 38043098 DOI: 10.1111/cogs.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
While temporal preparation has frequently been examined through the manipulation of foreperiods, the role of force level during temporal preparation remains underexplored. In our study, we propose to manipulate mental training of attentional control in order to shed light on the role of the force level and autonomic nervous system in the temporal preparation of an action. Forty subjects, divided into mental training group (n = 20) and without mental training group (n = 20), participated in this study. The influence of the attentional control and force levels on the autonomic nervous system were measured using the skin conductance response and the heart rate variability; the accuracy of the motor responses was measured using a method derived from machine learning. Behaviorally, only the mental training group reinforced its motor and attentional control. When using short foreperiod durations and high force level, motor and attentional control decreased, consistent with the dominant sympathetic system. This resulted in an increased anticipation rate of responses with a higher reaction time compared to the long foreperiods duration and low force level, in which the reaction time significantly decreased, with enhancement of the expected force level, showing consistency with the dominant parasympathetic system. Interestingly, results revealed a predictive relationship between the sympathovagal balance and motor and attentional control during the long foreperiods and low force level. Finally, results demonstrate that attentional mental training leads to the reinforcement of interactions between the autonomic nervous system and attentional processes which are involved in the temporal preparation of a force task.
Collapse
Affiliation(s)
| | - Sofia Ben Jebara
- Carthage University, Higher School of Communications of Tunis COSIM Laboratory, Tunisia
| | - Malek Abidi
- Laboratory LINP2, UPL, Paris Nanterre University
- COMUE Paris Lumières University
| | - Giovanni de Marco
- Laboratory LINP2, UPL, Paris Nanterre University
- COMUE Paris Lumières University
| |
Collapse
|
24
|
DeGutis J, Aul C, Barthelemy OJ, Davis BL, Alshuaib S, Marin A, Kinger SB, Ellis TD, Cronin-Golomb A. Side of motor symptom onset predicts sustained attention deficits and motor improvements after attention training in Parkinson's disease. Neuropsychologia 2023; 190:108698. [PMID: 37806442 DOI: 10.1016/j.neuropsychologia.2023.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE Parkinson's disease (PD) side of motor symptom onset has been associated with distinct cognitive deficits; individuals with left-side onset (LPD) show more visuospatial impairments, whereas those with right-side onset (RPD) show more verbal impairments. Non-spatial attention is a critical cognitive ability associated with motor functioning that is right hemisphere lateralized but has not been characterized with regard to PD side of onset. We compared individuals with LPD and RPD on non-spatial attention tasks and examined differential responses to a 4-week sustained attention training program. METHOD Participants included 9 with LPD and 12 with RPD, who performed both brief and extended go/no-go continuous performance tasks and an attentional blink task. Participants also engaged in an at-home sustained attention training program, Tonic and Phasic Alertness Training (TAPAT), 5 days/week for 4 weeks. We assessed cognitive and motor symptoms before and after training, and after a 4-week no-contact period. RESULTS At baseline, participants with LPD exhibited worse performance than those with RPD on the extended continuous performance task, indicating specific deficits in sustaining attention. Poorer attention was associated with worse clinical motor scores. Notably, side of onset had a significant effect on clinical motor changes after sustained attention training, with only LPD participants improving after training, and 4/9 showing clinically meaningful improvements. CONCLUSIONS Compared to RPD, participants with LPD had poorer sustained attention pre-training and were more likely to improve on clinical motor functioning after sustained attention training. These findings support mechanistic differences between LPD and RPD and suggest potential differential treatment approaches.
Collapse
Affiliation(s)
- Joseph DeGutis
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Boston Attention and Learning Laboratory (BALLAB), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Courtney Aul
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Boston Attention and Learning Laboratory (BALLAB), VA Boston Healthcare System, Boston, MA, USA
| | - Olivier J Barthelemy
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Breanna L Davis
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Shaikhah Alshuaib
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Anna Marin
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Shraddha B Kinger
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Terry D Ellis
- Department of Physical Therapy, Boston University College of Health and Rehabilitation Sciences: Sargent College, Boston, MA, USA
| | - Alice Cronin-Golomb
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
25
|
Huang Y, Deng Y, Kong L, Zhang X, Wei X, Mao T, Xu Y, Jiang C, Rao H. Vigilant attention mediates the association between resting EEG alpha oscillations and word learning ability. Neuroimage 2023; 281:120369. [PMID: 37690592 DOI: 10.1016/j.neuroimage.2023.120369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023] Open
Abstract
Individuals exhibit considerable variability in their capacity to learn and retain new information, including novel vocabulary. Prior research has established the importance of vigilance and electroencephalogram (EEG) alpha rhythm in the learning process. However, the interplay between vigilant attention, EEG alpha oscillations, and an individual's word learning ability (WLA) remains elusive. To address this knowledge gap, here we conducted two experiments with a total of 140 young and middle-aged adults who underwent resting EEG recordings prior to completing a paired-associate word learning task and a psychomotor vigilance test (PVT). The results of both experiments consistently revealed significant positive correlations between WLA and resting EEG alpha oscillations in the occipital and frontal regions. Furthermore, the association between resting EEG alpha oscillations and WLA was mediated by vigilant attention, as measured by the PVT. These findings provide compelling evidence supporting the crucial role of vigilant attention in linking EEG alpha oscillations to an individual's learning ability.
Collapse
Affiliation(s)
- Yan Huang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; School of Foreign Languages, East China University of Science and Technology, Shanghai, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Lingda Kong
- Institute of Corpus, Shanghai International Studies University, Shanghai, China
| | - Xiumei Zhang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xiaobao Wei
- School of Foreign Languages, East China University of Science and Technology, Shanghai, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Yong Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China.
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Chaudhary IS, Shyi GCW, Huang STT. A systematic review and activation likelihood estimation meta-analysis of fMRI studies on arousing or wake-promoting effects in Buddhist meditation. Front Psychol 2023; 14:1136983. [PMID: 38022985 PMCID: PMC10646186 DOI: 10.3389/fpsyg.2023.1136983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Conventional Buddhist texts illustrate meditation as a condition of relaxed alertness that must fend against extreme hypoarousal (sleep, drowsiness) and extreme hyperarousal (restlessness). Theoretical, neurophysiological, and neuroimaging investigations of meditation have highlighted the relaxing effects and hypoarousing without emphasizing the alertness-promoting effects. Here we performed a systematic review supported by an activation-likelihood estimate (ALE) meta-analysis in an effort to counterbalance the surfeit of scholarship emphasizing the hypoarousing and relaxing effects of different forms of Buddhist meditation. Specifically, the current systematic review-cum-meta-analytical review seeks to highlight more support for meditation's wake-promoting effects by drawing from neuroimaging research during wakefulness and meditation. In this systematic review and meta-analysis of 22 fMRI studies, we aim to highlight support for Buddhist meditation's wake-promoting or arousing effects by identifying brain regions associated with alertness during meditation. The most significant peaks were localized medial frontal gyrus (MFG) and precuneus. We failed to determine areas ostensibly common to alertness-related meditation such as the medial prefrontal cortex (mPFC), superior parietal lobule, basal ganglia, thalamus, most likely due to the relatively fewer fMRI investigations that used wakefulness-promoting meditation techniques. Also, we argue that forthcoming research on meditation, related to alertness or wakefulness, continues to adopt a multi-modal method to investigate the correlation between actual behaviors and neural networks connected to Buddhist meditation. Moreover, we recommend the implementation of fMRI paradigms on Buddhist meditation with clinically diagnosed participants to complement recent trends in psychotherapy such as mindfulness-based cognitive therapy (MBCT).
Collapse
Affiliation(s)
- Inder S. Chaudhary
- PhD Program in Cognitive Sciences, National Chung Cheng University, Chiayi City, Taiwan
- Center for Research in Cognitive Sciences, National Chung Cheng University, Chiayi City, Taiwan
- Department of Psychology, National Chung Cheng University, Chiayi City, Taiwan
| | - Gary Chon-Wen Shyi
- PhD Program in Cognitive Sciences, National Chung Cheng University, Chiayi City, Taiwan
- Center for Research in Cognitive Sciences, National Chung Cheng University, Chiayi City, Taiwan
- Department of Psychology, National Chung Cheng University, Chiayi City, Taiwan
| | - Shih-Tseng Tina Huang
- PhD Program in Cognitive Sciences, National Chung Cheng University, Chiayi City, Taiwan
- Center for Research in Cognitive Sciences, National Chung Cheng University, Chiayi City, Taiwan
- Department of Psychology, National Chung Cheng University, Chiayi City, Taiwan
| |
Collapse
|
27
|
Kozik V, Reuken P, Utech I, Gramlich J, Stallmach Z, Demeyere N, Rakers F, Schwab M, Stallmach A, Finke K. Characterization of neurocognitive deficits in patients with post-COVID-19 syndrome: persistence, patients' complaints, and clinical predictors. Front Psychol 2023; 14:1233144. [PMID: 37915528 PMCID: PMC10616256 DOI: 10.3389/fpsyg.2023.1233144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Cognitive symptoms persisting beyond 3 months following COVID-19 present a considerable disease burden. We aimed to establish a domain-specific cognitive profile of post-COVID-19 syndrome (PCS). We examined the deficits' persistence, relationships with subjective cognitive complaints, and clinical variables, to identify the most relevant cognitive deficits and their predictors. Methods This cross-sectional study examined cognitive performance and patient-reported and clinical predictors of cognitive deficits in PCS patients (n = 282) and socio-demographically comparable healthy controls (n = 52). Results On the Oxford Cognitive Screen-Plus, the patient group scored significantly lower in delayed verbal memory, attention, and executive functioning than the healthy group. In each affected domain, 10 to 20% of patients performed more than 1.5 SD below the control mean. Delayed memory was particularly affected, with a small effect of hospitalization and age. Attention scores were predicted by hospitalization and fatigue. Discussion Thus, PCS is associated with long-term cognitive dysfunction, particularly in delayed memory, attention, and executive functioning. Memory deficits seem to be of particular relevance to patients' experience of subjective impairment. Hospitalization, fatigue, and age seem to predict cognitive deficits, while time since infection, depression, and pre-existing conditions do not.
Collapse
Affiliation(s)
- Valeska Kozik
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Philipp Reuken
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Isabelle Utech
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Judith Gramlich
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Zoe Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Nele Demeyere
- Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Florian Rakers
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Jena, Germany
- Department of Psychology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
28
|
Unsworth N, Miller AL. Pupillary correlates of preparatory control in the Stroop task. Atten Percept Psychophys 2023; 85:2277-2295. [PMID: 37407798 DOI: 10.3758/s13414-023-02751-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
In three experiments, individual differences in preparatory control in the Stroop task were examined. Participants performed variants of the Stroop task while pupillary responses were examined during the preparatory interval. Variation in working memory capacity was also examined. High Stroop performers tended to demonstrate larger preparatory pupillary responses than low Stroop performers. In Experiment 2, when participants were given pre-cues indicating the congruency of the upcoming trial (MATCHING vs. CONFLICTING), high Stroop performers had larger preparatory pupillary responses for incongruent trials compared to congruent trials, whereas low Stroop performers demonstrated similar preparatory pupillary responses on both incongruent and congruent trials. These results suggest that variation in Stroop performance is partially due to individual differences in the ability to ramp up and regulate the intensity of attention allocated to preparatory control processes. Additionally, there was limited evidence that preparatory control processes partially account for the relation between working memory capacity and performance on the Stroop. Overall, these results provide evidence that individual differences in Stroop performance are partialy due to variation in preparatory control.
Collapse
Affiliation(s)
- Nash Unsworth
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA.
| | - Ashley L Miller
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Martin EM, Rupprecht S, Schrenk S, Kattlun F, Utech I, Radscheidt M, Brodoehl S, Schwab M, Reuken PA, Stallmach A, Habekost T, Finke K. A hypoarousal model of neurological post-COVID syndrome: the relation between mental fatigue, the level of central nervous activation and cognitive processing speed. J Neurol 2023; 270:4647-4660. [PMID: 37356025 PMCID: PMC10511382 DOI: 10.1007/s00415-023-11819-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Knowledge on the nature of post-COVID neurological sequelae often manifesting as cognitive dysfunction and fatigue is still unsatisfactory. OBJECTIVES We assumed that cognitive dysfunction and fatigue in post-COVID syndrome are critically linked via hypoarousal of the brain. Thus, we assessed whether tonic alertness as a neurocognitive index of arousal is reduced in these patients and how this relates to the level of central nervous activation and subjective mental fatigue as further indices of arousal. METHODS 40 post-COVID patients with subjective cognitive dysfunction and 40 matched healthy controls underwent a whole-report paradigm of briefly presented letter arrays. Based on report performance and computational modelling according to the theory of visual attention, the parameter visual processing speed (VPS) was quantified as a proxy of tonic alertness. Pupillary unrest was assessed as a measure of central nervous activation. The Fatigue Assessment Scale was applied to assess subjective mental fatigue using the corresponding subscale. RESULTS VPS was reduced in post-COVID patients compared to controls (p = 0.005). In these patients, pupillary unrest (p = 0.029) and mental fatigue (p = 0.001) predicted VPS, explaining 34% of the variance and yielding a large effect with f2 = 0.51. CONCLUSION In post-COVID patients with subjective cognitive dysfunction, hypoarousal of the brain is reflected in decreased processing speed which is explained by a reduced level of central nervous activation and a higher level of mental fatigue. In turn, reduced processing speed objectifies mental fatigue as a core subjective clinical complaint in post-COVID patients.
Collapse
Affiliation(s)
- Eva Maria Martin
- Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Sven Rupprecht
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital Jena, Jena, Germany
| | - Simon Schrenk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Fabian Kattlun
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Isabelle Utech
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Monique Radscheidt
- Department of Neurology, Jena University Hospital, Jena, Germany
- Interdisciplinary Centre for Sleep and Ventilatory Medicine, Jena University Hospital Jena, Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Philipp A Reuken
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Thomas Habekost
- Center of Visual Cognition, University of Copenhagen, Copenhagen, Denmark
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
30
|
Xing S, Yang J. The Impact of Interpreting Training Experience on the Attentional Networks and Their Dynamics. Brain Sci 2023; 13:1306. [PMID: 37759907 PMCID: PMC10526303 DOI: 10.3390/brainsci13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Interpreting, a complicated and demanding bilingual task, depends heavily on attentional control. However, few studies have focused on the interpreters' advantages in attention, and the findings so far have been inconsistent. Meanwhile, the connection between attentional networks and other cognitive abilities, such as working memory (WM), has rarely been explored in interpreters. The present study investigated whether interpreting experience (IE) contributed to the attentional networks of bilinguals and explored the link between interpreters' attention and WM. Three groups of Chinese-English bilinguals, differing only in their duration of interpreting training (the More-IE group, the Less-IE group, and the No-IE group), completed the Attention Network Test (ANT). Results showed that only the alerting network was more efficient in the More-IE group than in the Less-IE and No-IE groups; moreover, the dynamics between the alerting and executive networks were significant only in the More-IE group. Furthermore, we found a negative correlation between the executive effect and the working memory capacity (WMC) in the More-IE group. Our study validated and provided empirical support for the Attentional Control Model, stimulating further research into neurocognitive mechanisms of advanced second language learning.
Collapse
Affiliation(s)
- Shunjie Xing
- Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou 510420, China;
| | - Jing Yang
- School of International Studies, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Chaudhari A, Wang X, Wu A, Liu H. Repeated Transcranial Photobiomodulation with Light-Emitting Diodes Improves Psychomotor Vigilance and EEG Networks of the Human Brain. Bioengineering (Basel) 2023; 10:1043. [PMID: 37760145 PMCID: PMC10525861 DOI: 10.3390/bioengineering10091043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Transcranial photobiomodulation (tPBM) has been suggested as a non-invasive neuromodulation tool. The repetitive administration of light-emitting diode (LED)-based tPBM for several weeks significantly improves human cognition. To understand the electrophysiological effects of LED-tPBM on the human brain, we investigated alterations by repeated tPBM in vigilance performance and brain networks using electroencephalography (EEG) in healthy participants. Active and sham LED-based tPBM were administered to the right forehead of young participants twice a week for four weeks. The participants performed a psychomotor vigilance task (PVT) during each tPBM/sham experiment. A 64-electrode EEG system recorded electrophysiological signals from each participant during the first and last visits in a 4-week study. Topographical maps of the EEG power enhanced by tPBM were statistically compared for the repeated tPBM effect. A new data processing framework combining the group's singular value decomposition (gSVD) with eLORETA was implemented to identify EEG brain networks. The reaction time of the PVT in the tPBM-treated group was significantly improved over four weeks compared to that in the sham group. We observed acute increases in EEG delta and alpha powers during a 10 min LED-tPBM while the participants performed the PVT task. We also found that the theta, beta, and gamma EEG powers significantly increased overall after four weeks of LED-tPBM. Combining gSVD with eLORETA enabled us to identify EEG brain networks and the corresponding network power changes by repeated 4-week tPBM. This study clearly demonstrated that a 4-week prefrontal LED-tPBM can neuromodulate several key EEG networks, implying a possible causal effect between modulated brain networks and improved psychomotor vigilance outcomes.
Collapse
Affiliation(s)
| | | | | | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX 76019, USA; (A.C.); (X.W.); (A.W.)
| |
Collapse
|
32
|
Seydell-Greenwald A, Wang X, Newport EL, Bi Y, Striem-Amit E. Spoken language processing activates the primary visual cortex. PLoS One 2023; 18:e0289671. [PMID: 37566582 PMCID: PMC10420367 DOI: 10.1371/journal.pone.0289671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Primary visual cortex (V1) is generally thought of as a low-level sensory area that primarily processes basic visual features. Although there is evidence for multisensory effects on its activity, these are typically found for the processing of simple sounds and their properties, for example spatially or temporally-congruent simple sounds. However, in congenitally blind individuals, V1 is involved in language processing, with no evidence of major changes in anatomical connectivity that could explain this seemingly drastic functional change. This is at odds with current accounts of neural plasticity, which emphasize the role of connectivity and conserved function in determining a neural tissue's role even after atypical early experiences. To reconcile what appears to be unprecedented functional reorganization with known accounts of plasticity limitations, we tested whether V1's multisensory roles include responses to spoken language in sighted individuals. Using fMRI, we found that V1 in normally sighted individuals was indeed activated by comprehensible spoken sentences as compared to an incomprehensible reversed speech control condition, and more strongly so in the left compared to the right hemisphere. Activation in V1 for language was also significant and comparable for abstract and concrete words, suggesting it was not driven by visual imagery. Last, this activation did not stem from increased attention to the auditory onset of words, nor was it correlated with attentional arousal ratings, making general attention accounts an unlikely explanation. Together these findings suggest that V1 responds to spoken language even in sighted individuals, reflecting the binding of multisensory high-level signals, potentially to predict visual input. This capability might be the basis for the strong V1 language activation observed in people born blind, re-affirming the notion that plasticity is guided by pre-existing connectivity and abilities in the typically developed brain.
Collapse
Affiliation(s)
- Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Elissa L. Newport
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Ella Striem-Amit
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
33
|
Luna FG, Aguirre MJ, Martín-Arévalo E, Ibáñez A, Lupiáñez J, Barttfeld P. Event-related potentials associated with attentional networks evidence changes in executive and arousal vigilance. Psychophysiology 2023; 60:e14272. [PMID: 36812133 PMCID: PMC11177283 DOI: 10.1111/psyp.14272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Attention is regulated by three independent but interacting networks, that is, alerting, comprising phasic alertness and vigilance, orienting, and executive control. Previous studies analyzing event-related potentials (ERPs) associated with attentional networks have focused on phasic alertness, orienting, and executive control, without an independent measure of vigilance. ERPs associated with vigilance have been instead measured in separate studies and via different tasks. The present study aimed to differentiate ERPs associated with attentional networks by simultaneously measuring vigilance along with phasic alertness, orienting, and executive control. Forty participants (34 women, age: M = 25.96; SD = 4.96) completed two sessions wherein the electroencephalogram was recorded while they completed the Attentional Networks Test for Interactions and Vigilance-executive and arousal components, a task that measures phasic alertness, orienting, and executive control along with executive (i.e., detection of infrequent critical signals) and arousal (i.e., sustaining a fast reaction to environmental stimuli) vigilance. ERPs previously associated with attentional networks were replicated here: (a) N1, P2, and contingent negative variation for phasic alertness; (b) P1, N1, and P3 for orienting; and (c) N2 and slow positivity for executive control. Importantly, different ERPs were associated with vigilance: while the executive vigilance decrement was associated with an increase in P3 and slow positivity across time-on-task, arousal vigilance loss was associated with reduced N1 and P2 amplitude. The present study shows that attentional networks can be described by different ERPs simultaneously observed in a single session, including independent measures of executive and arousal vigilance on its assessment.
Collapse
Affiliation(s)
- Fernando Gabriel Luna
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julieta Aguirre
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elisa Martín-Arévalo
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Agustín Ibáñez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés & CONICET, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), US and Trinity College Dublin (TCD), Dublin, Ireland
| | - Juan Lupiáñez
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Pablo Barttfeld
- Cognitive Science Group, Instituto de Investigaciones Psicológicas (IIPsi, CONICET-UNC), Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
34
|
Dietze N, Poth CH. Vision rivals audition in alerting humans for fast action. Acta Psychol (Amst) 2023; 238:103991. [PMID: 37515870 DOI: 10.1016/j.actpsy.2023.103991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/31/2023] Open
Abstract
Successful behaviour requires that humans act promptly upon the ubiquitous rapid changes in the environment. Prompt actions are supported by phasic alertness, the increased readiness for perception and action elicited by warning stimuli (alerting cues). Audition is assumed to induce phasic alertness for action faster and more strongly than other senses. Here, we show that vision can be equally effective as audition. We investigated the temporal evolution and the effectiveness of visual and auditory alerting for action in a speeded choice task, while controlling for basic sensitivity differences between the modalities that are unrelated to action control (by matching auditory and visual stimuli according to reaction times in a prior simple detection task). Results revealed that alerting sped up responses, but this happened equally fast and equally strong for visual and auditory alerting cues. Thus, these findings argue that vision rivals audition in phasic alerting for prompt actions, and suggest that the underlying mechanisms work across both modalities.
Collapse
Affiliation(s)
- Niklas Dietze
- Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany.
| | - Christian H Poth
- Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
35
|
Xu M, Qian L, Wang S, Cai H, Sun Y, Thakor N, Qi X, Sun Y. Brain network analysis reveals convergent and divergent aberrations between mild stroke patients with cortical and subcortical infarcts during cognitive task performing. Front Aging Neurosci 2023; 15:1193292. [PMID: 37484690 PMCID: PMC10358837 DOI: 10.3389/fnagi.2023.1193292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Although consistent evidence has revealed that cognitive impairment is a common sequela in patients with mild stroke, few studies have focused on it, nor the impact of lesion location on cognitive function. Evidence on the neural mechanisms underlying the effects of mild stroke and lesion location on cognitive function is limited. This prompted us to conduct a comprehensive and quantitative study of functional brain network properties in mild stroke patients with different lesion locations. Specifically, an empirical approach was introduced in the present work to explore the impact of mild stroke-induced cognitive alterations on functional brain network reorganization during cognitive tasks (i.e., visual and auditory oddball). Electroencephalogram functional connectivity was estimated from three groups (i.e., 40 patients with cortical infarctions, 48 patients with subcortical infarctions, and 50 healthy controls). Using graph theoretical analysis, we quantitatively investigated the topological reorganization of functional brain networks at both global and nodal levels. Results showed that both patient groups had significantly worse behavioral performance on both tasks, with significantly longer reaction times and reduced response accuracy. Furthermore, decreased global and local efficiency were found in both patient groups, indicating a mild stroke-related disruption in information processing efficiency that is independent of lesion location. Regarding the nodal level, both divergent and convergent node strength distribution patterns were revealed between both patient groups, implying that mild stroke with different lesion locations would lead to complex regional alterations during visual and auditory information processing, while certain robust cognitive processes were independent of lesion location. These findings provide some of the first quantitative insights into the complex neural mechanisms of mild stroke-induced cognitive impairment and extend our understanding of underlying alterations in cognition-related brain networks induced by different lesion locations, which may help to promote post-stroke management and rehabilitation.
Collapse
Affiliation(s)
- Mengru Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Linze Qian
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Sujie Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Huaying Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nitish Thakor
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Sherman SO, Greenstein M, Basner M, Clark TK, Anderson AP. Effects of additive sensory noise on cognition. Front Hum Neurosci 2023; 17:1092154. [PMID: 37333835 PMCID: PMC10270290 DOI: 10.3389/fnhum.2023.1092154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Background Adding noise to a system to improve a weak signal's throughput is known as stochastic resonance (SR). SR has been shown to improve sensory perception. Some limited research shows noise can also improve higher order processing, such as working memory, but it is unknown whether SR can broadly improve cognition. Objective We investigated cognitive performance while applying auditory white noise (AWN) and/or noisy galvanic vestibular stimulation (nGVS). Methods We measured cognitive performance (n = 13 subjects) while completing seven tasks in the cognition test battery (CTB). Cognition was assessed with and without the influence of AWN, nGVS, and both simultaneously. Performance in speed, accuracy, and efficiency was observed. A subjective questionnaire regarding preference for working in noisy environments was collected. Results We did not find broad cognitive performance improvement under the influence of noise (p > 0.1). However, a significant interaction was found between subject and noise condition for accuracy (p = 0.023), indicating that some subjects exhibited cognitive changes with the addition of noise. Across all metrics, noisy environment preference may trend to be a potential indicator of whether subjects will exhibit SR cognitive benefits with a significant predictor in efficiency (p = 0.048). Conclusion This study investigated using additive sensory noise to induce SR in overall cognition. Our results suggest that using noise to improve cognition is not applicable for a broad population; however, the effect of noise differs across individuals. Further, subjective questionnaires may be a means to identify which individuals are sensitive to SR cognitive benefits, but further investigation is needed.
Collapse
Affiliation(s)
- Sage O. Sherman
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Maya Greenstein
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Mathias Basner
- Unit for Experimental Psychiatry, Division of Sleep and Chronobiology, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Torin K. Clark
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Allison P. Anderson
- Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
37
|
Dietze N, Recker L, Poth CH. Warning signals only support the first action in a sequence. Cogn Res Princ Implic 2023; 8:29. [PMID: 37171646 PMCID: PMC10182231 DOI: 10.1186/s41235-023-00484-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/30/2023] [Indexed: 05/13/2023] Open
Abstract
Acting upon target stimuli from the environment becomes faster when the targets are preceded by a warning (alerting) cue. Accordingly, alerting is often used to support action in safety-critical contexts (e.g., honking to alert others of a traffic situation). Crucially, however, the benefits of alerting for action have been established using laboratory tasks assessing only simple choice reactions. Real-world actions are considerably more complex and mainly consist of sensorimotor sequences of several sub-actions. Therefore, it is still unknown if the benefits of alerting for action transfer from simple choice reactions to such sensorimotor sequences. Here, we investigated how alerting affected performance in a sequential action task derived from the Trail-Making-Test, a well-established neuropsychological test of cognitive action control (Experiment 1). In addition to this task, participants performed a classic alerting paradigm including a simple choice reaction task (Experiment 2). Results showed that alerting sped up responding in both tasks, but in the sequential action task, this benefit was restricted to the first action of a sequence. This was the case, even when multiple actions were performed within a short time (Experiment 3), ruling out that the restriction of alerting to the first action was due to its short-lived nature. Taken together, these findings reveal the existence of an interface between phasic alertness and action control that supports the next action.
Collapse
Affiliation(s)
- Niklas Dietze
- Department of Psychology, Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, P.O. box 10 01 31, 33501, Bielefeld, Germany.
| | - Lukas Recker
- Department of Psychology, Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, P.O. box 10 01 31, 33501, Bielefeld, Germany
| | - Christian H Poth
- Department of Psychology, Neuro-Cognitive Psychology and Center for Cognitive Interaction Technology, Bielefeld University, P.O. box 10 01 31, 33501, Bielefeld, Germany
| |
Collapse
|
38
|
Kaufmann BC, Cazzoli D, Pastore-Wapp M, Vanbellingen T, Pflugshaupt T, Bauer D, Müri RM, Nef T, Bartolomeo P, Nyffeler T. Joint impact on attention, alertness and inhibition of lesions at a frontal white matter crossroad. Brain 2023; 146:1467-1482. [PMID: 36200399 PMCID: PMC10115237 DOI: 10.1093/brain/awac359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
In everyday life, information from different cognitive domains-such as visuospatial attention, alertness and inhibition-needs to be integrated between different brain regions. Early models suggested that completely segregated brain networks control these three cognitive domains. However, more recent accounts, mainly based on neuroimaging data in healthy participants, indicate that different tasks lead to specific patterns of activation within the same, higher-order and 'multiple-demand' network. If so, then a lesion to critical substrates of this common network should determine a concomitant impairment in all three cognitive domains. The aim of the present study was to critically investigate this hypothesis, i.e. to identify focal stroke lesions within the network that can concomitantly affect visuospatial attention, alertness and inhibition. We studied an unselected sample of 60 first-ever right-hemispheric, subacute stroke patients using a data-driven, bottom-up approach. Patients performed 12 standardized neuropsychological and oculomotor tests, four per cognitive domain. A principal component analysis revealed a strong relationship between all three cognitive domains: 10 of 12 tests loaded on a first, common component. Analysis of the neuroanatomical lesion correlates using different approaches (i.e. voxel-based and tractwise lesion-symptom mapping, disconnectome maps) provided convergent evidence on the association between severe impairment of this common component and lesions at the intersection of superior longitudinal fasciculus II and III, frontal aslant tract and, to a lesser extent, the putamen and inferior fronto-occipital fasciculus. Moreover, patients with a lesion involving this region were significantly more impaired in daily living cognition, which provides an ecological validation of our results. A probabilistic functional atlas of the multiple-demand network was performed to confirm the potential relationship between patients' lesion substrates and observed cognitive impairments as a function of the multiple-demand network connectivity disruption. These findings show, for the first time, that a lesion to a specific white matter crossroad can determine a concurrent breakdown in all three considered cognitive domains. Our results support the multiple-demand network model, proposing that different cognitive operations depend on specific collaborators and their interaction, within the same underlying neural network. Our findings also extend this hypothesis by showing (i) the contribution of superior longitudinal fasciculus and frontal aslant tract to the multiple-demand network; and (ii) a critical neuroanatomical intersection, crossed by a vast amount of long-range white matter tracts, many of which interconnect cortical areas of the multiple-demand network. The vulnerability of this crossroad to stroke has specific cognitive and clinical consequences; this has the potential to influence future rehabilitative approaches.
Collapse
Affiliation(s)
- Brigitte C Kaufmann
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - Dario Cazzoli
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Manuela Pastore-Wapp
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | | | - Daniel Bauer
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
| | - René M Müri
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Tobias Nef
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, Paris, France
| | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, 6000 Lucerne, Switzerland
- ARTORG Center for Biomedical Engineering Research, Gerontechnology and Rehabilitation, University of Bern, 3008 Bern, Switzerland
- Department of Neurology, Inselspital, University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
39
|
The effect of background music and noise on alertness of children aged 5–7 years: An EEG study. COGNITIVE DEVELOPMENT 2023. [DOI: 10.1016/j.cogdev.2022.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Štěpánková L, Urbánek T. Colour Categorization and its Effect on Perception: A Conceptual Replication. JOURNAL OF PSYCHOLINGUISTIC RESEARCH 2023; 52:1-16. [PMID: 34304342 DOI: 10.1007/s10936-021-09791-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The presented study examines the question of colour categorization in relation to the hypothesis of linguistic relativity. The study is based on research conducted by Gilbert et al. (2006) and their claim that linguistic colour categorization in a particular language helps colour recognition and speeds the process of colour discrimination for colours from different linguistic categories but only for the right visual field. Our study approached the research question differently. We used the same methodology as Gilbert's team et al. (2006), but we used different colour categories in the Czech language and significantly enlarged the number of participants to 106 undergraduate psychology students. Our results show that the fastest reaction times were in trials when the target was located in the left visual field, quite opposite from the Gilbert's et al. (2006) study. We argue that this finding is based on different processes than simple colour linguistic categorisation and attentional processes actually play an important role in the task.
Collapse
Affiliation(s)
- Lenka Štěpánková
- Department of Psychology, Faculty of Social Studies, Masaryk University, Joštova 218, 602 00, Brno, Czech Republic.
- The Institute for Research On Children, Youth and Family, Faculty of Social Studies, Masaryk University, Brno, Czech Republic.
| | - Tomáš Urbánek
- Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czech Republic
- Institute of Psychology, The Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
41
|
Duan K, Xie S, Zhang X, Xie X, Cui Y, Liu R, Xu J. Exploring the Temporal Patterns of Dynamic Information Flow during Attention Network Test (ANT). Brain Sci 2023; 13:brainsci13020247. [PMID: 36831790 PMCID: PMC9954291 DOI: 10.3390/brainsci13020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
The attentional processes are conceptualized as a system of anatomical brain areas involving three specialized networks of alerting, orienting and executive control, each of which has been proven to have a relation with specified time-frequency oscillations through electrophysiological techniques. Nevertheless, at present, it is still unclear how the idea of these three independent attention networks is reflected in the specific short-time topology propagation of the brain, assembled with complexity and precision. In this study, we investigated the temporal patterns of dynamic information flow in each attention network via electroencephalograph (EEG)-based analysis. A modified version of the attention network test (ANT) with an EEG recording was adopted to probe the dynamic topology propagation in the three attention networks. First, the event-related potentials (ERP) analysis was used to extract sub-stage networks corresponding to the role of each attention network. Then, the dynamic network model of each attention network was constructed by post hoc test between conditions followed by the short-time-windows fitting model and brain network construction. We found that the alerting involved long-range interaction among the prefrontal cortex and posterior cortex of brain. The orienting elicited more sparse information flow after the target onset in the frequency band 1-30 Hz, and the executive control contained complex top-down control originating from the frontal cortex of the brain. Moreover, the switch of the activated regions in the associated time courses was elicited in attention networks contributing to diverse processing stages, which further extends our knowledge of the mechanism of attention networks.
Collapse
|
42
|
Cerebral Hemodynamic Changes during Unaffected Handgrip Exercises in Stroke Patients: An fNIRS Study. Brain Sci 2023; 13:brainsci13010141. [PMID: 36672122 PMCID: PMC9857146 DOI: 10.3390/brainsci13010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to assess the effect of the altered strength of the sound limb on the hemodynamics in the affected brain of stroke patients. We recruited 20 stroke patients to detect changes in the HbO concentrations in the bilateral prefrontal cortex (PFC), sensorimotor cortex (SMC), and occipital lobe (OL). We performed functional near-infrared spectroscopy (fNIRS) to detect changes in oxyhemoglobin (HbO) concentrations in regions of interest (ROIs) in the bilateral cerebral hemispheres of stroke patients while they performed 20%, 50%, and 80% maximal voluntary contraction (MVC) levels of handgrip tasks with the unaffected hands. The results suggest that when patients performed handgrip tasks with 50% of the MVC force, SMC in the affected cerebral hemisphere was strongly activated and the change in the HbO concentration was similar to that of the handgrip with 80% of MVC. When the force was 50% of MVC, the SMC in the affected hemisphere showed a more proportional activation than that at 80% MVC. Overall, this research suggests that stroke patients with a poor upper limb function should perform motor training with their sound hands at 50% of the MVC grip task to activate the ipsilesional hemisphere.
Collapse
|
43
|
Chen Y, Lu X, Hu L. Transcutaneous Auricular Vagus Nerve Stimulation Facilitates Cortical Arousal and Alertness. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1402. [PMID: 36674156 PMCID: PMC9859411 DOI: 10.3390/ijerph20021402] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising noninvasive technique with potential beneficial effects on human emotion and cognition, including cortical arousal and alertness. However, it remains unclear how taVNS could improve cortical arousal and alertness, which are crucial for consciousness and daily task performance. Here, we aimed to estimate the modulatory effect of taVNS on cortical arousal and alertness and to reveal its underlying neural mechanisms. Sixty subjects were recruited and randomly assigned to either the taVNS group (receiving taVNS for 20 min) or the control group (receiving taVNS for 30 s). The effects of taVNS were evaluated behaviorally using a cue-target pattern task, and neurologically using a resting-state electroencephalogram (EEG). We found that taVNS facilitated the reaction time for the targets requiring right-hand responses and attenuated high-frequency alpha oscillations under the close-eye resting state. Importantly, taVNS-modulated alpha oscillations were positively correlated with the facilitated target detection performance, i.e., reduced reaction time. Furthermore, microstate analysis of the resting-state EEG when the eyes were closed illustrated that taVNS reduced the mean duration of microstate C, which has been proven to be associated with alertness. Altogether, this work provided novel evidence suggesting that taVNS could be an enhancer of both cortical arousal and alertness.
Collapse
Affiliation(s)
- Yuxin Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Qadir H, Stewart BW, VanRyzin JW, Wu Q, Chen S, Seminowicz DA, Mathur BN. The mouse claustrum synaptically connects cortical network motifs. Cell Rep 2022; 41:111860. [PMID: 36543121 PMCID: PMC9838879 DOI: 10.1016/j.celrep.2022.111860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially distant areas of the cerebral cortex coordinate their activity into networks that are integral to cognitive processing. A common structural motif of cortical networks is co-activation of frontal and posterior cortical regions. The neural circuit mechanisms underlying such widespread inter-areal cortical coordination are unclear. Using a discovery based functional magnetic resonance imaging (fMRI) approach in mouse, we observe frontal and posterior cortical regions that demonstrate significant functional connectivity with the subcortical nucleus, the claustrum. Examining whether the claustrum synaptically supports such frontoposterior cortical network architecture, we observe cortico-claustro-cortical circuits reflecting the fMRI data: significant trans-claustral synaptic connectivity from frontal cortices to posteriorly lying sensory and sensory association cortices contralaterally. These data reveal discrete cortical pathways through the claustrum that are positioned to support cortical network motifs central to cognitive control functions and add to the canon of major extended cortico-subcortico-cortical systems in the mammalian brain.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA,Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA,Lead contact,Correspondence:
| |
Collapse
|
45
|
Liu Y, Fan L, Jiang X, Lu Y, Li Y. A case study of repetitive transcranial magnetic stimulation for cryptococcal meningitis combined with cognitive impairment. Front Hum Neurosci 2022; 16:1061916. [PMID: 36590060 PMCID: PMC9800931 DOI: 10.3389/fnhum.2022.1061916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Cryptococcal meningitis (CM) is a central nervous system disease caused by a novel Cryptococcus infection that leads to subacute or chronic inflammatory changes in the nervous system. In this study, we present the case of a woman aged 72 years with CM and severe cognitive impairment and disabilities. The cognitive assessment indicated that, although her cognitive function was impaired, especially executive function, it largely improved after receiving anti-infectious and repetitive transcranial magnetic stimulation, which can alter the membrane potential of the cortical nerve cells by triggering long-term potentiation and depression, modulating and releasing hormones, reducing the level of neuroinflammatory and peripheral blood cytokines, promoting nerve regeneration and synaptic remodeling, and changing the activity of the neural circuitry of the dorsolateral prefrontal cortex. We argue that this case provides a novel method of treatment for patients with CM in conjunction with cognitive impairments.
Collapse
Affiliation(s)
- Yuanbiao Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Yuanbiao Liu
| | - Lei Fan
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinlin Jiang
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Lu
- Physical Medicine and Rehabilitation Unit, Nanjing Medical University, Nanjing, China
| | - Yige Li
- Physical Medicine and Rehabilitation Unit, Nanjing Medical University, Nanjing, China
| |
Collapse
|
46
|
Schumacher R, Halai AD, Lambon Ralph MA. Attention to attention in aphasia - elucidating impairment patterns, modality differences and neural correlates. Neuropsychologia 2022; 177:108413. [PMID: 36336090 PMCID: PMC7614452 DOI: 10.1016/j.neuropsychologia.2022.108413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
It is increasingly acknowledged that patients with aphasia following a left-hemisphere stroke often have difficulties in other cognitive domains. One of these domains is attention, the very fundamental ability to detect, select, and react to the abundance of stimuli present in the environment. Basic and more complex attentional functions are usually distinguished, and a variety of tests has been developed to assess attentional performance at a behavioural level. Attentional performance in aphasia has been investigated previously, but often only one specific task, stimulus modality, or type of measure was considered and usually only group-level analyses or data based on experimental tasks were presented. Also, information on brain-behaviour relationships for this cognitive domain and patient group is scarce. We report detailed analyses on a comprehensive dataset including patients' performance on various subtests of two well-known, standardised neuropsychological test batteries assessing attention. These tasks allowed us to explore: 1) how many patients show impaired performance in comparison to normative data, in which tasks and on what measure; 2) how the different tasks and measures relate to each other and to patients' language abilities; 3) the neural correlates associated with attentional performance. Up to 32 patients with varying aphasia severity were assessed with subtests from the Test of Attentional Performance (TAP) as well as the Test of Everyday Attention (TEA). Performance was compared to normative data, relationships between attention measures and other background data were explored with principal component analyses and correlations, and brain-behaviour relationships were assessed by means of voxel-based correlational methodology. Depending on the task and measure, between 3 and 53 percent of the patients showed impaired performance compared to normative data. The highest proportion of impaired performance was noted for complex attention tasks involving auditory stimuli. Patients differed in their patterns of performance and only the performance in the divided attention tests was (weakly) associated with their overall language impairment. Principal components analyses yielded four underlying factors, each being associated with distinct neural correlates. We thus extend previous research in characterizing different aspects of attentional performance within one sample of patients with chronic post stroke aphasia. Performance on a broad range of attention tasks and measures was variable and largely independent of patients' language abilities, which underlines the importance of assessing this cognitive domain in aphasic patients. Notably, a considerable proportion of patients showed difficulties with attention allocation to auditory stimuli. The reasons for these potentially modality-specific difficulties are currently not well understood and warrant additional investigations.
Collapse
Affiliation(s)
- Rahel Schumacher
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Freiburgstrasse, 3010, Bern, Switzerland.
| | - Ajay D Halai
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
47
|
Huang W, Chen Q, Liu J, Liu L, Tang J, Zou M, Zeng T, Li H, Jiang Q, Jiang Q. Transcranial Magnetic Stimulation in Disorders of Consciousness: An Update and Perspectives. Aging Dis 2022:AD.2022.1114. [PMID: 37163434 PMCID: PMC10389824 DOI: 10.14336/ad.2022.1114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 05/12/2023] Open
Abstract
Disorders of consciousness (DOC) is a state in which consciousness is affected by brain injuries, leading to dysfunction in vigilance, awareness, and behavior. DOC encompasses coma, vegetative state, and minimally conscious state based on neurobehavioral function. Currently, DOC is one of the most common neurological disorders with a rapidly increasing incidence worldwide. Therefore, DOC not only impacts the lives of individuals and their families but is also becoming a serious public health threat. Repetitive transcranial magnetic stimulation (rTMS) can stimulate electrical activity using a pulsed magnetic field in the brain, with great value in the treatment of chronic pain, neurological diseases, and mental illnesses. However, the clinical application of rTMS in patients with DOC is debatable. Herein, we report the recent main findings of the clinical therapeutics of rTMS for DOC, including its efficacy and possible mechanisms. In addition, we discuss the potential key parameters (timing, location, frequency, strength, and secession of rTMS applications) that affect the therapeutic efficiency of rTMS in patients with DOC. This review may help develop clinical guidelines for the therapeutic application of rTMS in DOC.
Collapse
Affiliation(s)
| | | | - Jun Liu
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Lin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Jiangxi, China
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Jiangxi, China
| | - Mingang Zou
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Tianxiang Zeng
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Huichen Li
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - Qing Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| | - QiuHua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Jiangxi, China
| |
Collapse
|
48
|
Liu Y, Sun N, Xiong J, Zhou Y, Ye X, Jiang H, Guo H, Zhi N, Lu J, He P, Yang H, Li Q, Sun R, He J. Modulation of cerebral cortex activity by acupuncture in patients with prolonged disorder of consciousness: An fNIRS study. Front Neurosci 2022; 16:1043133. [PMID: 36523434 PMCID: PMC9744766 DOI: 10.3389/fnins.2022.1043133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Acupuncture is a promising non-pharmacological therapy for patients with prolonged disorder of consciousness (PDOC); however, its underlying mechanism remains uncertain. This study aimed to reveal the modulatory effects of acupuncture on the cerebral cortex activity among patients with PDOC. MATERIALS AND METHODS Twenty-eight PDOC patients were randomly assigned to the treatment (n = 14) or control (n = 14) group. The treatment group received one session of acupuncture, while the control group received one session of sham acupuncture. All patients underwent evaluation of the functional connectivity and activation response of the dorsolateral prefrontal cortex (DLPFC), primary motor cortex (M1), and primary somatosensory cortex (S1) via functional near-infrared spectroscopy. We further explored the potential correlation of the consciousness level and activation response/functional connectivity with acupuncture. RESULTS Compared to the control group, a single session of acupuncture significantly tended to enhance resting-state functional connectivity (rsFC) in DLPFC-M1, DLPFC-M1, and S1-S1. And the activation level of the DLPFC (both sides) in the acupuncture group is significantly higher than those in sham acupuncture group. However, no significant correlation was found between the consciousness level and activation response/functional connectivity. CONCLUSION One session of acupuncture has a significant modulation of rsFC and activation in the DLPFC, M1, and S1 with PDOC patients. Acupuncture-evoked effect may have some functional significance in PDOC patients. This is an important step toward exploring the acupuncture effects on PDOC patients.
Collapse
Affiliation(s)
- Yiwei Liu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Ning Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Jing Xiong
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Yuanfang Zhou
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiangyin Ye
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Hua Guo
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Na Zhi
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jingkang Lu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Peijue He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Huilin Yang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Qingbin Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Ruirui Sun
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
49
|
An X, Tao G, Zhang X, Ma H, Wang Y. Attention Network Changes of High-Altitude Migrants. Aerosp Med Hum Perform 2022; 93:791-799. [DOI: 10.3357/amhp.6061.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION: The present study aimed to explore whether there are changes in the alerting, orienting, and executive network efficiencies of attention function between high altitude immigrants and low altitude residents.METHODS: Event-related potentials (ERP) were
acquired during an attention network test (ANT). The high-altitude (HA) group comprised 22 college student immigrants who were born and raised at low altitudes and had lived at a HA (11,975 ft/3650 m) for 26 mo (tests were conducted when they returned to HA for 3 mo). The low-altitude (LA)
group comprised 23 college students who had never visited HA areas before.RESULTS: Compared with the LA group, the HA group had a higher pulse rate, lower oxygen saturation level, and decreased alerting and orienting effects in the behavioral results. The ERP results of the HA group
showed a smaller P1 in the occipital area, a larger N1 both in the parietal and occipital areas of the alerting network, and a smaller P1 and larger N1 in the orienting network than the LA group. In the executive control network, the N2 amplitude of the HA group was more negative and the P3
amplitude of the HA group decreased in incongruent conditions.DISCUSSION: Together, these findings suggest that high-altitude migrants are less effective at alerting and orienting than low-altitude residents. For executive control function, changes in the P3 amplitudes of incongruent
conditions indicated a decrease in conflict inhibition underlying the executive-control network.An X, Tao G, Zhang X, Ma H, Wang Y. Attention network changes of high-altitude migrants. Aerosp Med Hum Perform. 2022; 93(11):791–799.
Collapse
|
50
|
Middag‐van Spanje M, Duecker F, Gallotto S, de Graaf TA, van Heugten C, Sack AT, Schuhmann T. Transcranial magnetic stimulation over posterior parietal cortex modulates alerting and executive control processes in attention. Eur J Neurosci 2022; 56:5853-5868. [PMID: 36161393 PMCID: PMC9828423 DOI: 10.1111/ejn.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Attention includes three different functional components: generating and maintaining an alert state (alerting), orienting to sensory events (orienting), and resolving conflicts between alternative actions (executive control). Neuroimaging and patient studies suggest that the posterior parietal cortex (PPC) is involved in all three attention components. Transcranial magnetic stimulation (TMS) has repeatedly been applied over the PPC to study its functional role for shifts and maintenance of visuospatial attention. Most TMS-PPC studies used only detection tasks or orienting paradigms to investigate TMS-PPC effects on attention processes, neglecting the alerting and executive control components of attention. The objective of the present study was to investigate the role of PPC in all three functional components of attention: alerting, orienting, and executive control. To this end, we disrupted PPC with TMS (continuous theta-burst stimulation), to modulate subsequent performance on the Lateralized-Attention Network Test, used to assess the three attention components separately. Our results revealed hemifield-specific effects on alerting and executive control functions, but we did not find stimulation effects on orienting performance. While this field of research and associated clinical development have been predominantly focused on orienting performance, our results suggest that parietal cortex and its modulation may affect other aspects of attention as well.
Collapse
Affiliation(s)
- Marij Middag‐van Spanje
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,InteraktContourNunspeetThe Netherlands
| | - Felix Duecker
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands
| | - Stefano Gallotto
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands
| | - Tom A. de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands
| | - Caroline van Heugten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve CentreMaastricht University Medical Centre+MaastrichtThe Netherlands,Limburg Brain Injury CenterMaastrichtThe Netherlands
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Brain + Nerve CentreMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and NeuroscienceMaastricht UniversityMaastrichtThe Netherlands,Maastricht Brain Imaging CenterMaastrichtThe Netherlands
| |
Collapse
|