1
|
Meunier-Duperray L, Souchay C, Angel L, Salmon E, Bastin C. Exploring the domain specificity and the neural correlates of memory unawareness in Alzheimer's disease. Neurobiol Aging 2025; 148:61-70. [PMID: 39933337 DOI: 10.1016/j.neurobiolaging.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
Patients with Alzheimer's disease (AD) are less accurate than controls to predict their episodic performance, but they are as accurate as controls to predict their semantic performance. However, the dissociation between episodic and semantic metamemory had never been tested directly in the same patients. This study aimed to explore the dissociation between episodic and semantic metamemory in AD using the feeling-of-knowing paradigm. In addition, we investigated the link between memory awareness and resting-state cerebral glucose metabolism and gray matter density, in episodic and semantic tasks independently. Data from 50 patients with AD were compared to data from 30 healthy controls. Results showed that patients with AD had more difficulties to predict their recognition in the episodic task than in the semantic task, while this difference was smaller in controls. However, this dissociation was only shown with a measure of absolute accuracy, but not with a measure of relative accuracy. Lack of awareness in the episodic task was associated with hypometabolism in right frontoparietal areas in patients with AD, while semantic metamemory was associated with gray matter integrity in the left angular gyrus. The consequence of metacognitive bias and memory status on metamemory judgments are discussed.
Collapse
Affiliation(s)
- Lucile Meunier-Duperray
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble 38000, France; Université de Tours, Université de Poitiers, UMR CNRS 7295 Centre de Recherches sur la Cognition et l'Apprentissage, Tours, France.
| | - Céline Souchay
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble 38000, France
| | - Lucie Angel
- Université de Tours, Université de Poitiers, UMR CNRS 7295 Centre de Recherches sur la Cognition et l'Apprentissage, Tours, France
| | - Eric Salmon
- GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Center-in vivo Imaging, University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Rullmann M, Henssen D, Melasch JT, Scherlach C, Saur D, Schroeter ML, Tiepolt S, Koglin N, Stephens AW, Hesse S, Strauss M, Brendel M, Mishchenko O, Schildan A, Classen J, Hoffmann KT, Sabri O, Barthel H. Multi-parametric [ 18F]PI-2620 tau PET/MRI for the phenotyping of different Alzheimer's disease variants. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07135-z. [PMID: 39937274 DOI: 10.1007/s00259-025-07135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
PURPOSE Heterogeneity in clinical phenotypes has led to the description of different phenotypes of Alzheimer's disease (AD). Besides the most frequent amnestic variant of AD (aAD), patients presenting with language deficits are diagnosed with logopenic variant primary progressive aphasia (lvPPA), whereas patients presenting with visual deficits are classified as posterior cortical atrophy (PCA). METHODS This study set out to investigate the value of a multi-parametric [18F]PI-2620 tau PET/MRI protocol to distinguish aAD, lvPPA and PCA to support clinical diagnosis in 32 patients. Phenotype-specific information about tau accumulation, relative perfusion, grey matter density, functional network alterations and white matter microstructural alterations was collected. RESULTS The aAD patients showed significantly higher tau accumulation, relative hypoperfusion and grey matter density loss in the temporal lobes compared to PCA and lvPPA patients. PCA patients, on the other hand, showed significantly higher tau accumulation in the occipital lobe as compared to aAD patients. Relative hypoperfusion in the occipital lobe and loss of functional connectivity of the posterior cingulate cortex to supplementary visual cortical regions helped to distinguish PCA from lvPPA. Tau accumulation in the cerebellum and microstructural changes in the cingulum were found to help differentiate lvPPA from aAD. CONCLUSION This study highlights structural and functional differences between patients with different AD phenotypes. Differences in regional tau PET signals suggest that refinements in the Braak staging system are needed for the non-aAD cases. These patterns of tau accumulation align with the cascading network failure hypothesis, though more research is needed to warrant the here presented results in larger patient cohorts.
Collapse
Affiliation(s)
- Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany.
| | - Dylan Henssen
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juliana T Melasch
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Cordula Scherlach
- Department of Neuroradiology, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Dorothee Saur
- Department of Neurology, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University of Leipzig Medical Center Leipzig, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | | | | | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Maria Strauss
- Department of Psychiatry, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Olena Mishchenko
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Andreas Schildan
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Karl-Titus Hoffmann
- Department of Neuroradiology, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig Medical Center Leipzig, Leipzig, Germany
- Department of Nuclear Medicine, Hospital Dessau, Dessau, Germany
| |
Collapse
|
3
|
Osman A, Radman D, Belchior P, Gélinas I. A systematic review of psychometric properties of questionnaires assessing activities of daily living among older adults with neurocognitive disorders. Aust Occup Ther J 2025; 72:e13013. [PMID: 39853749 PMCID: PMC11758263 DOI: 10.1111/1440-1630.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
INTRODUCTION Mild cognitive impairment (MCI) and Alzheimer's disease (AD) lead to decline in performance in activities of daily living (ADLs). Multiple questionnaires assess this construct among older adults. The objective of this study was to review existing literature studying psychometric properties of questionnaires assessing performance in ADLs of older adults living with MCI and AD specifically. METHODS A systematic review was conducted across Medline, CINAHL and PsychINFO using a combination of keywords related to ADLs, psychometrics, MCI and AD. Studies were included if they met the following criteria: assessments of performance of ADLs for older adults living with AD or MCI, reporting a minimum of one measurement property (e.g. internal consistency), primary research articles, published before June 2023 in English or French. Data extraction and analysis were conducted by two researchers. The methodological quality of psychometric properties was assessed using the COSMIN checklist. CONSUMER AND COMMUNITY INVOLVEMENT No consumer or community involvement occurred. RESULTS A total of 2539 articles were screened and filtered down to 50 articles including 24 questionnaires respecting inclusion criteria. Of these questionnaires, the three most validated were the Amsterdam Instrumental activities of daily living, the disability assessment for dementia (DAD), and the Bayer ADL scale. Overall, for these three questionnaires, internal consistency, reliability and structural validity were the most studied psychometric properties while criterion validity and hypothesis testing were the least. CONCLUSION This study reveals the Amsterdam IADLs as the most validated questionnaire across psychometric properties and the DAD as the most validated across languages. Considering the increasing prevalence of older adults with MCI or AD, questionnaires established on strong measurement properties are valuable tools to evaluate decline in ADL performance and plan suitable interventions. This review provides evidence for clinicians and researchers for the selection of questionnaires to evaluate this population. PLAIN LANGUAGE SUMMARY Cognitive impairment affects memory and thinking. It makes tasks like dressing, bathing and eating harder. Health-care workers use questionnaires to find out where someone struggles. This helps them plan better care. We reviewed questionnaires for older adults with memory and thinking problems. We found good ones that give important information. Using these questionnaires helps health-care workers support people with daily tasks. This study suggests testing the questionnaires more to improve them.
Collapse
Affiliation(s)
- Alia Osman
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Dennis Radman
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Patricia Belchior
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| | - Isabelle Gélinas
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Zimmermann G, Joly L, Schoepfer P, Doyen M, Roch V, Grignon R, Salvi P, Marie PY, Benetos A, Verger A. Early wave reflection of carotid artery is associated with 18 F-FDG PET hypometabolism in Alzheimer's brain areas of cognitively normal adults. J Hypertens 2025; 43:145-151. [PMID: 39351888 DOI: 10.1097/hjh.0000000000003886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION Arterial stiffening likely plays a role in Alzheimer disease (AD) pathogenesis. The current study investigated whether inter-individual variations in arterial stiffness and pressure wave parameters were associated with 18 F-FDG positron emission tomography (PET) metabolism in AD-associated brain areas throughout adulthood, independently of age and before the onset of any neuropsychological disorders. METHODS A prospective, large age-range population of 67 patients (17 young, 16 middle-aged, and 34 older adults; 37 women) underwent a: brain 18 F-FDG PET, blood pressure recording, and carotid/femoral pulse wave-based measurements, including the time-to-peak of the reflected backward carotid pulse wave (bT), on the same day. Multivariable and quantitative voxel-to-voxel analyses ( P -voxel < 0.005, corrected for cluster volumes) were conducted to assess associations between vascular parameters and 18 F-FDG PET metabolism in AD-associated brain areas. RESULTS In the multivariable analysis, only increased age and decreased bT were independently associated with the decline of metabolic activity in AD-associated brain areas ( P < 0.001). In the voxel-to-voxel analysis with age as a covariate, bT was strongly associated with the metabolic activity of 40 clusters in AD-associated brain areas (clusters cumulative volume: 63 cm 3 ; T score max: 5.7). CONCLUSION In a large age-range population of adult patients, who are still unaffected by neuropsychological disorders, an early reflected arterial pressure wave, as evidenced by a decreased bT value, is strongly associated with hypometabolic activity of AD-associated brain areas, independently of age.
Collapse
Affiliation(s)
- Gaétan Zimmermann
- Université de Lorraine, CHRU Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform
| | - Laure Joly
- Université de Lorraine, CHRU-Nancy, Geriatric Department, Nancy
- Université de Lorraine, INSERM, DCAC, Vandoeuvre Les Nancy
| | | | - Matthieu Doyen
- Université de Lorraine, CHRU Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform
- Université de Lorraine, IADI, INSERM U1254, Nancy, France
| | - Veronique Roch
- Université de Lorraine, CHRU Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform
| | - Rachel Grignon
- Université de Lorraine, CHRU Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform
| | - Paolo Salvi
- Cardiology Unit, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Pierre-Yves Marie
- Université de Lorraine, CHRU Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform
- Université de Lorraine, INSERM, DCAC, Vandoeuvre Les Nancy
| | - Athanase Benetos
- Université de Lorraine, CHRU-Nancy, Geriatric Department, Nancy
- Université de Lorraine, INSERM, DCAC, Vandoeuvre Les Nancy
| | - Antoine Verger
- Université de Lorraine, CHRU Nancy, Department of Nuclear Medicine and Nancyclotep Imaging Platform
- Université de Lorraine, IADI, INSERM U1254, Nancy, France
| |
Collapse
|
5
|
Wang C, Zhou L, Zhou F, Fu T. The application value of Rs-fMRI-based machine learning models for differentiating mild cognitive impairment from Alzheimer's disease: a systematic review and meta-analysis. Neurol Sci 2025; 46:45-62. [PMID: 39225837 PMCID: PMC11698789 DOI: 10.1007/s10072-024-07731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Various machine learning (ML) models based on resting-state functional MRI (Rs-fMRI) have been developed to facilitate differential diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, the diagnostic accuracy of such models remains understudied. Therefore, we conducted this systematic review and meta-analysis to explore the diagnostic accuracy of Rs-fMRI-based radiomics in differentiating MCI from AD. METHODS PubMed, Embase, Cochrane, and Web of Science were searched from inception up to February 8, 2024, to identify relevant studies. Meta-analysis was conducted using a bivariate mixed-effects model, and sub-group analyses were carried out by the types of ML tasks (binary classification and multi-class classification tasks). FINDINGS In total, 23 studies, comprising 5,554 participants were enrolled in the study. In the binary classification tasks (twenty studies), the diagnostic accuracy of the ML model for AD was 0.99 (95%CI: 0.34 ~ 1.00), with a sensitivity of 0.94 (95%CI: 0.89 ~ 0.97) and a specificity of 0.98 (95%CI: 0.95 ~ 1.00). In the multi-class classification tasks (six studies), the diagnostic accuracy of the ML model was 0.98 (95%CI: 0.98 ~ 0.99) for NC, 0.96 (95%CI: 0.96 ~ 0.96) for early mild cognitive impairment (EMCI), 0.97 (95%CI: 0.96 ~ 0.97) for late mild cognitive impairment (LMCI), and 0.95 (95%CI: 0.95 ~ 0.95) for AD. CONCLUSIONS The Rs-fMRI-based ML model can be adapted to multi-class classification tasks. Therefore, multi-center studies with large samples are needed to develop intelligent application tools to promote the development of intelligent ML models for disease diagnosis.
Collapse
Affiliation(s)
- Chentong Wang
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| | - Li Zhou
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China.
- Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang, China.
| | - Feng Zhou
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| | - Tingting Fu
- Rheumatology Immunology Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315000, China
| |
Collapse
|
6
|
Wheatley SH, Mohanty R, Poulakis K, Levin F, Muehlboeck JS, Nordberg A, Grothe MJ, Ferreira D, Westman E. Divergent neurodegenerative patterns: Comparison of [ 18F] fluorodeoxyglucose-PET- and MRI-based Alzheimer's disease subtypes. Brain Commun 2024; 6:fcae426. [PMID: 39703327 PMCID: PMC11656166 DOI: 10.1093/braincomms/fcae426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/23/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
[18F] fluorodeoxyglucose (FDG)-PET and MRI are key imaging markers for neurodegeneration in Alzheimer's disease. It has been well established that parieto-temporal hypometabolism on FDG-PET is closely associated with medial temporal atrophy on MRI in Alzheimer's disease. Substantial biological heterogeneity, expressed as distinct subtypes of hypometabolism or atrophy patterns, has been previously described in Alzheimer's disease using data-driven and hypothesis-driven methods. However, the link between these two imaging modalities has not yet been explored in the context of Alzheimer's disease subtypes. To investigate this link, the current study utilized FDG-PET and MRI scans from 180 amyloid-beta positive Alzheimer's disease dementia patients, 339 amyloid-beta positive mild cognitive impairment and 176 amyloid-beta negative cognitively normal controls from the Alzheimer's Disease Neuroimaging Initiative. Random forest hierarchical clustering, a data-driven model for identifying subtypes, was implemented in the two modalities: one with standard uptake value ratios and the other with grey matter volumes. Five hypometabolism- and atrophy-based subtypes were identified, exhibiting both cortical-predominant and limbic-predominant patterns although with differing percentages and clinical presentations. Three cortical-predominant hypometabolism subtypes found were Cortical Predominant (32%), Cortical Predominant+ (11%) and Cortical Predominant posterior (8%), and two limbic-predominant hypometabolism subtypes found were Limbic Predominant (36%) and Limbic Predominant frontal (13%). In addition, little atrophy (minimal) and widespread (diffuse) neurodegeneration subtypes were observed from the MRI data. The five atrophy subtypes found were Cortical Predominant (19%), Limbic Predominant (27%), Diffuse (29%), Diffuse+ (6%) and Minimal (19%). Inter-modality comparisons showed that all FDG-PET subtypes displayed medial temporal atrophy, whereas the distinct MRI subtypes showed topographically similar hypometabolic patterns. Further, allocations of FDG-PET and MRI subtypes were not consistent when compared at an individual level. Additional analysis comparing the data-driven clustering model with prior hypothesis-driven methods showed only partial agreement between these subtyping methods. FDG-PET subtypes had greater differences between limbic-predominant and cortical-predominant patterns, and MRI subtypes had greater differences in severity of atrophy. In conclusion, this study highlighted that Alzheimer's disease subtypes identified using both FDG-PET and MRI capture distinct pathways showing cortical versus limbic predominance of neurodegeneration. However, the subtypes do not share a bidirectional relationship between modalities and are thus not interchangeable.
Collapse
Affiliation(s)
- Sophia H Wheatley
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rosaleena Mohanty
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Konstantinos Poulakis
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fedor Levin
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 18147 Rostock, Germany
| | - J Sebastian Muehlboeck
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
- Theme Inflammation and Aging, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Michel J Grothe
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, 28031 Madrid, Spain
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35016 Las Palmas, España
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Arbizu J, Morbelli S, Minoshima S, Barthel H, Kuo P, Van Weehaeghe D, Horner N, Colletti PM, Guedj E. SNMMI Procedure Standard/EANM Practice Guideline for Brain [ 18F]FDG PET Imaging, Version 2.0. J Nucl Med 2024:jnumed.124.268754. [PMID: 39419552 DOI: 10.2967/jnumed.124.268754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
PREAMBLEThe Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The EANM was founded in 1985. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine.The SNMMI and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated.Each practice guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized.These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, both the SNMMI and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question.The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines.The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment.Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Javier Arbizu
- Department of Nuclear Medicine, Clinica Universidad de Navarra, University of Navarra, Pamplona, Spain;
| | - Silvia Morbelli
- Nuclear Medicine Unit, Citta'della Scenza e della Salute di Torino, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University Medical Centre, Leipzig, Germany
| | | | | | - Neil Horner
- Atlantic Health System, Morristown, New Jersey, and Icahn School of Medicine at Mount Sinai, New York, New York
| | - Patrick M Colletti
- Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, California; and
| | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille University, Marseille, France
| |
Collapse
|
8
|
Kugler BA, Lysaker CR, Franczak E, Hauger BM, Csikos V, Stopperan JA, Allen JA, Stanford JA, Koch LG, Britton SL, Thyfault JP, Wilkins HM. Intrinsic aerobic capacity modulates Alzheimer's disease pathological hallmarks, brain mitochondrial function and proteome during aging. GeroScience 2024; 46:4955-4967. [PMID: 38867031 PMCID: PMC11336007 DOI: 10.1007/s11357-024-01248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Low aerobic capacity is strongly associated with all-cause mortality and risk for Alzheimer's disease (AD). Individuals with early dementia and AD have lower aerobic capacity compared to age-matched controls. The mechanism by which aerobic capacity influences AD risk is unknown but is likely mediated by sexual dimorphism and tissue-level differences in mitochondrial energetics. Here, we used rats selectively bred for large differences in intrinsic aerobic exercise capacity. Brain tissue from 18-month and 24-month-old female and male low-capacity runner (LCR) and high-capacity runner (HCR) rats were analyzed for markers of mitochondrial function and AD-associated pathologies. LCR rats, irrespective of sex, exhibited a greater increase in brain amyloid beta (Aβ42) and tau hyperphosphorylation (pTauthr181/total tau) with aging. In female LCR rats, brain mitochondrial respiration at states 3, 4, and FCCP-induced uncoupling, when stimulated with pyruvate/malate, was reduced at 18 and 24 months, leading to lower ATP-linked mitochondrial respiration compared to mitochondria from HCR rats. Male LCR rats also showed reduced complex II-stimulated mitochondrial respiration (succinate + rotenone) at 24 months compared to HCR rats. Differences in mitochondrial respiration were associated with tau hyperphosphorylation and Aβ42 alterations in both HCR and LCR strains. Proteomic analysis unveiled a distinct difference in the mitochondrial proteome, wherein female LCR rats displayed diminished mitochondrial translation and oxidative phosphorylation (OXPHOS) proteins at 18 months compared to female HCR rats. Conversely, male LCR rats exhibited increased OXPHOS protein abundance but reduced tricarboxylic acid (TCA) cycle proteins compared to male HCR rats. These findings underscore a robust association between intrinsic aerobic exercise capacity, brain mitochondrial function, and AD pathologies during aging.
Collapse
Affiliation(s)
- Benjamin A Kugler
- University of Kansas Medical Center Department of Cell Biology and Physiology and Internal Medicine, Kansas City, KS, USA
| | - Colton R Lysaker
- University of Kansas Alzheimer's Disease Center and Department of Neurology, Kansas City, KS, USA
| | - Edziu Franczak
- University of Kansas Medical Center Department of Cell Biology and Physiology and Internal Medicine, Kansas City, KS, USA
| | - Brittany M Hauger
- University of Kansas Alzheimer's Disease Center and Department of Neurology, Kansas City, KS, USA
| | - Vivien Csikos
- University of Kansas Alzheimer's Disease Center and Department of Neurology, Kansas City, KS, USA
| | - Julia A Stopperan
- University of Kansas Alzheimer's Disease Center and Department of Neurology, Kansas City, KS, USA
| | - Julie A Allen
- University of Kansas Medical Center Department of Cell Biology and Physiology and Internal Medicine, Kansas City, KS, USA
| | - John A Stanford
- University of Kansas Medical Center Department of Cell Biology and Physiology and Internal Medicine, Kansas City, KS, USA
| | - Lauren G Koch
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - John P Thyfault
- University of Kansas Alzheimer's Disease Center and Department of Neurology, Kansas City, KS, USA
- University of Kansas Medical Center Department of Cell Biology and Physiology and Internal Medicine, Kansas City, KS, USA
- Research Service, Kansas City VA Medical Center Department of Veterans Affairs, University of Kansas Diabetes Center, Kansas City, KS, USA
- University of Kansas Medical Center Department of Molecular Biology and Biochemistry, Kansas City, KS, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center and Department of Neurology, Kansas City, KS, USA.
- University of Kansas Medical Center Department of Molecular Biology and Biochemistry, Kansas City, KS, USA.
- Department of Neurology University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
9
|
Salmon E, Collette F, Bastin C. Cerebral glucose metabolism in Alzheimer's disease. Cortex 2024; 179:50-61. [PMID: 39141935 DOI: 10.1016/j.cortex.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
18F-fluoro-deoxy-glucose positron emission tomography (FDG-PET) is a useful paraclinical exam for the diagnosis of Alzheimer's disease (AD). In this narrative review, we report seminal studies in clinically probable AD that have shown the importance of posterior brain metabolic decrease and the paradoxical variability of the hippocampal metabolism. The FDG-PET pattern was a sensitive indicator of AD in pathologically confirmed cases and it was used for differential diagnosis of dementia conditions. In prodromal AD, the AD FDG-PET pattern was observed in converters and predicted conversion. Automated data analysis techniques provided variable accuracy according to the reported indices and machine learning methods showed variable reliability of results. FDG-PET could confirm AD clinical heterogeneity and image data driven analyses identified hypometabolic subtypes with variable involvement of the hippocampus, reminiscent if the paradoxical FDG uptake. In studies dedicated to clinical and metabolic correlations, episodic memory was related to metabolism in the default mode network (and Papez's circuit) in prodromal and mild AD stages, and specific cognitive processes were associated to precisely distributed brain metabolism. Cerebral metabolic correlates of anosognosia could also be related to current neuropsychological models. AD FDG-PET pattern was reported in preclinical AD stages and related to cognition or to conversion to mild cognitive impairment (MCI). Using other biomarkers, the AD FDG-PET pattern was confirmed in AD participants with positive PET-amyloid. Intriguing observations reported increased metabolism related to brain amyloid and/or tau deposition. Preserved glucose metabolism sometimes appear as a compensation, but it was frequently detrimental and the nature of such a preservation of glucose metabolism remains an open question. Limbic metabolic involvement was frequently related to non-AD biomarkers profile and clinical stability, and it was reported in non-AD pathologies, such as the limbic predominant age-related encephalopathy (LATE). FDG-PET abnormalities observed in the absence of classical AD proteinopathies can be useful to search for pathological mechanisms and differential diagnosis of AD.
Collapse
Affiliation(s)
- Eric Salmon
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| | - Fabienne Collette
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| | - Christine Bastin
- GIGA Research, CRC Human Imaging, University of Liege, Liege, Belgium.
| |
Collapse
|
10
|
Vermeiren MR, Calandri IL, van der Flier WM, van de Giessen E, Ossenkoppele R. Survey among experts on the future role of tau-PET in clinical practice and trials. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70033. [PMID: 39583643 PMCID: PMC11582687 DOI: 10.1002/dad2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Recent advancements in Alzheimer's disease (AD) biomarker research and clinical trials prompt reflection on the value and consequently appropriate use of tau positron emission tomography (tau-PET) in the future. METHODS We conducted an online survey among dementia and PET experts worldwide to investigate the anticipated future role of tau-PET in clinical practice and trials. RESULTS Two hundred sixty-eight dementia experts, comprising 143 clinicians and 121 researchers, covering six continents participated. The vast majority (90%) fostered a positive attitude toward the added value of tau-PET in clinical practice, particularly for staging, diagnosing, monitoring, and prognostication in a cognitively impaired memory clinic population. Experts anticipated an important role for tau-PET for participant selection (76%-100%) and measuring endpoints (75%-97%), in both anti-amyloid and anti-tau drug trials. DISCUSSION Our global survey study shows that dementia experts envision an important role for tau-PET in the future, both in clinical practice and in drug trials, beyond current guidelines and practices. Highlights Dementia experts envision an important role for tau-PET in the future.Experts indicate that a tau-PET scan could influence patient management.Experts anticipate the utility of tau-PET for participant selection and endpoints in drug trials.There is a gap between the anticipated usefulness of tau-PET and current clinical practices.
Collapse
Affiliation(s)
- Marie R. Vermeiren
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | - Ismael L. Calandri
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Department of Cognitive NeurologyFleniBuenos AiresArgentina
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
- Epidemiology and Data ScienceVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
| | - Elsmarieke van de Giessen
- Radiology & Nuclear MedicineVrije Universiteit Amsterdam, Amsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceBrain ImagingAmsterdamThe Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, NeurologyVrije Universiteit AmsterdamAmsterdam UMCAmsterdamThe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamThe Netherlands
- Clinical Memory Research UnitLund UniversityLundSweden
| |
Collapse
|
11
|
Huang SH, Hsiao WC, Chang HI, Ma MC, Hsu SW, Lee CC, Chen HJ, Lin CH, Huang CW, Chang CC. The use of individual-based FDG-PET volume of interest in predicting conversion from mild cognitive impairment to dementia. BMC Med Imaging 2024; 24:75. [PMID: 38549082 PMCID: PMC10976703 DOI: 10.1186/s12880-024-01256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/21/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Based on a longitudinal cohort design, the aim of this study was to investigate whether individual-based 18F fluorodeoxyglucose positron emission tomography (18F-FDG-PET) regional signals can predict dementia conversion in patients with mild cognitive impairment (MCI). METHODS We included 44 MCI converters (MCI-C), 38 non-converters (MCI-NC), 42 patients with Alzheimer's disease with dementia, and 40 cognitively normal controls. Data from annual cognitive measurements, 3D T1 magnetic resonance imaging (MRI) scans, and 18F-FDG-PET scans were used for outcome analysis. An individual-based FDG-PET approach was applied using seven volumes of interest (VOIs), Z transformed using a normal FDG-PET template. Hypometabolism was defined as a Z score < -2 of regional standard uptake value ratio. For the longitudinal cognitive test scores, generalized estimating equations were used. A linear mixed-effects model was used to compare the temporal impact of cortical hypometabolism and cortical thickness degeneration. RESULTS The clinical follow-up period was 6.6 ± 3.8 years (range 3.1 to 16.0 years). The trend of cognitive decline could differentiate MCI-C from MCI-NC after 3 years of follow-up. In the baseline 18F-FDG-PET scan of the patients with MCI, medial temporal lobe (MTL; 94.7% sensitivity, 80.5% specificity) and posterior cingulate cortex (PCC; 89.5% sensitivity, 73.1% specificity) hypometabolism predicted conversion with high accuracy. 18F-FDG-PET hypometabolism preceded dementia conversion at an interval of 3.70 ± 1.68 years and was earlier than volumetric changes, with the exception of the MTL. CONCLUSIONS Our finding supports the use of individual-based 18F-FDG-PET analysis to predict MCI conversion to dementia. Reduced FDG-PET metabolism in the MTL and PCC were strongly associated with future cognitive decline in the MCI-C group. Changes in 18F-FDG-PET occurred 1 to 8 years prior to conversion to dementia. Progressive hypometabolism in the PCC, precuneus and lateral temporal lobe, but not MTL, preceded MRI findings at the MCI stage.
Collapse
Affiliation(s)
- Shu-Hua Huang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Chiu Hsiao
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiw, Taiwan
| | - Hsin-I Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiw, Taiwan
| | - Mi-Chia Ma
- Department of Statistics, National Cheng Kung University, Tainan City, Taiwan
| | - Shih-Wei Hsu
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Chang Lee
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hong-Jie Chen
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Heng Lin
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Bachelor Program in Artificial Intelligence, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Wei Huang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiw, Taiwan.
| | - Chiung-Chih Chang
- Department of Neurology, Cognition and Aging Center, Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiw, Taiwan.
| |
Collapse
|
12
|
Castellano G, Esposito A, Lella E, Montanaro G, Vessio G. Automated detection of Alzheimer's disease: a multi-modal approach with 3D MRI and amyloid PET. Sci Rep 2024; 14:5210. [PMID: 38433282 PMCID: PMC10909869 DOI: 10.1038/s41598-024-56001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Recent advances in deep learning and imaging technologies have revolutionized automated medical image analysis, especially in diagnosing Alzheimer's disease through neuroimaging. Despite the availability of various imaging modalities for the same patient, the development of multi-modal models leveraging these modalities remains underexplored. This paper addresses this gap by proposing and evaluating classification models using 2D and 3D MRI images and amyloid PET scans in uni-modal and multi-modal frameworks. Our findings demonstrate that models using volumetric data learn more effective representations than those using only 2D images. Furthermore, integrating multiple modalities enhances model performance over single-modality approaches significantly. We achieved state-of-the-art performance on the OASIS-3 cohort. Additionally, explainability analyses with Grad-CAM indicate that our model focuses on crucial AD-related regions for its predictions, underscoring its potential to aid in understanding the disease's causes.
Collapse
Affiliation(s)
| | - Andrea Esposito
- Department of Computer Science, University of Bari Aldo Moro, Bari, Italy
| | - Eufemia Lella
- Sirio - Research & Innovation, Sidea Group, Bari, Italy
| | | | - Gennaro Vessio
- Department of Computer Science, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
13
|
Zhuge F, Zheng L, Pan Y, Ni L, Fu Z, Shi J, Ni Y. DPP-4 inhibition by linagliptin ameliorates age-related mild cognitive impairment by regulating microglia polarization in mice. Exp Neurol 2024; 373:114689. [PMID: 38199510 DOI: 10.1016/j.expneurol.2024.114689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.
Collapse
Affiliation(s)
- Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Liujie Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuxiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Liyang Ni
- Food Biochemistry Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Junping Shi
- Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
14
|
Jiang Z, Wang J, Qin Y, Liu S, Luo B, Bai F, Wei H, Zhang S, Wei J, Ding G, Ma L, He S, Chen R, Sun Y, Chen Y, Wang L, Xu H, Wang X, Chen G, Lei W. A nonhuman primate model with Alzheimer's disease-like pathology induced by hippocampal overexpression of human tau. Alzheimers Res Ther 2024; 16:22. [PMID: 38281031 PMCID: PMC10821564 DOI: 10.1186/s13195-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most burdening diseases of the century with no disease-modifying treatment at this time. Nonhuman primates (NHPs) share genetic, anatomical, and physiological similarities with humans, making them ideal model animals for investigating the pathogenesis of AD and potential therapies. However, the use of NHPs in AD research has been hindered by the paucity of AD monkey models due to their long generation time, ethical considerations, and technical challenges in genetically modifying monkeys. METHODS Here, we developed an AD-like NHP model by overexpressing human tau in the bilateral hippocampi of adult rhesus macaque monkeys. We evaluated the pathological features of these monkeys with immunostaining, Nissl staining, cerebrospinal fluid (CSF) analysis, magnetic resonance imaging (MRI), positron emission tomography (PET), and behavioural tests. RESULTS We demonstrated that after hippocampal overexpression of tau protein, these monkeys displayed multiple pathological features of AD, including 3-repeat (3R)/4-repeat (4R) tau accumulation, tau hyperphosphorylation, tau propagation, neuronal loss, hippocampal atrophy, neuroinflammation, Aβ clearance deficits, blood vessel damage, and cognitive decline. More interestingly, the accumulation of both 3R and 4R tau is specific to NHPs but not found in adult rodents. CONCLUSIONS This work establishes a tau-induced AD-like NHP model with many key pathological and behavioural features of AD. In addition, our model may potentially become one of the AD NHP models adopted by researchers worldwide since it can be generated within 2 ~ 3 months through a single injection of AAVs into the monkey brains. Hence, our model NHPs may facilitate mechanistic studies and therapeutic treatments for AD.
Collapse
Affiliation(s)
- Zhouquan Jiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jing Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yongpeng Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Bin Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Fan Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Huiyi Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Junjie Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Guoyu Ding
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Long Ma
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shu He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Rongjie Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ying Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yi Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
15
|
Jung Y, Damoiseaux JS. The potential of blood neurofilament light as a marker of neurodegeneration for Alzheimer's disease. Brain 2024; 147:12-25. [PMID: 37540027 PMCID: PMC11484517 DOI: 10.1093/brain/awad267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Over the past several years, there has been a surge in blood biomarker studies examining the value of plasma or serum neurofilament light (NfL) as a biomarker of neurodegeneration for Alzheimer's disease. However, there have been limited efforts to combine existing findings to assess the utility of blood NfL as a biomarker of neurodegeneration for Alzheimer's disease. In addition, we still need better insight into the specific aspects of neurodegeneration that are reflected by the elevated plasma or serum concentration of NfL. In this review, we survey the literature on the cross-sectional and longitudinal relationships between blood-based NfL levels and other, neuroimaging-based, indices of neurodegeneration in individuals on the Alzheimer's continuum. Then, based on the biomarker classification established by the FDA-NIH Biomarker Working group, we determine the utility of blood-based NfL as a marker for monitoring the disease status (i.e. monitoring biomarker) and predicting the severity of neurodegeneration in older adults with and without cognitive decline (i.e. a prognostic or a risk/susceptibility biomarker). The current findings suggest that blood NfL exhibits great promise as a monitoring biomarker because an increased NfL level in plasma or serum appears to reflect the current severity of atrophy, hypometabolism and the decline of white matter integrity, particularly in the brain regions typically affected by Alzheimer's disease. Longitudinal evidence indicates that blood NfL can be useful not only as a prognostic biomarker for predicting the progression of neurodegeneration in patients with Alzheimer's disease but also as a susceptibility/risk biomarker predicting the likelihood of abnormal alterations in brain structure and function in cognitively unimpaired individuals with a higher risk of developing Alzheimer's disease (e.g. those with a higher amyloid-β). There are still limitations to current research, as discussed in this review. Nevertheless, the extant literature strongly suggests that blood NfL can serve as a valuable prognostic and susceptibility biomarker for Alzheimer's disease-related neurodegeneration in clinical settings, as well as in research settings.
Collapse
Affiliation(s)
- Youjin Jung
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Jessica S Damoiseaux
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA
- Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
16
|
Kimura N, Sasaki Y, Masuda T, Ataka T, Eguchi A, Kakuma T, Matsubara E. Objective sleep was longitudinally associated with brain amyloid burden in mild cognitive impairment. Ann Clin Transl Neurol 2023; 10:2266-2275. [PMID: 37776077 PMCID: PMC10723246 DOI: 10.1002/acn3.51912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 10/01/2023] Open
Abstract
OBJECTIVE Understanding the longitudinal association of objective sleep and physical activity with brain amyloid burden and cortical glucose metabolism has critical clinical and public health implications for dementia prevention in later life. METHODS We enrolled 118 individuals aged ≥65 years with mild cognitive impairment, who were followed up on from August 2015 to September 2019. All participants continuously wore an accelerometer sensor for 7 consecutive days every 3 months and received annual 11 C-Pittsburgh compound-B and 18 F-fluorodeoxyglucose positron emission tomography (PET). Sleep and physical activity parameters were assessed using accelerometer sensor data and PET imaging was quantified using a standardized uptake-value ratio. Fifty-seven participants (48.3%) completed a lifestyle factor assessment and PET imaging over the 3-year period. A linear mixed-effects model was applied to examine the longitudinal association of sleep and physical activity parameters with PET imaging over the 3-year period, controlling for potential confounders. RESULTS Sleep efficiency was inversely associated with amyloid uptake in the frontal lobe. Although sleep duration was positively associated with global amyloid uptake, particularly in the frontal lobe, their impact was extremely small. However, physical activity parameters were not significantly associated with the 11 C-Pittsburgh compound-B-uptake. Furthermore, sleep and physical activity parameters were not significantly associated with cortical glucose metabolism. INTERPRETATION Lower sleep efficiency could be an early symptom of greater brain amyloid burden at the mild cognitive impairment stage. Therefore, the assessment of sleep may be useful for identifying individuals at higher risk for brain amyloid burden. Future longer term observational studies are required to confirm these findings.
Collapse
Affiliation(s)
- Noriyuki Kimura
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Yuuki Sasaki
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Teruaki Masuda
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Takuya Ataka
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | - Atsuko Eguchi
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| | | | - Etsuro Matsubara
- Department of Neurology, Faculty of MedicineOita UniversityOitaJapan
| |
Collapse
|
17
|
Wu KY, Lin KJ, Chen CH, Liu CY, Wu YM, Yen TC, Hsiao IT. Atrophy, hypometabolism and implication regarding pathology in late-life major depression with suspected non-alzheimer pathophysiology (SNAP). Biomed J 2023; 46:100589. [PMID: 36914051 PMCID: PMC10749882 DOI: 10.1016/j.bj.2023.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/16/2022] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND A substantial proportion of individuals with late-life major depression could be classified as having a suspected non-Alzheimer disease pathophysiology (SNAP), as indicated by a negative test for the biomarker β-amyloid (Aβ-) but a positive test for neurodegeneration (ND+). This study investigated the clinical features, characteristic patterns of brain atrophy and hypometabolism, and implications regarding pathology in this population. METHODS Forty-six amyloid-negative patients with late-life major depressive disorder (MDD) patients, including 23 SNAP (Aβ-/ND+) and 23 Aβ-/ND- MDD subjects, and 22 Aβ-/ND-healthy control subjects were included in this study. Voxel-wise group comparisons between the SNAP MDD, Aβ-/ND- MDD and control subjects were performed, adjusting for age, gender and level of education. For exploratory comparisons, 8 Aβ+/ND- and 4 Aβ+/ND + MDD patients were included in the Supplementary Material. RESULTS The SNAP MDD patients had atrophy extending to regions outside the hippocampus, predominately in the medial temporal, dorsomedial and ventromedial prefrontal cortex; hypometabolism involving a large portion of the lateral and medial prefrontal cortex in addition to the bilateral temporal, parietal and precuneus cortex within typical Alzheimer disease regions were observed. Metabolism ratios of the inferior to the medial temporal lobe were significantly elevated in the SNAP MDD patients. We further discussed the implications with regards to underlying pathologies. CONCLUSION The present study demonstrated characteristic patterns of atrophy and hypometabolism in patients with late-life major depression with SNAP. Identifying individuals with SNAP MDD may provide insights into currently unspecified neurodegenerative processes. Future refinement of neurodegeneration biomarkers is essential in order to identify potential pathological correlates while in vivo reliable pathological biomarkers are not forthcoming.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; APRINOIA Therapeutics Inc., Taipei, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Imaging and Radiological Sciences and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
18
|
DiNicola LM, Sun W, Buckner RL. Side-by-side regions in dorsolateral prefrontal cortex estimated within the individual respond differentially to domain-specific and domain-flexible processes. J Neurophysiol 2023; 130:1602-1615. [PMID: 37937340 PMCID: PMC11068361 DOI: 10.1152/jn.00277.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
A recurring debate concerns whether regions of primate prefrontal cortex (PFC) support domain-flexible or domain-specific processes. Here we tested the hypothesis with functional MRI (fMRI) that side-by-side PFC regions, within distinct parallel association networks, differentially support domain-flexible and domain-specialized processing. Individuals (N = 9) were intensively sampled, and all effects were estimated within their own idiosyncratic anatomy. Within each individual, we identified PFC regions linked to distinct networks, including a dorsolateral PFC (DLPFC) region coupled to the medial temporal lobe (MTL) and an extended region associated with the canonical multiple-demand network. We further identified an inferior PFC region coupled to the language network. Exploration in separate task data, collected within the same individuals, revealed a robust functional triple dissociation. The DLPFC region linked to the MTL was recruited during remembering and imagining the future, distinct from juxtaposed regions that were modulated in a domain-flexible manner during working memory. The inferior PFC region linked to the language network was recruited during sentence processing. Detailed analysis of the trial-level responses further revealed that the DLPFC region linked to the MTL specifically tracked processes associated with scene construction. These results suggest that the DLPFC possesses a domain-specialized region that is small and easily confused with nearby (larger) regions associated with cognitive control. The newly described region is domain specialized for functions traditionally associated with the MTL. We discuss the implications of these findings in relation to convergent anatomical analysis in the monkey.NEW & NOTEWORTHY Competing hypotheses link regions of prefrontal cortex (PFC) to domain-flexible or domain-specific processes. Here, using a precision neuroimaging approach, we identify a domain-specialized region in dorsolateral PFC, coupled to the medial temporal lobe and recruited for scene construction. This region is juxtaposed to, but distinct from, broader PFC regions recruited flexibly for cognitive control. Region distinctions align with broader network differences, suggesting that PFC regions gain dissociable processing properties via segregated anatomical projections.
Collapse
Affiliation(s)
- Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Wendy Sun
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
19
|
Shekari M, Verwer EE, Yaqub M, Daamen M, Buckley C, Frisoni GB, Visser PJ, Farrar G, Barkhof F, Gispert JD, Boellaard R. Harmonization of brain PET images in multi-center PET studies using Hoffman phantom scan. EJNMMI Phys 2023; 10:68. [PMID: 37906338 PMCID: PMC10618151 DOI: 10.1186/s40658-023-00588-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Image harmonization has been proposed to minimize heterogeneity in brain PET scans acquired in multi-center studies. However, standard validated methods and software tools are lacking. Here, we assessed the performance of a framework for the harmonization of brain PET scans in a multi-center European clinical trial. METHOD Hoffman 3D brain phantoms were acquired in 28 PET systems and reconstructed using site-specific settings. Full Width at Half Maximum (FWHM) of the Effective Image Resolution (EIR) and harmonization kernels were estimated for each scan. The target EIR was selected as the coarsest EIR in the imaging network. Using "Hoffman 3D brain Analysis tool," indicators of image quality were calculated before and after the harmonization: The Coefficient of Variance (COV%), Gray Matter Recovery Coefficient (GMRC), Contrast, Cold-Spot RC, and left-to-right GMRC ratio. A COV% ≤ 15% and Contrast ≥ 2.2 were set as acceptance criteria. The procedure was repeated to achieve a 6-mm target EIR in a subset of scans. The method's robustness against typical dose-calibrator-based errors was assessed. RESULTS The EIR across systems ranged from 3.3 to 8.1 mm, and an EIR of 8 mm was selected as the target resolution. After harmonization, all scans met acceptable image quality criteria, while only 13 (39.4%) did before. The harmonization procedure resulted in lower inter-system variability indicators: Mean ± SD COV% (from 16.97 ± 6.03 to 7.86 ± 1.47%), GMRC Inter-Quartile Range (0.040-0.012), and Contrast SD (0.14-0.05). Similar results were obtained with a 6-mm FWHM target EIR. Errors of ± 10% in the DRO activity resulted in differences below 1 mm in the estimated EIR. CONCLUSION Harmonizing the EIR of brain PET scans significantly reduced image quality variability while minimally affecting quantitative accuracy. This method can be used prospectively for harmonizing scans to target sharper resolutions and is robust against dose-calibrator errors. Comparable image quality is attainable in brain PET multi-center studies while maintaining quantitative accuracy.
Collapse
Affiliation(s)
- Mahnaz Shekari
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Eline E Verwer
- Department of Radiology and Nuclear Medicine, Amsterdam, University Medical Centers, Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, Amsterdam, University Medical Centers, Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marcel Daamen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Memory Center, Department of Rehabilitation and Geriatrics, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam, University Medical Centers, Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Queen Square Institute of Neurology, University College London, London, UK
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Barcelona, Spain.
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam, University Medical Centers, Location VUmc, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Peretti DE, Ribaldi F, Scheffler M, Chicherio C, Frisoni GB, Garibotto V. Prognostic value of imaging-based ATN profiles in a memory clinic cohort. Eur J Nucl Med Mol Imaging 2023; 50:3313-3323. [PMID: 37358619 PMCID: PMC10542279 DOI: 10.1007/s00259-023-06311-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE The ATN model represents a research framework used to classify subjects based on the presence or absence of Alzheimer's disease (AD) pathology through biomarkers for amyloid (A), tau (T), and neurodegeneration (N). The aim of this study was to assess the relationship between ATN profiles defined through imaging and cognitive decline in a memory clinic cohort. METHODS One hundred-eight patients from the memory clinic of Geneva University Hospitals underwent complete clinical and neuropsychological evaluation at baseline and 23 ± 5 months after inclusion, magnetic resonance imaging, amyloid and tau PET scans. ATN profiles were divided into four groups: normal, AD pathological change (AD-PC: A + T-N-, A + T-N +), AD pathology (AD-P: A + T + N-, A + T + N +), and suspected non-AD pathology (SNAP: A-T + N-, A-T-N + , A-T + N +). RESULTS Mini-Mental State Examination (MMSE) scores were significantly different among groups, both at baseline and follow-up, with the normal group having higher average MMSE scores than the other groups. MMSE scores changed significantly after 2 years only in AD-PC and AD-P groups. AD-P profile classification also had the largest number of decliners at follow-up (55%) and the steepest global cognitive decline compared to the normal group. Cox regression showed that participants within the AD-P group had a higher risk of cognitive decline (HR = 6.15, CI = 2.59-14.59), followed by AD-PC (HR = 3.16, CI = 1.17-8.52). CONCLUSION Of the different group classifications, AD-P was found to have the most significant effect on cognitive decline over a period of 2 years, highlighting the value of both amyloid and tau PET molecular imaging as prognostic imaging biomarkers in clinical practice.
Collapse
Affiliation(s)
- Débora E Peretti
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre and Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Federica Ribaldi
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Centre, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Max Scheffler
- Division of Radiology, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Chicherio
- Geneva Memory Centre, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
- Centre for Interdisciplinary Study of Gerontology and Vulnerability (CIGEV), University of Geneva, Geneva, Switzerland
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Centre, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Geneva University Neurocentre and Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
- Centre for Biomedical Imaging, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
van Engelen MPE, Verfaillie SCJ, Dols A, Oudega ML, Boellaard R, Golla SSV, den Hollander M, Ossenkoppele R, Scheltens P, van Berckel BNM, Pijnenburg YAL, Vijverberg EGB. Altered brain metabolism in frontotemporal dementia and psychiatric disorders: involvement of the anterior cingulate cortex. EJNMMI Res 2023; 13:71. [PMID: 37493827 PMCID: PMC10371967 DOI: 10.1186/s13550-023-01020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Behavioural symptoms and frontotemporal hypometabolism overlap between behavioural variant of frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD), hampering diagnostic distinction. Voxel-wise comparisons of brain metabolism might identify specific frontotemporal-(hypo)metabolic regions between bvFTD and PPD. We investigated brain metabolism in bvFTD and PPD and its relationship with behavioural symptoms, social cognition, severity of depressive symptoms and cognitive functioning. RESULTS Compared to controls, bvFTD showed decreased metabolism in the dorsal anterior cingulate cortex (dACC) (p < 0.001), orbitofrontal cortex (OFC), temporal pole, dorsolateral prefrontal cortex (dlPFC) and caudate, whereas PPD showed no hypometabolism. Compared to PPD, bvFTD showed decreased metabolism in the dACC (p < 0.001, p < 0.05FWE), insula, Broca's area, caudate, thalamus, OFC and temporal cortex (p < 0.001), whereas PPD showed decreased metabolism in the motor cortex (p < 0.001). Across bvFTD and PPD, decreased metabolism in the temporal cortex (p < 0.001, p < 0.05FWE), dACC and frontal cortex was associated with worse social cognition. Decreased metabolism in the dlPFC was associated with compulsiveness (p < 0.001). Across bvFTD, PPD and controls, decreased metabolism in the PFC and motor cortex was associated with executive dysfunctioning (p < 0.001). CONCLUSIONS Our findings indicate subtle but distinct metabolic patterns in bvFTD and PPD, most strongly in the dACC. The degree of frontotemporal and cingulate hypometabolism was related to impaired social cognition, compulsiveness and executive dysfunctioning. Our findings suggest that the dACC might be an important region to differentiate between bvFTD and PPD but needs further validation.
Collapse
Affiliation(s)
- Marie-Paule E van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Sander C J Verfaillie
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Medical Psychology, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Annemieke Dols
- Department of Psychiatry, UMC Utrecht Brain Center, University of Utrecht, Utrecht, The Netherlands
| | - Mardien L Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marijke den Hollander
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- EQT Life Sciences Partners, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Rossi S, Prodi E, Morese R, Paone G, Ruberto T, Sacco L. Persistent 18F-FDG Brain PET Fronto-Temporal Hypometabolism and Cognitive Symptoms Two Years after SARS-CoV-2 Infection: A Case Report. Neurol Int 2023; 15:908-916. [PMID: 37606391 PMCID: PMC10443341 DOI: 10.3390/neurolint15030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
At least 10% of patients experience persistent symptoms after SARS-CoV-2 infection, a condition referred to as post-acute COVID-19, post-acute sequelae of SARS-CoV-2 infection (PASC), long COVID, long-haul COVID, long-term effects of COVID, post-COVID-19 and chronic COVID. In this report, we describe a case of persistent cognitive deficits developed after SARS-CoV-2 infection in a 40-year-old woman with a family history of early-onset Alzheimer's disease (EOAD) since her father was diagnosed with EOAD at the age of 50. We describe the clinical picture and workup, with special emphasis on the alterations of brain glucose metabolism evidenced by 18-fluoro-deoxy-glucose positron emission tomography (FDG-PET), which could be considered a useful marker of the presence and persistence of cognitive deficits.
Collapse
Affiliation(s)
- Stefania Rossi
- Department of Neurology, Neuropsychology and Speech Therapy Unit, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland;
| | - Elena Prodi
- Department of Neuroradiology, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland;
| | - Rosalba Morese
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland; (R.M.); (G.P.)
- Faculty of Communication, Culture and Society, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Gaetano Paone
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland; (R.M.); (G.P.)
- Department of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
| | - Teresa Ruberto
- Department of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
| | - Leonardo Sacco
- Department of Neurology, Neuropsychology and Speech Therapy Unit, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland;
| |
Collapse
|
23
|
Zhang T, Niu H, Liu Y, Cai L, Liu D, Zhao E, Li M, Liu W, Li J, Qiao P, Zheng W, Ren P, Wang Z. Dobutamine-induced alternations in cerebral blood flow of healthy adults: a 3D pseudocontinuous arterial spin labeling study. BMC Med 2023; 21:238. [PMID: 37400817 DOI: 10.1186/s12916-023-02928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND It is unclear whether dobutamine, commonly used clinically in echocardiography and short-term congestive heart failure treatment for promoting increased myocardial contractility, affects brain microcirculatory behavior. Cerebral microcirculation plays an important role in ensuring adequate oxygen transport. Therefore, we investigated the effects of dobutamine on cerebral hemodynamics. METHODS Forty-eight healthy volunteers without cardiovascular or cerebrovascular disease underwent MRI to obtain cerebral blood flow (CBF) maps using 3D pseudocontinuous arterial spin labeling before and during the dobutamine stress test. Additionally, cerebrovascular morphology was obtained based on 3D-time-off-light (3D-TOF) magnetic resonance angiography (MRA). Electrocardiogram, heart rate (HR), respiration rate (RR), blood pressure, and blood oxygen were simultaneously recorded before and during dobutamine injection and during recovery (not during MRI). The anatomic features of the circle of Willis and the basilar artery (BA) diameter were assessed on MRA images by two radiologists with extensive neuroimaging experience. Binary logistic regression was used to test for the independent determinants of CBF changes. RESULTS HR, RR, systolic (SBP), and diastolic blood pressure (DBP) significantly increased after dobutamine infusion. Blood oxygen levels remained similar. Compared to the CBF in the resting state, the CBF values exhibited significantly lower CBF levels in both grey matter and white matter. Furthermore, compared with the CBF in the resting state, that in the stress state was decreased in the anterior circulation, mainly in the frontal lobe (voxel level P < 0.001, pixel level P < 0.05). Logistic regression showed that body mass index (BMI; odds ratio [OR] 5.80, 95% confidence interval [CI] 1.60-21.01, P = 0.008], resting SBP (OR 0.64, 95% CI 0.45-0.92, P = 0.014), and BA diameter (OR 11.04, 95% CI 1.05-116.53, P = 0.046) were significantly associated with frontal lobe CBF changes. CONCLUSIONS Dobutamine-induced stress significantly decreased CBF in the frontal lobe anterior circulation. Individuals with a high BMI and low SBP during the dobutamine stress test are more likely to have a stress-induced CBF decrease. Thus, attention should be paid to blood pressure, BMI, and cerebrovascular morphology of patients undergoing dobutamine stress echocardiography or those receiving intensive care or anesthesia.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haijun Niu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yawen Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Linkun Cai
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Dong Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Erwei Zhao
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Min Li
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Wenjuan Liu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - PengGang Qiao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zheng
- National Space Science Center, Chinese Academy of Sciences, Beijing, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Zhenchang Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cereb Cortex 2023; 33:6139-6151. [PMID: 36563018 PMCID: PMC10183749 DOI: 10.1093/cercor/bhac491] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.
Collapse
Affiliation(s)
- Bronte Ficek-Tani
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, United States
| | - Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, United States
| | - Nancy Li
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Carolyn Fredericks
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
25
|
Mirkin S, Albensi BC. Should artificial intelligence be used in conjunction with Neuroimaging in the diagnosis of Alzheimer's disease? Front Aging Neurosci 2023; 15:1094233. [PMID: 37187577 PMCID: PMC10177660 DOI: 10.3389/fnagi.2023.1094233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder that affects memory, thinking, behavior, and other cognitive functions. Although there is no cure, detecting AD early is important for the development of a therapeutic plan and a care plan that may preserve cognitive function and prevent irreversible damage. Neuroimaging, such as magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET), has served as a critical tool in establishing diagnostic indicators of AD during the preclinical stage. However, as neuroimaging technology quickly advances, there is a challenge in analyzing and interpreting vast amounts of brain imaging data. Given these limitations, there is great interest in using artificial Intelligence (AI) to assist in this process. AI introduces limitless possibilities in the future diagnosis of AD, yet there is still resistance from the healthcare community to incorporate AI in the clinical setting. The goal of this review is to answer the question of whether AI should be used in conjunction with neuroimaging in the diagnosis of AD. To answer the question, the possible benefits and disadvantages of AI are discussed. The main advantages of AI are its potential to improve diagnostic accuracy, improve the efficiency in analyzing radiographic data, reduce physician burnout, and advance precision medicine. The disadvantages include generalization and data shortage, lack of in vivo gold standard, skepticism in the medical community, potential for physician bias, and concerns over patient information, privacy, and safety. Although the challenges present fundamental concerns and must be addressed when the time comes, it would be unethical not to use AI if it can improve patient health and outcome.
Collapse
Affiliation(s)
- Sophia Mirkin
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Benedict C. Albensi
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- St. Boniface Hospital Research, Winnipeg, MB, Canada
- University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Yang Z, Cummings JL, Kinney JW, Cordes D. Accelerated hypometabolism with disease progression associated with faster cognitive decline among amyloid positive patients. Front Neurosci 2023; 17:1151820. [PMID: 37123373 PMCID: PMC10140339 DOI: 10.3389/fnins.2023.1151820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Objective To evaluate the progression of brain glucose metabolism among participants with biological signature of Alzheimer's disease (AD) and its relevance to cognitive decline. Method We studied 602 amyloid positive individuals who underwent 18F-fluorodeoxyglucose PET (FDG-PET) scan, 18F-AV-45 amyloid PET (AV45-PET) scan, structural MRI scan and neuropsychological examination, including 116 cognitively normal (CN) participants, 314 participants diagnosed as mild cognitive impairment (MCI), and 172 participants diagnosed as AD dementia. The first FDG-PET scan satisfying the inclusion criteria was considered as the baseline scan. Cross-sectional analysis were conducted with the baseline FDG-PET data to compare the regional differences between diagnostic groups after adjusting confounding factors. Among these participants, 229 participants (55 CN, 139 MCI, and 35 AD dementia) had two-year follow-up FDG-PET data available. Regional glucose metabolism was computed and the progression rates of regional glucose metabolism were derived from longitudinal FDG-PET scans. Then the group differences of regional progression rates were examined to assess whether glucose metabolism deficit accelerates or becomes stable with disease progression. The association of cognitive decline rate with baseline regional glucose metabolism, and progression rate in longitudinal data, were evaluated. Results Participants with AD dementia showed substantial glucose metabolism deficit than CN and MCI at left hippocampus, in addition to the traditionally reported frontal and parietal-temporal lobe. More substantial metabolic change was observed with the contrast AD - MCI than the contrast MCI - CN, even after adjusting time duration since cognitive symptom onset. With the longitudinal data, glucose metabolism was observed to decline the most rapidly in the AD dementia group and at a slower rate in MCI. Lower regional glucose metabolism was correlated to faster cognitive decline rate with mild-moderate correlations, and the progression rate was correlated to cognitive decline rate with moderate-large correlations. Discussion and conclusion Hippocampus was identified to experience hypometabolism in AD pathology. Hypometabolism accelerates with disease progression toward AD dementia. FDG-PET, particularly longitudinal scans, could potentially help predict how fast cognition declines and assess the impact of treatment in interventional trials.
Collapse
Affiliation(s)
- Zhengshi Yang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jeffrey L. Cummings
- Department of Brain Health, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jefferson W. Kinney
- Department of Brain Health, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- Department of Brain Health, University of Nevada, Las Vegas, Las Vegas, NV, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | | |
Collapse
|
27
|
He M, Kolesar TA, Goertzen AL, Ng MC, Ko JH. Do Epilepsy Patients with Cognitive Impairment Have Alzheimer's Disease-like Brain Metabolism? Biomedicines 2023; 11:biomedicines11041108. [PMID: 37189726 DOI: 10.3390/biomedicines11041108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Although not classically considered together, there is emerging evidence that Alzheimer's disease (AD) and epilepsy share a number of features and that each disease predisposes patients to developing the other. Using machine learning, we have previously developed an automated fluorodeoxyglucose positron emission tomography (FDG-PET) reading program (i.e., MAD), and demonstrated good sensitivity (84%) and specificity (95%) for differentiating AD patients versus healthy controls. In this retrospective chart review study, we investigated if epilepsy patients with/without mild cognitive symptoms also show AD-like metabolic patterns determined by the MAD algorithm. Scans from a total of 20 patients with epilepsy were included in this study. Because AD diagnoses are made late in life, only patients aged ≥40 years were considered. For the cognitively impaired patients, four of six were identified as MAD+ (i.e., the FDG-PET image is classified as AD-like by the MAD algorithm), while none of the five cognitively normal patients was identified as MAD+ (χ2 = 8.148, p = 0.017). These results potentially suggest the usability of FDG-PET in prognosticating later dementia development in non-demented epilepsy patients, especially when combined with machine learning algorithms. A longitudinal follow-up study is warranted to assess the effectiveness of this approach.
Collapse
Affiliation(s)
- Michael He
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T6, Canada
| | - Tiffany A Kolesar
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 3J7, Canada
| | - Andrew L Goertzen
- Section of Nuclear Medicine, Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Marcus C Ng
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Section of Neurology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, MB R3E 3J7, Canada
- Graduate Program in Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
28
|
Balfroid T, Warren AE, Dalic LJ, Aeby A, Berlangieri SU, Archer JS. Frontoparietal 18F-FDG-PET hypo-metabolism in Lennox-Gastaut syndrome: further evidence highlighting the key network. Epilepsy Res 2023; 192:107131. [PMID: 37054522 DOI: 10.1016/j.eplepsyres.2023.107131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Lennox Gastaut syndrome (LGS) can be conceptualised as a "secondary network epilepsy", in which the shared electroclinical manifestations reflect epileptic recruitment of a common brain network, despite a range of underlying aetiologies. We aimed to identify the key networks recruited by the epileptic process of LGS using interictal 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG-PET). METHODS Group analysis of cerebral 18F-FDG-PET, comparing 21 patients with LGS (mean age = 15 years) and 18 pseudo-controls (mean age = 19 years), studied at Austin Health Melbourne, between 2004 and 2015. To minimise the influence of individual patient lesions in the LGS group, we only studied brain hemispheres without structural MRI abnormalities. The pseudo-control group consisted of age- and sex-matched patients with unilateral temporal lobe epilepsy, using only the hemispheres contralateral to the side of epilepsy. Voxel-wise permutation testing compared 18F-FDG-PET uptake between groups. Associations were explored between areas of altered metabolism and clinical variables (age of seizure onset, proportion of life with epilepsy, and verbal/nonverbal ability). Penetrance maps were calculated to explore spatial consistency of altered metabolic patterns across individual patients with LGS. RESULTS Although not always readily apparent on visual inspection of individual patient scans, group analysis revealed hypometabolism in a network of regions including prefrontal and premotor cortex, anterior and posterior cingulate, inferior parietal lobule, and precuneus (p < 0.05, corrected for family-wise error). These brain regions tended to show a greater reduction in metabolism in non-verbal compared to verbal LGS patients, although this difference was not statistically significant. No areas of hypermetabolism were detected on group analysis, although ∼25 % of individual patients showed increased metabolism (relative to pseudo-controls) in the brainstem, putamen, thalamus, cerebellum, and pericentral cortex. DISCUSSION Interictal hypometabolism in frontoparietal cortex in LGS is compatible with our previous EEG-fMRI and SPECT studies showing that interictal bursts of generalised paroxysmal fast activity and tonic seizures recruit similar cortical regions. This study provides further evidence that these regions are central to the electroclinical expression of LGS.
Collapse
|
29
|
Li X, Hui Y, Shi H, Li M, Zhao X, Li R, Zhang W, Lv H, Wu Y, Li J, Cui L, Zhao P, Wu S, Wang Z. Altered cerebral blood flow and white matter during wakeful rest in patients with obstructive sleep apnea: a population-based retrospective study. Br J Radiol 2023; 96:20220867. [PMID: 36715135 PMCID: PMC9975376 DOI: 10.1259/bjr.20220867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES To explore changes in cerebral blood flow (CBF) and white matter during wakeful rest in patients with obstructive sleep apnea (OSA). METHODS The subjects comprised OSA patients and age- and sex-matched non-sleep apnea (NSA) subjects from December 2020 to December 2021. All subjects underwent structural and arterial spin labeling MRI examinations using a 3.0 T MRI scanner. Intergroup differences in regional and global CBF and white matter hyperintensities (WMHs) were analyzed. RESULTS In this study, 100 (74 males) of 750 (439 males) subjects were diagnosed with OSA, so the prevalence of OSA in the general population was 13.3% (100/750), with 16.9% (74/439) in males and 8.4% (26/311) in females. Excluding four patients with incomplete imaging data, 96 OSA patients and 103 age- and sex-matched NSA subjects were included. At global level, OSA patients showed significantly decreased CBF values in gray matter and whole brain compared to NSA subjects (gray matter: p = 0.010; whole brain: p = 0.021). No significant difference in CBF values was found in WM between the two groups (p = 0.250). At regional level, compared with NSA subjects, patients with OSA exhibited significantly decreased regional CBF values mainly in right parietal lobe and right temporal lobe. Moreover, OSA patients had significantly higher WMHs burden than NSA subjects (p = 0.017). CONCLUSIONS OSA patients exhibit decreased global and regional CBF values and increased WMHs burden. ADVANCES IN KNOWLEDGE These findings provide a basis for exploring neuropathological changes of OSA and for early and appropriate treatment.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Hui
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huijing Shi
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Mengning Li
- Department of MRI Room, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Xinyu Zhao
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenfei Zhang
- Department of MRI Room, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yuntao Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liufu Cui
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, Hebei Province, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Casula EP, Borghi I, Maiella M, Pellicciari MC, Bonnì S, Mencarelli L, Assogna M, D'Acunto A, Di Lorenzo F, Spampinato DA, Santarnecchi E, Martorana A, Koch G. Regional Precuneus Cortical Hyperexcitability in Alzheimer's Disease Patients. Ann Neurol 2023; 93:371-383. [PMID: 36134540 PMCID: PMC10092632 DOI: 10.1002/ana.26514] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Neuronal excitation/inhibition (E/I) imbalance is a potential cause of neuronal network malfunctioning in Alzheimer's disease (AD), contributing to cognitive dysfunction. Here, we used a novel approach combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to probe cortical excitability in different brain areas known to be directly involved in AD pathology. METHODS We performed TMS-EEG recordings targeting the left dorsolateral prefrontal cortex (l-DLPFC), the left posterior parietal cortex (l-PPC), and the precuneus (PC) in a large sample of patients with mild-to-moderate AD (n = 65) that were compared with a group of age-matched healthy controls (n = 21). RESULTS We found that patients with AD are characterized by a regional cortical hyperexcitability in the PC and, to some extent, in the frontal lobe, as measured by TMS-evoked potentials. Notably, cortical excitability assessed over the l-PPC was comparable between the 2 groups. Furthermore, we found that the individual level of PC excitability was associated with the level of cognitive impairment, as measured with Mini-Mental State Examination, and with corticospinal fluid levels of Aβ42 . INTERPRETATION Our data provide novel evidence that precuneus cortical hyperexcitability is a key feature of synaptic dysfunction in patients with AD. The current results point to the combined approach of TMS and EEG as a novel promising technique to measure hyperexcitability in patients with AD. This index could represent a useful biomarker to stage disease severity and evaluate response to novel therapies. ANN NEUROL 2023;93:371-383.
Collapse
Affiliation(s)
- Elias P Casula
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Psychology, La Sapienza University, Rome, Italy
| | - Ilaria Borghi
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| | - Michele Maiella
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Maria C Pellicciari
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonia Bonnì
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lucia Mencarelli
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Martina Assogna
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Alessia D'Acunto
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Di Lorenzo
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Danny A Spampinato
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Emiliano Santarnecchi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alessandro Martorana
- Memory Clinic, Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Giacomo Koch
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy.,Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Ruan D, Sun L. Amyloid-β PET in Alzheimer's disease: A systematic review and Bayesian meta-analysis. Brain Behav 2023; 13:e2850. [PMID: 36573329 PMCID: PMC9847612 DOI: 10.1002/brb3.2850] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 10/29/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In recent years, longitudinal studies of Alzheimer's disease (AD) have been successively concluded. Our aim is to determine the efficacy of amyloid-β (Aβ) PET in diagnosing AD and early prediction of mild cognitive impairment (MCI) converting to AD. By pooling studies from different centers to explore in-depth whether diagnostic performance varies by population type, radiotracer type, and diagnostic approach, thus providing a more comprehensive theoretical basis for the subsequent widespread application of Aβ PET in the clinical setting. METHODS Relevant studies were searched through PubMed. The pooled sensitivities, specificities, DOR, and the summary ROC curve were obtained based on a Bayesian random-effects model. RESULTS Forty-eight studies, including 5967 patients, were included. Overall, the pooled sensitivity, specificity, DOR, and AUC of Aβ PET for diagnosing AD were 0.90, 0.80, 35.68, and 0.91, respectively. Subgroup analysis showed that Aβ PET had high sensitivity (0.91) and specificity (0.81) for differentiating AD from normal controls but very poor specificity (0.49) for determining AD from MCI. The pooled sensitivity and specificity were 0.84 and 0.62, respectively, for predicting the conversion of MCI to AD. The differences in diagnostic efficacy between visual assessment and quantitative analysis and between 11 C-PIB PET and 18 F-florbetapir PET were insignificant. CONCLUSIONS The overall performance of Aβ PET in diagnosing AD is favorable, but the differentiation between MCI and AD patients should consider that some MCI may be at risk of conversion to AD and may be misdiagnosed. A multimodal diagnostic approach and machine learning analysis may be effective in improving diagnostic accuracy.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear MedicineZhongshan Hospital (Xiamen), Fudan UniversityFujianChina
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET CenterXiamen Cancer Hospital, The First Affiliated Hospital of Xiamen UniversityXiamenChina
| |
Collapse
|
32
|
Savignac C, Villeneuve S, Badhwar A, Saltoun K, Shafighi K, Zajner C, Sharma V, Gagliano Taliun SA, Farhan S, Poirier J, Bzdok D. APOE alleles are associated with sex-specific structural differences in brain regions affected in Alzheimer's disease and related dementia. PLoS Biol 2022; 20:e3001863. [PMID: 36512526 PMCID: PMC9747055 DOI: 10.1371/journal.pbio.3001863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is marked by intracellular tau aggregates in the medial temporal lobe (MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined codependent structural variations between the MTL's most vulnerable structure, the hippocampus (HC), and the DN at subregion resolution in individuals with Alzheimer's disease and related dementia (ADRD). By leveraging the power of the approximately 40,000 participants of the UK Biobank cohort, we assessed impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer's disease alleles on these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix's fimbria, and their cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further revealed male-specific HC-DN associations with air pollution and female-specific associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.
Collapse
Affiliation(s)
- Chloé Savignac
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chris Zajner
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah A. Gagliano Taliun
- Department of Neurosciences & Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Matei N, Leahy S, Blair NP, Burford J, Rahimi M, Shahidi M. Retinal Vascular Physiology Biomarkers in a 5XFAD Mouse Model of Alzheimer's Disease. Cells 2022; 11:2413. [PMID: 35954257 PMCID: PMC9368483 DOI: 10.3390/cells11152413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that affects the brain and retina and lacks reliable biomarkers for early diagnosis. As amyloid beta (Aβ) manifestations emerge prior to clinical symptoms and plaques of amyloid may cause vascular damage, identification of retinal vascular biomarkers may improve knowledge of AD pathophysiology and potentially serve as therapeutic targets. The purpose of the current study was to test the hypothesis that retinal hemodynamic and oxygen metrics are altered in 5XFAD mice. METHODS Thirty-two male mice were evaluated at 3 months of age: sixteen 5XFAD transgenic and sixteen wild-type mice. Spectral-domain optical coherence tomography, vascular oxygen tension, and blood flow imaging were performed in one eye of each mouse. After imaging, the imaged and fellow retinal tissues were submitted for histological sectioning and amyloid protein analysis, respectively. Protein analysis was also performed on the brain tissues. RESULTS Retinal physiological changes in venous diameter and blood velocity, arterial and venous oxygen contents, coupled with anatomical alterations in the thickness of retinal cell layers were detected in 5XFAD mice. Moreover, an increase in Aβ42 levels in both the retina and brain tissues was observed in 5XFAD mice. Significant changes in retinal oxygen delivery, metabolism, or extraction fraction were not detected. Based on compiled data from both groups, arterial oxygen content was inversely related to venous blood velocity and nerve fiber/ganglion cell layer thickness. CONCLUSIONS Concurrent alterations in retinal hemodynamic and oxygen metrics, thickness, and tissue Aβ42 protein levels in 5XFAD mice at 3 months of age corresponded to previously reported findings in human AD. Overall, these results suggest that this mouse model can be utilized for studying pathophysiology of AD and evaluating potential therapies.
Collapse
Affiliation(s)
- Nathanael Matei
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Norman P. Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James Burford
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mansour Rahimi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
34
|
Peretti DE, Vállez García D, Renken RJ, Reesink FE, Doorduin J, de Jong BM, De Deyn PP, Dierckx RAJO, Boellaard R. Alzheimer's disease pattern derived from relative cerebral flow as an alternative for the metabolic pattern using SSM/PCA. EJNMMI Res 2022; 12:37. [PMID: 35737201 PMCID: PMC9226207 DOI: 10.1186/s13550-022-00909-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 2-Deoxy-2-[18F]fluoroglucose (FDG) PET is an important tool for the identification of Alzheimer's disease (AD) patients through the characteristic neurodegeneration pattern that these patients present. Regional cerebral blood flow (rCBF) images derived from dynamic 11C-labelled Pittsburgh Compound B (PIB) have been shown to present a similar pattern as FDG. Moreover, multivariate analysis techniques, such as scaled subprofile modelling using principal component analysis (SSM/PCA), can be used to generate disease-specific patterns (DP) that may aid in the classification of subjects. Therefore, the aim of this study was to compare rCBF AD-DPs with FDG AD-DP and their respective performances. Therefore, 52 subjects were included in this study. Fifteen AD and 16 healthy control subjects were used to generate four AD-DP: one based on relative cerebral trace blood (R1), two based on time-weighted average of initial frame intervals (ePIB), and one based on FDG images. Furthermore, 21 subjects diagnosed with mild cognitive impairment were tested against these AD-DPs. RESULTS In general, the rCBF and FDG AD-DPs were characterized by a reduction in cortical frontal, temporal, and parietal lobes. FDG and rCBF methods presented similar score distribution. CONCLUSION rCBF images may provide an alternative for FDG PET scans for the identification of AD patients through SSM/PCA.
Collapse
Affiliation(s)
- Débora E Peretti
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco J Renken
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fransje E Reesink
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology, Alzheimer Centre, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Department of Radiology and Nuclear Medicine, Location VU Medical Center, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Future of Alzheimer’s Disease: Nanotechnology-Based Diagnostics and Therapeutic Approach. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Wu KY, Lin KJ, Chen CH, Liu CY, Wu YM, Chen CS, Yen TC, Hsiao IT. Decreased Cerebral Amyloid-β Depositions in Patients With a Lifetime History of Major Depression With Suspected Non-Alzheimer Pathophysiology. Front Aging Neurosci 2022; 14:857940. [PMID: 35721010 PMCID: PMC9204309 DOI: 10.3389/fnagi.2022.857940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral amyloid-β (Aβ) depositions in depression in old age are controversial. A substantial proportion of individuals with late-life major depressive disorder (MDD) could be classified as having suspected non-Alzheimer’s disease pathophysiology (SNAP) by a negative test for the biomarker amyloid-β (Aβ−) but positive neurodegeneration (ND+). This study aimed to evaluate subthreshold Aβ loads in amyloid-negative MDD, particularly in SNAP MDD patients. This study included 46 amyloid-negative MDD patients: 23 SNAP (Aβ−/ND+) MDD and 23 Aβ−/ND− MDD, and 22 Aβ−/ND− control subjects. All subjects underwent 18F-florbetapir PET, FDG-PET, and MRI. Regions of interest (ROIs) and voxel-wise group comparisons were performed with adjustment for age, gender, and level of education. The SNAP MDD patients exhibited significantly deceased 18F-florbetapir uptakes in most cortical regions but not the parietal and precuneus cortex, as compared with the Aβ−/ND− MDD and control subjects (FDR correction, p < 0.05). No correlations of neuropsychological tests or depression characteristics with global cortical uptakes, but significant positive correlations between cognitive functions and adjusted hippocampal volumes among different groups were observed. The reduced Aβ depositions in the amyloid-negative MDD patients might be attributed mainly to the SNAP MDD patients. Our results indicated that meaningfully low amounts of subclinical Aβ might contain critical information on the non-amyloid-mediated pathogenesis.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Tzu-Chen Yen
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine, Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
- Department of Medical Imaging and Radiological Sciences, College of Medicine and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- *Correspondence: Ing-Tsung Hsiao,
| |
Collapse
|
37
|
Hernandez M, Ramon-Julvez U, Ferraz F. Explainable AI toward understanding the performance of the top three TADPOLE Challenge methods in the forecast of Alzheimer’s disease diagnosis. PLoS One 2022; 17:e0264695. [PMID: 35522653 PMCID: PMC9075665 DOI: 10.1371/journal.pone.0264695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
The Alzheimer′s Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge is the most comprehensive challenge to date with regard to the number of subjects, considered features, and challenge participants. The initial objective of TADPOLE was the identification of the most predictive data, features, and methods for the progression of subjects at risk of developing Alzheimer′s. The challenge was successful in recognizing tree-based ensemble methods such as gradient boosting and random forest as the best methods for the prognosis of the clinical status in Alzheimer’s disease (AD). However, the challenge outcome was limited to which combination of data processing and methods exhibits the best accuracy; hence, it is difficult to determine the contribution of the methods to the accuracy. The quantification of feature importance was globally approached by all the challenge participant methods. In addition, TADPOLE provided general answers that focused on improving performance while ignoring important issues such as interpretability. The purpose of this study is to intensively explore the models of the top three TADPOLE Challenge methods in a common framework for fair comparison. In addition, for these models, the most meaningful features for the prognosis of the clinical status of AD are studied and the contribution of each feature to the accuracy of the methods is quantified. We provide plausible explanations as to why the methods achieve such accuracy, and we investigate whether the methods use information coherent with clinical knowledge. Finally, we approach these issues through the analysis of SHapley Additive exPlanations (SHAP) values, a technique that has recently attracted increasing attention in the field of explainable artificial intelligence (XAI).
Collapse
Affiliation(s)
- Monica Hernandez
- Aragon Institute on Engineering Research, University of Zaragoza, Zaragoza, Spain
- * E-mail:
| | - Ubaldo Ramon-Julvez
- Aragon Institute on Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Francisco Ferraz
- Aragon Institute on Engineering Research, University of Zaragoza, Zaragoza, Spain
| | | |
Collapse
|
38
|
Rao IY, Hanson LR, Johnson JC, Rosenbloom MH, Frey WH. Brain Glucose Hypometabolism and Iron Accumulation in Different Brain Regions in Alzheimer's and Parkinson's Diseases. Pharmaceuticals (Basel) 2022; 15:551. [PMID: 35631378 PMCID: PMC9143620 DOI: 10.3390/ph15050551] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to examine the relationship between the presence of glucose hypometabolism (GHM) and brain iron accumulation (BIA), two potential pathological mechanisms in neurodegenerative disease, in different regions of the brain in people with late-onset Alzheimer's disease (AD) or Parkinson's disease (PD). Studies that conducted fluorodeoxyglucose positron emission tomography (FDG-PET) to map GHM or quantitative susceptibility mapping-magnetic resonance imaging (QSM-MRI) to map BIA in the brains of patients with AD or PD were reviewed. Regions of the brain where GHM or BIA were reported in each disease were compared. In AD, both GHM and BIA were reported in the hippocampus, temporal, and parietal lobes. GHM alone was reported in the cingulate gyrus, precuneus and occipital lobe. BIA alone was reported in the caudate nucleus, putamen and globus pallidus. In PD, both GHM and BIA were reported in thalamus, globus pallidus, putamen, hippocampus, and temporal and frontal lobes. GHM alone was reported in cingulate gyrus, caudate nucleus, cerebellum, and parietal and occipital lobes. BIA alone was reported in the substantia nigra and red nucleus. GHM and BIA are observed independent of one another in various brain regions in both AD and PD. This suggests that GHM is not always necessary or sufficient to cause BIA and vice versa. Hypothesis-driven FDG-PET and QSM-MRI imaging studies, where both are conducted on individuals with AD or PD, are needed to confirm or disprove the observations presented here about the potential relationship or lack thereof between GHM and BIA in AD and PD.
Collapse
Affiliation(s)
- Indira Y. Rao
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - Leah R. Hanson
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| | - Julia C. Johnson
- HealthPartners Struthers Parkinson’s Center, Minneapolis, MN 55427, USA;
| | - Michael H. Rosenbloom
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
| | - William H. Frey
- HealthPartners Center for Memory and Aging, 295 Phalen Boulevard, St. Paul, MN 55130, USA; (I.Y.R.); (L.R.H.); (M.H.R.)
- HealthPartners Institute, Bloomington, MN 55425, USA
| |
Collapse
|
39
|
Imabayashi E, Ishii K, Toyohara J, Wagatsuma K, Sakata M, Tago T, Ishibashi K, Kojima N, Kohda N, Tokumaru AM, Kim H. Possibility of Enlargement in Left Medial Temporal Areas Against Cerebral Amyloid Deposition Observed During Preclinical Stage. Front Aging Neurosci 2022; 14:847094. [PMID: 35517046 PMCID: PMC9063485 DOI: 10.3389/fnagi.2022.847094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative changes in the preclinical stage of Alzheimer’s disease (AD) have recently been the focus of attention because they may present a range of treatment opportunities. A total of 134 elderly volunteers who lived in a local community were investigated and grouped into preclinical and mild cognitive impairment stages according to the Clinical Dementia Rating test; we also estimated amyloid deposition in the brain using positron emission tomography (PET). A significant interaction between clinical stage and amyloid PET positivity on cerebral atrophy was observed in the bilateral parietal lobe, parahippocampal gyri, hippocampus, fusiform gyrus, and right superior and middle temporal gyri, as previously reported. Early AD-specific voxel of interest (VOI) analysis was also applied and averaged Z-scores in the right, left, bilateral, and right minus left medial temporal early AD specific area were computed. We defined these averaged Z-scores in the right, left, bilateral, and right minus left early AD specific VOI in medial temporal area as R-MedT-Atrophy-score, L-MedT-Atrophy-score, Bil-MedT-Atrophy-score, and R_L-MedT-Atrophy-score, respectively. It revealed that the R_L-MedT-Atrophy-scores were significantly larger in the amyloid-positive than in the amyloid-negative cognitively normal (CN) elderly group, that is, the right medial temporal areas were smaller than left in amyloid positive CN group and these left-right differences were significantly larger in amyloid positive than amyloid negative CN elderly group. The L-MedT-Atrophy-score was slightly larger (p = 0.073), that is, the left medial temporal area was smaller in the amyloid-negative CN group than in the amyloid-positive CN group. Conclusively, the left medial temporal area could be larger in CN participants with amyloid deposition than in those without amyloid deposition. The area under the receiver operating characteristic curve for differentiating amyloid positivity among CN participants using the R_L-MedT-Atrophy-scores was 0.73; the sensitivity and specificity were 0.828 and 0.606, respectively. Although not significant, a negative correlation was observed between the composite cerebral standardized uptake value ratio in amyloid PET images and L-MedT-Atrophy-score in CN group. The left medial temporal volume might become enlarged because of compensatory effects against AD pathology occurring at the beginning of the amyloid deposition.
Collapse
Affiliation(s)
- Etsuko Imabayashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Diagnostic and Therapeutic Nuclear Medicine Group, Department of Molecular Imaging and Theranostics, Quantum Life and Medical Science Directorate, Institute for Quantum Medical Science, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
- *Correspondence: Etsuko Imabayashi, ,
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Narumi Kojima
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Noriyuki Kohda
- Nutraceuticals Division, Otsu Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Aya M. Tokumaru
- Department of Radiology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hunkyung Kim
- Research Team for Promoting Independence and Mental Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
40
|
Michailidis M, Moraitou D, Tata DA, Kalinderi K, Papamitsou T, Papaliagkas V. Alzheimer's Disease as Type 3 Diabetes: Common Pathophysiological Mechanisms between Alzheimer's Disease and Type 2 Diabetes. Int J Mol Sci 2022; 23:2687. [PMID: 35269827 PMCID: PMC8910482 DOI: 10.3390/ijms23052687] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/27/2022] Open
Abstract
Globally, the incidence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) epidemics is increasing rapidly and has huge financial and emotional costs. The purpose of the current review article is to discuss the shared pathophysiological connections between AD and T2DM. Research findings are presented to underline the vital role that insulin plays in the brain's neurotransmitters, homeostasis of energy, as well as memory capacity. The findings of this review indicate the existence of a mechanistic interplay between AD pathogenesis with T2DM and, especially, disrupted insulin signaling. AD and T2DM are interlinked with insulin resistance, neuroinflammation, oxidative stress, advanced glycosylation end products (AGEs), mitochondrial dysfunction and metabolic syndrome. Beta-amyloid, tau protein and amylin can accumulate in T2DM and AD brains. Given that the T2DM patients are not routinely evaluated in terms of their cognitive status, they are rarely treated for cognitive impairment. Similarly, AD patients are not routinely evaluated for high levels of insulin or for T2DM. Studies suggesting AD as a metabolic disease caused by insulin resistance in the brain also offer strong support for the hypothesis that AD is a type 3 diabetes.
Collapse
Affiliation(s)
- Michalis Michailidis
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina Moraitou
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Despina A. Tata
- Laboratory of Psychology, School of Psychology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.M.); (D.M.); (D.A.T.)
| | - Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Histology and Embryology Department, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
41
|
Kim JS, Son HJ, Oh M, Lee DY, Kim HW, Oh J. 60 Years of Achievements by KSNM in Neuroimaging Research. Nucl Med Mol Imaging 2022; 56:3-16. [PMID: 35186156 PMCID: PMC8828843 DOI: 10.1007/s13139-021-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/01/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023] Open
Abstract
Nuclear medicine neuroimaging is able to show functional and molecular biologic abnormalities in various neuropsychiatric diseases. Therefore, it has played important roles in the clinical diagnosis and in research on the normal and pathological states of the brain. More than 400 outstanding studies have been conducted by Korean researchers over the past 60 years. In the 1990s, when multiheaded single-photon emission computed tomography (SPECT) scanners were first introduced in South Korea, stroke research using brain perfusion SPECT was conducted. With the spread of positron emission tomography (PET) scanners in the 2000s, research on the clinical usefulness of PET and the evaluation of pathophysiology in various diseases such as epilepsy, brain tumors, degenerative brain diseases, and other neuropsychiatric diseases were actively conducted using [18F]FDG and various neuroreceptor tracers. In the 2010s, with the clinical application of new radiopharmaceuticals for amyloid and tau imaging, research demonstrating the clinical usefulness of PET imaging and the pathophysiology of dementia has increased rapidly. It is expected that the role of nuclear medicine will expand with the development of new radiopharmaceuticals and analysis technologies, along with the application of artificial intelligence for early and differential diagnosis, and the development of therapeutic agents for degenerative brain diseases.
Collapse
Affiliation(s)
- Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hye Joo Son
- Department of Nuclear Medicine, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu, Republic of Korea
| | - Jungsu Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
42
|
Trigo D, Avelar C, Fernandes M, Sá J, da Cruz E Silva O. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett 2022; 596:1095-1110. [PMID: 35088449 DOI: 10.1002/1873-3468.14298] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates ageing and neurodegeneration with anomalous neuronal metabolism, as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Avelar
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Fernandes
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juliana Sá
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
43
|
Li X, Xu N, Dai C, Meng X, Qiu X, Ding H, Zeng R, Lv H, Zhao P, Yang Z, Gong S, Wang Z. Altered Neurovascular Coupling in Unilateral Pulsatile Tinnitus. Front Neurosci 2022; 15:791436. [PMID: 35126039 PMCID: PMC8815060 DOI: 10.3389/fnins.2021.791436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Altered cerebral blood flow (CBF) and regional homogeneity (ReHo) have been reported in pulsatile tinnitus (PT) patients. We aimed to explore regional neurovascular coupling changes in PT patients. Materials and Methods Twenty-four right PT patients and 25 sex- and age-matched normal controls were included in this study. All subjects received arterial spin labeling imaging to measure CBF and functional MRI to compute ReHo. CBF/ReHo ratio was used to assess regional neurovascular coupling between the two groups. We also analyzed the correlation between CBF/ReHo ratio and clinical data from the PT patients. Results PT patients exhibited increased CBF/ReHo ratio in left middle temporal gyrus and right angular gyrus than normal controls, and no decreased CBF/ReHo ratio was found. CBF/ReHo ratio in the left middle temporal gyrus of PT patients was positively correlated with Tinnitus Handicap Inventory score (r = 0.433, p = 0.035). Conclusion These findings indicated that patients with PT exhibit abnormal neurovascular coupling, which provides new information for understanding the neuropathological mechanisms underlying PT.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chihang Dai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuxu Meng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rong Zeng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv,
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Pengfei Zhao,
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Zhenchang Wang,
| |
Collapse
|
44
|
Morris JK, Wood LB, Wilkins HM. Editorial: Metabolism in Alzheimer's Disease. Front Neurosci 2022; 15:824145. [PMID: 35058745 PMCID: PMC8763976 DOI: 10.3389/fnins.2021.824145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jill K. Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Alzheimer's Disease Center, Kansas City, KS, United States
- Department of Molecular and Integrative Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Levi B. Wood
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Heather M. Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Neurology, University of Kansas Alzheimer's Disease Center, Kansas City, KS, United States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
45
|
Guedj E, Varrone A, Boellaard R, Albert NL, Barthel H, van Berckel B, Brendel M, Cecchin D, Ekmekcioglu O, Garibotto V, Lammertsma AA, Law I, Peñuelas I, Semah F, Traub-Weidinger T, van de Giessen E, Van Weehaeghe D, Morbelli S. EANM procedure guidelines for brain PET imaging using [ 18F]FDG, version 3. Eur J Nucl Med Mol Imaging 2021; 49:632-651. [PMID: 34882261 PMCID: PMC8803744 DOI: 10.1007/s00259-021-05603-w] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022]
Abstract
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [18F]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [18F]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [18F]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
Collapse
Affiliation(s)
- Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix Marseille Univ, Marseille, France. .,Service Central de Biophysique et Médecine Nucléaire, Hôpital de la Timone, 264 rue Saint Pierre, 13005, Marseille, France.
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Healthcare Services, Stockholm, Sweden
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, Leipzig University, Leipzig, Germany
| | - Bart van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Matthias Brendel
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Centre of Neurodegenerative Diseases (DZNE), Site Munich, Bonn, Germany
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Ozgul Ekmekcioglu
- Sisli Hamidiye Etfal Education and Research Hospital, Nuclear Medicine Dept., University of Health Sciences, Istanbul, Turkey
| | - Valentina Garibotto
- NIMTLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Iván Peñuelas
- Department of Nuclear Medicine, Clinica Universidad de Navarra, IdiSNA, University of Navarra, Pamplona, Spain
| | - Franck Semah
- Nuclear Medicine Department, University Hospital, Lille, France
| | - Tatjana Traub-Weidinger
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
46
|
18F-FDG-PET Imaging for Post-COVID-19 Brain and Skeletal Muscle Alterations. Viruses 2021; 13:v13112283. [PMID: 34835088 PMCID: PMC8625263 DOI: 10.3390/v13112283] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/25/2022] Open
Abstract
Scientific evidence concerning the subacute and long-term effects of coronavirus disease 2019 (COVID-19) is on the rise. It has been established that infection by serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a systemic process that involves multiple organs. The complications and long-term consequences of COVID-19 are diverse and patients need a multidisciplinary treatment approach in the acute and post-acute stages of the disease. A significant proportion of COVID-19 patients experience neurological manifestations, some enduring for several months post-recovery. However, brain and skeletal muscle changes resultant from SARS CoV-2 infection remain largely unknown. Here, we provide a brief overview of the current knowledge, and usefulness, of [18F]fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) to investigate brain and skeletal muscles changes in Post-COVID-19 patients with persistent symptoms. Furthermore, a brief discussion of future 18F-FDG-PET/CT applications that might advance the current knowledge of the pathogenesis of post-COVID-19 is also provided.
Collapse
|
47
|
Nerattini M, Rubino F, Arnone A, Polito C, Mazzeo S, Lombardi G, Puccini G, Nacmias B, De Cristofaro MT, Sorbi S, Pupi A, Sciagrà R, Bessi V, Berti V. Cerebral amyloid load determination in a clinical setting: interpretation of amyloid biomarker discordances aided by tau and neurodegeneration measurements. Neurol Sci 2021; 43:2469-2480. [PMID: 34739618 DOI: 10.1007/s10072-021-05704-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) diagnosis can be hindered by amyloid biomarkers discordances. OBJECTIVE We aim to interpret discordances between amyloid positron emission tomography (Amy-PET) and cerebrospinal fluid (CSF) (Aβ42 and Aβ42/40), using Amy-PET semiquantitative analysis, [18F]fluorodeoxyglucose (FDG)-PET pattern, and CSF assays. METHOD Thirty-six subjects with dementia or mild cognitive impairment, assessed by neuropsychological tests, structural and functional imaging, and CSF assays (Aβ42, Aβ42/40, p-tau, t-tau), were retrospectively examined. Amy-PET and FDG-PET scans were analyzed by visual assessment and voxel-based analysis. SUVR were calculated on Amy-PET scans. RESULTS Groups were defined basing on the agreement among CSF Aβ42 (A), CSF Aβ42/40 Ratio (R), and Amy-PET (P) dichotomic results ( ±). In discordant groups, CSF assays, Amy-PET semiquantification, and FDG-PET patterns supported the diagnosis suggested by any two agreeing amyloid biomarkers. In groups with discordant CSF Aβ42, the ratio always agrees with Amy-PET results, solving both false-negative and false-positive Aβ42 results, with Aβ42 levels close to the cut-off in A + R-P- subjects. The A + R + P- group presented high amyloid deposition in relevant areas, such as precuneus, posterior cingulate cortex (PCC) and dorsolateral frontal inferior cortex at semiquantitative analysis. CONCLUSION The amyloid discordant cases could be overcome by combining CSF Aβ42, CSF ratio, and Amy-PET results. The concordance of any 2 out of the 3 biomarkers seems to reveal the remaining one as a false result. A cut-off point review could avoid CSF Aβ42 false-negative results. The regional semiquantitative Amy-PET analysis in AD areas, such as precuneus and PCC, could increase the accuracy in AD diagnosis.
Collapse
Affiliation(s)
- Matilde Nerattini
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy.
| | - Federica Rubino
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Annachiara Arnone
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Cristina Polito
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Salvatore Mazzeo
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Gemma Lombardi
- IRCCS Fondazione Don Carlo Gnocchi, Via Scandicci 269, 50143, Florence, Italy
| | - Giulia Puccini
- Department of Nuclear Medicine, Hospital of Prato, Via Suor Niccolina Infermiera, 20/22, 59100, Prato, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Via Scandicci 269, 50143, Florence, Italy
| | - Maria Teresa De Cristofaro
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Via Scandicci 269, 50143, Florence, Italy
| | - Alberto Pupi
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Roberto Sciagrà
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence (NEUROFARBA), Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - Valentina Berti
- Nuclear Medicine Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Piero Palagi 1, 50139, Florence, Italy
| |
Collapse
|
48
|
Lau A, Beheshti I, Modirrousta M, Kolesar TA, Goertzen AL, Ko JH. Alzheimer's Disease-Related Metabolic Pattern in Diverse Forms of Neurodegenerative Diseases. Diagnostics (Basel) 2021; 11:diagnostics11112023. [PMID: 34829370 PMCID: PMC8624480 DOI: 10.3390/diagnostics11112023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is broadly characterized by cognitive and psychological dysfunction that significantly impairs daily functioning. Dementia has many causes including Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), and frontotemporal lobar degeneration (FTLD). Detection and differential diagnosis in the early stages of dementia remains challenging. Fueled by AD Neuroimaging Initiatives (ADNI) (Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. As such, the investigators within ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report.), a number of neuroimaging biomarkers for AD have been proposed, yet it remains to be seen whether these markers are also sensitive to other types of dementia. We assessed AD-related metabolic patterns in 27 patients with diverse forms of dementia (five had probable/possible AD while others had atypical cases) and 20 non-demented individuals. All participants had positron emission tomography (PET) scans on file. We used a pre-trained machine learning-based AD designation (MAD) framework to investigate the AD-related metabolic pattern among the participants under study. The MAD algorithm showed a sensitivity of 0.67 and specificity of 0.90 for distinguishing dementia patients from non-dementia participants. A total of 18/27 dementia patients and 2/20 non-dementia patients were identified as having AD-like patterns of metabolism. These results highlight that many underlying causes of dementia have similar hypometabolic pattern as AD and this similarity is an interesting avenue for future research.
Collapse
Affiliation(s)
- Angus Lau
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.L.); (I.B.); (T.A.K.)
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB R3E 0Z3, Canada
- Undergraduate Medical Education, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.L.); (I.B.); (T.A.K.)
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB R3E 0Z3, Canada
| | - Mandana Modirrousta
- Department of Psychiatry, University of Manitoba, Winnipeg, MB R3E 3N4, Canada;
| | - Tiffany A. Kolesar
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.L.); (I.B.); (T.A.K.)
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB R3E 0Z3, Canada
| | - Andrew L. Goertzen
- Department of Radiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB R3E 5V6, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada; (A.L.); (I.B.); (T.A.K.)
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB R3E 0Z3, Canada
- Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, MB R3E 5V6, Canada
- Correspondence: ; Tel.: +1-204-318-2566
| |
Collapse
|
49
|
Evaluation of Age and Sex-Related Metabolic Changes in Healthy Subjects: An Italian Brain 18F-FDG PET Study. J Clin Med 2021; 10:jcm10214932. [PMID: 34768454 PMCID: PMC8584846 DOI: 10.3390/jcm10214932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Background: 18F-fluorodeoxyglucose (18F-FDG) positron-emission-tomography (PET) allows detection of cerebral metabolic alterations in neurological diseases vs. normal aging. We assess age- and sex-related brain metabolic changes in healthy subjects, exploring impact of activity normalization methods. Methods: brain scans of Italian Association of Nuclear Medicine normative database (151 subjects, 67 Males, 84 Females, aged 20–84) were selected. Global mean, white matter, and pons activity were explored as normalization reference. We performed voxel-based and ROI analyses using SPM12 and IBM-SPSS software. Results: SPM proved a negative correlation between age and brain glucose metabolism involving frontal lobes, anterior-cingulate and insular cortices bilaterally. Narrower clusters were detected in lateral parietal lobes, precuneus, temporal pole and medial areas bilaterally. Normalizing on pons activity, we found a more significant negative correlation and no positive one. ROIs analysis confirmed SPM results. Moreover, a significant age × sex interaction effect was revealed, with worse metabolic reduction in posterior-cingulate cortices in females than males, especially in post-menopausal age. Conclusions: this study demonstrated an age-related metabolic reduction in frontal lobes and in some parieto-temporal areas more evident in females. Results suggested pons as the most appropriate normalization reference. Knowledge of age- and sex-related cerebral metabolic changes is critical to correctly interpreting brain 18F-FDG PET imaging.
Collapse
|
50
|
Sasaki Y, Kimura N, Aso Y, Yabuuchi K, Aikawa M, Matsubara E. Relationship between Cerebrospinal Fluid Matrix Metalloproteinases Levels and Brain Amyloid Deposition in Mild Cognitive Impairment. Biomolecules 2021; 11:biom11101496. [PMID: 34680129 PMCID: PMC8533797 DOI: 10.3390/biom11101496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to explore whether cerebrospinal fluid (CSF) levels of matrix metalloproteinases (MMPs), and their inhibitors (TIMPs) were associated with brain amyloid deposition, cortical glucose metabolism, and white matter lesions (WMLs) in individuals with amnestic mild cognitive impairment (MCI). A total of 33 individuals with amnestic MCI (mean age, 75.6 years) underwent 11C-Pittsburgh compound B positron emission tomography (PiB-PET), 18F-fluorodeoxyglucose positron emission tomography, magnetic resonance imaging or computed tomography, and CSF analysis. PET uptake of the frontal and temporoparietal lobes and posterior cingulate gyrus was assessed using the cerebellar cortex as the reference region. WMLs were assessed by the Fazekas scale. CSF levels of MMPs and TIMPs were measured with bead-based multiplex assays. After adjusting for covariates, multiple linear regression analysis showed that CSF levels of MMP-2 were negatively correlated with global PiB uptake (p = 0.035), especially in the parietotemporal lobe and posterior cingulate gyrus (p = 0.016 and p = 0.041, respectively). Moreover, CSF levels of MMP-7 were positively correlated with the severity of WMLs (p = 0.033). CSF levels of MMP-2 and MMP-7 are associated with brain amyloid deposition and severity of WMLs, respectively. These findings provide valuable insights into the role of MMPs in amyloid β catabolism and blood-brain barrier integration at the MCI stage.
Collapse
Affiliation(s)
- Yuuki Sasaki
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Noriyuki Kimura
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
- Correspondence: ; Tel.: +81-97-586-5814
| | - Yasuhiro Aso
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Kenichi Yabuuchi
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| | - Miki Aikawa
- Kameda Medical Center, Chiba 296-8602, Japan;
| | - Etsuro Matsubara
- Department of Neurology, Faculty of Medicine, Oita University, Oita 879-5593, Japan; (Y.S.); (Y.A.); (K.Y.); (E.M.)
| |
Collapse
|