1
|
Liu J, Zhang L, Liu L, Wu T, Wang L, Han Q. The potential capacities of FTY720: Novel therapeutic functions, targets, and mechanisms against diseases. Eur J Med Chem 2025; 290:117508. [PMID: 40120496 DOI: 10.1016/j.ejmech.2025.117508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
Fingolimod (FTY720), an antagonist of sphingosine-1-phosphate (S1P), functions by binding to S1P receptors (S1PRs), excluding S1PR2. It received approval from the Food and Drug Administration (FDA) for the treatment of multiple sclerosis (MS) in 2010. As the first non-selective oral agonist for S1PRs, FTY720's diverse and systemic receptor expression often leads to alterations in various signaling pathways and multiple systems, making it a subject of intense research. Recent studies have identified a wide range of novel or potential functions for FTY720 beyond its application in MS. These include effects on the blood-brain barrier (BBB), vascular system, organelles, and cell death, as well as potential applications in organ transplantation, immune disorders, oncological conditions, neurological and psychiatric disorders, viral infections, and hypersensitivity diseases. This paper reviews the novel roles, targets, and mechanisms of FTY720 that hold promise for clinical utility. Additionally, it summarizes FTY720's derivation and development process, the characterization and mechanism of the structure of FTY720-P bound to S1PRs, the clinical safety profile, future challenges, and potential strategies to address them. These insights aim to guide future research and applications of FTY720, maximizing its therapeutic potential.
Collapse
Affiliation(s)
- Juan Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lu Zhang
- Shanghai Jiao Tong University School of Medicine Affiliated Ninth People's Hospital, Shanghai, PR China
| | - Le Liu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Tianfeng Wu
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Lin Wang
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China
| | - Qingzhen Han
- Center of Clinical Laboratory and Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, PR China.
| |
Collapse
|
2
|
Meng J, Wang J, Zhang J, Yang Z, Wu Z, Zhang W. Regio-, Site- and Stereo-Selective Aziridination of Conjugated Dienes Enabled by Palladium/Copper/Iodide/Oxygen Cooperation. Chemistry 2025; 31:e202403298. [PMID: 39462200 DOI: 10.1002/chem.202403298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Vinylaziridines are important building blocks in organic chemistry, especially in the synthesis of nitrogen-containing heterocycles. The direct and efficient transfer of an appropriate nitrogen source to readily accessible conjugated dienes is a notable methodology. The Pd-catalyzed oxidative 1,2-difunctionalization of conjugated dienes through a π-allyl-palladium species should be an ideal method for the selective synthesis of vinylaziridines. However, this method faces the challenge of regioselectivity, often resulting in 1,4-difunctionalization instead. In this study, we developed a Pd-catalyzed aerobic 1,2-difunctionalization of conjugated dienes via a π-allyl-palladium species to achieve regio-, site- and stereo-selective aziridination under the synergistic effects of PdII, CuI, I-, and O2. The π-allyl palladium species formed in the system undergoes an unusual iodination process, leading to the formation of an allyl iodide intermediate. Subsequently, the vinylaziridine is obtained through intramolecular SN2' substitution of the allyl iodide.
Collapse
Affiliation(s)
- Jingjie Meng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Junwei Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jingang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zehua Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhengxing Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Glueck M, Lucaciu A, Subburayalu J, Kestner RI, Pfeilschifter W, Vutukuri R, Pfeilschifter J. Atypical sphingosine-1-phosphate metabolites-biological implications of alkyl chain length. Pflugers Arch 2024; 476:1833-1843. [PMID: 39297971 PMCID: PMC11582160 DOI: 10.1007/s00424-024-03018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/21/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid signaling molecule with pleiotropic implications by both auto- and paracrine signaling. Signaling occurs by engaging five G protein-coupled receptors (S1P1-5) or intracellular pathways. While the extensively studied S1P with a chain length of 18 carbon atoms (d18:1 S1P) affects lymphocyte trafficking, immune cell survival and inflammatory responses, the biological implication of atypical S1Ps such as d16:1 or d20:1 remains elusive. As S1P lipids have far-reaching implications in health and disease states in mammalian organisms, the previous contrasting results may be attributed to differences in S1P's alkyl chain length. Current research is beginning to appreciate these less abundant atypical S1P moieties. This review provides an up-to-date foundation of recent findings on the biological implications of atypical S1P chain lengths and offers a perspective on future research endeavors on S1P alkyl chain length-influenced signaling and its implications for drug discovery.
Collapse
Affiliation(s)
- Melanie Glueck
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University Hospital, 60528, Frankfurt Am Main, Germany
| | - Alexandra Lucaciu
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Julien Subburayalu
- Department of Internal Medicine, University Hospital Carl Gustav Carus TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
- Center of Regenerative Therapies Dresden, TU Dresden, Fetscherstraße 74, 01307, Dresden, Saxony, Germany
| | - Roxane Isabelle Kestner
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Goethe University, Frankfurt am Main, 60528, Frankfurt, Germany
| | - Waltraud Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany
- Department of Neurology and Clinical Neurophysiology, Städtisches Klinikum Lüneburg, 21339, Lüneburg, Germany
| | - Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, Pharmazentrum Frankfurt, Goethe University, Frankfurt am Main, 60596, Frankfurt, Germany.
| |
Collapse
|
4
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
5
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. Virus infection and sphingolipid metabolism. Antiviral Res 2024; 228:105942. [PMID: 38908521 DOI: 10.1016/j.antiviral.2024.105942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Cellular sphingolipids have vital roles in human virus replication and spread as they are exploited by viruses for cell entry, membrane fusion, genome replication, assembly, budding, and propagation. Intracellular sphingolipid biosynthesis triggers conformational changes in viral receptors and facilitates endosomal escape. However, our current understanding of how sphingolipids precisely regulate viral replication is limited, and further research is required to comprehensively understand the relationships between viral replication and endogenous sphingolipid species. Emerging evidence now suggests that targeting and manipulating sphingolipid metabolism enzymes in host cells is a promising strategy to effectively combat viral infections. Additionally, serum sphingolipid species and concentrations could function as potential serum biomarkers to help monitor viral infection status in different patients. In this work, we comprehensively review the literature to clarify how viruses exploit host sphingolipid metabolism to accommodate viral replication and disrupt host innate immune responses. We also provide valuable insights on the development and use of antiviral drugs in this area.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China
| | - Yiyi Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Wilkerson JL, Tatum SM, Holland WL, Summers SA. Ceramides are fuel gauges on the drive to cardiometabolic disease. Physiol Rev 2024; 104:1061-1119. [PMID: 38300524 PMCID: PMC11381030 DOI: 10.1152/physrev.00008.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Ceramides are signals of fatty acid excess that accumulate when a cell's energetic needs have been met and its nutrient storage has reached capacity. As these sphingolipids accrue, they alter the metabolism and survival of cells throughout the body including in the heart, liver, blood vessels, skeletal muscle, brain, and kidney. These ceramide actions elicit the tissue dysfunction that underlies cardiometabolic diseases such as diabetes, coronary artery disease, metabolic-associated steatohepatitis, and heart failure. Here, we review the biosynthesis and degradation pathways that maintain ceramide levels in normal physiology and discuss how the loss of ceramide homeostasis drives cardiometabolic pathologies. We highlight signaling nodes that sense small changes in ceramides and in turn reprogram cellular metabolism and stimulate apoptosis. Finally, we evaluate the emerging therapeutic utility of these unique lipids as biomarkers that forecast disease risk and as targets of ceramide-lowering interventions that ameliorate disease.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
7
|
Tahia F, Basu SK, Prislovsky A, Mondal K, Ma D, Kochat H, Brown K, Stephenson DJ, Chalfant CE, Mandal N. Sphingolipid biosynthetic inhibitor L-Cycloserine prevents oxidative-stress-mediated death in an in vitro model of photoreceptor-derived 661W cells. Exp Eye Res 2024; 242:109852. [PMID: 38460719 PMCID: PMC11089890 DOI: 10.1016/j.exer.2024.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.
Collapse
Affiliation(s)
- Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sandip K Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kennard Brown
- Office of Executive Vice Chancellor and Chief Operations Officer, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA; Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| | - Nawajes Mandal
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
8
|
Nakamura S, Yamamoto R, Matsuda T, Yasuda H, Nishinaka A, Takahashi K, Inoue Y, Kuromitsu S, Shimazawa M, Goto M, Narumiya S, Hara H. Sphingosine-1-phosphate receptor 1/5 selective agonist alleviates ocular vascular pathologies. Sci Rep 2024; 14:9700. [PMID: 38678148 PMCID: PMC11055896 DOI: 10.1038/s41598-024-60540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
Ocular abnormal angiogenesis and edema are featured in several ocular diseases. S1P signaling via S1P1 likely is part of the negative feedback mechanism necessary to maintain vascular health. In this study, we conducted pharmacological experiments to determine whether ASP4058, a sphingosine 1-phosphate receptor 1/5 (S1P1/5) agonist, is useful in abnormal vascular pathology in the eye. First, human retinal microvascular endothelial cells (HRMECs) were examined using vascular endothelial growth factor (VEGF)-induced cell proliferation and hyperpermeability. ASP4058 showed high affinity and inhibited VEGF-induced proliferation and hyperpermeability of HRMECs. Furthermore, S1P1 expression and localization changes were examined in the murine laser-induced choroidal neovascularization (CNV) model, a mouse model of exudative age-related macular degeneration, and the efficacy of ASP4058 was verified. In the CNV model mice, S1P1 tended to decrease in expression immediately after laser irradiation and colocalized with endothelial cells and Müller glial cells. Oral administration of ASP4058 also suppressed vascular hyperpermeability and CNV, and the effect was comparable to that of the intravitreal administration of aflibercept, an anti-VEGF drug. Next, efficacy was also examined in a retinal vein occlusion (RVO) model in which retinal vascular permeability was increased. ASP4058 dose-dependently suppressed the intraretinal edema. In addition, it suppressed the expansion of the perfusion area observed in the RVO model. ASP4058 also suppressed the production of VEGF in the eye. Collectively, ASP4058 can be a potential therapeutic agent that normalizes abnormal vascular pathology, such as age-related macular degeneration and RVO, through its direct action on endothelial cells.
Collapse
Affiliation(s)
- Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Rie Yamamoto
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaya Matsuda
- Pharmaceutical Research and Technology Labs, Astellas Pharma Inc., Yaizu, Japan
| | - Hiroto Yasuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Anri Nishinaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kei Takahashi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Yuki Inoue
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Sadao Kuromitsu
- Discovery Accelerator, Astellas Pharma Inc., Tsukuba, Japan
- Alliance Laboratory for Advanced Medical Research, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masahide Goto
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
9
|
Hu Y, Wu X, Zhou L, Liu J. Which is the optimal choice for neonates' formula or breast milk? NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:21. [PMID: 38488905 PMCID: PMC10942964 DOI: 10.1007/s13659-024-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
The incidence of prematurity has been increasing since the twenty-first century. Premature neonates are extremely vulnerable and require a rich supply of nutrients, including carbohydrates, proteins, docosahexaenoic acid (DHA), arachidonic acid (ARA) and others. Typical breast milk serves as the primary source for infants under six months old to provide these nutrients. However, depending on the individual needs of preterm infants, a more diverse and intricate range of nutrients may be necessary. This paper provides a comprehensive review of the current research progress on the physical and chemical properties, biological activity, function, and structure of breast milk, as well as explores the relationship between the main components of milk globular membrane and infant growth. Additionally, compare the nutritional composition of milk from different mammals and newborn milk powder, providing a comprehensive understanding of the differences in milk composition and detailed reference for meeting daily nutritional needs during lactation.
Collapse
Affiliation(s)
- Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Xing Wu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
11
|
Pan Y, Li J, Lin P, Wan L, Qu Y, Cao L, Wang L. A review of the mechanisms of abnormal ceramide metabolism in type 2 diabetes mellitus, Alzheimer's disease, and their co-morbidities. Front Pharmacol 2024; 15:1348410. [PMID: 38379904 PMCID: PMC10877008 DOI: 10.3389/fphar.2024.1348410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The global prevalence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is rapidly increasing, revealing a strong association between these two diseases. Currently, there are no curative medication available for the comorbidity of T2DM and AD. Ceramides are structural components of cell membrane lipids and act as signal molecules regulating cell homeostasis. Their synthesis and degradation play crucial roles in maintaining metabolic balance in vivo, serving as important mediators in the development of neurodegenerative and metabolic disorders. Abnormal ceramide metabolism disrupts intracellular signaling, induces oxidative stress, activates inflammatory factors, and impacts glucose and lipid homeostasis in metabolism-related tissues like the liver, skeletal muscle, and adipose tissue, driving the occurrence and progression of T2DM. The connection between changes in ceramide levels in the brain, amyloid β accumulation, and tau hyper-phosphorylation is evident. Additionally, ceramide regulates cell survival and apoptosis through related signaling pathways, actively participating in the occurrence and progression of AD. Regulatory enzymes, their metabolites, and signaling pathways impact core pathological molecular mechanisms shared by T2DM and AD, such as insulin resistance and inflammatory response. Consequently, regulating ceramide metabolism may become a potential therapeutic target and intervention for the comorbidity of T2DM and AD. The paper comprehensively summarizes and discusses the role of ceramide and its metabolites in the pathogenesis of T2DM and AD, as well as the latest progress in the treatment of T2DM with AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Wang J, Wang D, Lu S, Hu Y, Ge Y, Qin X, Mo Y, Kan J, Li D, Zhang R, Liu Y, Zhang WS. Ceramide enhanced the hepatic glucagon response through regulation of CREB activity. Clin Nutr 2024; 43:366-378. [PMID: 38142481 DOI: 10.1016/j.clnu.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND & AIMS Hyperglycemia is associated with lipid disorders in patients with diabetes. Ceramides are metabolites involved in sphingolipid metabolism that accumulate during lipid disorders and exert deleterious effects on glucose and lipid metabolism. However, the effects of ceramide on glucagon-mediated hepatic gluconeogenesis remain largely unknown. This study was designed to investigate the impact of ceramides on gluconeogenesis in the context of the hepatic glucagon response, with the aim of finding new pharmacological interventions for hyperglycemia in diabetes. METHODS Liquid chromatography-mass spectrometry was used to quantify ceramide content in the serum of patients with diabetes. Primary hepatocytes were isolated from male C57BL/6J mice to study the effects of ceramide on hepatic glucose production. Immunofluorescence staining was performed to view cAMP-responsive element-binding protein (CREB)- regulated transcription co-activator 2 (CRTC2) nuclear translocation in hepatocytes. Serine palmitoyl-transferase, long chain base subunit 2 (Sptlc2) knockdown mice were generated using an adeno-associated virus containing shRNA, and hepatic glucose production was assessed glucagon tolerance and pyruvate tolerance tests in mice fed a normal chow diet and high-fat diet. RESULTS Increased ceramide levels were observed in the serum of patients newly diagnosed with type 2 diabetes. De novo ceramide synthesis was activated in mice with metabolic disorders. Ceramide enhanced hepatic glucose production in primary hepatocytes. In contrast, genetic silencing of Sptlc2 prevented this process. Mechanistically, ceramides de-phosphorylate CRTC2 (Ser 171) and facilitate its translocation into the nucleus for CREB activation, thereby augmenting the hepatic glucagon response. Hepatic Sptlc2 silencing blocked ceramide generation in the liver and thus restrained the hepatic glucagon response in mice fed a normal chow diet and high-fat diet. CONCLUSIONS These data indicate that ceramide serves as an intracellular messenger that augments hepatic glucose production by regulating CRTC2/CREB activity in the context of the hepatic glucagon response, suggesting that CRTC2 phosphorylation might be a potential node for pharmacological interventions to restrain the hyperglycemic response during fasting in diabetes.
Collapse
Affiliation(s)
- Jizheng Wang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dan Wang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China; Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Shan Lu
- Maternity and Child Dept, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yifang Hu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yaoqi Ge
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaoxuan Qin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yanfei Mo
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jingbao Kan
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dong Li
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Rihua Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yun Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Wen-Song Zhang
- Department of the Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
13
|
Lin X, Liu Z, Wang W, Duan G, Zhu Y. Effects of artificial sweetener acesulfame on soil-dwelling earthworms (Eisenia fetida) and its gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167641. [PMID: 37806587 DOI: 10.1016/j.scitotenv.2023.167641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Artificial sweeteners (AS) are the emerging contaminants with potential toxicity to living organisms. The effects of AS to soil typical invertebrates have not been revealed. In this study, the responses of earthworms (Eisenia fetida) and gut microbial communities to acesulfame-contaminated soils (0.1, 1 and 10 mg kg-1) were studied using transcriptomics, metabolomics and metagenomics analyses. The fresh weight of earthworms was significantly stimulated by acesulfame at concentrations of 1 mg kg-1. Sphingolipid metabolism, purine metabolism, cutin, suberine and wax biosynthesis pathways were significantly affected. At 10 mg kg-1 treatment, the amount and weight of cocoons were significantly increased and decreased, respectively, accompanied by the significant disorder of ECM-receptor interaction, and carbon fixation in photosynthetic organisms pathways. Lysosome pathway was significantly affected in all the treatments. Moreover, the acesulfame significantly increased the relative abundance of Bacteroidetes and Mucoromycota, and decreased Proteobacteria in the gut of earthworms. Our multi-level investigation indicated that AS at a relatively low concentration induced toxicity to earthworms and AS pollution has significant environmental risks for soil fauna.
Collapse
Affiliation(s)
- Xianglong Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhelun Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
14
|
Ning Y, Zhou X, Wang G, Zhang L, Wang J. Bioinformatics to Identify Biomarkers of Diabetic Nephropathy based on Sphingolipid Metabolism and their Molecular Mechanisms. Curr Diabetes Rev 2024; 21:e070524229720. [PMID: 38712372 DOI: 10.2174/0115733998297749240418071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Diabetes mellitus (DM) frequently results in Diabetic Nephropathy (DN), which has a significant negative impact on the quality of life of diabetic patients. Sphingolipid metabolism is associated with diabetes, but its relationship with DN is unclear. Therefore, screening biomarkers related to sphingolipid metabolism is crucial for treating DN. METHODS To identify Differentially Expressed Genes (DEGs) in the GSE142153 dataset, we conducted a differential expression analysis (DN samples versus control samples). The intersection genes were obtained by overlapping DEGs and Sphingolipid Metabolism-Related Genes (SMRGs). Furthermore, The Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to filter biomarkers. We further analyzed the Gene Set Enrichment analysis (GSEA) and the immunoinfiltrational analysis based on biomarkers. RESULTS We identified 2,186 DEGs associated with DN. Then, five SMR-DEGs were obtained. Subsequently, biomarkers associated with sphingolipid metabolism (S1PR1 and SELL) were identified by applying machine learning and expression analysis. In addition, GSEA showed that these biomarkers were correlated with cytokine cytokine receptor interaction'. Significant variations in B cells, DCs, Tems, and Th2 cells between the two groups suggested that these cells might have a role in DN. CONCLUSION Overall, we obtained two sphingolipid metabolism-related biomarkers (S1PR1 and SELL) associated with DN, which laid a theoretical foundation for treating DN.
Collapse
Affiliation(s)
- Yaxian Ning
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Xiaochun Zhou
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Gouqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Lili Zhang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| | - Jianqin Wang
- Department of Nephrology, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu, China
- Clinical Medical Research Center of Gansu Province(No. 21JR7RA436), Lanzhou 730030, Gansu, China
| |
Collapse
|
15
|
Paquet Luzy C, Doppler E, Polasek TM, Giorgino R. First-in-human single-dose study of nizubaglustat, a dual inhibitor of ceramide glucosyltransferase and non-lysosomal glucosylceramidase: Safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending and multiple doses in healthy adults. Mol Genet Metab 2024; 141:108113. [PMID: 38113551 DOI: 10.1016/j.ymgme.2023.108113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Nizubaglustat is a novel, orally available, brain penetrant, potent, and selective dual inhibitor of ceramide glucosyltranferase and non-lysosomal neutral glucosylceramidase (NLGase), which is currently under development for the treatment of subjects with neurological manifestations in primary and secondary gangliosidoses. The objectives of this first-in-human study were to evaluate the safety and tolerability, pharmacokinetics, and pharmacodynamics (PD) of single oral doses of nizubaglustat after single (1, 3, and 9 mg) and multiple oral doses (9 mg once per day (QD) over 14 days) in healthy adults. Nizubaglustat was rapidly absorbed and systemic exposure was dose-proportional. Steady-state was achieved after three days of QD multiple dosing with minimal accumulation. Renal clearance accounted for around 15% of nizubaglustat elimination. Following multiple dosing, plasma concentrations of glucosylceramide (GlcCer), lactosylceramide (LacCer), and monosialodihexosylganglioside (GM3) decreased to a nadir at Day 10. PD target engagement of GCS inhibition was shown by a median decrease from baseline of plasma concentrations of GlcCer, LacCer, and GM3 ganglioside by 70%, 50%, and 48%, respectively. NLGase inhibition was also manifested by increased concentrations of GlcCer in cerebrospinal fluid from Day 1 to Day 14. Nizubaglustat was safe and well-tolerated at all doses tested. Consistent with the high selectivity, and the absence of intestinal disaccharidases inhibition, no cases of diarrhea were reported. No decreased appetite or weight loss was noted. Only treatment-emergent adverse events with preferred terms belonging to the system organ class skin and subcutaneous disorders of mild intensity were reported as drug-related in the nizubaglustat arm, in line with the pharmacological mechanism targeting glucosylceramide metabolism. Taken together, these data support QD dosing of nizubaglustat and its ongoing development in patients with primary and secondary forms of gangliosidoses.
Collapse
Affiliation(s)
| | | | - Thomas M Polasek
- Principal Investigator, CMAX Research Phase 1 Unit, Ground Floor 21-24 North Terrace, Adelaide, 5000, SA, Australia; Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | | |
Collapse
|
16
|
Syed-Abdul MM. Lipid Metabolism in Metabolic-Associated Steatotic Liver Disease (MASLD). Metabolites 2023; 14:12. [PMID: 38248815 PMCID: PMC10818604 DOI: 10.3390/metabo14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
Metabolic-associated steatotic liver disease (MASLD) is a cluster of pathological conditions primarily developed due to the accumulation of ectopic fat in the hepatocytes. During the severe form of the disease, i.e., metabolic-associated steatohepatitis (MASH), accumulated lipids promote lipotoxicity, resulting in cellular inflammation, oxidative stress, and hepatocellular ballooning. If left untreated, the advanced form of the disease progresses to fibrosis of the tissue, resulting in irreversible hepatic cirrhosis or the development of hepatocellular carcinoma. Although numerous mechanisms have been identified as significant contributors to the development and advancement of MASLD, altered lipid metabolism continues to stand out as a major factor contributing to the disease. This paper briefly discusses the dysregulation in lipid metabolism during various stages of MASLD.
Collapse
Affiliation(s)
- Majid Mufaqam Syed-Abdul
- Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
17
|
Thomas S, Samuel SV, Hoch A, Syphurs C, Diray-Arce J. The Implication of Sphingolipids in Viral Infections. Int J Mol Sci 2023; 24:17303. [PMID: 38139132 PMCID: PMC10743733 DOI: 10.3390/ijms242417303] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Sphingolipids are involved in cell signaling and metabolic pathways, and their metabolites play a critical role in host defense against intracellular pathogens. Here, we review the known mechanisms of sphingolipids in viral infections and discuss the potential implication of the study of sphingolipid metabolism in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Sanya Thomas
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Stephen Varghese Samuel
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Emergency Medicine, Christian Medical College and Hospital, Vellore 632004, India
| | - Annmarie Hoch
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Caitlin Syphurs
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (A.H.); (C.S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
18
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
19
|
Hu J, Kokoette E, Xu C, Huang S, Tang T, Zhang Y, Liu M, Huang Y, Yu S, Zhu J, Holmer M, Xiao X. Natural Algaecide Sphingosines Identified in Hybrid Straw Decomposition Driven by White-Rot Fungi. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300569. [PMID: 37400420 PMCID: PMC10477863 DOI: 10.1002/advs.202300569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/31/2023] [Indexed: 07/05/2023]
Abstract
Harmful algal blooms (HABs), which are promoted by eutrophication and intensified by global warming, occur worldwide. Allelochemicals, which are natural chemicals derived from plants or microbes, are emerging weapons to eliminate these blooms. However, the cost and technical challenges have limited the discovery of novel antialgal allelochemicals. Herein, the decomposition of agricultural straws is manipulated by white-rot fungi and achieved elevated antialgal efficiency. The transcriptomic analysis reveals that nutrient limitation activated fungal decomposition. By using a comparative nontarget metabolomics approach, a new type of allelochemical sphingosines (including sphinganine, phytosphingosine, sphingosine, and N-acetylsphingosine) is identified. These novel natural algaecides exhibit superior antialgal capability, with as high as an order of magnitude lower effective concentration on blooming species than other prevalent allelochemicals. The co-expression relationship between transcriptomic and metabolomic results indicate that sphinganine is strongly correlated with the differentially expressed lignocellulose degradation unigenes. The algal growth suppression is triggered by the activation of programmed cell death, malfunction of algal photosystem and antioxidant system, the disruption on CO2 assimilation and light absorption. The sphingosines reported here are a new category of allelochemicals in addition to the well-known antialgal natural chemicals, which are potential species-specific agents for HABs control identified by multi-omics methodology.
Collapse
Affiliation(s)
- Jing Hu
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
- Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of Ministry of Natural ResourcesShanghai201206China
| | - Effiong Kokoette
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
- Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of Ministry of Natural ResourcesShanghai201206China
| | - Caicai Xu
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
| | - Shitao Huang
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
| | - Tao Tang
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
| | - Yiyi Zhang
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
| | - Muyuan Liu
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
- Key Laboratory of Watershed Non‐point Source Pollution Control and Water Eco‐security of Ministry of Water ResourcesCollege of Environmental and Resources SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yuzhou Huang
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
| | - Shumiao Yu
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
| | - Jie Zhu
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
| | - Marianne Holmer
- Department of BiologyUniversity of Southern DenmarkOdense5230Denmark
| | - Xi Xiao
- Ocean CollegeZhejiang University#1 Zheda RoadZhoushanZhejiang316021China
- Key Laboratory of Marine Ecological Monitoring and Restoration Technologies of Ministry of Natural ResourcesShanghai201206China
- Key Laboratory of Watershed Non‐point Source Pollution Control and Water Eco‐security of Ministry of Water ResourcesCollege of Environmental and Resources SciencesZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
20
|
Zhu H, Chen HJ, Wen HY, Wang ZG, Liu SL. Engineered Lipidic Nanomaterials Inspired by Sphingomyelin Metabolism for Cancer Therapy. Molecules 2023; 28:5366. [PMID: 37513239 PMCID: PMC10383197 DOI: 10.3390/molecules28145366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
21
|
Fernandez C, Giorgees I, Goss E, Desaulniers JP. Effective carrier-free gene-silencing activity of sphingosine-modified siRNAs. Org Biomol Chem 2023; 21:2107-2117. [PMID: 36645381 DOI: 10.1039/d2ob02099h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RNA interference (RNAi) is a natural cellular process that silences the expression of target genes in a sequence-specific way by mediating targeted mRNA degradation. One of the main challenges in RNAi research is developing an effective career-free delivery system and targeting cells in the central nervous system (CNS). Recently, lipid-conjugated systems involving fatty acids have shown promising potential as safe and effective delivery systems of oligonucleotides to CNS cells due to their hydrophobic tails and interactions with the cell's hydrophobic membrane. Therefore, in this study, we are interested in creating career-free siRNA therapeutics for potential applications in drug delivery to the CNS. Here we explore different synthetic pathways of conjugating sphingolipids containing long-carbon chains to siRNA and assess their effectiveness as career-free delivery systems. In this project, a library of sphingosine-modified siRNAs was created, and their gene-silencing effect was evaluated in both the presence and absence of a transfection carrier. siRNAs modified with one or two sphingosine moieties resulted in dose-dependent gene knockdown while demonstrating promising results for their use as carrier-free agents. The IC50 values of single-modified siRNAs ranged from 49.9 nM to 670.7 nM, whereas double-modified siRNAs had IC50 values in the range of 49.9 nM to 66.4 nM. In conclusion, sphingosine-modified siRNAs show promising results in advancing carrier-free siRNA therapeutics.
Collapse
Affiliation(s)
- Charlene Fernandez
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| | - Ifrodet Giorgees
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| | - Eva Goss
- Synthose Inc., 50 Viceroy Road Unit 7, Concord, Ontario, L4K 3A7 Canada
| | - Jean-Paul Desaulniers
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, L1G 0C5, Canada.
| |
Collapse
|
22
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Horváth Á, Erostyák J, Szőke É. Effect of Lipid Raft Disruptors on Cell Membrane Fluidity Studied by Fluorescence Spectroscopy. Int J Mol Sci 2022; 23:ijms232213729. [PMID: 36430205 PMCID: PMC9697551 DOI: 10.3390/ijms232213729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Lipid rafts are specialized microdomains in cell membranes, rich in cholesterol and sphingolipids, and play an integrative role in several physiological and pathophysiological processes. The integrity of rafts can be disrupted via their cholesterol content-with methyl-β-cyclodextrin (MCD) or with our own carboxamido-steroid compound (C1)-or via their sphingolipid content-with sphingomyelinase (SMase) or with myriocin (Myr). We previously proved by the fluorescent spectroscopy method with LAURDAN that treatment with lipid raft disruptors led to a change in cell membrane polarity. In this study, we focused on the alteration of parameters describing membrane fluidity, such as generalized polarization (GP), characteristic time of the GP values change-Center of Gravity (τCoG)-and rotational mobility (τrot) of LAURDAN molecules. Myr caused a blue shift of the LAURDAN spectrum (higher GP value), while other agents lowered GP values (red shift). MCD decreased the CoG values, while other compounds increased it, so MCD lowered membrane stiffness. In the case of τrot, only Myr lowered the rotation of LAURDAN, while the other compounds increased the speed of τrot, which indicated a more disordered membrane structure. Overall, MCD appeared to increase the fluidity of the membranes, while treatment with the other compounds resulted in decreased fluidity and increased stiffness of the membranes.
Collapse
Affiliation(s)
- Ádám Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2, H-7624 Pécs, Hungary
- Correspondence:
| | - János Erostyák
- János Szentágothai Research Centre and Centre for Neuroscience, University of Pécs, Ifjúság Str. 20, H-7624 Pécs, Hungary
- Department of Experimental Physics, Faculty of Sciences, University of Pécs, Ifjúság Str. 6, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
24
|
Kim J, Suresh B, Lim MN, Hong SH, Kim KS, Song HE, Lee HY, Yoo HJ, Kim WJ. Metabolomics Reveals Dysregulated Sphingolipid and Amino Acid Metabolism Associated with Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:2343-2353. [PMID: 36172036 PMCID: PMC9511892 DOI: 10.2147/copd.s376714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease presenting as multiple phenotypes, such as declining lung function, emphysema, or persistent airflow limitation caused by several risk factors, including cigarette smoking and air pollution. The inherent complexity of COPD phenotypes propounds difficulties for accurate diagnosis and prognosis. Although metabolomic profiles on COPD have been reported, the role of metabolism in COPD-related phenotypes is yet to be determined. In this study, we investigated the association between plasma sphingolipids and amino acids, and between COPD and COPD-related phenotypes in a Korean cohort. Patients and Methods Blood samples were collected from 120 patients with COPD and 80 control participants who underwent spirometry and quantitative computed tomography. The plasma metabolic profiling was carried out using LC-MS/MS analysis. Results Among the evaluated plasma sphingolipids, an increase in the metabolism of two specific sphingomyelins, SM (d18:1/24:0) and SM (d18:1/24:1) were significantly associated with COPD. There was no significant correlation between any of the SMs and the emphysema index, FVC and FEV1 in the COPD cohort. Meanwhile, Cer (d18:1/18:0) and Cer (d18:1/24:1) were significantly associated with reduced FEV1. Furthermore, the levels of several amino acids were altered in the COPD group compared to that in the non-COPD group; glutamate and alpha AAA were substantial associated with emphysema in COPD. Kynurenine was the only amino acid significantly associated with reduced FEV1 in COPD. In contrast, there was no correlation between FVC and the elevated metabolites. Conclusion Our results provide dysregulated plasma metabolites impacting COPD phenotypes, although more studies are needed to explore the underlying mechanism related to COPD pathogenesis.
Collapse
Affiliation(s)
- Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Myoung Nam Lim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Ha Eun Song
- Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyo Yeong Lee
- Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
25
|
Chowdhury MR, Jin HK, Bae JS. Diverse Roles of Ceramide in the Progression and Pathogenesis of Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10081956. [PMID: 36009503 PMCID: PMC9406151 DOI: 10.3390/biomedicines10081956] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, and is associated with several pathophysiological features, including cellular dysfunction, failure of neurotransmission, cognitive impairment, cell death, and other clinical consequences. Advanced research on the pathogenesis of AD has elucidated a mechanistic framework and revealed many therapeutic possibilities. Among the mechanisms, sphingolipids are mentioned as distinctive mediators to be associated with the pathology of AD. Reportedly, alteration in the metabolism of sphingolipids and their metabolites result in the dysfunction of mitochondria, autophagy, amyloid beta regulation, and neuronal homeostasis, which exacerbates AD progression. Considering the importance of sphingolipids, in this review, we discuss the role of ceramide, a bioactive sphingolipid metabolite, in the progression and pathogenesis of AD. Herein, we describe the ceramide synthesis pathway and its involvement in the dysregulation of homeostasis, which eventually leads to AD. Furthermore, this review references different therapeutics proposed to modulate the ceramide pathway to maintain ceramide levels and prevent the disease progression.
Collapse
Affiliation(s)
- Md Riad Chowdhury
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hee Kyung Jin
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (H.K.J.); (J.-s.B.); Tel.: +82-53-950-5966 (H.K.J.); +82-53-420-4815 (J.-s.B.); Fax: +82-53-950-5955 (H.K.J.); +82-53-424-3349 (J.-s.B.)
| | - Jae-sung Bae
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (H.K.J.); (J.-s.B.); Tel.: +82-53-950-5966 (H.K.J.); +82-53-420-4815 (J.-s.B.); Fax: +82-53-950-5955 (H.K.J.); +82-53-424-3349 (J.-s.B.)
| |
Collapse
|
26
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
27
|
Morano C, Zulueta A, Caretti A, Roda G, Paroni R, Dei Cas M. An Update on Sphingolipidomics: Is Something Still Missing? Some Considerations on the Analysis of Complex Sphingolipids and Free-Sphingoid Bases in Plasma and Red Blood Cells. Metabolites 2022; 12:metabo12050450. [PMID: 35629954 PMCID: PMC9147510 DOI: 10.3390/metabo12050450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The main concerns in targeted “sphingolipidomics” are the extraction and proper handling of biological samples to avoid interferences and achieve a quantitative yield well representing all the sphingolipids in the matrix. Our work aimed to compare different pre-analytical procedures and to evaluate a derivatization step for sphingoid bases quantification, to avoid interferences and improve sensitivity. We tested four protocols for the extraction of sphingolipids from human plasma, at different temperatures and durations, and two derivatization procedures for the conversion of sphingoid bases into phenylthiourea derivatives. Different columns and LC-MS/MS chromatographic conditions were also tested. The protocol that worked better for sphingolipids analysis involved a single-phase extraction in methanol/chloroform mixture (2:1, v/v) for 1 h at 38 °C, followed by a 2 h alkaline methanolysis at 38 °C, for the suppression of phospholipids signals. The derivatization of sphingoid bases promotes the sensibility of non-phosphorylated species but we proved that it is not superior to a careful choice of the appropriate column and a full-length elution gradient. Our procedure was eventually validated by analyzing plasma and erythrocyte samples of 20 volunteers. While both extraction and methanolysis are pivotal steps, our final consideration is to analyze sphingolipids and sphingoid bases under different chromatographic conditions, minding the interferences.
Collapse
Affiliation(s)
- Camillo Morano
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Aida Zulueta
- Neurorehabilitation Department, IRCCS Istituti Clinici Scientifici Maugeri di Milano, 20138 Milan, Italy;
| | - Anna Caretti
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (C.M.); (G.R.)
| | - Rita Paroni
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
| | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy; (A.C.); (R.P.)
- Correspondence:
| |
Collapse
|
28
|
Plasma membrane effects of sphingolipid-synthesis inhibition by myriocin in CHO cells: a biophysical and lipidomic study. Sci Rep 2022; 12:955. [PMID: 35046440 PMCID: PMC8770663 DOI: 10.1038/s41598-021-04648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/08/2021] [Indexed: 11/08/2022] Open
Abstract
Suppression of a specific gene effect can be achieved by genetic as well as chemical methods. Each approach may hide unexpected drawbacks, usually in the form of side effects. In the present study, the specific inhibitor myriocin was used to block serine palmitoyltransferase (SPT), the first enzyme in the sphingolipid synthetic pathway, in CHO cells. The subsequent biophysical changes in plasma membranes were measured and compared with results obtained with a genetically modified CHO cell line containing a defective SPT (the LY-B cell line). Similar effects were observed with both approaches: sphingomyelin values were markedly decreased in myriocin-treated CHO cells and, in consequence, their membrane molecular order (measured as laurdan general polarization) and mechanical resistance (AFM-measured breakthrough force values) became lower than in the native, non-treated cells. Cells treated with myriocin reacted homeostatically to maintain membrane order, synthesizing more fully saturated and less polyunsaturated GPL than the non-treated ones, although they achieved it only partially, their plasma membranes remaining slightly more fluid and more penetrable than those from the control cells. The good agreement between results obtained with very different tools, such as genetically modified and chemically treated cells, reinforces the use of both methods and demonstrates that both are adequate for their intended use, i.e. the complete and specific inhibition of sphingolipid synthesis in CHO cells, without apparent unexpected effects.
Collapse
|
29
|
Adimulam T, Abdul N, Chuturgoon A. HepG2 liver cells treated with fumonisin B1 in galactose supplemented media have altered expression of genes and proteins known to regulate cholesterol flux. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2021.2723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fumonisin B1 (FB1) contributes to mycotoxicosis in animals and has been associated with the incidence of some cancers in humans. The effect of FB1 on lipidomic profiles, sphingolipids and cholesterol levels have been demonstrated in experimental models, however, the events leading to altered cholesterol levels are unclear. This study investigates the molecular mechanisms that regulate the effect of FB1 on cholesterol homeostasis in galactose supplemented HepG2 liver cells. Galactose supplementation is a proven method utilised to circumvent the Crabtree effect exhibited by cancer cells, which forces cancer cells to activate the mitochondria. HepG2 cells were cultured in galactose supplemented media and treated with FB1 (IC50 = 25 μM) for 6 h. Cell viability was determined using the MTT assay. Metabolic status was evaluated using ATP luciferase assay, and cholesterol regulatory transcription factors (SIRT1, SREBP-1C, LXR, LDLR, PCSK9, and ABCA1) were investigated using western blotting and qPCR. FB1 in galactose supplemented HepG2 cells increased gene expression of SIRT1 (P<0.05), SREBP-1C, LXR, and LDLR; however, PCSK9 (P<0.05) was decreased. Furthermore, protein expression of SIRT1, LXR, and LDLR was elevated upon FB1 treatment, while SREBP-1C and PCSK9 were reduced. The data provides evidence that SIRT1 reduced the expression of PCSK9 and deacetylated LXR to prevent degradation of LDLR. This could result in a dysregulated cholesterol flux, which may contribute to FB1 mediated toxicity.
Collapse
Affiliation(s)
- T. Adimulam
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - N.S. Abdul
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town 7535, South Africa
| | - A.A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
30
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
31
|
Choi RH, Tatum SM, Symons JD, Summers SA, Holland WL. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol 2021; 18:701-711. [PMID: 33772258 PMCID: PMC8978615 DOI: 10.1038/s41569-021-00536-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/03/2023]
Abstract
Increases in calorie consumption and sedentary lifestyles are fuelling a global pandemic of cardiometabolic diseases, including coronary artery disease, diabetes mellitus, cardiomyopathy and heart failure. These lifestyle factors, when combined with genetic predispositions, increase the levels of circulating lipids, which can accumulate in non-adipose tissues, including blood vessel walls and the heart. The metabolism of these lipids produces bioactive intermediates that disrupt cellular function and survival. A compelling body of evidence suggests that sphingolipids, such as ceramides, account for much of the tissue damage in these cardiometabolic diseases. In humans, serum ceramide levels are proving to be accurate biomarkers of adverse cardiovascular disease outcomes. In mice and rats, pharmacological inhibition or depletion of enzymes driving de novo ceramide synthesis prevents the development of diabetes, atherosclerosis, hypertension and heart failure. In cultured cells and isolated tissues, ceramides perturb mitochondrial function, block fuel usage, disrupt vasodilatation and promote apoptosis. In this Review, we discuss the body of literature suggesting that ceramides are drivers - and not merely passengers - on the road to cardiovascular disease. Moreover, we explore the feasibility of therapeutic strategies to lower ceramide levels to improve cardiovascular health.
Collapse
Affiliation(s)
- Ran Hee Choi
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - J David Symons
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
32
|
Monasterio BG, Jiménez-Rojo N, García-Arribas AB, Riezman H, Goñi FM, Alonso A. CHO/LY-B cell growth under limiting sphingolipid supply: Correlation between lipid composition and biophysical properties of sphingolipid-restricted cell membranes. FASEB J 2021; 35:e21657. [PMID: 34010474 DOI: 10.1096/fj.202001879rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 11/11/2022]
Abstract
Sphingolipids (SL) are ubiquitous in mammalian cell membranes, yet there is little data on the behavior of cells under SL-restriction conditions. LY-B cells derive from a CHO linein whichserine palmitoyl transferase (SPT), thus de novo SL synthesis, is suppressed, while maintaining the capacity of taking up and metabolizing exogenous sphingoid bases from the culture medium. In this study, LY-B cells were adapted to grow in a fetal bovine serum (FBS)-deficient medium to avoid external uptake of lipids. The lowest FBS concentration that allowed LY-B cell growth, though at a slow rate, under our conditions was 0.04%, that is, 250-fold less than the standard (10%) concentration. Cells grown under limiting SL concentrations remained viable for at least 72 hours. Enriching with sphingomyelin the SL-deficient medium allowed the recovery of growth rates analogous to those of control LY-B cells. Studies including whole cells, plasma membrane preparations, and derived lipid vesicles were carried out. Laurdan fluorescence was recorded to measure membrane molecular order, showing a significant decrease in the rigidity of LY-B cells, not only in plasma membrane but also in whole cell lipid extract, as a result of SL limitation in the growth medium. Plasma membrane preparations and whole cell lipid extracts were also studied using atomic force microscopy in the force spectroscopy mode. Force measurements demonstrated that lower breakthrough forces were required to penetrate samples obtained from SL-poor LY-B cells than those obtained from control cells. Mass-spectroscopic analysis was also a helpful tool to understand the rearrangement undergone by the LY-B cell lipid metabolism. The most abundant SL in LY-B cells, sphingomyelin, decreased by about 85% as a result of SL limitation in the medium, the bioactive lipid ceramide and the ganglioside precursor hexosylceramide decreased similarly, together with cholesterol. Quantitative SL analysis showed that a 250-fold reduction in sphingolipid supply to LY-B cells led only to a sixfold decrease in membrane sphingolipids, underlining the resistance to changes in composition of these cells. Plasma membrane compositions exhibited similar changes, at least qualitatively, as the whole cells with SL restriction. A linear correlation was observed between the sphingomyelin concentration in the membranes, the degree of lipid order as measured by laurdan fluorescence, and membrane breakthrough forces assessed by atomic force microscopy. Smaller, though significant, changes were also detected in glycerophospholipids under SL-restriction conditions.
Collapse
Affiliation(s)
- Bingen G Monasterio
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Noemi Jiménez-Rojo
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Aritz B García-Arribas
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Howard Riezman
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), Universidad del País Vasco, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, Leioa, Spain
| |
Collapse
|
33
|
Moneeb AHM, Hammam ARA, Ahmed AKA, Ahmed ME, Alsaleem KA. Effect of fat extraction methods on the fatty acids composition of bovine milk using gas chromatography. Food Sci Nutr 2021; 9:2936-2942. [PMID: 34136161 PMCID: PMC8194748 DOI: 10.1002/fsn3.2252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022] Open
Abstract
Milk fat is a complex natural fat and contains around 400 fatty acids. The objectives of this study were to extract fat from bovine milk using two different methods, including Bligh and Dyer and Mojonnier, and to determine the fatty acid content in the extracted fats using gas chromatography (GC). No differences (p > .05) were detected in the fat content and fatty acids content as a percentage of total fat (FA%TF) extracted using both methods. No differences (p > .05) were detected in some saturated fatty acids (SFAs) and unsaturated fatty acids (USFAs) extracted from both methods, such as C11:0 (undecylic acid), C16:0 (palmitic acid), C18:0 (stearic acid), C14:1 (myristoleic acid), and C16:1 (palmitoleic acid). However, the majority of SFAs were different (p < .05) in Mojonnier method as compared to Bligh and Dyer method and vice versa for USFAs. The short (6.54% vs. 5.95%) and medium (21.86% vs. 20.73%) chains FAs determined by GC were high in Mojonnier fat as compared to Bligh and Dyer fat, while the long-chain FAs were higher in the last (66.61%) relative to Mojonnier fat (65.51%). This study found that Mojonneir method has resulted in fewer errors. In contrast, the Bligh and Dyer extraction method has more experimental error, which led to decreasing the total fat, as well as was not able to detect C9:0.
Collapse
Affiliation(s)
- Asmaa H. M. Moneeb
- Department of Dairy ScienceFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Ahmed R. A. Hammam
- Department of Dairy ScienceFaculty of AgricultureAssiut UniversityAssiutEgypt
- Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsSDUSA
| | - Abdelfatah K. A. Ahmed
- Department of Food Science and TechnologyFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Mahmoud E. Ahmed
- Department of Dairy ScienceFaculty of AgricultureAssiut UniversityAssiutEgypt
| | - Khalid A. Alsaleem
- Dairy and Food Science DepartmentSouth Dakota State UniversityBrookingsSDUSA
- Department of Food Science and Human NutritionCollege of Agriculture and Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| |
Collapse
|
34
|
Eveque-Mourroux M, Emans PJ, Boonen A, Claes BSR, Bouwman FG, Heeren RMA, Cillero-Pastor B. Heterogeneity of Lipid and Protein Cartilage Profiles Associated with Human Osteoarthritis with or without Type 2 Diabetes Mellitus. J Proteome Res 2021; 20:2973-2982. [PMID: 33866785 PMCID: PMC8155553 DOI: 10.1021/acs.jproteome.1c00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a multifactorial pathology and comprises a wide range of distinct phenotypes. In this context, the characterization of the different molecular profiles associated with each phenotype can improve the classification of OA. In particular, OA can coexist with type 2 diabetes mellitus (T2DM). This study investigates lipidomic and proteomic differences between human OA/T2DM- and OA/T2DM+ cartilage through a multimodal mass spectrometry approach. Human cartilage samples were obtained after total knee replacement from OA/T2DM- and OA/T2DM+ patients. Label-free proteomics was employed to study differences in protein abundance and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) for spatially resolved-lipid analysis. Label-free proteomic analysis showed differences between OA/T2DM- and OA/T2DM+ phenotypes in several metabolic pathways such as lipid regulation. Interestingly, phospholipase A2 protein was found increased within the OA/T2DM+ cohort. In addition, MALDI-MSI experiments revealed that phosphatidylcholine and sphingomyelin species were characteristic of the OA/T2DM- group, whereas lysolipids were more characteristic of the OA/T2DM+ phenotype. The data also pointed out differences in phospholipid content between superficial and deep layers of the cartilage. Our study shows distinctively different lipid and protein profiles between OA/T2DM- and OA/T2DM+ human cartilage, demonstrating the importance of subclassification of the OA disease for better personalized treatments.
Collapse
Affiliation(s)
- Maxime
R. Eveque-Mourroux
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| | - Pieter J. Emans
- Department
of Orthopedic Surgery, Maastricht University
Medical Center, 6229 HX Maastricht, Netherlands
| | - Annelies Boonen
- Department
of Internal Medicine, Division of Rheumatology, and Care and Public
Health Research Institute (CAPHRI), Maastricht
University Medical Center, 6229 HX Maastricht, Netherlands
| | - Britt S. R. Claes
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| | - Freek G. Bouwman
- Department
of Human Biology, NUTRIM School of Nutrition and Translational Research
in Metabolism, Maastricht University Medical
Center, 6229 HX Maastricht, Netherlands
| | - Ron M. A. Heeren
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Division
of Imaging Mass Spectrometry, Maastricht
MultiModal Molecular Imaging (M4i) Institute, 6229 ER Maastricht, Netherlands
| |
Collapse
|
35
|
SSSPTA is essential for serine palmitoyltransferase function during development and hematopoiesis. J Biol Chem 2021; 296:100491. [PMID: 33662400 PMCID: PMC8047174 DOI: 10.1016/j.jbc.2021.100491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
Serine palmitoyltransferase complex (SPT) mediates the first and rate-limiting step in the de novo sphingolipid biosynthetic pathway. The larger subunits SPTLC1 and SPTLC2/SPTLC3 together form the catalytic core while a smaller third subunit either SSSPTA or SSSPTB has been shown to increase the catalytic efficiency and provide substrate specificity for the fatty acyl-CoA substrates. The in vivo biological significance of these smaller subunits in mammals is still unknown. Here, using two null mutants, a conditional null for ssSPTa and a null mutant for ssSPTb, we show that SSSPTA is essential for embryogenesis and mediates much of the known functions of the SPT complex in mammalian hematopoiesis. The ssSPTa null mutants are embryonic lethal at E6.5 much like the Sptlc1 and Sptlc2 null alleles. Mx1-Cre induced deletion of ssSPTa leads to lethality and myelopoietic defect. Chimeric and competitive bone marrow transplantation experiments show that the defect in myelopoiesis is accompanied by an expansion of the Lin−Sca1+c-Kit+ stem and progenitor compartment. Progenitor cells that fail to differentiate along the myeloid lineage display evidence of endoplasmic reticulum stress. On the other hand, ssSPTb null mice are homozygous viable, and analyses of the bone marrow cells show no significant difference in the proliferation and differentiation of the adult hematopoietic compartment. SPTLC1 is an obligatory subunit for the SPT function, and because Sptlc1−/− and ssSPTa−/− mice display similar defects during development and hematopoiesis, we conclude that an SPT complex that includes SSSPTA mediates much of its developmental and hematopoietic functions in a mammalian model.
Collapse
|
36
|
Rahman ML, Feng YCA, Fiehn O, Albert PS, Tsai MY, Zhu Y, Wang X, Tekola-Ayele F, Liang L, Zhang C. Plasma lipidomics profile in pregnancy and gestational diabetes risk: a prospective study in a multiracial/ethnic cohort. BMJ Open Diabetes Res Care 2021; 9:9/1/e001551. [PMID: 33674279 PMCID: PMC7939004 DOI: 10.1136/bmjdrc-2020-001551] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Disruption of lipid metabolism is implicated in gestational diabetes (GDM). However, prospective studies on lipidomics and GDM risk in race/ethnically diverse populations are sparse. Here, we aimed to (1) identify lipid networks in early pregnancy to mid-pregnancy that are associated with subsequent GDM risk and (2) examine the associations of lipid networks with glycemic biomarkers to understand the underlying mechanisms. RESEARCH DESIGN AND METHODS This study included 107 GDM cases confirmed using the Carpenter and Coustan criteria and 214 non-GDM matched controls from the National Institute of Child Health and Human Development Fetal Growth Studies-Singleton cohort, untargeted lipidomics data of 420 metabolites (328 annotated and 92 unannotated), and information on glycemic biomarkers in maternal plasma at visit 0 (10-14 weeks) and visit 1 (15-26 weeks). We constructed lipid networks using weighted correlation network analysis technique. We examined prospective associations of lipid networks and individual lipids with GDM risk using linear mixed effect models. Furthermore, we calculated Pearson's partial correlation for GDM-related lipid networks and individual lipids with plasma glucose, insulin, C-peptide and glycated hemoglobin at both study visits. RESULTS Lipid networks primarily characterized by elevated plasma diglycerides and short, saturated/low unsaturated triglycerides and lower plasma cholesteryl esters, sphingomyelins and phosphatidylcholines were associated with higher risk of developing GDM (false discovery rate (FDR) <0.05). Among individual lipids, 58 metabolites at visit 0 and 96 metabolites at visit 1 (40 metabolites at both time points) significantly differed between women who developed GDM and who did not (FDR <0.05). Furthermore, GDM-related lipid networks and individual lipids showed consistent correlations with maternal glycemic markers particularly in early pregnancy at visit 0. CONCLUSIONS Plasma lipid metabolites in early pregnancy both individually and interactively in distinct networks were associated with subsequent GDM risk in race/ethnically diverse US women. Future research is warranted to assess lipid metabolites as etiologic markers of GDM.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Department of Population Medicine and Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Yen-Chen A Feng
- Massachusetts General Hospital Center for Genomic Medicine, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute Harvard, Cambridge, Massachusetts, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, California, USA
| | - Paul S Albert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael Y Tsai
- Laboratory Medicine and Pathology, University of Minnesota System, Minneapolis, Minnesota, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Xiaobin Wang
- Department of Population, Family, and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Liming Liang
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Jennings JS, Ensley SM, Smith WN, Husz TC, Lawrence TE. Impact of increasing levels of fumonisin on performance, liver toxicity, and tissue histopathology of finishing beef steers. J Anim Sci 2021; 98:6024976. [PMID: 33280003 DOI: 10.1093/jas/skaa390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/04/2020] [Indexed: 11/14/2022] Open
Abstract
To address the gaps in current scientific knowledge, the objective of the present study was to investigate the impact of fumonisin exposure on feedlot cattle intake and performance. Fifty steers were received (day 0; 361 ± 6.4 kg), housed individually and fed once daily at 0800 hours. All steers were transitioned to a dry-rolled corn-based finishing diet from days 0 to 21 and then were fed the control finishing diet until day 50. Treatment diets were formulated to achieve ≤5 (CON), 15 (15PPM), 30 (30PPM), 60 (60PPM), or 90 ppm (90PPM) of total dietary fumonisin. Steers were fed the fumonisin treatment diets from day 50 until harvest on day 160; individual animal body weights (BW) were measured on days 0, 50, 100, 150, 159, and 160. Liver, kidney, and skeletal muscle tissue samples were collected at harvest for histopathological analyses, and liver samples were further analyzed for sphinganine (SA) and sphingosine (SO) concentration. Animal performance, carcass data, and liver enzyme concentration were analyzed using a mixed model; categorical data were analyzed via nonparametric models. Contrasts were used to test for linear and quadratic responses. Throughout the study, there was no effect of treatment (P > 0.60), or a linear response (P > 0.16) from increasing fumonisin levels, on BW or dry matter intake (DMI). However, CON tended to have a lower average daily gain (ADG) than the fumonisin treatments during the fumonisin treatment period (P = 0.10), and there was a positive linear response (P = 0.02) of ADG to fumonisin during the treatment period. There were no treatment differences in hot carcass weight, dressing percentage, marbling score, ribeye area, or yield grade. There were no effects of treatment on either liver abscesses (P = 0.95) or telangiectasis (P = 0.13). We observed a treatment difference for SA and SA:SO (P < 0.01), as well as a quadratic response (P < 0.02); both SA and SA:SO increased as dietary fumonisin increased. There were no observed differences between treatments for histopathology scores of kidney (P = 0.16), liver (P = 0.25), or skeletal muscle (P = 0.59) tissue. No adverse effects were observed in steers fed increasing dietary levels of fumonisin for 110 d prior to harvest. While elevated liver amino alcohol concentration did occur, negative effects on growth and carcass characters were not observed.
Collapse
Affiliation(s)
| | - Steve M Ensley
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | | | | | - Ty E Lawrence
- Department of Agricultural Sciences, West Texas A&M University, Canyon, TX
| |
Collapse
|
38
|
Wilhelm R, Eckes T, Imre G, Kippenberger S, Meissner M, Thomas D, Trautmann S, Merlio JP, Chevret E, Kaufmann R, Pfeilschifter J, Koch A, Jäger M. C6 Ceramide (d18:1/6:0) as a Novel Treatment of Cutaneous T Cell Lymphoma. Cancers (Basel) 2021; 13:E270. [PMID: 33450826 PMCID: PMC7828274 DOI: 10.3390/cancers13020270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/01/2021] [Accepted: 01/11/2021] [Indexed: 01/09/2023] Open
Abstract
Cutaneous T cell lymphomas (CTCLs) represent a heterogeneous group of T cell lymphomas that primarily affect the skin. The most frequent forms of CTCL are mycosis fungoides and Sézary syndrome. Both are characterized by frequent recurrence, developing chronic conditions and high mortality with a lack of a curative treatment. In this study, we evaluated the effect of short-chain, cell-permeable C6 Ceramide (C6Cer) on CTCL cell lines and keratinocytes. C6Cer significantly reduced cell viability of CTCL cell lines and induced cell death via apoptosis and necrosis. In contrast, primary human keratinocytes and HaCaT keratinocytes were less affected by C6Cer. Both keratinocyte cell lines showed higher expressions of ceramide catabolizing enzymes and HaCaT keratinocytes were able to metabolize C6Cer faster and more efficiently than CTCL cell lines, which might explain the observed protective effects. Along with other existing skin-directed therapies, C6Cer could be a novel well-tolerated drug for the topical treatment of CTCL.
Collapse
Affiliation(s)
- Raphael Wilhelm
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Timon Eckes
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Gergely Imre
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Stefan Kippenberger
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
| | - Markus Meissner
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
| | - Dominique Thomas
- Department of Clinical Pharmacology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
| | - Sandra Trautmann
- Department of Clinical Pharmacology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
| | - Jean-Philippe Merlio
- Cutaneous Lymphoma Oncogenesis Team, INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, 33076 Bordeaux, France; (J.-P.M.); (E.C.)
| | - Edith Chevret
- Cutaneous Lymphoma Oncogenesis Team, INSERM U1053 Bordeaux Research in Translational Oncology, Bordeaux University, 33076 Bordeaux, France; (J.-P.M.); (E.C.)
| | - Roland Kaufmann
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
| | - Josef Pfeilschifter
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Alexander Koch
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.E.); (G.I.); (J.P.); (A.K.)
| | - Manuel Jäger
- Department of Dermatology, Venerology and Allergology, Goethe University Hospital, 60590 Frankfurt am Main, Germany; (S.K.); (M.M.); (R.K.); (M.J.)
- Hautklinik, Städtisches Klinikum Karlsruhe, Akademisches Lehrkrankenhaus der Universität Freiburg, 76133 Karlsruhe, Germany
| |
Collapse
|
39
|
Ravera F, Efeoglu E, Byrne HJ. Monitoring stem cell differentiation using Raman microspectroscopy: chondrogenic differentiation, towards cartilage formation. Analyst 2021; 146:322-337. [PMID: 33155580 DOI: 10.1039/d0an01983f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) has been demonstrated to be a powerful analytical tool, which provides detailed label free biochemical fingerprint information in a non-invasive way, for analysis of cells, tissues and body fluids. In this work, RMS is explored to monitor the process of Mesenchymal Stem Cell (MSC) differentiation into chondrocytes in vitro, providing a holistic molecular picture of cellular events governing the differentiation. Spectral signatures of the subcellular compartments, nucleolus, nucleus and cytoplasm were initially probed and characteristic molecular changes between differentiated and undifferentiated were identified. Moreover, high density cell micromasses were cultured over a period of three weeks, and a systematic monitoring of cellular molecular components and the progress of the ECM formation, associated with the chondrogenic differentiation, was performed. This study shows the potential applicability of RMS as a powerful tool to monitor and better understand the differentiation pathways and process.
Collapse
Affiliation(s)
- Francesca Ravera
- School of Physics and Clinical and Optometric Sciences, TU Dublin, City Campus, Dublin 8, Ireland.
| | | | | |
Collapse
|
40
|
Effects of Dietary Zearalenone Exposure on the Growth Performance, Small Intestine Disaccharidase, and Antioxidant Activities of Weaned Gilts. Animals (Basel) 2020; 10:ani10112157. [PMID: 33228146 PMCID: PMC7699518 DOI: 10.3390/ani10112157] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary This study was conducted to assess the effects of Zearalenone (ZEA) exposure on the growth performance, small intestine disaccharidase, and antioxidant activities of weaned gilts. Twenty weaned gilts were randomly divided into control and ZEA treatment (1.04 mg/kg) groups. The data showed that 1.04 mg/kg ZEA in gilt’s diet could reduce the activity of disaccharidase enzymes and induce oxidative stress in the small intestine. Therefore, ZEA may induce intestinal injury by oxidative stress, or induce oxidative stress through intestinal injury, thus reducing the effect of animals on nutrient absorption. Abstract Zearalenone (ZEA) is a secondary metabolite with estrogenic effects produced by Fusarium fungi and mainly occurs as a contaminant of grains such as corn and wheat. ZEA, to which weaned gilts are extremely sensitive, is the main Fusarium toxin detected in corn–soybean meal diets. Our aim was to examine the effects of ZEA on the growth performance, intestinal disaccharidase activity, and anti-stress capacity of weaned gilts. Twenty 42-day-old healthy Duroc × Landrace × Large White weaned gilts (12.84 ± 0.26 kg) were randomly divided into control and treatment (diet containing 1.04 mg/kg ZEA) groups. The experiment included a 7-day pre-trial period followed by a 35-day test period, all gilts were euthanized and small intestinal samples were collected and subjected to immunohistochemical and western blot analyses. The results revealed that inclusion of 1.04 mg/kg ZEA in the diet significantly reduced the activities of lactase, sucrase, and maltase in the duodenum, jejunum, and ileum of gilts. Similarly, the activities of superoxide dismutase and glutathione peroxidase in the duodenum, jejunum, and ileum, and activities of catalase in the jejunum and ileum were reduced (p < 0.05). Conversely, the content of malondialdehyde in the duodenum, jejunum, and ileum, and the integrated optical density (IOD), IOD in single villi, and the mRNA and protein expression of heat shock protein 70 (Hsp70) were significantly increased (p < 0.05). The results of immunohistochemical analyses revealed that the positive reaction of Hsp70 in the duodenum, jejunum, and ileum of weaned gilts was enhanced in the ZEA treatment, compared with the control. The findings of this study indicate the inclusion of ZEA (1.04 mg/kg) in the diet of gilts reduced the activity of disaccharidase enzymes and induced oxidative stress in the small intestine, thereby indicating that ZEA would have the effect of reducing nutrient absorption in these animals.
Collapse
|
41
|
Abstract
The global prevalence of metabolic diseases such as type 2 diabetes mellitus, steatohepatitis, myocardial infarction, and stroke has increased dramatically over the past two decades. These obesity-fueled disorders result, in part, from the aberrant accumulation of harmful lipid metabolites in tissues not suited for lipid storage (e.g., the liver, vasculature, heart, and pancreatic beta-cells). Among the numerous lipid subtypes that accumulate, sphingolipids such as ceramides are particularly impactful, as they elicit the selective insulin resistance, dyslipidemia, and ultimately cell death that underlie nearly all metabolic disorders. This review summarizes recent findings on the regulatory pathways controlling ceramide production, the molecular mechanisms linking the lipids to these discrete pathogenic events, and exciting attempts to develop therapeutics to reduce ceramide levels to combat metabolic disease.
Collapse
Affiliation(s)
- Bhagirath Chaurasia
- Department of Internal Medicine, Division of Endocrinology, Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
42
|
|
43
|
Kashirina AS, López-Duarte I, Kubánková M, Gulin AA, Dudenkova VV, Rodimova SA, Torgomyan HG, Zagaynova EV, Meleshina AV, Kuimova MK. Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM. Sci Rep 2020; 10:14063. [PMID: 32820221 PMCID: PMC7441180 DOI: 10.1038/s41598-020-70972-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Membrane fluidity plays an important role in many cell functions such as cell adhesion, and migration. In stem cell lines membrane fluidity may play a role in differentiation. Here we report the use of viscosity-sensitive fluorophores based on a BODIPY core, termed “molecular rotors”, in combination with Fluorescence Lifetime Imaging Microscopy, for monitoring of plasma membrane viscosity changes in mesenchymal stem cells (MSCs) during osteogenic and chondrogenic differentiation. In order to correlate the viscosity values with membrane lipid composition, the detailed analysis of the corresponding membrane lipid composition of differentiated cells was performed by time-of-flight secondary ion mass spectrometry. Our results directly demonstrate for the first time that differentiation of MSCs results in distinct membrane viscosities, that reflect the change in lipidome of the cells following differentiation.
Collapse
Affiliation(s)
- Alena S Kashirina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Ismael López-Duarte
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Markéta Kubánková
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK
| | - Alexander A Gulin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (FRCCP RAS), Kosygin st. 4, Moscow, Russian Federation, 119991.,Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, Moscow, Russian Federation, 119991
| | - Varvara V Dudenkova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Svetlana A Rodimova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.,Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Novgorod, Nizhny Novgorod, Russian Federation, 603950
| | - Hayk G Torgomyan
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950
| | - Elena V Zagaynova
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.,Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Novgorod, Nizhny Novgorod, Russian Federation, 603950
| | - Aleksandra V Meleshina
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, Russian Federation, 603950.
| | - Marina K Kuimova
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, W12 0BZ, UK.
| |
Collapse
|
44
|
Kim HS, Lohmar JM, Busman M, Brown DW, Naumann TA, Divon HH, Lysøe E, Uhlig S, Proctor RH. Identification and distribution of gene clusters required for synthesis of sphingolipid metabolism inhibitors in diverse species of the filamentous fungus Fusarium. BMC Genomics 2020; 21:510. [PMID: 32703172 PMCID: PMC7376913 DOI: 10.1186/s12864-020-06896-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sphingolipids are structural components and signaling molecules in eukaryotic membranes, and many organisms produce compounds that inhibit sphingolipid metabolism. Some of the inhibitors are structurally similar to the sphingolipid biosynthetic intermediate sphinganine and are referred to as sphinganine-analog metabolites (SAMs). The mycotoxins fumonisins, which are frequent contaminants in maize, are one family of SAMs. Due to food and feed safety concerns, fumonisin biosynthesis has been investigated extensively, including characterization of the fumonisin biosynthetic gene cluster in the agriculturally important fungi Aspergillus and Fusarium. Production of several other SAMs has also been reported in fungi, but there is almost no information on their biosynthesis. There is also little information on how widely SAM production occurs in fungi or on the extent of structural variation of fungal SAMs. RESULTS Using fumonisin biosynthesis as a model, we predicted that SAM biosynthetic gene clusters in fungi should include a polyketide synthase (PKS), an aminotransferase and a dehydrogenase gene. Surveys of genome sequences identified five putative clusters with this three-gene combination in 92 of 186 Fusarium species examined. Collectively, the putative SAM clusters were distributed widely but discontinuously among the species. We propose that the SAM5 cluster confers production of a previously reported Fusarium SAM, 2-amino-14,16-dimethyloctadecan-3-ol (AOD), based on the occurrence of AOD production only in species with the cluster and on deletion analysis of the SAM5 cluster PKS gene. We also identified SAM clusters in 24 species of other fungal genera, and propose that one of the clusters confers production of sphingofungin, a previously reported Aspergillus SAM. CONCLUSION Our results provide a genomics approach to identify novel SAM biosynthetic gene clusters in fungi, which should in turn contribute to identification of novel SAMs with applications in medicine and other fields. Information about novel SAMs could also provide insights into the role of SAMs in the ecology of fungi. Such insights have potential to contribute to strategies to reduce fumonisin contamination in crops and to control crop diseases caused by SAM-producing fungi.
Collapse
Affiliation(s)
- Hye-Seon Kim
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Jessica M Lohmar
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Mark Busman
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Daren W Brown
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Todd A Naumann
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | | | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | | | - Robert H Proctor
- U. S. Department of Agriculture, Agriculture Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA.
| |
Collapse
|
45
|
Changes in the Fecal Metabolome Are Associated with Feeding Fiber Not Health Status in Cats with Chronic Kidney Disease. Metabolites 2020; 10:metabo10070281. [PMID: 32660033 PMCID: PMC7407581 DOI: 10.3390/metabo10070281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/25/2022] Open
Abstract
The objective was to determine the effects of feeding different fiber sources to cats with chronic kidney disease (CKD) compared with healthy cats (both n = 10) on fecal metabolites. A cross-over within split-plot study design was performed using healthy and CKD cats (IRIS stage 1, 2, and 3). After cats were fed a complete and balanced dry food designed to aid in the management of renal disease for 14 days during a pre-trial period, they were randomly assigned to two fiber treatments for 4 weeks each. The treatment foods were formulated similar to pre-trial food and contained 0.500% betaine, 0.586% oat beta glucan, and either 0.407% short chain fructooligosaccharides (scFOS) fiber or 3.44% apple pomace. Both treatment foods had similar crude fiber (2.0 and 2.1% for scFOS and apple pomace, respectively) whereas soluble fiber was 0.8 and 1.6%, respectively. At baseline, CKD had very little impact on the fecal metabolome. After feeding both fiber sources, some fecal metabolite concentrations were significantly different compared with baseline. Many fecal uremic toxins decreased, although in healthy cats some increased; and some more so when feeding apple pomace compared with scFOS, e.g., hippurate, 4-hydroxyhippurate, and 4-methylcatechol sulfate; the latter was also increased in CKD cats. Changes in secondary bile acid concentrations were more numerous in healthy compared with CKD cats, and cats in both groups had greater increases in some secondary bile acids after consuming apple pomace compared with scFOS, e.g., tauroursodeoxycholate and hyocholate. Although changes associated with feeding fiber were more significant than changes associated with disease status, differential modulation of the gut-kidney axis using dietary fiber may benefit cats.
Collapse
|
46
|
Alaamery M, Albesher N, Aljawini N, Alsuwailm M, Massadeh S, Wheeler MA, Chao CC, Quintana FJ. Role of sphingolipid metabolism in neurodegeneration. J Neurochem 2020; 158:25-35. [PMID: 32402091 DOI: 10.1111/jnc.15044] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
Sphingolipids are a class of lipids highly enriched in the central nervous system (CNS), which shows great diversity and complexity, and has been implicated in CNS development and function. Alterations in sphingolipid metabolism have been described in multiple diseases, including those affecting the central nervous system (CNS). In this review, we discuss the role of sphingolipid metabolism in neurodegeneration, evaluating its direct roles in neuron development and health, and also in the induction of neurotoxic activities in CNS-resident astrocytes and microglia in the context of neurologic diseases such as multiple sclerosis and Alzheimer's disease. Finally, we focus on the metabolism of gangliosides and sphingosine-1-phosphate, its contribution to the pathogenesis of neurologic diseases, and its potential as a candidate target for the therapeutic modulation of neurodegeneration.
Collapse
Affiliation(s)
- Manal Alaamery
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nour Albesher
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nora Aljawini
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Moneera Alsuwailm
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Salam Massadeh
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
47
|
Sinha T, Ikelle L, Naash MI, Al-Ubaidi MR. The Intersection of Serine Metabolism and Cellular Dysfunction in Retinal Degeneration. Cells 2020; 9:cells9030674. [PMID: 32164325 PMCID: PMC7140600 DOI: 10.3390/cells9030674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
In the past, the importance of serine to pathologic or physiologic anomalies was inadequately addressed. Omics research has significantly advanced in the last two decades, and metabolomic data of various tissues has finally brought serine metabolism to the forefront of metabolic research, primarily for its varied role throughout the central nervous system. The retina is one of the most complex neuronal tissues with a multitude of functions. Although recent studies have highlighted the importance of free serine and its derivatives to retinal homeostasis, currently few reviews exist that comprehensively analyze the topic. Here, we address this gap by emphasizing how and why the de novo production and demand for serine is exceptionally elevated in the retina. Many basic physiological functions of the retina require serine. Serine-derived sphingolipids and phosphatidylserine for phagocytosis by the retinal pigment epithelium (RPE) and neuronal crosstalk of the inner retina via D-serine require proper serine metabolism. Moreover, serine is involved in sphingolipid–ceramide balance for both the outer retina and the RPE and the reductive currency generation for the RPE via serine biosynthesis. Finally and perhaps the most vital part of serine metabolism is free radical scavenging in the entire retina via serine-derived scavengers like glycine and GSH. It is hard to imagine that a single tissue could have such a broad and extensive dependency on serine homeostasis. Any dysregulation in serine mechanisms can result in a wide spectrum of retinopathies. Therefore, most critically, this review provides a strong argument for the exploration of serine-based clinical interventions for retinal pathologies.
Collapse
Affiliation(s)
| | | | - Muna I. Naash
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| | - Muayyad R. Al-Ubaidi
- Correspondence: (M.I.N.); (M.R.A.-U.); Tel.: +1-713-743-1651 (M.I.N.); Fax: +1-713-743-0226 (M.I.N.)
| |
Collapse
|
48
|
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020; 207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Hideki Furuya
- Department of Surgery, Samuel Oschin Cancer Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mei Li Ng
- Advanced Medical and Dental Institute, University Sains 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia; GALLY International Research Institute, San Antonio, TX 78229, USA; Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
49
|
Mahajan UM, Goni E, Langhoff E, Li Q, Costello E, Greenhalf W, Kruger S, Ormanns S, Halloran C, Ganeh P, Marron M, Lämmerhirt F, Zhao Y, Beyer G, Weiss FU, Sendler M, Bruns CJ, Kohlmann T, Kirchner T, Werner J, D’Haese JG, von Bergwelt-Baildon M, Heinemann V, Neoptolemos JP, Büchler MW, Belka C, Boeck S, Lerch MM, Mayerle J. Cathepsin D Expression and Gemcitabine Resistance in Pancreatic Cancer. JNCI Cancer Spectr 2020; 4:pkz060. [PMID: 32296755 PMCID: PMC7050148 DOI: 10.1093/jncics/pkz060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/01/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cathepsin-D (CatD), owing to its dual role as a proteolytic enzyme and as a ligand, has been implicated in cancer progression. The role of CatD in pancreatic ductal adenocarcinoma is unknown. METHODS CatD expression quantified by immunohistochemistry of tumor-tissue microarrays of 403 resected pancreatic cancer patients from the ESPAC-Tplus trial, a translational study within the ESPAC (European Study Group for Pancreatic Cancer) trials, was dichotomously distributed to low and high H scores (cut off 22.35) for survival and multivariable analysis. The validation cohort (n = 69) was recruited based on the hazard ratio of CatD from ESPAC-Tplus. 5-fluorouracil-, and gemcitabine-resistant pancreatic cancer cell lines were employed for mechanistic experiments. All statistical tests were two-sided. RESULTS Median overall survival was 23.75 months and median overall survival for patients with high CatD expression was 21.09 (95% confidence interval [CI] = 17.31 to 24.80) months vs 27.20 (95% CI = 23.75 to 31.90) months for low CatD expression (χ2 LR, 1DF = 4.00; P = .04). Multivariable analysis revealed CatD expression as a predictive marker in gemcitabine-treated (z stat = 2.33; P = .02) but not in 5-fluorouracil-treated (z stat = 0.21; P = .82) patients. An independent validation cohort confirmed CatD as a negative predictive marker for survival (χ2 LR, 1DF = 6.80; P = .009) and as an independent predictive marker in gemcitabine-treated patients with a hazard ratio of 3.38 (95% CI = 1.36 to 8.38, P = .008). Overexpression of CatD was associated with a concomitant suppression of the acid sphingomyelinase, and silencing of CatD resulted in upregulation of acid sphingomyelinase with rescue of gemcitabine resistance. CONCLUSIONS Adjuvant gemcitabine is less effective in pancreatic ductal adenocarcinoma with high CatD expression, and thus CatD could serve as a marker for biomarker-driven therapy.
Collapse
Affiliation(s)
- Ujjwal M Mahajan
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Elisabetta Goni
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
| | - Enno Langhoff
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Qi Li
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
| | - Eithne Costello
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - William Greenhalf
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - Stephan Kruger
- Department of Medicine III, University Hospital, LMU-Munich, Munich, Germany
| | - Steffen Ormanns
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christopher Halloran
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - Paula Ganeh
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Felix Lämmerhirt
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
| | - Yue Zhao
- Department of General, Visceral, and Tumor Surgery, University Hospital Cologne, Cologne, Germany
| | - Georg Beyer
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Frank-Ulrich Weiss
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Christiane J Bruns
- Department of General, Visceral, and Tumor Surgery, University Hospital Cologne, Cologne, Germany
| | - Thomas Kohlmann
- Department of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan G D’Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU-Munich, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - John P Neoptolemos
- National Institute for Health Research Liverpool Pancreas Biomedical Research Centre, University of Liverpool, UK
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU-Munich, Munich, Germany
| | - Stefan Boeck
- Department of Medicine III, University Hospital, LMU-Munich, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU-Munich, Munich, Germany
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
50
|
Matsumoto G, Hashizume C, Watanabe K, Taniguchi M, Okazaki T. Deficiency of sphingomyelin synthase 1 but not sphingomyelin synthase 2 reduces bone formation due to impaired osteoblast differentiation. Mol Med 2019; 25:56. [PMID: 31847800 PMCID: PMC6918654 DOI: 10.1186/s10020-019-0123-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
Background There are two isoforms of sphingomyelin synthase (SMS): SMS1 and SMS2. SMS1 is located in the Golgi apparatus only while SMS2 is located in both the plasma membrane and the Golgi apparatus. SMS1 and SMS2 act similarly to generate sphingomyelin (SM). We have undertaken the experiments reported here on SMS and osteoblast differentiation in order to better understand the role SMS plays in skeletal development. Methods We analyzed the phenotype of a conditional knockout mouse, which was generated by mating a Sp7 promoter-driven Cre-expressing mouse with an SMS1-floxed SMS2-deficient mouse (Sp7-Cre;SMS1f/f;SMS2−/− mouse). Results When we compared Sp7-Cre;SMS1f/f;SMS2−/− mice with C57BL/6, SMS2-deficient mice (SMS1f/f;SMS2−/−) and SP7-Cre positive control mice (Sp7-Cre, Sp7-Cre;SMS1+/+;SMS2+/− and Sp7-Cre;SMS1+/+;SMS2−/−), we found that although cartilage formation is normal, Sp7-Cre;SMS1f/f;SMS2−/− mice showed reduced trabecular and cortical bone mass, had lower bone mineral density, and had a slower mineral apposition rate than control mice. Next, we have used a tamoxifen-inducible knockout system in vitro to show that SMS1 plays an important role in osteoblast differentiation. We cultured osteoblasts derived from ERT2-Cre;SMS1f/fSMS2−/− mice. We observed impaired differentiation of these cells in response to Smad1/5/8 and p38 that were induced by bone morphogenic protein 2 (BMP2). However, Erk1/2 phosphorylation was unaffected by inactivation of SMS1. Conclusions These findings provide the first genetic evidence that SMS1 plays a role in bone development by regulating osteoblast development in cooperation with BMP2 signaling. Thus, SMS1 acts as an endogenous signaling component necessary for bone formation.
Collapse
Affiliation(s)
- Goichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.
| | - Chieko Hashizume
- Department of Medicine, Division of General and Digestive Surgery, Kanazawa Medical University, Ishikawa, Japan
| | - Ken Watanabe
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan
| |
Collapse
|