1
|
Plante I, Winn LM, Vaillancourt C, Grigorova P, Parent L. Killing two birds with one stone: Pregnancy is a sensitive window for endocrine effects on both the mother and the fetus. ENVIRONMENTAL RESEARCH 2022; 205:112435. [PMID: 34843719 DOI: 10.1016/j.envres.2021.112435] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Pregnancy is a complex process requiring tremendous physiological changes in the mother in order to fulfill the needs of the growing fetus, and to give birth, expel the placenta and nurse the newborn. These physiological modifications are accompanied with psychological changes, as well as with variations in habits and behaviors. As a result, this period of life is considered as a sensitive window as impaired functional and physiological changes in the mother can have short- and long-term impacts on her health. In addition, dysregulation of the placenta and of mechanisms governing placentation have been linked to chronic diseases later-on in life for the fetus, in a concept known as the Developmental Origin of Health and Diseases (DOHaD). This concept stipulates that any change in the environment during the pre-conception and perinatal (in utero life and neonatal) period to puberty, can be "imprinted" in the organism, thereby impacting the health and risk of chronic diseases later in life. Pregnancy is a succession of events that is regulated, in large part, by hormones and growth factors. Therefore, small changes in hormonal balance can have important effects on both the mother and the developing fetus. An increasing number of studies demonstrate that exposure to endocrine disrupting compounds (EDCs) affect both the mother and the fetus giving rise to growing concerns surrounding these exposures. This review will give an overview of changes that happen during pregnancy with respect to the mother, the placenta, and the fetus, and of the current literature regarding the effects of EDCs during this specific sensitive window of exposure.
Collapse
Affiliation(s)
- Isabelle Plante
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| | - Louise M Winn
- Queen's University, School of Environmental Studies, Department of Biomedical and Molecular Sciences, Kingston, ON, Canada
| | | | - Petya Grigorova
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| | - Lise Parent
- Département Science et Technologie, Université TELUQ, Montreal, QC, Canada
| |
Collapse
|
2
|
Effect of Perinatal Dioxin Exposure Originating from Agent Orange on Gaze Behavior in 3-Year-Old Children Living in the Most Dioxin-Contaminated Areas in Vietnam. TOXICS 2022; 10:toxics10040150. [PMID: 35448411 PMCID: PMC9032459 DOI: 10.3390/toxics10040150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 11/17/2022]
Abstract
We investigated the effect of perinatal dioxin exposure indicated by dioxins in breast milk on children’s gaze behavior. We studied 142 children aged 3 years from the 2012 Bien Hoa birth cohort in a hotspot of dioxin contamination in Vietnam. Children’s faces were viewed using the eye-tracking method. Associations between gaze behavior of faces and neurodevelopmental indices and head circumference were analyzed to determine whether poor gaze behavior indicates increased autistic traits in these children. The gaze fixation duration on facial areas when viewing 10 still images of children was calculated as the gaze behavior index. Autistic behavior was assessed using the Autism Spectrum Rating Scale, and language development was evaluated by the Bayley Scales of Infant and Toddler Development, Ver. 3. The face fixation duration (%) significantly decreased as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) concentrations increased in a dose−effect manner in girls, which suggested atypical gaze behavior for watching human faces. Furthermore, these girls with atypical gaze behavior showed lower social communication scores and smaller head sizes, suggesting increased autistic traits in girls. In conclusion, our findings show sex-specific effects (girls > boys) of perinatal TCDD exposure on gaze behavior in young children.
Collapse
|
3
|
Iqbal K, Pierce SH, Kozai K, Dhakal P, Scott RL, Roby KF, Vyhlidal CA, Soares MJ. Evaluation of Placentation and the Role of the Aryl Hydrocarbon Receptor Pathway in a Rat Model of Dioxin Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117001. [PMID: 34747641 PMCID: PMC8574979 DOI: 10.1289/ehp9256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR). OBJECTIVES The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action. METHODS Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological, biochemical, and molecular analyses. RESULTS TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine-placental interface were guided by the actions of TCDD on endothelial cells. DISCUSSION We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation of the hemochorial placenta. https://doi.org/10.1289/EHP9256.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Stephen H. Pierce
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Pramod Dhakal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Regan L. Scott
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Katherine F. Roby
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, KUMC, Kansas City, Kansas, USA
| | - Carrie A. Vyhlidal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, Missouri
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Michael J. Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Obstetrics and Gynecology, KUMC, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Yao S, Lopez-Tello J, Sferruzzi-Perri AN. Developmental programming of the female reproductive system-a review. Biol Reprod 2020; 104:745-770. [PMID: 33354727 DOI: 10.1093/biolre/ioaa232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Exposures to adverse conditions in utero can lead to permanent changes in the structure and function of key physiological systems in the developing fetus, increasing the risk of disease and premature aging in later postnatal life. When considering the systems that could be affected by an adverse gestational environment, the reproductive system of developing female offspring may be particularly important, as changes have the potential to alter both reproductive capacity of the first generation, as well as health of the second generation through changes in the oocyte. The aim of this review is to examine the impact of different adverse intrauterine conditions on the reproductive system of the female offspring. It focuses on the effects of exposure to maternal undernutrition, overnutrition/obesity, hypoxia, smoking, steroid excess, endocrine-disrupting chemicals, and pollutants during gestation and draws on data from human and animal studies to illuminate underlying mechanisms. The available data indeed indicate that adverse gestational environments alter the reproductive physiology of female offspring with consequences for future reproductive capacity. These alterations are mediated via programmed changes in the hypothalamic-pituitary-gonadal axis and the structure and function of reproductive tissues, particularly the ovaries. Reproductive programming may be observed as a change in the timing of puberty onset and menopause/reproductive decline, altered menstrual/estrous cycles, polycystic ovaries, and elevated risk of reproductive tissue cancers. These reproductive outcomes can affect the fertility and fecundity of the female offspring; however, further work is needed to better define the possible impact of these programmed changes on subsequent generations.
Collapse
Affiliation(s)
- Sijia Yao
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Takeda T, Fujii M, Izumoto W, Hattori Y, Matsushita T, Yamada H, Ishii Y. Gestational dioxin exposure suppresses prolactin-stimulated nursing in lactating dam rats to impair development of postnatal offspring. Biochem Pharmacol 2020; 178:114106. [PMID: 32569627 DOI: 10.1016/j.bcp.2020.114106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
A number of epidemiological studies have implicated environmental chemicals including dioxins in the induction of negative effects on child development. To clarify the underlying mechanisms, almost all toxicologists have concentrated on effects on the offspring themselves. We examined an alternative hypothesis that gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly-toxic dioxin, targets factors related to maternal childcare to disturb offspring development. Oral administration of TCDD (1 µg/kg) to pregnant rats on gestational day 15 suppressed maternal licking behavior, a nursing behavior, and mammary gland maturation during the lactational stage, as well as the body weight and short-term memory of postnatal offspring. In support of these findings, maternal production of prolactin, a pituitary hormone essential for nursing including milk production, was decreased during the same period. Intracerebroventricular infusion of prolactin to dioxin-exposed dams restored or tended to restore many of the above defects observed both in mothers and offspring. The TCDD-dependent defects in maternal nursing behaviors can be due to a direct action on aryl hydrocarbon receptor (AHR) of lactating dams, because they did not emerge in AHR-knockout dams or control dams with TCDD-exposed offspring. Further examinations revealed that TCDD induces transforming growth factor β1 expression, which suppresses prolactin-producing cell proliferation, in a nursing period-specific manner. In agreement with this, the number of prolactin-positive cells in nursing dams was decreased by TCDD. These results provide novel evidence that gestational dioxin exposure attenuates prolactin-stimulated nursing in lactating dams to impair offspring development, and that immaturity of prolactin-producing cells can contribute to them.
Collapse
Affiliation(s)
- Tomoki Takeda
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Misaki Fujii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Waka Izumoto
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukiko Hattori
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Matsushita
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamada
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Ishii
- Laboratory of Molecular Life Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Yu K, Zhang X, Tan X, Ji M, Chen Y, Wan Z, Yu Z. Multigenerational and transgenerational effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on ovarian reserve and follicular development through AMH/AMHR2 pathway in adult female rats. Food Chem Toxicol 2020; 140:111309. [PMID: 32234510 DOI: 10.1016/j.fct.2020.111309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
2,3,7,8-Tetrachlorobenzo-p-dioxin (TCDD), one of the key endocrine disruptors, has been shown to cause reproductive and developmental disorders. Our previous studies have primarily focused on TCDD induced impairment of ovarian follicular development in female F1 rats. It is unknown whether TCDD exposure will interfere with follicular development by altering mRNA expression of anti-Müllerian hormone (AMH) and AMH receptor type II (AMHR2) in the ovary. In the present study, pregnant Sprague Dawley rats were treated with TCDD (100 or 500 ng/kg body weight) dissolved in a corn oil vehicle by gavage from gavage from gestational days (GD) 8-14, while the control group received solely corn oil. The F1 rats were mated with unexposed males for the F2 generation, while another portion of the female offspring (F2) were mated for the F3 generation. Serum AMH levels and ovarian AMH/AMHR2 mRNA expression in the adult female offspring (F1, F2 and F3 generations) were measured. Follicle count and granulosa cell apoptosis were evaluated in the F2 and F3 generations. The results showed that in the F2 generation, TCDD exposure affected the number of primordial follicles, secondary follicles, and corpora lutea. It also increased serum AMH concentration and the apoptosis rate of granulosa cells. These results might be associated with the upregulation of AMH/AMHR2 mRNA expression in the ovary. In conclusion, TCDD exposure reduced the ovarian reserve in rats and inhibited follicular development in adult female offspring, an effect that persisted for multiple generations. The altered AMH and AMHR2 mRNA expression may contribute to the observed adverse effects.
Collapse
Affiliation(s)
- Kailun Yu
- Department of Nutrition and Food Hygiene, Public Health College of Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuli Zhang
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuemei Tan
- Department of Nutrition and Food Hygiene, Public Health College of Zhengzhou University, Zhengzhou, 450001, China
| | - Mengmeng Ji
- Department of Epidemiology, Public Health College of Southeast University, Nanjing, 210009, China
| | - Yao Chen
- Department of Nutrition and Food Hygiene, Public Health College of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, Public Health College of Zhengzhou University, Zhengzhou, 450001, China.
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, Public Health College of Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Zhang X, Ji M, Tan X, Yu K, Liu X, Li N, Yu Z. Impairment of ovaries by 2,3,7,8-tetrachlorobenzo-p-dioxin (TCDD) exposure in utero associated with BMP15 and GDF9 in the female offspring rat. Toxicology 2018; 410:16-25. [PMID: 30172648 DOI: 10.1016/j.tox.2018.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
2,3,7,8-Tetrachlorobenzo-p-dioxin (TCDD) exposure in utero had been shown to affect ovarian development and functions. However, its mechanism remained unknown. In this study, to investigate the effect of maternal exposure to TCDD on ovaries, the pregnant Sprague Dawley (SD) rats were treated with TCDD (100 ng/kg or 500 ng/kg) or only vehicle and corn oil on the day 8-14 of gestation through the gavage with a stainless-steel feeding needle (once a day). The vaginal opening and estrous cycle of female offspring rats (F1) were monitored twice a day. The ovarian histology, follicle counts, real-time PCR, western blotting and DNA methylation analysis about Gdf9 and Bmp15 were carried out in F1 rats. The results showed that exposure to TCDD (especially the dose of 500 ng/kg) in utero on GD8-14 might change the ovary weight, the concentration of E2 and FSH, the estrous cycles and the numbers of primordial and secondary follicles of the offspring rats. In addition, the mRNA and protein expression of GDF9 and BMP15 was down-regulated, while the methylation patterns of Gdf9 and Bmp15 were not affected. In conclusion, maternal exposure to TCDD could affect the ovary development and functions which were possibly associated with down-regulation of mRNA and protein expression of GDF9 and BMP15. However, the down-regulation was not related to the pattern of methylation of Gdf9 and Bmp15.
Collapse
Affiliation(s)
- Xiuli Zhang
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China; The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe East Road, Zhengzhou, 450052, China
| | - Mengmeng Ji
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xuemei Tan
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Kailun Yu
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China
| | - Xiaozhuan Liu
- Henan Provincial Peoples Hospital, No. 7 of Weiwu Road, Zhengzhou, 450001, China
| | - Ning Li
- Henan Agricultural University, No. 63 of Agricultural Road, Zhengzhou, 450002, China
| | - Zengli Yu
- Public Health College of Zhengzhou University, No. 100 of Science Road, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
9
|
Buser MC, Abadin HG, Irwin JL, Pohl HR. Windows of sensitivity to toxic chemicals in the development of reproductive effects: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:553-578. [PMID: 30022686 PMCID: PMC6261274 DOI: 10.1080/09603123.2018.1496235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Development of the fetus is a complex process influenced by many factors including genetics, maternal health, and environmental exposures to toxic chemicals. Adverse developmental effects on the reproductive system have the potential to harm generations beyond those directly exposed. Here, we review the available literature in Agency for Toxic Substances and Disease Registry toxicological profiles related to reproductive-developmental effects in animals following in utero exposure to chemicals. We attempt to identify windows of sensitivity. In the discussion, we correlate the findings with human development. The endpoints noted are fertility, estrus, anogenital distance, sex ratio, spermatogenesis, and mammary gland development. We identified some windows of sensitivity; however, the results were hampered by chronic-exposure studies designed to detect effects occurring throughout developmental, including multi-generational studies. This paper demonstrates the need for more acute studies in animals aimed at understanding time periods of development that are more susceptible to chemically induced adverse effects.
Collapse
Affiliation(s)
- Melanie C Buser
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Henry G Abadin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - John L Irwin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Hana R Pohl
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| |
Collapse
|
10
|
Formosa R, Vassallo J. The Complex Biology of the Aryl Hydrocarbon Receptor and Its Role in the Pituitary Gland. Discov Oncol 2017. [PMID: 28634910 DOI: 10.1007/s12672-017-0300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor best known for its ability to mediate the effects of environmental toxins such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), polycyclic aromatic hydrocarbons (PAHs), benzene, and polychlorinated biphenyls (PCBs) through the initiation of transcription of a number of metabolically active enzymes. Therefore, the AHR has been studied mostly in the context of xenobiotic signaling. However, several studies have shown that the AHR is constitutively active and plays an important role in general cell physiology, independently of its activity as a xenobiotic receptor and in the absence of exogenous ligands. Within the pituitary, activation of the AHR by environmental toxins has been implicated in disruption of gonadal development and fertility. Studies carried out predominantly in mouse models have revealed the detrimental influence of several environmental toxins on specific cell lineages of the pituitary tissue mediated by activation of AHR and its downstream effectors. Activation of AHR during fetal development adversely affected pituitary development while adult models exposed to AHR ligands demonstrated varying degrees of pituitary dysfunction. Such dysfunction may arise as a result of direct effects on pituitary cells or indirect effects on the hypothalamic-pituitary-gonadal axis. This review offers in-depth analysis of all aspects of AHR biology, with a particular focus on its role and activity within the adenohypophysis and specifically in pituitary tumorigenesis. A novel mechanism by which the AHR may play a direct role in pituitary cell proliferation and tumor formation is postulated. This review therefore attempts to cover all aspects of the AHR's role in the pituitary tissue, from fetal development to adult physiology and the pathophysiology underlying endocrine disruption and pituitary tumorigenesis.
Collapse
Affiliation(s)
- Robert Formosa
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, MSD 2080, Msida, Malta. .,Neuroendocrine Clinic, Department of Medicine, Mater Dei Hospital, Msida, Malta.
| |
Collapse
|
11
|
Pilsner JR, Parker M, Sergeyev O, Suvorov A. Spermatogenesis disruption by dioxins: Epigenetic reprograming and windows of susceptibility. Reprod Toxicol 2017; 69:221-229. [PMID: 28286111 DOI: 10.1016/j.reprotox.2017.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/24/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023]
Abstract
Dioxins are a group of highly persistent chemicals that are generated as by-products of industrial and natural processes. Reduction in sperm counts is among the most sensitive endpoints of dioxin toxicity. The exact mechanism by which dioxins reduce sperm counts is not known. Recent data implicate the role of epididymal factors rather than disruption of spermatogenesis. Studies reviewed here demonstrate that dioxins induce the transfer of environmental conditions to the next generation via male germline following exposures during the window of epigenetic reprogramming of primordial germ cells. Increased incidence of birth defects in offspring of male veterans exposed to dioxin containing, Agent Orange, suggest that dioxins may induce epigenomic changes in male germ cells of adults during spermatogenesis. This is supported by recent animal data that show that environmental conditions can cause epigenetic dysregulation in sperm in the context of specific windows of epigenetic reprogramming during spermatogenesis.
Collapse
Affiliation(s)
- J Richard Pilsner
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St., 171 Goessmann, Amherst, MA 01003-9303, USA.
| | - Mikhail Parker
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St., 171 Goessmann, Amherst, MA 01003-9303, USA.
| | - Oleg Sergeyev
- Department of Genomics and Human Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkina St., 119991 Moscow, Russia; Chapaevsk Medical Association, 3a Meditsinskaya St., 446100 Chapaevsk, Samara Region, Russia.
| | - Alexander Suvorov
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St., 171 Goessmann, Amherst, MA 01003-9303, USA.
| |
Collapse
|
12
|
Sanabria M, Cucielo MS, Guerra MT, Dos Santos Borges C, Banzato TP, Perobelli JE, Leite GAA, Anselmo-Franci JA, De Grava Kempinas W. Sperm quality and fertility in rats after prenatal exposure to low doses of TCDD: A three-generation study. Reprod Toxicol 2016; 65:29-38. [PMID: 27352640 DOI: 10.1016/j.reprotox.2016.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/30/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022]
Abstract
Exposure to Tetrachlorodibenzo-p-dioxin (TCDD) in male rats promotes, decreased sperm concentration, alterations in motility and in sperm transit time. We evaluated the effect transgenerational of in utero exposure to low doses TCDD in the sperm quality. Pregnant rats (F0) were exposed to 0.1; 0.5 and 1.0μg of TCDD, on gestational day 15, coincides with the end of most organogenesis in the fetus. Adult male offspring (F1, F2 and F3 generation) were investigated for fertility after artificial insemination in utero. After collection of the uterus and ovaries, the numbers of corpora lutea and implants were determined. TCDD provoked alterations in sperm morphology and diminution in serum testosterone levels and sperm transit time in the cauda epididymis. The fertility significantly decreased in all the generations, at least at one dose. In conclusion, TCDD exposure decreases rat sperm quality and fertility in adult male offspring and this effects persist into the next generation.
Collapse
Affiliation(s)
- Marciana Sanabria
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil.
| | - Maira Smaniotto Cucielo
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Marina Trevizan Guerra
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Cibele Dos Santos Borges
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Thais Petrochelli Banzato
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Juliana Elaine Perobelli
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Gabriel Adan Araújo Leite
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil
| | - Janete Aparecida Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, School of Dentistry, USP-University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilma De Grava Kempinas
- Laboratory of Reproductive and Developmental Biology and Toxicology, Department of Morphology, Institute of Biosciences of Botucatu, UNESP-Univ Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
13
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1318] [Impact Index Per Article: 146.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
14
|
Kobayashi Y, Hirano T, Omotehara T, Hashimoto R, Umemura Y, Yuasa H, Masuda N, Kubota N, Minami K, Yanai S, Ishihara-Sugano M, Mantani Y, Yokoyama T, Kitagawa H, Hoshi N. Immunohistochemical analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity on the developmental dentate gyrus and hippocampal fimbria in fetal mice. J Vet Med Sci 2015; 77:1355-61. [PMID: 26096965 PMCID: PMC4667650 DOI: 10.1292/jvms.15-0238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dioxins are widespread persistent environmental contaminants with adverse impacts on humans and experimental animals. Behavioral and cognitive functions are impaired by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. TCDD exerts its toxicity via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. The hippocampus, which plays important roles in episodic memory and spatial function, is considered vulnerable to TCDD-induced neurotoxicity, because it contains the AhR. We herein investigated the effects of TCDD toxicity on hippocampal development in embryonic mice. TCDD was administered to dams at 8.5 days postcoitum with a single dose of 20, 200, 2,000 and 5,000 ng/kg body weight (groups T20, T200, T2000 and T5000, respectively), and the brains were dissected from their pups at embryonic day 18.5. Immunohistochemical analysis demonstrated that the Glial Fibrillary Acidic Protein (GFAP) immunoreactivities in the dentate gyrus (DG) were reduced in the T5000 group. Granular GFAP immunoreactivity was observed in the hippocampal fimbria, and the number of immunoreactive fimbria was significantly decreased in the T5000 group. The number of Proliferating Cell Nuclear Antigen (PCNA)-positive cells was decreased in all TCDD-exposed groups and significantly reduced in the T20, T200 and T5000 groups. Together, these results demonstrate that maternal TCDD exposure has adverse impacts on neural stem cells (NSCs), neural precursor cells (NPCs) and granular cells in the DG and disrupts the NSC maintenance and timing of differentiation in the hippocampal fimbria, which in turn interrupt neuronal development in future generations of mice.
Collapse
Affiliation(s)
- Yoshihiro Kobayashi
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dioxin-induced retardation of development through a reduction in the expression of pituitary hormones and possible involvement of an aryl hydrocarbon receptor in this defect: a comparative study using two strains of mice with different sensitivities to dioxin. Toxicol Appl Pharmacol 2014; 278:220-9. [PMID: 24793433 DOI: 10.1016/j.taap.2014.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 11/23/2022]
Abstract
We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2-20 μg/kg), all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects.
Collapse
|
16
|
Burns KA, Zorrilla LM, Hamilton KJ, Reed CE, Birnbaum LS, Korach KS. A single gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts the adult uterine response to estradiol in mice. Toxicol Sci 2013; 136:514-26. [PMID: 24052564 DOI: 10.1093/toxsci/kft208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) given as a cotreatment with estrogen exhibits antiestrogenic properties on the rodent adult uterus, but less is understood regarding hormonal responsiveness of the adult uterus from animals having been exposed to TCDD during critical periods of development. We characterized the inhibitory effects of TCDD (T) exposure at gestational day 15 (GD15), 4 weeks, and 9 weeks of age (TTT) on the adult uterus following hormone treatment. TTT-exposed mice in response to hormone treatment exhibited a blunted weight increase, had fewer uterine glands, displayed morphological anomalies, and had marked decreases in the hormonal regulation of genes involved in fluid transport (Aqp3 and Aqp5), cytoarchitectural (Dsc2 and Sprr2A), and immune (Lcn2 and Ltf) regulation. To determine if the 9-week exposure was responsible for the blunted uterine response, due to the 7- to 11-day half-life of TCDD in mice, a second set of experiments was performed to examine exposure to TCDD given at GD15, GD15 only (cross-fostered at birth), only during lactation (cross-fostered at birth), or at GD15 and 4 weeks of age. Our studies demonstrate that a single developmental TCDD exposure at GD15 is sufficient to elicit a blunted adult uterine response to estradiol and is due in part to fewer gland numbers and the reduced expression of forkhead box A2 (FoxA2), a gene involved in gland development. Together, these results provide insight regarding the critical nature of in utero exposure and the potential impact on ensuing uterine biology and reproductive health later in life.
Collapse
Affiliation(s)
- Katherine A Burns
- * Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | |
Collapse
|
17
|
Tanida T, Tasaka K, Akahoshi E, Ishihara-Sugano M, Saito M, Kawata S, Danjo M, Tokumoto J, Mantani Y, Nagahara D, Tabuchi Y, Yokoyama T, Kitagawa H, Kawata M, Hoshi N. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin transactivates aryl hydrocarbon receptor-responsive element III in the tyrosine hydroxylase immunoreactive neurons of the mouse midbrain. J Appl Toxicol 2013; 34:117-26. [DOI: 10.1002/jat.2839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Takashi Tanida
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kawaramachi Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Ken Tasaka
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Eiichi Akahoshi
- Frontier Research Laboratory, Corporate Research and Development Center; Toshiba Corporation; 1 Komukai-Toshiba cho, Saiwai Kawasaki 212-8582 Japan
| | - Mitsuko Ishihara-Sugano
- Frontier Research Laboratory, Corporate Research and Development Center; Toshiba Corporation; 1 Komukai-Toshiba cho, Saiwai Kawasaki 212-8582 Japan
| | - Michiko Saito
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Shigehisa Kawata
- Laboratory of Molecular Oncology, Graduate School of Biological Sciences; Nara Institute of Science and Technology; 8916-5 Takayama, Ikoma Nara 630-0192 Japan
| | - Megumi Danjo
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Junko Tokumoto
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Youhei Mantani
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Daichi Nagahara
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center; University of Toyama; 2630 Sugitani Toyama 930-0194 Japan
| | - Toshifumi Yokoyama
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Hiroshi Kitagawa
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology; Kyoto Prefectural University of Medicine; Kawaramachi Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science; Kobe University; 1-1 Rokkodai cho, Nada Kobe 657-8501 Japan
| |
Collapse
|
18
|
Yonemoto J, Ichiki T, Takei T, Tohyama C. Maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin and the body burden in offspring of long-evans rats. Environ Health Prev Med 2012; 10:21-32. [PMID: 21432160 DOI: 10.1265/ehpm.10.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 10/13/2004] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) results in a wide variety of developmental effects in pups at doses much lower than those causing overt toxicity in adult animals. We investigated the relationship between tissue concentrations of TCDD in dams and fetuses and developmental effects on pups. MATERIALS AND METHODS Pregnant Long-Evans rats were given TCDD at a single oral dose of 12.5, 50, 200, or 800 ng of TCDD or [(3)H]-TCDD/kg bw on gestation day (GD) 15. Dams were sacrificed on GD16 and GD21, and the tissue concentrations of TCDD were measured in dams and fetuses. Pups were sacrificed on postnatal day (PND) 49 and PND63 for males and PND70 for females, and the reproductive effects and tissue concentrations of TCDD were determined. RESULTS The sex ratio (male/female) on GD21 was significantly reduced at 50 ng TCDD/kg and at 12.5 and 50 ng TCDD/kg at birth, but not at other doses. Delayed puberty was observed in males at 200 ng TCDD/kg and in males and females at 800 ng TCDD/kg. Anogenital distance, testis weight, epididymal sperm count, sperm motility, and ejaculated sperm count were not affected. Estrous cyclicity was not different from that of the control in any treatment group. A dose-dependent decrease in weight of seminal vesicle and prostate on PND49 was observed. Prostate weight was significantly decreased at 800 ng TCDD/kg. At this dose, maternal body burden and TCDD concentration in fetuses were 290 pg TCDD/g and 52 pg TCDD/g on GD16, respectively. Reduced prostate weight is a sensitive and commonly observed endpoint so that the body burdens of dams and fetuses at the LOAEL of this endpoint could be served as the basis for establishing TDI for dioxins.
Collapse
Affiliation(s)
- Junzo Yonemoto
- Health Effects Research Team, Endocrine Disruptors & Dioxin Research Project, National Institute for Environmental Studies, 16-2 Onogawa, 805-8506, Tsukuba, Japan,
| | | | | | | |
Collapse
|
19
|
Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 2012; 33:378-455. [PMID: 22419778 PMCID: PMC3365860 DOI: 10.1210/er.2011-1050] [Citation(s) in RCA: 2012] [Impact Index Per Article: 167.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/07/2012] [Indexed: 02/08/2023]
Abstract
For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts in toxicology, in particular the dogma of "the dose makes the poison," because EDCs can have effects at low doses that are not predicted by effects at higher doses. Here, we review two major concepts in EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National Toxicology Program as those that occur in the range of human exposures or effects observed at doses below those used for traditional toxicological studies. We review the mechanistic data for low-dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature. Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship between dose and effect where the slope of the curve changes sign somewhere within the range of doses examined. We provide a detailed discussion of the mechanisms responsible for generating these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology literature. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disorders is no longer conjecture, because epidemiological studies show that environmental exposures to EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at high doses. Thus, fundamental changes in chemical testing and safety determination are needed to protect human health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Tufts University, Center for Regenerative and Developmental Biology, Department of Biology, 200 Boston Avenue, Suite 4600, Medford, Massachusetts 02155, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gray L, Ostby J, Furr J, Wolf C, Lambright C, Parks L, Veeramachaneni D, Wilson V, Price M, Hotchkiss A, Orlando E, Guillette L. Effects of environmental antiandrogens on reproductive development in experimental animals. APMIS 2011. [DOI: 10.1111/j.1600-0463.2001.tb05780.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Foster WG, Maharaj-Briceño S, Cyr DG. Dioxin-induced changes in epididymal sperm count and spermatogenesis. CIENCIA & SAUDE COLETIVA 2011; 16:2893-905. [DOI: 10.1590/s1413-81232011000600027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
A single in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gestation day 15 decreased epididymal sperm count in adult rats and thus was used to establish a tolerable daily intake for TCDD. However, several laboratories have been unable to replicate these findings. Moreover, conflicting reports of TCDD effects on daily sperm production suggest that spermatogenesis may not be as sensitive to the adverse effects of TCDD as previously thought. We performed a PubMed search using relevant search terms linking dioxin exposure with adverse effects on reproduction and spermatogenesis. Developmental exposure to TCDD is consistently linked with decreased cauda epididymal sperm counts in animal studies, although at higher dose levels than those used in some earlier studies. However, the evidence linking in utero TCDD exposure and spermatogenesis is not convincing. Animal studies provide clear evidence of an adverse effect of in utero TCDD exposure on epididymal sperm count but do not support the conclusion that spermatogenesis is adversely affected. The mechanisms underlying decreased epididymal sperm count are unknown; however, we postulate that epididymal function is the key target for the adverse effects of TCDD.
Collapse
|
22
|
Özen S, Darcan Ş. Effects of environmental endocrine disruptors on pubertal development. J Clin Res Pediatr Endocrinol 2011; 3:1-6. [PMID: 21448326 PMCID: PMC3065309 DOI: 10.4274/jcrpe.v3i1.01] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/06/2011] [Indexed: 12/20/2022] Open
Abstract
The onset and course of puberty are under the control of the neuroendocrine system. Factors affecting the timing and regulation of the functions of this system may alter the onset and course of puberty. Several environmental endocrine disruptors (EDs) with significant influences on the normal course of puberty have been identified. Numerous animal and human studies concerning EDs have been conducted showing that these substances may extensively affect human health; nevertheless, there are still several issues that remain to be clarified. In this paper, the available evidence from animal and human studies on the effects of environmental EDs with the potential to cause precocious or delayed puberty was reviewed.
Collapse
Affiliation(s)
- Samim Özen
- Pediatric Endocrinology Unit, Mersin Children Hospital, Mersin, Turkey.
| | - Şükran Darcan
- Department of Pediatric Endocrinology and Metabolism, Ege University School of Medicine, Izmir, Turkey
| |
Collapse
|
23
|
Rider CV, Furr JR, Wilson VS, Gray LE. Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common target tissues via diverse mechanisms of toxicity. ACTA ACUST UNITED AC 2010; 33:443-62. [PMID: 20487044 DOI: 10.1111/j.1365-2605.2009.01049.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although risk assessments are typically conducted on a chemical-by-chemical basis, the 1996 Food Quality Protection Act required the US Environmental Protection Agency to consider cumulative risk of chemicals that act via a common mechanism of toxicity. To this end, we are conducting studies with mixtures of chemicals to elucidate mechanisms of joint action at the systemic level with the goal of providing a framework for assessing the cumulative effects of reproductive toxicants. Previous mixture studies conducted with antiandrogenic chemicals are reviewed briefly and two new studies are described. In all binary mixture studies, rats were dosed during pregnancy with chemicals, singly or in pairs, at dosage levels equivalent to approximately one-half of the ED50 for hypospadias or epididymal agenesis. The binary mixtures included androgen receptor (AR) antagonists (vinclozolin plus procymidone), phthalate esters [di(n-butyl) phthalate (DBP) plus benzyl n-butyl phthalate (BBP) and diethyl hexyl phthalate (DEHP) plus DBP], a phthalate ester plus an AR antagonist (DBP plus procymidone), a mixed mechanism androgen signalling disruptor (linuron) plus BBP, and two chemicals which disrupt epididymal differentiation through entirely different toxicity pathways: DBP (AR pathway) plus 2,3,7,8 TCDD (AhR pathway). We also conducted multi-component mixture studies combining several 'antiandrogens'. In the first study, seven chemicals (four pesticides and three phthalates) that elicit antiandrogenic effects at two different sites in the androgen signalling pathway (i.e. AR antagonist or inhibition of androgen synthesis) were combined. In the second study, three additional phthalates were added to make a 10 chemical mixture. In both the binary mixture studies and the multi-component mixture studies, chemicals that targeted male reproductive tract development displayed cumulative effects that exceeded predictions based on a response-addition model and most often were in accordance with predictions based on dose-addition models. In summary, our results indicate that compounds that act by disparate mechanisms of toxicity to disrupt the dynamic interactions among the interconnected signalling pathways in differentiating tissues produce cumulative dose-additive effects, regardless of the mechanism or mode of action of the individual mixture component.
Collapse
Affiliation(s)
- C V Rider
- MD-72, Reproductive Toxicology Branch, T A Division, NHEERL, ORD, US Environmental Protection Agency, RTP, NC 27711, USA
| | | | | | | |
Collapse
|
24
|
Greytak SR, Tarrant AM, Nacci D, Hahn ME, Callard GV. Estrogen responses in killifish (Fundulus heteroclitus) from polluted and unpolluted environments are site- and gene-specific. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:291-299. [PMID: 20570371 PMCID: PMC2907899 DOI: 10.1016/j.aquatox.2010.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 04/30/2010] [Accepted: 05/12/2010] [Indexed: 05/26/2023]
Abstract
Epidemiological, ecological, and laboratory-based studies support the hypothesis that endocrine disrupting chemicals (EDCs) in the environment are responsible for developmental and reproductive abnormalities. We have previously described a killifish population resident in a highly polluted Superfund site (New Bedford Harbor, NBH) that shows evidence of exposure to an estrogenic environment and endocrine disruption. Here, we compare NBH with a local reference population (Scorton Creek, SC) for developmental patterns and direct effects of exogenous estradiol on the estrogenic markers, brain cytochrome P450 aromatase (CYP19A2 or AroB), hepatic vitellogenin (Vtg), and hepatic estrogen receptor alpha (ER alpha). In contrast to our previous observation of elevated ER alpha in NBH embryos, developmental levels of AroB and Vtg mRNAs did not differ between the two sites, demonstrating that not all estrogen-responsive genes are upregulated in NBH embryos. A dose-response experiment showed that NBH larvae are less responsive (lower maximum induction, as measured by ER alpha) and less sensitive (higher EC(50) for induction, as measured by AroB) to estradiol than SC larvae, changes that would be adaptive in an estrogenic environment. In contrast, induction of Vtg mRNA is similar in the two populations, indicating that the adaptive mechanism is target gene-specific. Based on the lower basal levels of ER alpha mRNA in several tissues from adult NBH fish vs SC fish (Greytak and Callard, 2007), we predicted estrogen hyporesponsiveness; however, induction of ER alpha by estradiol exposure in reproductively inactive males did not differ between the two sites. Moreover, AroB was more responsive and Vtg induction was greater (2d) or similar (5d) in NBH as compared to SC males. Worth noting is the high inter-individual variability in estrogen responses of gene targets, especially in NBH killifish, which may indicate evolving preadaptive or adaptive mechanisms. In conclusion, although multi-generational exposure to a highly polluted environment is associated with changes in basal levels of ER alpha mRNA, this is not a simple predictor of estrogen responsiveness. We hypothesize that adaptation of killifish to the estrogenic and polluted environment may be occurring through diverse mechanisms that are gene-, tissue type- and life-stage-specific.
Collapse
Affiliation(s)
| | - Ann M. Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA
| | - Diane Nacci
- Atlantic Ecology Division, US Environmental Protection Agency, Narragansett RI 02879
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA
| | | |
Collapse
|
25
|
Foster WG, Maharaj-Briceño S, Cyr DG. Dioxin-induced changes in epididymal sperm count and spermatogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:458-64. [PMID: 20368131 PMCID: PMC2854720 DOI: 10.1289/ehp.0901084] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/17/2009] [Indexed: 05/24/2023]
Abstract
BACKGROUND A single in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gestation day 15 decreased epididymal sperm count in adult rats and thus was used to establish a tolerable daily intake for TCDD. However, several laboratories have been unable to replicate these findings. Moreover, conflicting reports of TCDD effects on daily sperm production suggest that spermatogenesis may not be as sensitive to the adverse effects of TCDD as previously thought. DATA SOURCES We performed a PubMed search using relevant search terms linking dioxin exposure with adverse effects on reproduction and spermatogenesis. DATA SYNTHESIS Developmental exposure to TCDD is consistently linked with decreased cauda epididymal sperm counts in animal studies, although at higher dose levels than those used in some earlier studies. However, the evidence linking in utero TCDD exposure and spermatogenesis is not convincing. CONCLUSIONS Animal studies provide clear evidence of an adverse effect of in utero TCDD exposure on epididymal sperm count but do not support the conclusion that spermatogenesis is adversely affected. The mechanisms underlying decreased epididymal sperm count are unknown; however, we postulate that epididymal function is the key target for the adverse effects of TCDD.
Collapse
Affiliation(s)
- Warren G Foster
- Reproductive Biology Division, Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
26
|
In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a reduction in epididymal and ejaculated sperm number in rhesus monkeys. Reprod Toxicol 2009; 28:495-502. [DOI: 10.1016/j.reprotox.2009.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/14/2009] [Accepted: 08/14/2009] [Indexed: 11/23/2022]
|
27
|
Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action: Mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol Lett 2009; 189:40-7. [DOI: 10.1016/j.toxlet.2009.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 11/20/2022]
|
28
|
In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) affects bone tissue in rhesus monkeys. Toxicology 2008; 253:147-52. [DOI: 10.1016/j.tox.2008.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/03/2008] [Accepted: 09/04/2008] [Indexed: 01/01/2023]
|
29
|
Hodgson S, Thomas L, Fattore E, Lind PM, Alfven T, Hellström L, Håkansson H, Carubelli G, Fanelli R, Jarup L. Bone mineral density changes in relation to environmental PCB exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1162-6. [PMID: 18795157 PMCID: PMC2535616 DOI: 10.1289/ehp.11107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 05/12/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bone toxicity has been linked to organochlorine exposure following a few notable poisoning incidents, but epidemiologic studies in populations with environmental organochlorine exposure have yielded inconsistent results. OBJECTIVES The aim of this study was to investigate whether organochlorine exposure was associated with bone mineral density (BMD) in a population 60-81 years of age (154 males, 167 females) living near the Baltic coast, close to a river contaminated by polychlorinated biphenyls (PCBs). METHODS We measured forearm BMD in participants using dual energy X-ray absorptiometry; and we assessed low BMD using age- and sex-standardized Z-scores. We analyzed blood samples for five dioxin-like PCBs, the three most abundant non-dioxin-like PCBs, and p,p'-dichloro-phenyldichloroethylene (p,p'-DDE). RESULTS In males, dioxin-like chlorobiphenyl (CB)-118 was negatively associated with BMD; the odds ratio for low BMD (Z-score less than -1) was 1.06 (95% confidence interval, 1.01-1.12) per 10 pg/mL CB-118. The sum of the three most abundant non-dioxin-like PCBs was positively associated with BMD, but not with a decreased risk of low BMD. In females, CB-118 was positively associated with BMD, but this congener did not influence the risk of low BMD in women. CONCLUSIONS Environmental organochlorine exposures experienced by this population sample since the 1930s in Sweden may have been sufficient to result in sex-specific changes in BMD.
Collapse
Affiliation(s)
- Susan Hodgson
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hotchkiss AK, Rider CV, Blystone CR, Wilson VS, Hartig PC, Ankley GT, Foster PM, Gray CL, Gray LE. Fifteen years after "Wingspread"--environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go. Toxicol Sci 2008; 105:235-59. [PMID: 18281716 DOI: 10.1093/toxsci/kfn030] [Citation(s) in RCA: 328] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In 1991, a group of expert scientists at a Wingspread work session on endocrine-disrupting chemicals (EDCs) concluded that "Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and humans. Endocrine disruption can be profound because of the crucial role hormones play in controlling development." Since that time, there have been numerous documented examples of adverse effects of EDCs in invertebrates, fish, wildlife, domestic animals, and humans. Hormonal systems can be disrupted by numerous different anthropogenic chemicals including antiandrogens, androgens, estrogens, AhR agonists, inhibitors of steroid hormone synthesis, antithyroid substances, and retinoid agonists. In addition, pathways and targets for endocrine disruption extend beyond the traditional estrogen/androgen/thyroid receptor-mediated reproductive and developmental systems. For example, scientists have expressed concern about the potential role of EDCs in increasing trends in early puberty in girls, obesity and type II diabetes in the United States and other populations. New concerns include complex endocrine alterations induced by mixtures of chemicals, an issue broadened due to the growing awareness that EDCs present in the environment include a variety of potent human and veterinary pharmaceutical products, personal care products, nutraceuticals and phytosterols. In this review we (1) address what have we learned about the effects of EDCs on fish, wildlife, and human health, (2) discuss representative animal studies on (anti)androgens, estrogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin-like chemicals, and (3) evaluate regulatory proposals being considered for screening and testing these chemicals.
Collapse
Affiliation(s)
- Andrew K Hotchkiss
- USEPA/NCSU Cooperative Training agreement (CT826512010), Raleigh, North Carolina 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Buck Louis GM, Gray LE, Marcus M, Ojeda SR, Pescovitz OH, Witchel SF, Sippell W, Abbott DH, Soto A, Tyl RW, Bourguignon JP, Skakkebaek NE, Swan SH, Golub MS, Wabitsch M, Toppari J, Euling SY. Environmental factors and puberty timing: expert panel research needs. Pediatrics 2008; 121 Suppl 3:S192-207. [PMID: 18245512 DOI: 10.1542/peds.1813e] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Serono Symposia International convened an expert panel to review the impact of environmental influences on the regulation of pubertal onset and progression while identifying critical data gaps and future research priorities. An expert panel reviewed the literature on endocrine-disrupting chemicals, body size, and puberty. The panel concluded that available experimental animal and human data support a possible role of endocrine-disrupting chemicals and body size in relation to alterations in pubertal onset and progression in boys and girls. Critical data gaps prioritized for future research initiatives include (1) etiologic research that focus on environmentally relevant levels of endocrine-disrupting chemicals and body size in relation to normal puberty as well as its variants, (2) exposure assessment of relevant endocrine-disrupting chemicals during critical windows of human development, and (3) basic research to identify the primary signal(s) for the onset of gonadotropin-releasing hormone-dependent/central puberty and gonadotropin-releasing hormone-independent/peripheral puberty. Prospective studies of couples who are planning pregnancies or pregnant women are needed to capture the continuum of exposures at critical windows while assessing a spectrum of pubertal markers as outcomes. Coupled with comparative species studies, such research may provide insight regarding the causal ordering of events that underlie pubertal onset and progression and their role in the pathway of adult-onset disease.
Collapse
Affiliation(s)
- Germaine M Buck Louis
- Epidemiology Branch, Division of Epidemiology, Statistics and Prevention Research, National Institute of Child Health and Human Development, 6100 Executive Blvd, Room 7B03, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bell DR, Clode S, Fan MQ, Fernandes A, Foster PMD, Jiang T, Loizou G, MacNicoll A, Miller BG, Rose M, Tran L, White S. Toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in the Developing Male Wistar(Han) Rat. I: No Decrease in Epididymal Sperm Count after a Single Acute Dose. Toxicol Sci 2007; 99:214-23. [PMID: 17545212 DOI: 10.1093/toxsci/kfm140] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been reported that fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes defects in the male reproductive system of the rat. We set out to replicate and extend these effects using a robust experimental design. Groups of 75 (control vehicle) or 55 (50, 200, or 1000 ng of TCDD/kg bodyweight) female Wistar(Han) rats were exposed to TCDD on gestational day (GD)15, then allowed to litter. The high-dose group dams showed no sustained weight loss compared to control, but four animals had total litter loss. Pups in the high-dose group showed reduced body weight up till day 21, and pups in the medium dose group showed reduced body weight in the first week postpartum. Balano-preputial separation was significantly delayed in the high-dose group male offspring. There were no significant effects of treatment when the offspring were subjected to a functional observational battery or mated with females to assess reproductive capability. Twenty-five males per group were killed on postnatal day (PND) 70, and approximately 60 animals per group (approximately 30 for the high-dose group) on PND120 to assess seminology and other end points. At PND120, the two highest dose groups showed a statistically significant elevation of sperm counts, compared to control; however, this effect was small (approximately 30%), within the normal range of sperm counts for this strain of rat, was not reflected in testicular spermatid counts nor PND70 data, and is therefore postulated to have no biological significance. Although there was an increase in the proportion of abnormal sperm at PND70, seminology parameters were otherwise unremarkable. Testis weights in the high-dose group were slightly decreased at PND70 and 120, and at PND120, brain weights were decreased in the high-dose group, liver to body weight ratios were increased for all three dose groups, with an increase in inflammatory cell foci in the epididymis in the high-dose group. These data show that TCDD is a potent developmental toxin after exposure of the developing fetus but that acute developmental exposure to TCDD on GD15 caused no decrease in sperm counts.
Collapse
Affiliation(s)
- David R Bell
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bell DR, Clode S, Fan MQ, Fernandes A, Foster PMD, Jiang T, Loizou G, MacNicoll A, Miller BG, Rose M, Tran L, White S. Toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in the Developing Male Wistar(Han) Rat. II: Chronic Dosing Causes Developmental Delay. Toxicol Sci 2007; 99:224-33. [PMID: 17545211 DOI: 10.1093/toxsci/kfm141] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have investigated whether fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes defects in the male reproductive system of the rat using chronically exposed rats to ensure continuous exposure of the fetus. Five- to six-week-old rats were exposed to control diet, or diet containing TCDD, to attain an average dose of 2.4, 8, and 46 ng TCDD/kg/day for 12 weeks, whereupon the rats were mated and allowed to litter; rats were switched to control diet after parturition. Male offsprings were allowed to develop until kills on PND70 (25 per group) or PND120 (all remaining animals). Offspring from the high-dose group showed an increase in total litter loss, and the number of animals alive on postnatal day (PND)4 in the high-dose group was approximately 26% less than control. The high and medium dose offsprings showed decreased weights at various ages. Balano-preputial separation (BPS) was significantly delayed in all three dose groups compared to control. There were no significant effects of maternal treatment when the offsprings were subjected to a functional observational battery or learning tests, with the exception that the high-dose group showed a deficit in motor activity. Twenty rats per group were mated to females, and there were no significant effects of maternal treatment on the fertility of these rats or on the F1 or F2 sex ratio. Sperm parameters at PND70 and 120 showed no significant effect of maternal treatment, with the exception that there was an increase in the proportion of abnormal sperm in the high-dose group at PND70; this is associated with the developmental delay in puberty in this dose group. There were no remarkable findings of maternal treatment on organ weights, with the exception that testis weights were reduced by approximately 10% at PND70 (but not PND120), and although the experiment was sufficiently powered to detect small changes, ventral prostate weight was not reduced. There were no significant effects of maternal treatment upon histopathological comparison of high-dose and control group organs. These data confirm that developmental exposure to TCDD shows no potent effect on adult sperm parameters or accessory sexual organs, but show that delay in BPS occurs after exposure to low doses of TCDD, and this is dependent upon whether TCDD is administered acutely or chronically.
Collapse
Affiliation(s)
- David R Bell
- School of Biology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nestler D, Risch M, Fischer B, Pocar P. Regulation of aryl hydrocarbon receptor activity in porcine cumulus–oocyte complexes in physiological and toxicological conditions: the role of follicular fluid. Reproduction 2007; 133:887-97. [PMID: 17616719 DOI: 10.1530/rep-06-0246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arylhydrocarbon receptor (AhR) mediates the adverse effects of dioxin-like compounds. However, it has also been reported that the AhR may exert a role in ovarian physiology. In the present study, porcine cumulus–oocyte complexes (COCs) were maturedin vitroin the presence of 10% follicular fluid. Expression of AhR and its partner, AhR nuclear translocator occurs in immature COCs. Afterin vitromaturation (IVM), an up-regulation of AhR and cytochrome P450 1A1 (CYP1A1; the main AhR-target gene) was observed. To explore the role of the AhR during IVM, we exposed the COCs to 50 μM β-napthoflavone (βNF). The treatment induced a marked up-regulation of CYP1A1 mRNA, indicating both constitutive and inducible AhR activity. However, in contrast to what was observed in other cell types, no sign of toxicity was observed in COCs. To investigate if components of porcine follicular fluid may exert a protective role against AhR ligands, we exposed porcine COCs to βNF, in the absence of follicular fluid. In these conditions, a marked decrease in the percentage of matured oocytes, concomitant with an increase in oocyte degeneration, was observed. Furthermore, βNF increased apoptosis in cumulus cells in the absence of follicular fluid, whereas βNF has no effects when COCs were treated in the presence of porcine follicular fluid (pFF). In conclusion, these results suggest the presence of unknown endogenous AhR-ligand(s) during porcine IVM and that a dysregulation of this mechanism may result in ovotoxicity by inducing apoptosis in cumulus cells. However, this phenomenon is interrupted by the presence of follicular fluid, indicating a putative protective role for follicular fluid components against exogenous insults.
Collapse
Affiliation(s)
- Daniela Nestler
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University, Halle (Saale), Germany
| | | | | | | |
Collapse
|
36
|
Laessig SA, Auger AP, McCarthy MM, Silbergeld EK. Effects of prenatal chlordecone on sexually differentiated behavior in adult rats. Neurotoxicol Teratol 2007; 29:255-63. [PMID: 17169529 DOI: 10.1016/j.ntt.2006.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 11/23/2022]
Abstract
In rodents, exposure to estrogens during early development masculinizes the structure and function of the brain. The effects of early exposure to estrogens or estrogenic compounds can be evaluated by neurobehavioral testing after puberty. In this study, the effect of developmental exposure to the chlorinated pesticide, chlordecone (CD) on sexually differentiated behaviors in adults was investigated because CD binds to estrogen receptors and causes estrogenic effects in the reproductive tract of humans and rodents at relatively high doses. Pregnant Sprague-Dawley rats were exposed to 5 mg/kg CD by intraperitoneal injection on gestation day 16 (GD 16). Offspring were gonadectomized on postnatal day 50 (PN 50) to remove the effects of circulating hormones and were sequentially tested for sex-typic spontaneous behaviors in an open field and elevated plus maze, and for male and female mating behavior following the appropriate steroid regimen. Female rats exposed in utero to CD showed an increased ratio of inner to total crossings in the open field and significantly increased lordosis and male mounting as compared to female control rats. Male rats exposed in utero to CD showed significantly increased lordosis as compared to male control rats and no change in male mating behaviors. Permanent changes in adult behavior were consistent with both estrogenic and anti-estrogenic actions following developmental exposure to CD at the dose tested.
Collapse
Affiliation(s)
- Susan A Laessig
- Program in Toxicology, University of Maryland Medical System, Baltimore, MD 21201 USA.
| | | | | | | |
Collapse
|
37
|
Sakurada Y, Shirota M, Mukai M, Inoue K, Akahori F, Watanabe G, Taya K, Shirota K. Effects of Vertically Transferred 3,3',4,4',5-Pentachlorobiphenyl on Gene Expression in the Ovaries of Immature Sprague-Dawley Rats. J Reprod Dev 2007; 53:937-43. [PMID: 17420616 DOI: 10.1262/jrd.18117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that 3,3',4,4',5-pentachlorobiphenyl (PCB-126) vertically transferred from dams potentially exerts a direct effect on the ovaries of offspring and adversely affects female puberty. To investigate its toxicological targets in ovarian tissues, mRNAs encoding representative peptides that regulate follicular development in granulosa cells, theca cells, and oocytes were quantified using ovaries collected on postnatal days (PND) 5, 15, and 24 from the offspring of dams administered oral doses of 0, 1 or 3 microg/kg PCB-126 starting 2 weeks prior to mating and continuing until 20 days after delivery. Quantification using the real-time RT-PCR method revealed that PCB-126 lowered the amounts of mRNAs that encoded the inhibin alpha- and inhibin/activin beta A-subunits from PND 15 onwards; the amounts of mRNAs for inhibin/activin beta B-subunit, follicle-stimulating hormone (FSH) receptor, and aromatase on PND 15; and the amounts of luteinizing hormone receptor mRNA on PND 24 compared with those of the age-matched controls. In contrast, no differences were noted for mRNAs encoding c-kit, growth differentiation factor-9, bone morphogenetic protein-15, or kit ligand for any of the age groups examined. The serum FSH level on PND 24 was higher than that in the control. Since the earliest effects on the mRNAs in the rat ovaries were observed in those expressed in the granulosa cells of the growing follicles after the antral follicles had developed, molecules in granulosa cells but not in oocytes during the early stages of the antral follicles might be the primary targets of vertically transferred PCB-126.
Collapse
Affiliation(s)
- Yosuke Sakurada
- Research Institute of Biosciences and High-Tech Research Center, Azabu University, Sagamihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kransler KM, McGarrigle BP, Olson JR. Comparative developmental toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the hamster, rat and guinea pig. Toxicology 2006; 229:214-25. [PMID: 17126467 DOI: 10.1016/j.tox.2006.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/08/2006] [Accepted: 10/25/2006] [Indexed: 11/22/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant capable of causing a wide variety of adverse health effects including teratogenesis and altered development. The objective of this study was to compare the developmental toxicity of TCDD in the hamster, rat and guinea pig, which in mature animals exhibit a relatively low, medium and high sensitivity to TCDD, respectively. A single oral dose of TCDD was administered to pregnant rats (0, 1.5, 3.0, 6.0 or 18.0microg/kg) on gestation day 10, pregnant hamsters (0, 1.5, 3.0, 6.0 or 18.0microg/kg) on gestation day 9 and pregnant guinea pigs (0, 0.15 or 1.5microg/kg) on gestation day 14 with fetal analysis on gestation day 20, 15 and 56, respectively. The developmental toxicity of TCDD in the three species included increased fetal mortality, alterations to fetal body weight, body length, organ weight and significant changes to the fetal white blood cell differential counts. Additionally, teratogenic responses were observed in the hamster and rat consisting of cleft palate, kidney congestion, hydronephrosis and intestinal hemorrhaging. Furthermore, the results from this study demonstrate that despite the up to 5000-fold interspecies variability to the acute lethal potency of TCDD observed in mature guinea pigs, rats and hamsters, the developing fetus is uniquely vulnerable to gestational TCDD exposure and displays approximately a 10-fold variability in fetal lethal potency in these species. Together, these results will assist efforts to reduce the uncertainty in the risk assessment for TCDD in sensitive populations, such as the developing embryo and fetus.
Collapse
Affiliation(s)
- Kevin M Kransler
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
39
|
Larsen JC. Risk assessments of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in food. Mol Nutr Food Res 2006; 50:885-96. [PMID: 17009211 DOI: 10.1002/mnfr.200500247] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and dioxin-like polychlorinated biphenyls (dioxin-like PCB) are ubiquitous in food of animal origin and accumulate in fatty tissues of animals and humans. The most toxic congener is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The toxic responses include dermal toxicity, immunotoxicity, carcinogenicity, and reproductive and developmental toxicity. Toxic equivalency factors have been established for the other PCDD, PCDF and dioxin-like PCB relative to TCDD, and the combined toxicity of a sample can be expressed as toxic equivalent (WHO-TEQ). The EC Scientific Committee for Food evaluated these compounds in 2001. The assessment used the most sensitive adverse toxicological end-points of TCDD in experimental animals. These were developmental and reproductive effects in the male offspring of rats administered TCDD during pregnancy. Because of the large difference between rats and humans in the biological half-life of TCDD, the assessment used a body burden approach to compare across species and derived a tolerable weekly intake of 14 pg TCDD/kg of body weight (bw), which was extended to include all the 2,3,7,8-substituted PCDD and PCDF, and the dioxin-like PCB, and expressed as a group tolerable weekly intake of 14 pg WHO-TEQ/kg bw. The FAO/WHO Joint Expert Committee on Food Additives (JECFA) performed a similar assessment whereas the US Environmental Protection Agency (US EPA) has paid more attention to human data on carcinogenicity.
Collapse
|
40
|
Shirota M, Kaneko T, Okuyama M, Sakurada Y, Shirota K, Matsuki Y. Internal dose-effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in gonadotropin-primed weanling rat model. Arch Toxicol 2006; 81:261-9. [PMID: 17019562 DOI: 10.1007/s00204-006-0146-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
Single sc injection of 5 IU equine chorionic gonadotropin (eCG) induces ovulation in weanling female rats 3 days later. It has been shown that treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 24 h before eCG injection reduces eCG-stimulated ovarian hypertrophy and inhibits ovulation. The present study intended to compare internal dose-effects of TCDD between these endpoints and representative endpoints for TCDD toxicity, such as weights of the liver and thymus, in weanling female rats given orally 0, 1, 4 or 16 microg/kg TCDD 24 h before eCG injection on postnatal day 25. Measurement of plasma TCDD concentrations by ELISA at 6, 72 and 96 h after TCDD revealed that significant levels of TCDD were maintained in systemic circulation until 96 h (on the day of induced ovulation) with the highest level at 6 h after TCDD treatment. Ovarian TCDD concentrations varied similarly and tended to be higher than those in the thymus at all time points, whereas hepatic concentrations of TCDD were the highest among the tissues. Although > or = 4 microg/kg TCDD affected the weights of the thymus and liver, no differences were observed in ovarian weights at any time point or in ovulation between corn oil-treated and TCDD-treated groups. Furthermore, ovarian levels of representative mRNAs in follicles were not affected by TCDD treatment. Since TCDD increased the amount of cytochrome P450 1A1 mRNA in the ovary, the administered TCDD stimulated the aryl hydrocarbon receptor-signaling pathway. From these results, we concluded that thymus weights of weanling female rats responded to TCDD at a lower internal dose as compared with that ovarian hypertrophy and follicular growth from early antral stage to ovulation would respond to.
Collapse
Affiliation(s)
- Mariko Shirota
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano-shi, Kanagawa 257-8523, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Fujita H, Samejima H, Kitagawa N, Mitsuhashi T, Washio T, Yonemoto J, Tomita M, Takahashi T, Kosaki K. Genome-wide screening of dioxin-responsive genes in fetal brain: bioinformatic and experimental approaches. Congenit Anom (Kyoto) 2006; 46:135-43. [PMID: 16922920 DOI: 10.1111/j.1741-4520.2006.00116.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many of the effects of dioxins, which are potent environmental pollutants and teratogens, are mediated through the aryl hydrocarbon receptor, also known as the dioxin receptor. The purpose of the present study was to characterize dioxin-responsive genes in a comprehensive manner using two complementary approaches: bioinformatic analysis and microarray analysis. First, we characterized the overall distribution of the cis-regulatory element for the dioxin-responsive element sequence (DRE) 'gcgtg' within putative promoter regions. We assembled the upstream sequences 10 kb from the transcription start site and evaluated their location and frequency in the human and mouse genomes. Second, we characterized the expression profile of mouse embryonic day 12 fetal brain exposed to 2,3,7,8-tetrarchlorodibenzo-p-dioxin. The distributions of 26,680 DREs among 2,843 human genes and 98,711 DREs among 18,541 mouse genes were examined. In both species, the DREs tended to be located close to the transcription start site. Forty genes exhibited significant induction or repression following dioxin exposure in fetal mice. The set of genes exhibited a strong functional coherence, with statistically significant enrichment in organogenesis and the DNA-dependent regulation of transcription, according to Gene Ontology annotations. In both humans and mice, DREs were preferentially distributed close to transcription start sites. Evolutionary conservation of this unique DRE distribution pattern suggests that DREs may be involved in transcriptional regulation. In mice, prenatal dioxin exposure altered the expression of 10 transcription factors, many of which have been documented to play a role in organogenesis. These genes may represent potential mediators of dioxin's effects in fetal tissues.
Collapse
Affiliation(s)
- Hideki Fujita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Petersen SL, Krishnan S, Hudgens ED. The aryl hydrocarbon receptor pathway and sexual differentiation of neuroendocrine functions. Endocrinology 2006; 147:S33-42. [PMID: 16690800 DOI: 10.1210/en.2005-1157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, much of the research on health effects of environmental pollutants focused on ascertaining whether compounds were carcinogenic. More recent findings show that environmental contaminants also exert insidious effects by disrupting hormone action. Of particular concern are findings that developmental exposure to dioxins, chemicals that act through the aryl hydrocarbon receptor pathway, permanently alters sexually differentiated neural functions in animal models. In this review, we focus on mechanisms through which dioxins disrupt neuroendocrine development as exemplified by effects on a brain region critical for ovulation in rodents. We also provide evidence that dysregulation of GABAergic neural development may be a general mechanism underlying a broad spectrum of effects seen after perinatal dioxin exposure.
Collapse
Affiliation(s)
- Sandra L Petersen
- Department of Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003 USA.
| | | | | |
Collapse
|
43
|
Charnley G, Kimbrough RD. Overview of exposure, toxicity, and risks to children from current levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds in the USA. Food Chem Toxicol 2006; 44:601-15. [PMID: 16176855 DOI: 10.1016/j.fct.2005.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 08/02/2005] [Accepted: 08/04/2005] [Indexed: 11/30/2022]
Abstract
Studies of children indicate that exposure of the general population to low levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) does not result in any clinical evidence of disease, although accidental exposure to high levels either before or after birth have led to a number of developmental deficits. Breast-fed infants have higher exposures than formula-fed infants, but studies consistently find that breast-fed infants perform better on developmental neurologic tests than their formula-fed counterparts, supporting the well-recognized benefits of breast feeding. Children receive higher exposures to PCDD/Fs from food than adults on a body-weight basis but those exposures are below the World Health Organization's tolerable daily intake. Laboratory rodents appear to be at least an order of magnitude more sensitive than humans to the aryl hydrocarbon receptor-mediated effects of these substances, which makes them poor surrogates for predicting quantitative risks but makes them good models for establishing safe levels of human exposure by organizations mandated to protect public health. Any exposure limit for PCDD/Fs based on developmental toxicity in sensitive laboratory animals can be expected to be especially protective of human health, including the health of infants and children. Because body burdens and environmental levels continue to decline, it is unlikely that children alive today in the USA will experience exposures to PCDD/Fs that are injurious to their health.
Collapse
Affiliation(s)
- Gail Charnley
- HealthRisk Strategies, 222 11th Street NE, Washington, DC 20002, USA.
| | | |
Collapse
|
44
|
Miettinen HM, Sorvari R, Alaluusua S, Murtomaa M, Tuukkanen J, Viluksela M. The Effect of Perinatal TCDD Exposure on Caries Susceptibility in Rats. Toxicol Sci 2006; 91:568-75. [PMID: 16543294 DOI: 10.1093/toxsci/kfj158] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the model compound of polychlorinated dibenzo-p-dioxins and furans, is a potent toxicant with the ability to hamper development. Accidental exposure to TCDD has been linked with various developmental dental aberrations in humans, and experimentally it has been shown that TCDD causes, among other defects, hypomineralization of dental hard tissues in rodents. Here, we studied the effect of very low perinatal TCDD exposure on dental caries susceptibility and mineral composition of tooth enamel in rats. Pregnant line C rats (rat line developed in our laboratory) were dosed 0.03-1.0 microg/kg TCDD on gestation day 15 and allowed to give birth and nurse until weaning on postnatal day 21. The offspring were challenged with cariogenic treatment including sugar-rich diet and three inoculations with Streptococcus mutans. Control groups involved animals with or without cariogenic challenge or TCDD treatment. The number of caries lesions in left lower molars was determined by Schiff's staining after 8 weeks of weaning. TCDD treatment increased cariogenic lesions in the enamel at the lowest maternal dose used, 0.03 microg/kg, and at the highest maternal dose, 1 microg/kg, the lesions extended through the enamel to dentin more frequently. Changes in mineral composition measured by electron probe microanalyzer, scanning electron microscopy, and energy-dispersive spectrometry could not explain the increased caries susceptibility. In conclusion, perinatal TCDD exposure can render rat molars more susceptible to caries.
Collapse
Affiliation(s)
- Hanna M Miettinen
- Laboratory of Toxicology, Department of Environmental Health, National Public Health Institute, Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
45
|
Paustenbach DJ, Fehling K, Scott P, Harris M, Kerger BD. Identifying soil cleanup criteria for dioxins in urban residential soils: how have 20 years of research and risk assessment experience affected the analysis? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2006; 9:87-145. [PMID: 16613806 DOI: 10.1080/10937400500538482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This article reviews the scientific evidence and methodologies that have been used to assess the risks posed by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and presents a probabilistic analysis for identifying virtually safe concentrations of TCDD toxicity equivalents (TEQ) in residential soils. Updated data distributions that consider state-of-the-science cancer and noncancer toxicity criteria, child soil ingestion and dermal uptake, bioavailability in soil, and residential exposure duration are incorporated. The probabilistic analysis shows that the most sensitive determinants of dose and risk are childhood soil ingestion, exposure duration, and the selected TCDD cancer potency factor. It also shows that the cancer risk at 1 per 100,000 predicted more conservative (lower) soil criteria values than did the noncancer hazard (e.g., developmental and reproductive effects). In this analysis, acceptable or tolerable soil dioxin concentrations (TCDD TEQ) ranged from 0.4 to 5.5 ppb at the 95th percentile for cancer potency factors from 9600 to 156,000 (mg/kg/d)(-1) with site-specific adjustments not included. Various possible soil guidelines based on cancer and noncancer risks are presented and discussed. In the main, the current toxicology, epidemiology, and exposure assessment data indicate that the historical 1 ppb TEQ soil guidance value remains a reasonable screening value for most residential sites. This analysis provides risk managers with a thorough and transparent methodology, as well as a comprehensive information base, for making informed decisions about selecting soil cleanup values for PCDD/Fs in urban residential settings.
Collapse
|
46
|
Shirota M, Mukai M, Sakurada Y, Doyama A, Inoue K, Haishima A, Akahori F, Shirota K. Effects of Vertically Transferred 3,3',4,4',5-Pentachlorobiphenyl (PCB-126) on the Reproductive Development of Female Rats. J Reprod Dev 2006; 52:751-61. [PMID: 16983182 DOI: 10.1262/jrd.18062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to study the effects of vertically transferred coplanar polychlorinated biphenyls on female reproductive development, female rat offspring from dams of Sprague-Dawley strain, which received daily oral administration of vehicle (corn oil) or 1 or 3 microg/kg of 3,3',4,4',5-pentachlorobiphenyl (PCB-126) from 2 weeks prior to mating with intact males until 20 days after delivery were examined from birth until puberty. Hepatic expression of the aryl hydrocarbon receptor (AhR)-inducible enzyme cytochrome P450 1A1 (CYP1A1) was detected in all offspring from PCB-126-exposed dams, indicating vertical transfer of PCB-126. Furthermore, quantification of ovarian mRNAs encoding CYP1A1, AhR and ARNT demonstrated that the ovary equipped the AhR-signaling system through which transcription of the CYP1A1 gene was enhanced in a dose-dependent manner. Exposure to PCB-126 retarded the growth of offspring in both exposed groups, while the viability of the neonates of the exposed groups was comparable to that of the oil-exposed controls. The exposure to 3 mug/kg/day reduced the ovarian weight on postnatal day (PND) 24, with atresia of most of the antral follicles and delayed vaginal opening. Exposure to 1 microg/kg/day did not produce such effects; however, both doses of PCB-126 induced external urogenital anomalies, such as vaginal thread and hypospadias, in all of the PCB-126-exposed female offspring. These results indicate that vertically transferred PCB-126 is potent enough to exert a direct effect on the ovary and adversely affect female puberty by altering the morphological and functional development of the female reproductive system.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aryl Hydrocarbon Receptor Nuclear Translocator/genetics
- Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism
- Body Weight/drug effects
- Cytochrome P-450 CYP1A1/biosynthesis
- Cytochrome P-450 CYP1A1/genetics
- Enzyme Induction/drug effects
- Estrogen Antagonists/pharmacokinetics
- Estrogen Antagonists/toxicity
- Female
- Genitalia, Female/drug effects
- Genitalia, Female/enzymology
- Genitalia, Female/growth & development
- Genitalia, Female/metabolism
- Immunohistochemistry
- Liver/enzymology
- Liver/metabolism
- Male
- Ovary/drug effects
- Ovary/enzymology
- Ovary/growth & development
- Ovary/metabolism
- Polychlorinated Biphenyls/pharmacokinetics
- Polychlorinated Biphenyls/toxicity
- Pregnancy
- Prenatal Exposure Delayed Effects/chemically induced
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sexual Maturation/drug effects
- Sexual Maturation/physiology
- Uterus/drug effects
- Uterus/enzymology
- Uterus/growth & development
- Uterus/metabolism
- Vagina/abnormalities
- Vagina/drug effects
Collapse
Affiliation(s)
- Mariko Shirota
- Research Institute of Biosciences, Azabu University, Sagamihara, Kanagawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Brevini TAL, Cillo F, Antonini S, Gandolfi F. Effects of endocrine disrupters on the oocytes and embryos of farm animals. Reprod Domest Anim 2005; 40:291-9. [PMID: 16008759 DOI: 10.1111/j.1439-0531.2005.00592.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Currently, approximately 60 chemicals have been identified as endocrine disruptors (EDs): exogenous agents that interfere with the synthesis, secretion, transport, metabolism, binding, action, or elimination of natural blood-borne hormones. Farm animals ingest these substances with food and drinking water. Their stability and lipid solubility has led to increased concern that these substances may compromise the reproductive health of both humans and animals. Oocytes are a permanent cell population established before birth which is exposed to environmental stimuli for a period that, in farm animals, can be as long as several years. Oocyte competence is acquired within the ovary during the developmental stages that precede ovulation and its role is critical during the interval between fertilization and the so-called maternal to embryonic transition, when the transcriptional activity of the embryonic genome becomes fully functional. Any perturbation of these delicate process is likely to reduce oocyte developmental competence and, therefore, to cause an arrest of embryonic development at any given stage. A critical analysis of the doses and time of exposure is presented together with a description of the effects of different EDs on farm animal oocytes and early embryonic development. Finally some of the mechanisms mediating EDs effects on the oocytes will be described. In particular the role of arylhydrocarbon receptor, maternal mRNA stability and cytoplasmic remodelling during oocyte maturation will be discussed in some details.
Collapse
Affiliation(s)
- T A L Brevini
- Department of Anatomy of Domestic Animals, University of Milan, Milan, Italy
| | | | | | | |
Collapse
|
48
|
Myllymäki SA, Haavisto TE, Brokken LJS, Viluksela M, Toppari J, Paranko J. In utero and lactational exposure to TCDD; steroidogenic outcomes differ in male and female rat pups. Toxicol Sci 2005; 88:534-44. [PMID: 16141434 DOI: 10.1093/toxsci/kfi308] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) has a potency to induce decreased fertility and structural reproductive anomalies in male and female mammals. While the activity profile of sex steroid hormone production distinctly differs in developing males and females, we wanted to analyze sex-specific effects of TCDD introduced in utero and via lactation on gonadal steroidogenesis and gonadotropin levels in male and female rat infant pups. One oral dose of TCDD (0, 0.04, 0.2, or 1.0 microg/kg) was given to dams on gestational day (GD) 13. Plasma testosterone, estradiol, progesterone, follicle stimulating hormone (FSH), luteinizing hormone (LH), and gonadal mRNA levels for steroid acute regulatory protein (StAR), cytochrome P-450 cholesterol side-chain cleavage (P450scc), 3beta-hydroxy-steroid-dehydrogenase/Delta(5)-Delta(4) isomerase type I (3beta-HSD1), P-450 17alpha-hydroxylase/17,20-lyase (P450-17alpha), and cytochrome P-450 aromatase (P450arom) were determined on postnatal days (PND) 10-16. TCDD 1.0 mug/kg reduced body weights but did not affect relative testis weight or alter testicular and ovarian histology. Plasma estradiol levels in dams and female pups were reduced on PND 14 and 16. Progesterone levels remained unaltered, and FSH levels were increased in female pups. In males, testosterone levels were elevated on PND 10. Gonadal mRNA levels for StAR and steroidogenic enzymes increased during the postnatal growth. TCDD caused no changes in relatively low testicular mRNA levels. However, significant reductions in StAR and P450arom mRNA levels were seen in PND 14 ovaries, and P450arom activity was decreased in isolated ovarian follicles. We conclude that developing testis and male gonadotropin secretion are resistant to TCDD-induced toxicity. In female pups, reduced estradiol, ovarian P450arom expression and enzyme activity levels, and elevated FSH levels may have a role in the development of ovarian dysfunction reported in TCDD-exposed females.
Collapse
Affiliation(s)
- S A Myllymäki
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Finland
| | | | | | | | | | | |
Collapse
|
49
|
Ilvesaro J, Pohjanvirta R, Tuomisto J, Viluksela M, Tuukkanen J. Bone resorption by aryl hydrocarbon receptor-expressing osteoclasts is not disturbed by TCDD in short-term cultures. Life Sci 2005; 77:1351-66. [PMID: 15913656 DOI: 10.1016/j.lfs.2005.01.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Accepted: 01/26/2005] [Indexed: 12/19/2022]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are highly toxic environmental contaminants, and 2,3,7,8-tetrachlorobenzo-p-dioxin (TCDD) is the most potent dioxin. Dioxins bind specifically to the cytosolic aryl hydrocarbon receptor (AHR), which is a ligand-activated transcription factor, and a majority of toxic effects of dioxins are mediated via AHR. We have recently demonstrated that TCDD disrupts bone modeling and decreases bone mechanical strength, and that partial resistance to these effects is related to an altered transactivation domain in AHR structure. In order to better understand the effects of dioxins on bone, we studied the presence and precise localization of AHR and also the number and activity of osteoclasts after TCDD treatments. Total RNA was extracted from mixed bone cell population cultures and expression of AHR mRNA was studied using RT-PCR. Bone cells expressed a considerable amount of AHR mRNA. To see which bone cells express AHR, immunostainings were performed in primary rat bone cell cultures, pure human osteoclast cultures and histological sections from AHR knockout and wild type bones. Immunostaining revealed a strong expression of AHR both in osteoclasts and osteoblasts with an especially prominent stain in bone resorbing osteoclasts. Effects of dioxin on primary bone cells were evaluated after TCDD treatment in the pit formation assay. The activity of osteoclasts was not affected measured as the percentage of active osteoclasts and the actual area of resorbed bone. These data indicate that even though TCDD-treated bones show decreased mechanical strength and size, this is not a direct result from increased osteoclastic bone resorption.
Collapse
Affiliation(s)
- Joanna Ilvesaro
- Department of Anatomy and Cell Biology, FIN-90014 University of Oulu, Finland
| | | | | | | | | |
Collapse
|
50
|
Bruggeman V, Onagbesan O, Dumez L, De Ketelaere B, Decuypere E. Effects of early prenatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on postnatal reproduction in the laying hen (Gallus gallus). Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:349-55. [PMID: 16154808 DOI: 10.1016/j.cbpc.2005.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/08/2005] [Accepted: 07/12/2005] [Indexed: 11/23/2022]
Abstract
This study demonstrates the long-term effects of very early embryonic exposure to a single dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0, 10 and 20 ng/egg), administered before the beginning of embryonic development, on growth and reproductive performance in laying hens. Hatchability and body weight gain from 11 weeks onwards were significantly depressed in 20 ng treated hens. All hens started laying egg at around the same age and the laying performance of TCDD-treated hens was normal. No disturbances in the age-related pattern and concentrations of oestradiol, LH or FSH in plasma could be found but mean progesterone concentrations were significantly lower in 20 ng treated hens. Moreover, follicular distribution was changed with less small white follicles and smaller yellow follicles, which probably resulted in the lower egg weight of the 20 ng treated hens. At 43 weeks of age, hens treated in ovo with TCDD showed a retained right oviduct, mostly filled with clear fluid. From these results, it seems that in ovo exposure to TCDD interferes in the right oviduct regression during embryonic development and induces some changes in follicular distribution but without impairment of reproductive performance in the adult laying hen.
Collapse
Affiliation(s)
- Veerle Bruggeman
- Laboratory for Physiology and Immunology of Domestic Animals, Kasteelpark Arenberg 30, 3001 Leuven (Heverlee), Belgium.
| | | | | | | | | |
Collapse
|