1
|
Chen M, Zhang Y, Zhao Y, Cao K, Niu R, Guo D, Sun Z. Complex immunotoxic effects of T-2 Toxin on the murine spleen and thymus: Oxidative damage, inflammasomes, apoptosis, and immunosuppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117476. [PMID: 39644562 DOI: 10.1016/j.ecoenv.2024.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
T-2 toxin (T-2), a highly stable and toxic mycotoxin, poses a significant public health risk as an inevitable environmental pollutant. However, the mechanisms behind its immunotoxic and immunosuppressive effects are not fully understood. For this study, sixty healthy 4-week-old male C57BL/6 N mice were divided randomly into four groups and treated for 28 days with T-2 concentrations of 0, 0.5, 1.0, and 2.0 mg/kg. Our findings revealed significant damage to the thymus and spleen that was proportional to the dose administered, as evidenced by changes in organ indices and histopathological abnormalities. We observed mitochondrial swelling, chromatin condensation, and nuclear structure disruptions in these organs. Even at low doses (0.5 mg/kg), T-2 administration resulted in significant immunosuppression, as evidenced by disturbed blood parameters and altered CD4 + /CD8 + ratios. Elevated ROS and MDA levels indicate oxidative damage, whereas SOD, T-AOC, CAT, and GSH levels are reduced in both the thymus and spleen. Furthermore, the levels of NLRP3, ASC, caspase-1, and IL-1β proteins were significantly elevated, indicating the activation of the NLRP3 inflammasome pathway. Additionally, activation of the apoptosis pathway was demonstrated by an increased Bax/Bcl-2 ratio and heightened activation of caspase-3 and -9. Transcriptomic analysis elucidated the pivotal role of mitochondrial pathways in T-2-induced immunotoxicity. This study elucidates the significant immunotoxic effects of T-2 on the murine spleen and thymus, detailing the underlying mechanisms of T-2-induced immunosuppression. The key mechanisms identified include oxidative stress, activation of the NLRP3 inflammasome, apoptosis, and mitochondrial dysfunction. These findings reveal critical pathways through which T-2 impairs immune system functionality and provide a basis for developing targeted therapeutic strategies to mitigate its immunotoxic effects.
Collapse
Affiliation(s)
- Mingyan Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Yanfang Zhang
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China
| | - Yangbo Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Kewei Cao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
| | - Dongguang Guo
- School of Biological Engineering, Xinxiang University, Xinxiang, Henan 453000, China.
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China.
| |
Collapse
|
2
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
3
|
Wojtacha P, Trybowski W, Podlasz P, Żmigrodzka M, Tyburski J, Polak-Śliwińska M, Jakimiuk E, Bakuła T, Baranowski M, Żuk-Gołaszewska K, Zielonka Ł, Obremski K. Effects of a Low Dose of T-2 Toxin on the Percentage of T and B Lymphocytes and Cytokine Secretion in the Porcine Ileal Wall. Toxins (Basel) 2021; 13:toxins13040277. [PMID: 33924586 PMCID: PMC8070124 DOI: 10.3390/toxins13040277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022] Open
Abstract
Plant materials used in the production of pig feed are frequently contaminated with mycotoxins. T-2 toxin is a secondary metabolite of selected Fusarium species, and it can exert a harmful influence on living organisms. Most mycotoxins enter the body via the gastrointestinal tract, and they can modulate the gut-associated lymphoid tissue (GALT) function. However, little is known about the influence of low T-2 toxin doses on GALT. Therefore, the aim of this study was to evaluate the effect of T-2 toxin administered at 50% of the lowest-observed-adverse-effect level (LOAEL) on the percentage of CD2+ T cells, CD4+ T helper cells, CD8+ cytotoxic T cells, CD4+CD8+ double-positive T cells, TCRγδ+ cells, CD5+CD8- B1 cells, and CD21+ B2 cells, and the secretion of proinflammatory (IFN-γ, IL-1β, IL-2, IL-12/23p40, IL-17A), anti-inflammatory, and regulatory (IL-4, IL-10, TGF-β) cytokines in the porcine ileal wall. The results of the study revealed that T-2 toxin disrupts the development of tolerance to food antigens by enhancing the secretion of proinflammatory and regulatory cytokines and decreasing the production of anti-inflammatory TGF-β. T-2 toxin triggered the cellular response, which was manifested by an increase in the percentage of CD8+ T cells and a decrease in the percentage of B2 and Tγδ lymphocytes.
Collapse
Affiliation(s)
- Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | | | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland
- Correspondence: (P.P.); (K.O.)
| | - Magdalena Żmigrodzka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland;
| | - Józef Tyburski
- Department of Agroecosystems and Horticulture, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Magdalena Polak-Śliwińska
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland;
| | - Ewa Jakimiuk
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Tadeusz Bakuła
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Mirosław Baranowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Krystyna Żuk-Gołaszewska
- Department of Agrotechnology and Agribusines, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-718 Olsztyn, Poland; (E.J.); (T.B.); (M.B.); (Ł.Z.)
- Correspondence: (P.P.); (K.O.)
| |
Collapse
|
4
|
Zhang YF, Yang JY, Meng XP, Nie N, Tang MC, Yang XL. L-Arginine protects mouse Leydig cells against T-2 toxin-induced apoptosis in vitro. Toxicol Ind Health 2020; 36:1031-1038. [PMID: 33215568 DOI: 10.1177/0748233720964312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the protective mechanism of L-arginine against T-2 toxin-induced apoptosis in mouse Leydig cells, we investigated whether L-arginine can prevent T-2 toxin-induced apoptosis in mouse Leydig cells and explored the underlying mechanisms. Leydig cells were isolated and cultured with control, T-2 toxin (10 nM), L-arginine (0.25, 0.5, and 1.0 mM), and T-2 toxin (10 nM T-2 toxin) + L-arginine (0.25, 0.5, or 1.0 mM) for 24 h. Cells and supernatants were harvested to examine proliferation of the cells, the apoptosis rate, activity of caspase-3 and mitochondria, and the gene expression levels of Bcl-2, Bax, PARP, and caspase-3. Results showed that proliferation and mitochondrial activity of Leydig cells were inhibited by administration of T-2 toxin. Bcl-2 gene expression levels was decreased, while the gene expression levels of Bax and PARP were increased, which could trigger mitochondria-mediated apoptosis, activate downstream caspase-3, and then increased caspase-3 at both activity and gene expression levels. The expression of the Bcl-2 gene was upregulated and the expression of Bax, caspase-3, and PARP gene were downregulated when L-arginine was added to the cultured cells. The results of this study showed that L-arginine could block T-2 toxin-induced apoptosis in mouse Leydig cells by regulating specific intracellular death-related pathways.
Collapse
Affiliation(s)
- Yong Fa Zhang
- College of Food and Bioengineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Jian Ying Yang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Na Nie
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Mei Cui Tang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiao Li Yang
- College of Medical Technology and Engineering, 74623Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
5
|
Rahman S, Sharma AK, Singh ND, Prawez S. Immunopathological effects of experimental T-2 mycotoxicosis in Wistar rats. Hum Exp Toxicol 2020; 40:772-790. [PMID: 33111562 DOI: 10.1177/0960327120968852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is well known that T-2 toxin has cytotoxic radiomimetic like effects on the immune system. Because of scant research data demonstrating the chronic effects of low doses of the T-2 toxin on humoral and cellular responses in rats, the present experiment was undertaken. The animals were divided into four groups, namely, group I (0.5 ppm), group II (0.75 ppm) and group III (1.0 ppm) and group IV (control) were given toxin-free diet for 12 weeks and eight animals each were sacrificed at 2, 4, 6, 8, 10, and 12-week of the experimental period. The humoral immune response was evaluated based on hemagglutination test (HA), and levels of serum immunoglobulins (IgA, IgG, IgM) while the cell-mediated immune response was evaluated by delayed-type hypersensitivity (DTH) response to ovalbumin, lymphocyte stimulation index, analyses of CD4+ and CD8+ T lymphocytes and mRNA expression levels of selected cytokines like IL-2, IFN-γ, IL-4 and IL-10 by quantitative Real-time PCR in experimental groups. T-2 treatment caused suppression in both humoral and cell-mediated immune responses as evidenced by a decrease in all these parameters in toxin fed animals compared to the control in the dose and duration-dependent manner. This dose-dependent effect on the immune system has been further reflected largely by the depletion of lymphocytes from lymphoid organs as observed histopathologically in the spleen, thymus, and Peyer's patches in the present study.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-J, Jammu, Jammu & Kashmir, India
| | - Anil Kumar Sharma
- Division of Pathology, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Nittin Dev Singh
- Department of Veterinary Pathology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Shahid Prawez
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, RGSC, 30114Banaras Hindu University, Barkachha, Uttar Pradesh, India
| |
Collapse
|
6
|
Yang JY, Zhang YF, Meng XP, Kong XF. Delayed effects of autophagy on T-2 toxin-induced apoptosis in mouse primary Leydig cells. Toxicol Ind Health 2019; 35:256-263. [DOI: 10.1177/0748233719831122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
T-2 toxin is a type-A trichothecene produced by Fusarium found in several food commodities worldwide. T-2 toxin causes reproductive disorders, genotoxicity, and testicular toxicity in animals. Our previous research has reported that T-2 toxin can induce apoptosis via the Bax-dependent caspase-3 activation in mouse primary Leydig cells. However, little is known about the functions of autophagy and the cross talk between autophagy and apoptosis after exposure to T-2 toxin in Leydig cells. This study investigated these problems in mouse primary Leydig cells. Results showed that T-2 toxin treatment upregulated LC3-II and Beclin-1 expression, suggesting that T-2 toxin induced a high level of autophagy. Pretreatment with chloroquine (an autophagy inhibitor) and rapamycin (an autophagy inducer) increased and decreased the rate of apoptosis, respectively, in contrast to T-2 toxin-treated group. Autophagy delayed apoptosis in the T-2 toxin-treated Leydig cells. Therefore, autophagy may prevent cells from undergoing apoptosis by reducing T-2 toxin-induced cytotoxicity.
Collapse
Affiliation(s)
- Jian Ying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yong Fa Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiang Feng Kong
- Laboratory of Animal Nutrition and Health and Key Laboratory of Subtropical Agro-ecology, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
7
|
Starikova EA, Golovin AS, Vasilyev KA, Karaseva AB, Serebriakova MK, Sokolov AV, Kudryavtsev IV, Burova LA, Voynova IV, Suvorov AN, Vasilyev VB, Freidlin IS. Role of arginine deiminase in thymic atrophy during experimental Streptococcus pyogenes infection. Scand J Immunol 2019; 89:e12734. [PMID: 30471128 DOI: 10.1111/sji.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Expression of gene of arginine deiminase (AD) allows adaptation of Streptococcus pyogenes to adverse environmental conditions. AD activity can lead to L-arginine deficiency in the host cells' microenvironment. Bioavailability of L-arginine is an important factor regulating the functions of the immune cells in mammals. By introducing a mutation into S pyogenes M46-16, we obtained a strain with inactivated arcA/sagp gene (M49-16 delArcA), deficient in AD. This allowed elucidating the function of AD in pathogenesis of streptococcal infection. The virulence of the parental and mutant strains was examined in a murine model of subcutaneous streptococcal infection. L-arginine concentration in the plasma of mice infected with S pyogenes M49-16 delArcA remained unchanged in course of the entire experiment. At the same time mice infected with S pyogenes M49-16 demonstrated gradual diminution of L-arginine concentration in the blood plasma, which might be due to the activity of streptococcal AD. Mice infected with S pyogenes M49-16 delArcA demonstrated less intensive bacterial growth in the primary foci and less pronounced bacterial dissemination as compared with animals infected with the parental strain S pyogenes M46-16. Similarly, thymus involution, alterations in apoptosis, thymocyte subsets and Treg cells differentiation were less pronounced in mice infected with S pyogenes M49-16 delArcA than in those infected with the parental strain. The results obtained showed that S pyogenes M49-16 delArcA, unable to produce AD, had reduced virulence in comparison with the parental S pyogenes M49-16 strain. AD is an important factor for the realization of the pathogenic potential of streptococci.
Collapse
Affiliation(s)
| | | | | | - Alena Borisovna Karaseva
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - Alexey Victorovich Sokolov
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Igor Vladimirovich Kudryavtsev
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Far Eastern Federal University Vladivostok, Russia
| | | | - Irina Vitalyevna Voynova
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Nikolaevich Suvorov
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Vadim Borisovich Vasilyev
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Irina Solomonovna Freidlin
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia.,Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
8
|
Yang S, Zhang H, De Boevre M, Zhang J, Li Y, Zhang S, De Saeger S, Zhou J, Li Y, Sun F. Toxicokinetics of HT-2 Toxin in Rats and Its Metabolic Profile in Livestock and Human Liver Microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8160-8168. [PMID: 29996643 DOI: 10.1021/acs.jafc.8b02893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The lack of information on HT-2 toxin leads to inaccurate hazard evaluations. In the present study, toxicokinetic studies of HT-2 toxin were investigated following intravenous (iv) and oral administration to rats at dosages of 1.0 mg per kilogram of body weight. After oral administration, HT-2 toxin was not detected in plasma, whereas its hydroxylated metabolite, 3'-OH HT-2 was identified. Following iv administration, HT-2 toxin; its 3'-hydroxylated product; and its glucuronide derivative, 3-GlcA HT-2, were observed in plasma, and the glucuronide conjugate was the predominant metabolite. To explore the missing HT-2 toxin in plasma, metabolic studies of HT-2 toxin in liver microsomes were conducted. Consequently, eight phase I and three phase II metabolites were identified. Hydroxylation, hydrolysis, and glucuronidation were the main metabolic pathways, among which hydroxylation was the predominant one, mediated by 3A4, a cytochrome P450 enzyme. Additionally, significant interspecies metabolic differences were observed.
Collapse
Affiliation(s)
- Shupeng Yang
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Huiyan Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Marthe De Boevre
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Jinzhen Zhang
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Yanshen Li
- College of Life Science , Yantai University , Yantai , Shandong 264005 , People's Republic of China
| | - Suxia Zhang
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Sarah De Saeger
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent 9000 , Belgium
| | - Jinhui Zhou
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
| | - Yi Li
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
| | - Feifei Sun
- Bee Product Quality Supervision and Testing Centre, Ministry of Agriculture; Institute of Apicultural Research, Key Laboratory of Bee Products for Quality and Safety Control , Chinese Academy of Agricultural Sciences , Beijing 100093 , People's Republic of China
- College of Veterinary Medicine , China Agricultural University , Beijing 100193 , People's Republic of China
| |
Collapse
|
9
|
Ma S, Zhao Y, Sun J, Mu P, Deng Y. miR449a/SIRT1/PGC-1α Is Necessary for Mitochondrial Biogenesis Induced by T-2 Toxin. Front Pharmacol 2018; 8:954. [PMID: 29354057 PMCID: PMC5760504 DOI: 10.3389/fphar.2017.00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022] Open
Abstract
T-2 toxin is one of the type A trichothecenes produced mainly by the Fusarium genus. Due to its broad distribution and highly toxic nature, it is of great concern as a threat to human health and animal breeding. In addition to its ribotoxic effects, T-2 toxin exposure leads to mitochondrial dysfunction, reactive oxygen species (ROS) accumulation and eventually cell apoptosis. We observed that mitochondrial biogenesis is highly activated in animal cells exposed to T-2 toxin, probably in response to the short-term toxic effects of T-2 toxin. However, the molecular mechanisms of T-2 toxin-induced mitochondrial biogenesis remain unclear. In this study, we investigated the regulatory mechanism of key factors in the ROS production and mitochondrial biogenesis that were elicited by T-2 toxin in HepG2 and HEK293T cells. Low dosages of T-2 toxin significantly increased the levels of both mitochondrial biogenesis and ROS. This increase was linked to the upregulation of SIRT1, which is controlled by miR-449a, whose expression was strongly inhibited by T-2 toxin treatment. In addition, we found that T-2 toxin-induced mitochondrial biogenesis resulted from SIRT1-dependent PGC-1α deacetylation. The accumulation of PGC-1α deacetylation, mediated by high SIRT1 levels in T-2 toxin-treated cells, activated the expression of many genes involved in mitochondrial biogenesis. Together, these data indicated that the miR449a/SIRT1/deacetylated PGC-1α axis plays an essential role in the ability of moderate concentrations of T-2 toxin to stimulate mitochondrial biogenesis and ROS production.
Collapse
Affiliation(s)
- Shijie Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yurong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianwei Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
11
|
Zhang YF, Su PK, Wang LJ, Zheng HQ, Bai XF, Li P, Meng XP, Yang JY. T-2 toxin induces apoptosis via the Bax-dependent caspase-3 activation in mouse primary Leydig cells. Toxicol Mech Methods 2017; 28:23-28. [DOI: 10.1080/15376516.2017.1354413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yong Fa Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Pan Ke Su
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Lun Ji Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hui Qi Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Xue Fei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Ping Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Xiang Ping Meng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jian Ying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
Yin S, Liu X, Fan L, Hu H. Mechanisms of cell death induction by food-borne mycotoxins. Crit Rev Food Sci Nutr 2017; 58:1406-1417. [DOI: 10.1080/10408398.2016.1260526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| |
Collapse
|
13
|
Kufuor-Mensah E, Reed WM, Sleight S, Pestka J, Fadly AM, Dunn JR. Effects of T-2 Toxin on Turkey Herpesvirus-Induced Vaccinal Immunity Against Marek's Disease. Avian Dis 2016; 60:56-62. [PMID: 26953944 DOI: 10.1637/11245-072815-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
T-2 toxin, a very potent immunotoxic Type A trichothecene, is a secondary metabolite produced primarily by Fusarium spp., which grows on cereal grains and can lead to contaminated livestock feed. Repeated exposure to T-2 toxin has been shown to cause immunosuppression and decrease the resistance of exposed animals to a variety of infectious diseases; however, the effects of T-2 toxin on Marek's disease (MD) vaccinal immunity have not been reported. Four trials were conducted to determine the effects of T-2 toxin on vaccinal immunity against MD. Day-old, white leghorn chicks of Avian Disease and Oncology Laboratory line 15I5 × 71 were treated daily for 7 days via crop gavage with T-2 toxin at a sublethal dose of 1.25 mg/kg body weight. Treated and untreated chicks were also vaccinated with turkey herpesvirus (HVT) at hatch and were challenged with the JM strain of MD virus (MDV) at 8 days of age. Chickens were tested for HVT viremia at 1 wk postvaccination immediately before challenge, and for HVT and MDV viremia at 3 wk postchallenge. Chickens were observed for the development of MD lesions and mortality within 8 wk of age. T-2 toxin significantly reduced body weight and titers of HVT viremia within 7 days after hatch. T-2 toxin shortened the incubation period for the development of MD lesions and mortality, but only in unvaccinated chickens. The percent MD protection in T-2-toxin-treated, HVT-vaccinated chickens ranged from 82% to 96% and was comparable to that in HVT-vaccinated untreated control chickens (89%-100%). The data suggest that exposure of chickens to sublethal doses of T-2 toxin for 7 consecutive days after hatch may influence the development of 1) HVT viremia; and 2) MD lesions and mortality, but only in unvaccinated chickens.
Collapse
Affiliation(s)
- E Kufuor-Mensah
- A USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI 48823.,B Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824.,C Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824
| | - W M Reed
- B Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824
| | - S Sleight
- B Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI 48824
| | | | - A M Fadly
- A USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| | - J R Dunn
- A USDA-ARS Avian Disease and Oncology Laboratory, East Lansing, MI 48823
| |
Collapse
|
14
|
Zhuang Z, Yang D, Huang Y, Wang S. Study on the apoptosis mechanism induced by T-2 toxin. PLoS One 2013; 8:e83105. [PMID: 24386148 PMCID: PMC3873290 DOI: 10.1371/journal.pone.0083105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/30/2013] [Indexed: 12/28/2022] Open
Abstract
T-2 toxin is known to induce apoptosis in mammalian cells. The mechanism of apoptosis induced by T-2 toxin has been proposed to be linked with oxidative stress and mitochondrial pathway. In the current study, the toxic effect of T-2 on Hela, Bel-7402, and Chang liver cells was examined in dose-dependent and time-dependent manner by MTT assay. Caspase-3 was found to be up-regulated under T-2 toxin stress, which suggested that T-2 toxin induced cell apoptosis. Endogenous GSH and MDA levels in all three cell lines were found down- and up-regulated respectively, which indicated the link between toxic effect of T-2 toxin and intracellular oxidative stress. It was also found by MTT assay that NAC, which maintained the level of GSH in cells, could protect cells from death. Western-blot result showed that the level of both activated Caspase-8 and Caspase-9 increased when cells were treated by T-2 toxin. Caspase-9 was found to be activated earlier than Caspase-8. It was also found that p53 was up-regulated under T-2 toxin stress in the study. These results implied that the effect of T-2 toxin on cells was apoptosis rather than necrosis, and it was probably induced through mitochondrial pathway. To the best of our knowledge, the present study is the first to show that JunD is down-regulated in T-2 toxin induced apoptosis. By construction of an over-expression vector for the JunD gene, we observed that the survival ratio of JunD over-expressed cells obviously increased under T-2 toxin stress. These results suggested that the mechanism of T-2 induced cell death was closely connected with oxidative stress, and that JunD plays an important role in the defensive process against T-2 toxin stress.
Collapse
Affiliation(s)
- Zhenhong Zhuang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Daibin Yang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaling Huang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- * E-mail:
| |
Collapse
|
15
|
Yang S, Li Y, Cao X, Hu D, Wang Z, Wang Y, Shen J, Zhang S. Metabolic pathways of T-2 toxin in in vivo and in vitro systems of Wistar rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9734-9743. [PMID: 23971727 DOI: 10.1021/jf4012054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present study, metabolites of T-2 toxin in in vivo and in vitro systems of Wistar rats were identified and elucidated by ultraperformance liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS). Expected and unexpected metabolites were detected by Metabolynx(XS) software, which could automatically compare MS(E) data from the sample and control. A total of 19 metabolites of T-2 toxin were identified in this research, 9 of them being novel, which were 15-deacetyl-T-2, 3'-OH-15-deacetyl-T-2, 3',7-dihydroxy-T-2, isomer of 3',7-dihydroxy-T-2, 7-OH-HT-2, isomer of 7-OH-HT-2, de-epoxy-3',7-dihydroxy-HT-2, 9-OH-T-2, and 3',9-dihydroxy-T-2. The results showed that the main metabolic pathways of T-2 toxin were hydrolysis, hydroxylation, and de-epoxidation. In addition, the results also revealed one novel metabolic pathway of T-2 toxin, hydroxylation at C-9 position, which was demonstrated by the metabolites 9-OH-T-2 and 3',9-dihydroxy-T-2. In addition, hydroxylation at C-9 of T-2 toxin was also generated in in vitro of liver systems. Interestingly, several metabolites of hydroxylation at C-7 of T-2 toxin were also detected in in vivo male Wistar rats, but they were not found in in vivo female rats and in in vitro systems of Wistar rats.
Collapse
Affiliation(s)
- Shupeng Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University , Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Revajová V, Levkut M, Levkutová M, Bořutová R, Grešaková Ľ, Košiková B, Leng Ľ. Effect of lignin supplementation of a diet contaminated with Fusarium mycotoxins on blood and intestinal lymphocyte subpopulations in chickens. Acta Vet Hung 2013; 61:354-65. [PMID: 23921347 DOI: 10.1556/avet.2013.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of the study was to investigate the effects of lignin supplementation of a diet contaminated with the Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEA) on peripheral blood leukocytes and duodenal immunocompetent cells in broiler chickens. From day 1 after hatching, all chickens were fed an identical control diet for two weeks. Then chickens of Group 1 continued to be fed the control diet, whereas Group 2 was fed the same diet supplemented with lignin at 0.5% level. Simultaneously, Group 3 started to receive a diet contaminated with DON (2.95 mg kg-1) and ZEA (1.59 mg kg-1), while Group 4 received an identical contaminated diet supplemented with 0.5% lignin for further two weeks. Samples of blood and duodenal tissue were collected from 6 birds of each group at 4 weeks of age. Neither counts of white blood cells nor phagocytic function in the peripheral blood were significantly affected in the mycotoxin- and/or lignin-treated birds. As compared to the control, increased numbers of IgM-bearing cells were found in the peripheral blood in Group 3 fed the contaminated diet (P < 0.05) and in Group 4 given the contaminated diet supplemented with lignin (P < 0.01). While the contaminated diet led to reduced numbers of duodenal CD4+ cells, in Group 2 treated only with lignin the number of duodenal CD4+ cells was increased. Lignin enrichment of the contaminated diet did not eliminate the mycotoxin-induced reduction in the number of duodenal CD4+ cells. The results suggest that dietary supplementation of lignin as an indigestible compound to poultry feed may increase the density of some intestinal immunocompetent cells without exerting effects on that in the peripheral blood. However, when added to a diet contaminated with Fusarium mycotoxins, lignin did not prevent the mycotoxin-induced changes in the numbers of blood and intestinal immunocompetent cells.
Collapse
Affiliation(s)
- Viera Revajová
- 1 University of Veterinary Medicine and Pharmacy Department of Pathological Anatomy Komenského 73 041 81 Košice Slovak Republic
| | - Mikuláš Levkut
- 1 University of Veterinary Medicine and Pharmacy Department of Pathological Anatomy Komenského 73 041 81 Košice Slovak Republic
| | - Mária Levkutová
- 1 University of Veterinary Medicine and Pharmacy Department of Pathological Anatomy Komenského 73 041 81 Košice Slovak Republic
| | - Radka Bořutová
- 2 Slovak Academy of Sciences Institute of Animal Physiology Košice Slovak Republic
| | - Ľubomíra Grešaková
- 2 Slovak Academy of Sciences Institute of Animal Physiology Košice Slovak Republic
| | - Božena Košiková
- 3 Slovak Academy of Sciences Institute of Chemistry Bratislava Slovak Republic
| | - Ľubomír Leng
- 2 Slovak Academy of Sciences Institute of Animal Physiology Košice Slovak Republic
| |
Collapse
|
17
|
Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34:502-10. [PMID: 23871487 DOI: 10.1016/j.it.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.
Collapse
|
18
|
Osselaere A, Li SJ, De Bock L, Devreese M, Goossens J, Vandenbroucke V, Van Bocxlaer J, Boussery K, Pasmans F, Martel A, De Backer P, Croubels S. Toxic effects of dietary exposure to T-2 toxin on intestinal and hepatic biotransformation enzymes and drug transporter systems in broiler chickens. Food Chem Toxicol 2013; 55:150-5. [PMID: 23313610 DOI: 10.1016/j.fct.2012.12.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 12/31/2012] [Indexed: 01/06/2023]
Abstract
The effects of the mycotoxin T-2 on hepatic and intestinal drug-metabolizing enzymes (cytochrome P450) and drug transporter systems (MDR1 and MRP2) in poultry were investigated during this study. Broiler chickens received either uncontaminated feed, feed contaminated with 68μg/kg or 752μg/kg T-2 toxin. After 3weeks, the animals were euthanized and MDR1, MRP2, CYP1A4, CYP1A5 and CYP3A37 mRNA expression were analyzed using qRT-PCR. Along the entire length of the small intestine no significant differences were observed. In the liver, genes coding for CYP1A4, CYP1A5 and CYP3A37 were significantly down-regulated in the group exposed to 752μg/kg T-2. For CYP1A4, even a contamination level of 68μg/kg T-2 caused a significant decrease in mRNA expression. Expression of MDR1 was not significantly decreased in the liver. In contrast, hepatic MRP2 expression was significantly down-regulated after exposure to 752μg/kg T-2. Hepatic and intestinal microsomes were prepared to test the enzymatic activity of CYP3A. In the ileum and liver CYP3A activity was significantly increased in the group receiving 752μg/kg T-2 compared to the control group. The results of this study show that drug metabolizing enzymes and drug transporter mechanisms can be influenced due to prolonged exposure to relevant doses of T-2.
Collapse
Affiliation(s)
- A Osselaere
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Seeboth J, Solinhac R, Oswald IP, Guzylack-Piriou L. The fungal T-2 toxin alters the activation of primary macrophages induced by TLR-agonists resulting in a decrease of the inflammatory response in the pig. Vet Res 2012; 43:35. [PMID: 22530722 PMCID: PMC3416672 DOI: 10.1186/1297-9716-43-35] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/24/2012] [Indexed: 12/22/2022] Open
Abstract
T-2 toxin is known to be one of the most toxic trichothecene mycotoxins. Exposure to T-2 toxin induces many hematologic and immunotoxic disorders and is involved in immuno-modulation of the innate immune response. The objective of this work was to evaluate the effects of T-2 toxin on the activation of macrophages by different agonists of Toll-like receptors (TLR) using an in vitro model of primary porcine alveolar macrophages (PAM). Cytotoxic effects of T-2 toxin on PAM were first evaluated. An IC50 of 19.47 ± 0.9753 nM was determined for the cytotoxicity of T-2 toxin. A working concentration of 3 nM of T-2 toxin was chosen to test the effect of T-2 toxin on TLR activation; this dose was not cytotoxic and did not induce apoptosis as demonstrated by Annexin/PI staining. A pre-exposure of macrophages to 3 nM of T-2 toxin decreased the production of inflammatory mediators (IL-1 beta, TNF-alpha, nitric oxide) in response to LPS and FSL1, TLR4 and TLR2/6 agonists respectively. The decrease of the pro-inflammatory response is associated with a decrease of TLR mRNA expression. By contrast, the activation of TLR7 by ssRNA was not modulated by T-2 toxin pre-treatment. In conclusion, our results suggest that ingestion of low concentrations of T-2 toxin affects the TLR activation by decreasing pattern recognition of pathogens and thus interferes with initiation of inflammatory immune response against bacteria and viruses. Consequently, mycotoxins could increase the susceptibility of humans and animals to infectious diseases.
Collapse
Affiliation(s)
- Julie Seeboth
- Institut National de Recherche Agronomique, Toxalim - UMR 1331, 180, chemin de Tournefeuille, Toulouse Cedex 9, 31027, France.
| | | | | | | |
Collapse
|
20
|
Oliveira-Filho JC, Carmo PMS, Lucena RB, Pierezan F, Barros CSL. Baccharis megapotamica var. weirii poisoning in water buffalo (Bubalus bubalis). J Vet Diagn Invest 2011; 23:610-4. [DOI: 10.1177/1040638711403435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An outbreak of an acute disease in buffalo ( Bubalus bubalis) caused by the ingestion of Baccharis megapotamica var. weirii occurred in the southern region of Brazil. Ten out of 50 buffalo died 24–48 hr after being introduced into a pasture containing abundant amounts of the plant. Factors influencing the ingestion of the plant and consequent toxicosis included hunger, stress caused by shipment, and unfamiliarity with the plant. Clinical signs included serous ocular discharge, incoordination, mild bloat, and muscle trembling. One buffalo was necropsied. Gross findings included dehydration, abundant liquid in the rumen, reddening of the mucosa of forestomachs, abomasum, and intestine, and edema of the wall of the rumen. The main histologic lesions were superficial to full thickness degeneration and necrosis of the stratified epithelium lining the forestomachs, necrosis of the intestinal mucosa, and widespread lymphoid necrosis. A calf ( Bos taurus) was fed a single dose of 5g/kg/body weight of B. megapotamica var. weirii harvested from the same site where the buffalo died. Twenty hours after the administration of the plant this calf died with clinical signs and lesions similar to those observed in the naturally poisoned buffalo.
Collapse
Affiliation(s)
- José C. Oliveira-Filho
- Veterinary Pathology Laboratory, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Priscila M. S. Carmo
- Veterinary Pathology Laboratory, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Ricardo B. Lucena
- Veterinary Pathology Laboratory, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Felipe Pierezan
- Veterinary Pathology Laboratory, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Claudio S. L. Barros
- Veterinary Pathology Laboratory, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Li Y, Wang Z, Beier RC, Shen J, De Smet D, De Saeger S, Zhang S. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:3441-3453. [PMID: 21417259 DOI: 10.1021/jf200767q] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This review focuses on the toxicity and metabolism of T-2 toxin and analytical methods used for the determination of T-2 toxin. Among the naturally occurring trichothecenes in food and feed, T-2 toxin is a cytotoxic fungal secondary metabolite produced by various species of Fusarium. Following ingestion, T-2 toxin causes acute and chronic toxicity and induces apoptosis in the immune system and fetal tissues. T-2 toxin is usually metabolized and eliminated after ingestion, yielding more than 20 metabolites. Consequently, there is a possibility of human consumption of animal products contaminated with T-2 toxin and its metabolites. Several methods for the determination of T-2 toxin based on traditional chromatographic, immunoassay, or mass spectroscopy techniques are described. This review will contribute to a better understanding of T-2 toxin exposure in animals and humans and T-2 toxin metabolism, toxicity, and analytical methods, which may be useful in risk assessment and control of T-2 toxin exposure.
Collapse
Affiliation(s)
- Yanshen Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Effects of Plasmodium berghei on thymus: high levels of apoptosis and premature egress of CD4(+)CD8(+) thymocytes in experimentally infected mice. Immunobiology 2011; 216:1148-54. [PMID: 21601941 DOI: 10.1016/j.imbio.2011.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/30/2011] [Indexed: 01/13/2023]
Abstract
We have previously showed alterations in the thymus during experimental infection with Plasmodium berghei, the causative agent of Malaria. Such alterations comprised histological changes with loss of delimitation between cortical and medullar regions, a profound atrophy with depletion of CD4(+)CD8(+) double-positive (DP) thymocytes, and severe changes in the expression of cell migration-related molecules, belonging to the extracellular matrix and chemokine protein families. Taken together, these considerations prompted us to evaluate if the acute thymic atrophy observed during Plasmodium infection was correlated with increased apoptotic levels of thymocytes or with their premature emigration to the periphery. Our results confirmed that the marked reduction of the thymus weight in infected animals was accompanied by histological alterations, which included a very large number of cells showing nuclear condensation and karyorrhectic changes surrounded by histiocytes suggesting increased levels of apoptosis. This was confirmed by immunohistochemistry and flow cytometry techniques. In order to verify if an accelerated emigration of thymic cells to the peripheral lymphoid organs was also occurring we analyzed the spleen and mesenteric lymph nodes from control and infected mice. No significant differences were found in the spleen, but were seen after 14 days of infection between control and infected mice in the mesenteric lymph nodes. The main alteration was the presence of double negative (CD4(-)CD8(-)) and double positive (CD4(+)CD8(+)) cells. We concluded that both apoptosis of thymocytes and premature egress of immature cells take place during infection. Additional studies will be necessary to verify how such alterations might influence the systemic immune response to the parasite.
Collapse
|
23
|
Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1247] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Produced by the mould genus Fusarium, the type B trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated precursors. These mycotoxins often contaminate cereal staples, posing a potential threat to public health that is still incompletely understood. Understanding the mechanistic basis by which these toxins cause toxicity in experimental animal models will improve our ability to predict the specific thresholds for adverse human effects as well as the persistence and reversibility of these effects. Acute exposure to DON and NIV causes emesis in susceptible species such as pigs in a manner similar to that observed for certain bacterial enterotoxins. Chronic exposure to these mycotoxins at low doses causes growth retardation and immunotoxicity whereas much higher doses can interfere with reproduction and development. Pathophysiological events that precede these toxicities include altered neuroendocrine responses, upregulation of proinflammatory gene expression, interference with growth hormone signalling and disruption of gastrointestinal tract permeability. The underlying molecular mechanisms involve deregulation of protein synthesis, aberrant intracellular cell signalling, gene transactivation, mRNA stabilisation and programmed cell death. A fusion of basic and translational research is now needed to validate or refine existing risk assessments and regulatory standards for DON and NIV. From the perspective of human health translation, biomarkers have been identified that potentially make it possible to conduct epidemiological studies relating DON consumption to potential adverse human health effects. Of particular interest will be linkages to growth retardation, gastrointestinal illness and chronic autoimmune diseases. Ultimately, such knowledge can facilitate more precise science-based risk assessment and management strategies that protect consumers without reducing availability of critical food sources.
Collapse
Affiliation(s)
- J. Pestka
- Deptartment of Food Science and Human Nutrition, Deptartment of Microbiology and Molecular Genetics, Center for Integrative Toxicology, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA
| |
Collapse
|
24
|
Ge X, Wang J, Liu J, Jiang J, Lin H, Wu J, Ouyang M, Tang X, Zheng M, Liao M, Deng Y. The catalytic activity of cytochrome P450 3A22 is critical for the metabolism of T-2 toxin in porcine reservoirs. CATAL COMMUN 2010. [DOI: 10.1016/j.catcom.2010.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
van der Fels-Klerx H, Stratakou I. T-2 toxin and HT-2 toxin in grain and grain-based commodities in Europe: occurrence, factors affecting occurrence, co-occurrence and toxicological effects. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1237] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper presents an overview of the occurrence of T-2 toxin and HT-2 toxin in cereals in Europe and derived food products, factors influencing the occurrence, co-occurrence with other trichothecenes, and toxicological effects of T-2 and HT-2 in human. Of all cereals, oats showed to be most susceptible to T-2/HT-2 contamination. Particularly, oats grown in Scandinavia and UK in the period 2003-2007 were highly contaminated. This contamination has reduced in 2008 and 2009. In raw cereals, T-2 and HT-2 levels were highly correlated with each other in most instances, with the HT-2 level being two to seven times higher than the T-2 level. The toxin levels showed not to be correlated with levels of deoxynivalenol and nivalenol. The occurrence of T-2 and HT-2 in the field varied between years, regions, cereal grain varieties, sowing time, and precrop. Organically produced cereals contained lower T-2 and HT-2 levels as compared to conventionally grown cereals. Little or no effects from using fungicides was seen. Processing cereals resulted in low T-2 and HT-2 levels in food products, although oat products contained some T-2 and HT-2. The by-products from food processing, often used for animal feeding, frequently were highly contaminated. T-2 and HT-2 showed to have high acute and subacute toxicity, as they caused haematotoxic, immunotoxic, cytotoxic, and dermal effects. Carcinogenicity of T-2 and HT-2 in human has not been proven. Outbreaks of human toxicosis caused by trichothecenes, including T-2 and HT-2, have been reported. The present overview is deemed to be valuable for risk assessments at the European level, planned to be held by EFSA. It also provides directions for further research, including the ecology of the fungi responsible for T-2 and HT-2, and agronomical practices to reduce the contamination in the field.
Collapse
Affiliation(s)
| | - I. Stratakou
- RIKILT, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
- Department of Toxicology, Wageningen University, P.O. Box 8000, 6700 AE Wageningen, the Netherlands
| |
Collapse
|
26
|
Pestka JJ. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 2010; 84:663-79. [PMID: 20798930 DOI: 10.1007/s00204-010-0579-8] [Citation(s) in RCA: 687] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) is produced in wheat, barley and corn following infestation by the fungus Fusarium in the field and during storage. Colloquially known as "vomitoxin" because of its emetic effects in pigs, DON has been associated with human gastroenteritis. Since DON is commonly detected in cereal foods, there are significant questions regarding the risks of acute poisoning and chronic effects posed to persons ingesting this trichothecene. A further challenge is how to best manage perceived risks without rendering critical food staples unavailable to an ever-expanding world population. In experimental animal models, acute DON poisoning causes emesis, whereas chronic low-dose exposure elicits anorexia, growth retardation, immunotoxicity as well as impaired reproduction and development resulting from maternal toxicity. Pathophysiologic effects associated with DON include altered neuroendocrine signaling, proinflammatory gene induction, disruption of the growth hormone axis, and altered gut integrity. At the cellular level, DON induces ribotoxic stress thereby disrupting macromolecule synthesis, cell signaling, differentiation, proliferation, and death. There is a need to better understand the mechanistic linkages between these early dose-dependent molecular effects and relevant pathological sequelae. Epidemiological studies are needed to determine if relationships exist between consumption of high DON levels and incidence of both gastroenteritis and potential chronic diseases. From the perspective of human health translation, a particularly exciting development is the availability of biomarkers of exposure (e.g. DON glucuronide) and effect (e.g. IGF1) now make it possible to study the relationship between DON consumption and growth retardation in susceptible human populations such as children and vegetarians. Ultimately, a fusion of basic and translational research is needed to validate or refine existing risk assessments and regulatory standards for this common mycotoxin.
Collapse
Affiliation(s)
- James J Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
27
|
Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins (Basel) 2010; 2:1300-17. [PMID: 22069639 PMCID: PMC3153246 DOI: 10.3390/toxins2061300] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 05/25/2010] [Accepted: 05/28/2010] [Indexed: 01/18/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) is commonly encountered in human cereal foods throughout the world as a result of infestation of grains in the field and in storage by the fungus Fusarium. Significant questions remain regarding the risks posed to humans from acute and chronic DON ingestion, and how to manage these risks without imperiling access to nutritionally important food commodities. Modulation of the innate immune system appears particularly critical to DON's toxic effects. Specifically, DON induces activation of mitogen-activated protein kinases (MAPKs) in macrophages and monocytes, which mediate robust induction of proinflammatory gene expression-effects that can be recapitulated in intact animals. The initiating mechanisms for DON-induced ribotoxic stress response appear to involve the (1) activation of constitutive protein kinases on the damaged ribosome and (2) autophagy of the chaperone GRP78 with consequent activation of the ER stress response. Pathological sequelae resulting from chronic low dose exposure include anorexia, impaired weight gain, growth hormone dysregulation and aberrant IgA production whereas acute high dose exposure evokes gastroenteritis, emesis and a shock-like syndrome. Taken together, the capacity of DON to evoke ribotoxic stress in mononuclear phagocytes contributes significantly to its acute and chronic toxic effects in vivo. It is anticipated that these investigations will enable the identification of robust biomarkers of effect that will be applicable to epidemiological studies of the human health effects of this common mycotoxin.
Collapse
|
28
|
Amuzie CJ, Islam Z, Kim JK, Seo JH, Pestka JJ. Kinetics of satratoxin g tissue distribution and excretion following intranasal exposure in the mouse. Toxicol Sci 2010; 116:433-40. [PMID: 20466779 DOI: 10.1093/toxsci/kfq142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intranasal exposure of mice to satratoxin G (SG), a macrocyclic trichothecene produced by the indoor air mold Stachybotrys chartarum, selectively induces apoptosis in olfactory sensory neurons (OSNs) of the nose and brain. The purpose of this study was to measure the kinetics of distribution and clearance of SG in the mouse. Following intranasal instillation of female C57B16 mice with SG (500 microg/kg bw), the toxin was detectable from 5 to 60 min in blood and plasma, with the highest concentrations, 30 and 19 ng/ml, respectively, being observed at 5 min. SG clearance from plasma was rapid and followed single-compartment kinetics (t(1/2) = 20 min) and differed markedly from that of other tissues. SG concentrations were maximal at 15-30 min in nasal turbinates (480 ng/g), kidney (280 ng/g), lung (250 ng/g), spleen (200 ng/g), liver (140 ng/g), thymus (90 ng/g), heart (70 ng/g), olfactory bulb (14 ng/g), and brain (3 ng/g). The half-lives of SG in the nasal turbinate and thymus were 7.6 and 10.1 h, respectively, whereas in other organs, these ranged from 2.3 to 4.4 h. SG was detectable in feces and urine, but cumulative excretion over 5 days via these routes accounted for less than 0.3% of the total dose administered. Taken together, SG was rapidly taken up from the nose, distributed to tissues involved in respiratory, immune, and neuronal function, and subsequently cleared. However, a significant amount of the toxin was retained in the nasal turbinate, which might contribute to SG's capacity to evoke OSN death.
Collapse
Affiliation(s)
- Chidozie J Amuzie
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
29
|
Pestka JJ. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25:1128-40. [PMID: 19238623 PMCID: PMC2917199 DOI: 10.1080/02652030802056626] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fusarium infection of agricultural staples such as wheat, barley and corn with concurrent production of deoxynivalenol (DON) and other trichothecene mycotoxins is an increasingly common problem worldwide. In addition to its emetic effects, chronic dietary exposure to DON causes impaired weight gain, anorexia, decreased nutritional efficiency and immune dysregulation in experimental animals. Trichothecenes are both immunostimulatory or immunosuppressive depending on dose, frequency and duration of exposure as well as type of immune function assay. Monocytes, macrophages, as well as T- and B-lymphocytes of the immune system can be cellular targets of DON and other trichothecenes. In vitro exposure to low trichothecene concentrations upregulates expression both transcriptionally and post-transcriptionally of cytokines, chemokines and inflammatory genes with concurrent immune stimulation, whereas exposure to high concentrations promotes leukocyte apoptosis with concomitant immune suppression. DON and other trichothecenes, via a mechanism known as the 'ribotoxic stress response', bind to ribosomes and rapidly activate mitogen-activated protein kinases (MAPKs). The latter are important transducers of downstream signalling events related to immune response and apoptosis. Using cloned macrophages, two critical upstream transducers of DON-induced MAPK activation have been identified. One transducer is double-stranded RNA (dsRNA)-activated protein kinase (PKR), a widely expressed serine/threonine protein kinase that can be activated by dsRNA, interferon and other agents. The other transducer is haematopoetic cell kinase (Hck), a non-receptor associated Src oncogene family kinase. Pharmacological inhibitors and gene suppression studies have revealed that Hck and PKR contribute to DON-induced gene expression and apoptosis. PKR, Hck and other kinases bind to the ribosome and are activated following DON interaction. Future studies will focus on the sequence of molecular events at the ribosome level that drive selective activation of these upstream kinases.
Collapse
Affiliation(s)
- J J Pestka
- Center for Integrative Toxicology, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
30
|
|
31
|
Li M, Cuff CF, Pestka JJ. T-2 toxin impairment of enteric reovirus clearance in the mouse associated with suppressed immunoglobulin and IFN-gamma responses. Toxicol Appl Pharmacol 2006; 214:318-25. [PMID: 16504231 PMCID: PMC7125810 DOI: 10.1016/j.taap.2006.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/19/2006] [Accepted: 01/20/2006] [Indexed: 12/25/2022]
Abstract
Trichothecenes are exquisitely toxic to the gastrointestinal (GI) tract and leukocytes and thus are likely to impair gut immunity. The purpose of this research was to test the hypothesis that the Type A trichothecene T-2 toxin interferes with the gut mucosal immune response to enteric reovirus infection. Mice were exposed i.p. first to 1.75 mg/kg bw T-2 and then 2 h later with 3 × 107 plaque-forming units of reovirus serotype 1, strain Lang (T1/L). As compared to vehicle-treated control, T-2-treated mice had dramatically elevated intestinal plaque-forming viral titers after 5 days and failed to completely clear the virus from intestine by 10 days. Levels of reovirus λ2 core spike (L2 gene) RNA in feces in T-2-treated mice were significantly higher at 1, 3, 5, and 7 days than controls. T-2 potentiated L2 mRNA expression in a dose-dependent manner with as little as 50 μg/kg of the toxin having a potentiative effect. T-2 exposure transiently suppressed induction of reovirus-specific IgA in feces (6 and 8 days) as well as specific IgA and IgG2a in serum (5 days). This suppression corresponded to decreased secretion of reovirus-specific IgA and IgG2a in Peyer's patch (PP) and lamina propria fragment cultures prepared 5 days after infection. T-2 suppressed IFN-γ responses in PP to reovirus at 3 and 7 days as compared to infected controls whereas IL-2 mRNA concentrations were unaffected. PP IL-6 mRNA levels were increased 2-fold 2 h after T-2 treatment, but no differences between infected T-2-exposed and infected vehicle-treated mice were detectable over the next 7 days. Overall, the results suggest that T-2 toxin increased both the extent of GI tract reovirus infection and fecal shedding which corresponded to both suppressed immunoglobulin and IFN-γ responses.
Collapse
Affiliation(s)
- Maoxiang Li
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Christopher F. Cuff
- Department of Microbiology, Immunology and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA
- Corresponding author. 234 G.M. Trout Building, Michigan State University, East Lansing, MI 48824-1224. Fax: +1 517 353 8963.
| |
Collapse
|
32
|
Islam Z, Pestka JJ. LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicol Appl Pharmacol 2006; 211:53-63. [PMID: 16009389 DOI: 10.1016/j.taap.2005.04.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 03/04/2005] [Accepted: 04/22/2005] [Indexed: 11/29/2022]
Abstract
Simultaneous exposure to lipopolysaccharide (LPS) markedly amplifies induction of proinflammatory cytokine expression as well as IL-1-driven lymphocyte apoptosis by trichothecene deoxynivalenol (DON) in the mouse. The purpose of this research was to test the hypothesis that LPS priming will sensitize a host to DON-induced proinflammatory cytokine induction and apoptosis. In mice primed with LPS (1 mg/kg bw) ip. and treated 8 h later with DON po., the minimum DON doses for inducing IL-1alpha, IL-1beta, IL-6 and TNF-alpha serum proteins and splenic mRNAs were significantly lower than the DON doses required for vehicle-primed mice. LPS priming also decreased onset time and dramatically increased magnitude and duration of cytokine responses. LPS-primed mice maintained heightened sensitivity to DON for up to 24 h. LPS priming doses as low as 50 microg/kg bw evoked sensitization. DNA fragmentation analysis and flow cytometry also revealed that mice primed with LPS (1 mg/kg) for 8 h and exposed to DON (12.5 mg/kg) exhibited massive thymocyte loss by apoptosis 12 h later compared to mice exposed to DON or LPS alone. LPS priming decreased DON-induced p38 and ERK 1/2 phosphorylation suggesting that enhanced mitogen-activated protein kinase activation was not involved in increased cytokine responses. Taken together, exposure to LPS rendered mice highly susceptible to DON induction of cytokine expression and this correlated with increased apoptosis in the thymus.
Collapse
Affiliation(s)
- Zahidul Islam
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- Kunio Doi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Junko Shinozuka
- Exploratory Toxicology and DMPK Research Laboratories, Tanabe Seiyaku Co., Ltd
| | - Shinya Sehata
- Medical Safety Research Laboratories, Sankyo Co., Ltd
| |
Collapse
|
34
|
Le Dréan G, Auffret M, Batina P, Arnold F, Sibiril Y, Arzur D, Parent-Massin D. Myelotoxicity of trichothecenes and apoptosis: An in vitro study on human cord blood CD34+ hematopoietic progenitor. Toxicol In Vitro 2005; 19:1015-24. [PMID: 15908172 DOI: 10.1016/j.tiv.2005.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 01/07/2005] [Accepted: 03/17/2005] [Indexed: 11/25/2022]
Abstract
Previous studies have revealed that hematological disorders associated with trichothecenes intoxication in humans could result from hematopoiesis inhibition. The most frequent and potent trichothecene mycotoxins are T-2 toxin and deoxynivalenol (DON), respectively. Apoptosis induction by these two toxins was investigated in vitro on human hematopoietic progenitors (CD34+ cells). Hoechst coloration, DNA fragmentation and annexin-V/PI labeling in flow cytometry showed that T-2 toxin, in contrast to DON, induced apoptosis in CD34+ cells. T-2 toxin effect was dose- and time-dependent with a significant increase of apoptotic cells as early as 3h after incubation at 10(-7) M and a maximum reached at 12 h. This observation evidenced the high sensitivity of hematopoietic progenitors to T-2 toxin. The inhibition of T-2 toxin-induced apoptosis by a pan-caspase inhibitor (Z-VAD-fmk) suggested the involvement of caspases. The proportional increase of caspase-3 specific activity (DEVDase) with T-2 toxin concentration confirmed its role in the process. After incubation of CD34+ cells with T-2 toxin, in conditions that induced apoptosis, clonal expansion of granulo-monocytes, erythrocytes and megakaryocytes precursors was dose-dependently inhibited. The hematological effects observed in T-2 toxin mycotoxicosis could then be assigned to hematopoiesis inhibition by apoptosis. Different mechanisms that need to be further elucidated are involved in DON myelotoxicity.
Collapse
Affiliation(s)
- G Le Dréan
- Laboratoire de Toxicologie Alimentaire, EA 3880, Université de Bretagne Occidentale, Technopôle Brest-Iroise, 29280 Plouzané, France.
| | | | | | | | | | | | | |
Collapse
|
35
|
Vlata Z, Porichis F, Tzanakakis G, Tsatsakis A, Krambovitis E. In vitro cytopathic effects of mycotoxin T-2 on human peripheral blood T lymphocytes. Toxicol Lett 2005; 160:60-8. [PMID: 16023801 DOI: 10.1016/j.toxlet.2005.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/08/2005] [Accepted: 06/08/2005] [Indexed: 11/30/2022]
Abstract
The trichothecene mycotoxin T-2 is reported to exhibit immunotoxic activity. The potential presence of T-2 in foods renders it as public health hazard and its toxicity needs to be better understood. We investigated the in vitro effects of T-2 at sub-toxic (0.1 ng/ml) and toxic (10 ng/ml) levels on freshly isolated human peripheral blood lymphocytes (PBLs). We observed no direct influence on untreated PBLs. The toxic dose of T-2, however, totally inhibited phytohemagglutinin-induced T lymphocyte proliferation and caused early apoptosis that peaked after 8h of exposure. Both major T lymphocyte subsets (CD4+ and CD8+) were affected as they appeared to show a positive response to T-2 at 8h followed by their sharp reduction after 96 h. Further investigation on the naïve (CD45RA+) and memory (CD45RO+) subpopulations confirmed these observations and indicated that T-2 affected equally all the subpopulations studied, although PHA preferentially stimulated CD45RO+ T lymphocytes. Sub-toxic T-2 appeared to exhibit co stimulatory properties to PHA-stimulated cells. These results support the hypothesis that T-2 affects the activation-induced cell death mechanism of T lymphocytes.
Collapse
Affiliation(s)
- Zaharenia Vlata
- Department of Applied Biochemistry and Immunology, Institute of Molecular Biology and Biotechnology, Vassilika Vouton, 711 10 Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
36
|
Abstract
Mycotoxins are impractical as tactical weapons, butthey can be used by small poor terrorist organizations to poison food and water sources or can be released in crowded, confined areas. Crude concentrated or dried extracts of readily grown fungal cultures can be used as weapons. The production of fungal weapons does not require elaborate facilities for the growth of fungi, sophisticated equipment for the purification of the toxins, or highly trained personnel. Aflatoxin B1, fumonisin B1, ochratoxin A, and the trichothecenes T-2 toxin and deoxynivalenol could be weaponized for bioterrorism. Knowledge of the symptoms of intoxication and the biochemical mechanisms of action of mycotoxins is necessary for the rapid identification of the toxins, the development of prophylactic antidotes, and the design of effective treatments of affected persons. All of these mycotoxins except deoxynivalenol are carcinogens (Stark, A. A., Annu. Rev. Microbiol. 34:235-262, 1980; Stark, A. A., p. 435-445, in P. S. Steyn and R. Vleggaar, ed., Mycotoxins and phycotoxins, 1986; Stark, A. A., p. 47-60, in C. L. Wilson and S. Droby, ed., Microbial food contamination, 2000; Stark, A. A., and N. Paster, p. 60-64, in M. L. Wahlqvist, A. S. Truswell, R. Smith, and P. L. Nestel, ed., Nutrition in a sustainable environment, 1994). Because immediate and widespread death, illness, or panic is the goal of bioterrorists, the mechanisms by which mycotoxins exert acute toxicity are the focus of this article.
Collapse
|
37
|
Minervini F, Fornelli F, Lucivero G, Romano C, Visconti A. T-2 toxin immunotoxicity on human B and T lymphoid cell lines. Toxicology 2005; 210:81-91. [PMID: 15804460 DOI: 10.1016/j.tox.2005.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 01/10/2005] [Indexed: 11/26/2022]
Abstract
T-2 toxin belongs to a group of mycotoxins synthesized by Fusarium fungi that are widely encountered as natural contaminants in cereals. Human lymphoid cell lines of T (MOLT-4) or B (IM-9) lineage were used to characterize the cytotoxic effects mediated by T-2 at different concentrations (0.1 pg/ml to 1 microg/ml). After 24 h, membrane damage was observed by Trypan blue dye exclusion in IM-9 cells with a 50% cytotoxic concentration (CC50) of 0.2 ng/ml, whereas CC50 for MOLT-4 cells was 0.6 microg/ml (gmicro). At a T-2 concentration of 0.01 microg/ml, apoptosis was seen in MOLT-4 cells by Annexin V binding as early as after 4 h. T-2 toxin determined sustained (48 h) immunosuppression on both cell lines, as evaluated by BrdU and MTT assays. Cytotoxicity appeared to be due to early apoptosis in MOLT-4 cells, as indicated by increased Annexin V binding and activation of caspase-3, and to direct cell membrane damage in IM-9 cells.
Collapse
Affiliation(s)
- Fiorenza Minervini
- Istituto di Scienze delle Produzioni Alimentari (ISPA), CNR, Via Amendola 122/O, 70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
38
|
Venkatesh PK, Vairamuthu S, Balachandran C, Manohar BM, Raj GD. Induction of apoptosis by fungal culture materials containing cyclopiazonic acid and T-2 toxin in primary lymphoid organs of broiler chickens. Mycopathologia 2005; 159:393-400. [PMID: 15883725 DOI: 10.1007/s11046-004-6271-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 11/12/2004] [Indexed: 11/28/2022]
Abstract
Thirty-six, twenty-eight-day-old broiler chicks were randomly distributed into three groups of 12 birds each. Two groups were fed diets containing 10 ppm cyclopiazonic acid (CPA) and 1ppm T-2 toxin, respectively, to determine the mechanism of cell death in spleen and thymus at 6, 12, 24, and 36 h of post-treatment. The other group served as control. T-2 toxin treated group showed significant (P < 0.01) induction of apoptosis in thymus with peak induction at 24 h post-treatment where as, no significant differences were observed between the control and CPA groups. The CPA toxin treated group showed significant (P < 0.01) induction of apoptosis in spleen with peak induction at 24 h post-treatment. No significant differences were observed between the control and T-2 toxin group even though the latter showed a slight increase in the quantity of apoptotic cells at 36 h post-treatment in spleen. The semi-thin sections stained with toluidine blue from the spleen of CPA treated group exhibited crescent margination of chromatin against the nuclear envelope and shrinkage of lymphoid cells without any surrounding inflammation, the characteristics of apoptosis. The apoptotic thymocytes from T-2 fed birds appeared shrunken with condensed nucleus and showed crescent margination of chromatin against the nuclear envelope without any surrounding inflammation when compared with well-defined nuclei with dispersed chromatin in normal thymocytes. Ultrastructurally, splenocytes of the CPA treated group and thymocytes of the T-2 toxin treated birds showed apoptotic bodies characterized by crescent margination of the chromatin against the nuclear envelope. The study indicates that one route of the CPA and T-2 toxin induced cell death in lymphoid organs of broiler chicken is by apoptosis.
Collapse
Affiliation(s)
- P Kamala Venkatesh
- Department of Veterinary Pathology, Madras Veterinary College, Chennai 600007, India
| | | | | | | | | |
Collapse
|
39
|
Kamalavenkatesh P, Vairamuthu S, Balachandran C, Manohar BM, raj GD. Immunopathological effect of the mycotoxins cyclopiazonic acid and T-2 toxin on broiler chicken. Mycopathologia 2005; 159:273-9. [PMID: 15770454 DOI: 10.1007/s11046-004-7321-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 11/29/2004] [Indexed: 10/25/2022]
Abstract
Forty, newly hatched, unsexed broiler chicks were fed diets containing 10 ppm cyclopiazonic acid (CPA) and 1 ppm T-2 toxin (T2) either individually or in combination for 28 days to study the immunopathological effects. Lymphoid organs revealed lymphocytolysis and lymphoid depletion in all toxin fed birds. Thymic and splenic CD+4 and CD+8 lymphocytes decreased significantly (p<0.01) in toxin fed birds when compared to the control. Thymic CD+8 lymphocytes of T2 and CPA-T2 showed significant (p<0.01) decrease from that of CPA and control groups. Splenic CD+4 and CD+8 lymphocytes showed significant (p<0.01) decrease in CPA and CPA-T2 fed groups when compared to the control. The T2 group did not differ significantly from that of control. The stimulation index (SI) of splenocytes to concavalin A revealed significant (p<0.01) decrease in all toxin fed birds. Significant (p<0.01) decrease were observed for the haemagglutination inhibition (HI) titres to Newcastle disease virus vaccine F strain (NDV) of birds fed CPA, T2 and in combination. Significant (p<0.01) interaction was found for lymphocyte subsets, SI and HI titres to NDV. The study indicated the immunosuppressive effect of these toxins either alone or in combination in broiler chicks.
Collapse
Affiliation(s)
- P Kamalavenkatesh
- Toxicology Department, Jai Research Foundation, Valvada, 396 108, India
| | | | | | | | | |
Collapse
|
40
|
Pestka JJ, Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2005; 8:39-69. [PMID: 15762554 DOI: 10.1080/10937400590889458] [Citation(s) in RCA: 657] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin that commonly contaminates cereal-based foods worldwide. At the molecular level, DON disrupts normal cell function by inhibiting protein synthesis via binding to the ribosome and by activating critical cellular kinases involved in signal transduction related to proliferation, differentiation, and apoptosis. Relative to toxicity, there are marked species differences, with the pig being most sensitive to DON, followed by rodent > dog > cat > poultry > ruminants. The physiologic parameter that is most sensitive to low-level DON exposure is the emetic response, with as little as 0.05 to 0.1 mg/kg body weight (bw) inducing vomiting in swine and dogs. Chinese epidemiological studies suggest that DON may also produce emetic effects in humans. With respect to chronic effects, growth (anorexia and decreased nutritional efficiency), immune function, (enhancement and suppression), and reproduction (reduced litter size) are also adversely affected by DON in animals, whereas incidence of neoplasia is not affected. When hazard evaluations were conducted using existing chronic toxicity data and standard safety factors employed for anthropogenic additives/contaminants in foods, tolerable daily intakes (TDIs) ranging from 1 to 5 microg/kg bw have been generated. Given that critical data gaps still exist regarding the potential health effects of DON, additional research is needed to improve capacity for assessing adverse health effects of this mycotoxin. Critical areas for future DON research include molecular mechanisms underlying toxicity, sensitivity of human cells/tissues relative to other species, emetic effects in primates, epidemiological association with gastroenteritis and chronic disease in humans, and surveillance in cereal crops worldwide.
Collapse
Affiliation(s)
- James J Pestka
- Department of Food Science and Human Nutrition, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1224, USA.
| | | |
Collapse
|
41
|
Pestka JJ, Zhou HR, Moon Y, Chung YJ. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 2004; 153:61-73. [PMID: 15342082 DOI: 10.1016/j.toxlet.2004.04.023] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophages, T cells, and B cells of the immune system are central targets of deoxynivalenol (DON) and other trichothecenes-mycotoxins that can be immunostimulatory or immunosuppressive depending on dose, exposure frequency and timing of functional immune assay. Notably, low dose trichothecene exposure transcriptionally and post-transcriptionally upregulates expression of cytokines, chemokines and inflammatory genes with concurrent immune stimulation, whereas high dose exposure promotes leukocyte apoptosis with concomitant immune suppression. DON and other trichothecenes, via a mechanism known as the ribotoxic stress response, bind to ribosomes and rapidly activate mitogen-activated protein kinases (MAPKs). The latter are important transducers of downstream signaling events related to immune response and apoptosis. Using cloned macrophages, our laboratory has identified two critical upstream transducers of DON-induced MAPK activation. One transducer is double-stranded RNA-(dsRNA)-activated protein kinase (PKR), a widely-expressed serine/theonine protein kinase that can be activated by dsRNA, interferon, and other agents. The second transducer is hematopoetic cell kinase (Hck), a non-receptor associated Src family kinase. Inhibitors and gene silencing studies have revealed that Hck and PKR play roles in DON induced gene expression and apoptosis. Future studies should focus on the molecular linkages between these kinases and trichothecene toxicity.
Collapse
Affiliation(s)
- James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Food Science and Human Nutrition Bldg., East Lansing, MI 48824-1224, USA.
| | | | | | | |
Collapse
|
42
|
Franchini A, Marchesini E, Poletti R, Ottaviani E. Lethal and sub-lethal yessotoxin dose-induced morpho-functional alterations in intraperitoneal injected Swiss CD1 mice. Toxicon 2004; 44:83-90. [PMID: 15225566 DOI: 10.1016/j.toxicon.2004.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Histological and immunocytochemical investigations were performed on different organs (brain, duodenum and thymus) of mice following lethal (420 microg/kg) or sublethal (10 microg/kg) intraperitoneal injection of yessotoxin (YTX). No morpho-functional modifications were observed in large neurons of the cerebral and cerebellar cortex with the sub-lethal dose, nor in the cerebral cortex with the lethal dose. The duodenum also did not show significant alterations. However, there was an inflammation response to the toxin, in which blood cells and cytokines were involved. This was more evident with the lethal YTX dose. The thymus and, in general, the immune system are the main targets of YTX at both the concentrations used. Furthermore, the alterations present in the thymus may support tumorigenic implications.
Collapse
Affiliation(s)
- A Franchini
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, 41100 Modena, Italy
| | | | | | | |
Collapse
|
43
|
Uzarski RL, Islam Z, Pestka JJ. Potentiation of trichothecene-induced leukocyte cytotoxicity and apoptosis by TNF-alpha and Fas activation. Chem Biol Interact 2003; 146:105-19. [PMID: 14597125 DOI: 10.1016/s0009-2797(03)00088-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trichothecene mycotoxins cause immunosuppression by inducing apoptosis in lymphoid tissue. Trichothecene-induced leukocyte apoptosis can be augmented by bacterial lipopolysaccharide (LPS) but the mechanisms involved in this potentiating effect are not completely understood. The objective of this study was to test the hypothesis that the trichothecene deoxynivalenol (DON, vomitoxin) can interact with LPS directly and other mediators or agonists associated with immune/inflammatory responses to induce apoptosis in primary murine leukocyte cultures. Primary leukocyte suspensions were prepared from murine thymus (TH), spleen (SP), bone marrow (BM) and Peyer's patches (PP) and then cultured with DON in the absence or presence of LPS, prostaglandin E2 (PGE2), anti-immunoglobulin (as antigen mimic), dexamethasone, Fas ligand, or TNF-alpha. Cytotoxicity and apoptosis were evaluated by MTT assay and morphologic assays, respectively. DON was found to inhibit LPS-induced proliferation and dexamethasone-induced apoptosis in SP cultures. In contrast, potentiation of DON-induced apoptosis and cytotoxicity was observed in BM cultures treated with anti-Fas and in TH cultures treated with TNF-alpha. When potentiation of DON-induced apoptosis by TNF-alpha was assessed using pharmacological inhibitors, generation of ROS, intracellular Ca2+, p38/SAPK, and caspase-3 activation were found to play roles. Taken together, these data demonstrate that LPS and its downstream mediators can interact with trichothecenes to modulate proliferative, cytotoxic and apoptotic outcomes in leukocytes in a tissue-specific manner.
Collapse
Affiliation(s)
- Rebecca L Uzarski
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
44
|
Souto PCS, Brito VN, Gameiro J, da Cruz-Höfling MA, Verinaud L. Programmed cell death in thymus during experimental paracoccidioidomycosis. Med Microbiol Immunol 2003; 192:225-9. [PMID: 12687355 DOI: 10.1007/s00430-003-0180-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Indexed: 01/09/2023]
Abstract
Many works have shown that immunosuppressive effects induced by systemic mycosis can be related to primary lymphoid organ damage. Previous studies in our laboratory showed that Paracoccidioides brasiliensis was able to invade the thymus, inducing a severe atrophy with significant reduction of cortical area along with a loss of cortico-medullary boundary. The objective of the present study was to investigate whether thymic atrophy is caused by programmed cell death (PCD) and to examine the ultrastructural characteristics of the thymus in experimentally infected BALB/c mice. The results revealed an eightfold increase in the apoptotic index occurring by day 5 post infection, i.e., during early stages of the infection, shown by immunohistochemistry. In addition, typical cell alterations of autophagic PCD were observed by transmission electron microscopy. Taken together, these results reinforce the idea that thymic alterations may be involved in the immunosuppressive phenomenon frequently associated with paracoccidioidomycotic infection.
Collapse
Affiliation(s)
- Paula C S Souto
- Departamento de Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz s/n, Caixa Postal 6109, 13083-970 Campinas-SP, Brazil.
| | | | | | | | | |
Collapse
|
45
|
Poapolathep A, Nagata T, Suzuki H, Kumagai S, Doi K. Development of early apopotosis and changes in lymphocyte subsets in lymphoid organs of mice orally inoculated with nivalenol. Exp Mol Pathol 2003; 75:74-9. [PMID: 12834628 DOI: 10.1016/s0014-4800(03)00027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Development of early apoptosis and changes in lymphocyte subsets were examined in lymphoid organs of female BALB/c mice after oral administration of 15 mg/kg b.w. of nivalenol (NIV), the major type B trichothecene mycotoxin, by FACS analysis. Judging from the results of viable cell count and apoptotic cell index, NIV attacked Peyer's patches first and thymus most severely. In thymus, selective damage in CD4(+)CD8(+) cells was observed at 12 and 24 h after inoculation (HAI), following the peak of apoptosis at 9 HAI. CD4(+) cells were clearly suppressed at 3 HAI in Peyer's patches, at and after 9 HAI in mesenteric lymph nodes, and 3 to 12 HAI in spleen, respectively. CD8(+) cells were also suppressed at 24 HAI in mesenteric lymph nodes and at 12 HAI in spleen, respectively. As to changes in B cell subsets, IgG(+) cells significantly decreased from 3 to 12 HAI and all B cell subsets at 24 HAI in mesenteric lymph nodes. In spleen, IgM(+) cells were suppressed at 9 HAI. On the other hand, in Peyer's patches, following clear decrease in the numbers of pan-T and pan-B cells and viable cells at 3 HAI, all B cell subsets, especially IgA(+) cells, showed a significant increase in their numbers at 9 HAI, and the numbers of IgA(+) and IgM(+) cells remained higher values than controls thereafter. Taken together, in the course of recovery from NIV-induced prominent damage in Peyer's patches at 3 HAI, interaction of NIV with Peyer's patches might result in in vivo stimulation of interleukin production at this site and result in increased proliferation and differentiation of IgA-secreting B cells at and after 9 HAI.
Collapse
Affiliation(s)
- Amnart Poapolathep
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
46
|
Brito VN, Souto PCS, Cruz-Höfling MA, Ricci LC, Verinaud L. Thymus invasion and atrophy induced by Paracoccidioides brasiliensis in BALB/c mice. Med Mycol 2003; 41:83-7. [PMID: 12964839 DOI: 10.1080/mmy.41.2.83.87] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Literature has shown that immunosuppression observed in systemic mycosis can be related to damage in primary lymphoid organs. We have studied the immunopathological alterations induced experimentally by Paracoccidioides brasiliensis in these organs. In this work, thymic alterations induced in BALB/c mice during acute and chronic stages of infection are described. It was observed that P. brasiliensis is able to invade the thymic microenvironment, inducing severe atrophy characterized by degeneration of the cortical area, organ weight decrease, loss of corticomedullary delimitation and increase in histiocyte number. Occurrence of polymorphonuclear infiltration in the subcapsular area was also observed. Our results demonstrate that P. brasiliensis induces profound thymic atrophy and raises the question of whether this could be a fungal strategy to achieve successful establishment in the host over the long term.
Collapse
Affiliation(s)
- V N Brito
- Departamento de Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
47
|
Islam Z, King LE, Fraker PJ, Pestka JJ. Differential induction of glucocorticoid-dependent apoptosis in murine lymphoid subpopulations in vivo following coexposure to lipopolysaccharide and vomitoxin (deoxynivalenol). Toxicol Appl Pharmacol 2003; 187:69-79. [PMID: 12649039 DOI: 10.1016/s0041-008x(02)00031-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lipopolysaccharide (LPS) and vomitoxin (VT) synergistically induce glucocorticoid- mediated apoptotic cell death in lymphoid tissues of the mouse. Based on the known effects of glucocorticoids, it was hypothesized that the combined exposure to LPS and VT targets immature lymphocyte populations. To test this hypothesis, we quantified the effects of VT and LPS on apoptosis induction in T lymphocyte subsets in thymus and B lymphocyte subsets in Peyer's patches and bone marrow. Flow cytometry revealed that a single dose of LPS (0.1 mg/kg body wt ip) together with VT (12.5 mg/kg body wt po) promoted apoptosis of immature (CD4(-)CD8(-), CD4(+)CD8(+)) and mature (CD4(-)CD8(+)) thymocytes at 12 h with a subsequent reduction of these populations being detectable at 24 h. RU 486, a glucocorticoid receptor antagonist, significantly abrogated apoptosis in CD4(-)CD8(-), CD4(+)CD8(+), and CD4(-)CD8(+) subsets and also prevented loss in cell numbers. In Peyer's patches, mature-B lymphocytes (B220(+)IgM(-)IgD(+)) underwent apoptosis and, in bone marrow, pro/pre-B lymphocytes (B220(+)IgM(-)IgD(-)) and mature-B lymphocytes (B220(+)IgM(-)IgD(+)) underwent apoptosis at 12 h after toxin co- exposure. RU 486 blocked LPS + VT-induced apoptosis of the aforementioned subsets in Peyer patches and bone marrow at 12 h. Taken together, these data suggest that LPS can interact with VT in mice to induce the glucocorticoid-driven apoptotic loss of immature thymocytes and cytotoxic T lymphocytes in thymus, mature-B lymphocytes in Peyer's patch, and pro/pre-B lymphocytes and mature-B lymphocytes in bone marrow in mice.
Collapse
Affiliation(s)
- Zahidul Islam
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
48
|
Cho K, Adamson LK, Park J, Greenhalgh DG. Burn injury-mediated alterations in cell cycle progression in lymphoid organs of mice. Shock 2003; 19:138-43. [PMID: 12578122 DOI: 10.1097/00024382-200302000-00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A key event in the cellular and molecular pathogenesis of multiple organ failure (MOF) after burn injury may be the change in profiles of the cell cycle progression in affected organs. We investigated the effects of burn injury on cell cycle progression in immune organs. Cell cycle analysis in the lymphoid tissues of mice after 18% burn injury revealed that S phase entry was temporarily arrested in the thymus 1 day after injury, whereas the spleen had substantially increased S phase entry at day 8. This mode of cell cycle regulation was reproduced in different age groups and strains of mice. Furthermore, the reactivity to the Ki-67 antibody (indicative of proliferation) was markedly reduced in the thymic cortex at day 1. There was a distinct pattern of hematopoietic foci formation and increased reactivities to the Ki-67 antibody in myelogenous cells in the red pulp of spleen at day 7, consistent with the elevated S phase entry. These data suggest that differential regulation of cell cycle progression may play a crucial role in the phenotypic changes in immune organs after burn injury.
Collapse
Affiliation(s)
- Kiho Cho
- Bum Surgery, Shriners Hospitals for Children Northern California, Sacramento, California 95817, USA
| | | | | | | |
Collapse
|
49
|
Sehata S, Teranishi M, Atsumi F, Uetsuka K, Nakayama H, Doi K. T-2 Toxin-Induced Morphological Changes in Pregnant Rats. J Toxicol Pathol 2003. [DOI: 10.1293/tox.16.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Shinya Sehata
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd
| | | | - Fusako Atsumi
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd
| | - Koji Uetsuka
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hiroyuki Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kunio Doi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
50
|
Assoulin-Daya Y, Leong A, Shoenfeld Y, Gershwin ME. Studies of sick building syndrome. IV. Mycotoxicosis. J Asthma 2002; 39:191-201. [PMID: 12043850 DOI: 10.1081/jas-120002468] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There has been increasing public attention to the potential health risks of mold exposure, particularly in wet buildings. A variety of molds has been isolated from both damaged homes and businesses, including agents that secrete toxigenic materials. One area that is attracting particular notice is the relative toxigenic potential of mycotoxins. Although exposure to molds can produce significant mucosal irritation, there are very few data to suggest long-term ill effects. More importantly, there is no evidence in humans that mold exposure leads to nonmucosal pathology. In fact, many of the data on toxigenic molds are derived from animal toxicity studies, and these are based primarily, on ingestion. Although every attempt should be made to improve the quality of indoor air, including avoidance of molds, the human illnesses attributed to fungal exposure are, with the exception of invasive infections and mold allergy, relatively rare. In this review we discuss selected aspects of the microbiology of mycotoxin-producing molds and their potential role in human immunopathology with respect to wet building environments.
Collapse
Affiliation(s)
- Yehudith Assoulin-Daya
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 95616, USA
| | | | | | | |
Collapse
|