1
|
Ma S, Cheng D, Tang Y, Fan Y, Li Q, He C, Zhao Z, Xu T. Investigation of oxidative potential of fresh and O 3-aging PM 2.5 from various emission sources across urban and rural regions. J Environ Sci (China) 2025; 151:608-615. [PMID: 39481966 DOI: 10.1016/j.jes.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 11/03/2024]
Abstract
Inhalation of atmospheric PM2.5 can induce the generation of excessive reactive oxygen species (ROS) in human alveoli, triggering local and systemic inflammation, which can directly or indirectly result in respiratory and cardiovascular diseases. In this study, we assessed the oxidative potential (OP) of fresh and O3-aged PM2.5 particles from various urban and rural emission sources using the dithiothreitol (DTT) method. Our results revealed variations in the OP of fresh PM2.5 among different emission sources, with biomass burning sources exhibiting the highest OP, followed by industrial areas, vehicular emissions, cooking emissions, and suburban areas, respectively. Water-soluble organics and transition metals might potentially exert significant influence on particle OP. O3 aging notably decreased the OP of PM2.5 particles, possibly due to the oxidation of highly DTT-active components into low redox-active small molecules. Moreover, the evolution of OP in different PM2.5 components, including methanol-soluble and insoluble fractions, exhibited distinct responses to O3 aging for source-oriented PM2.5. Additionally, differences in chemical composition between fresh and aged PM2.5 were further elucidated through measurements of component-dependent hygroscopic behaviors and phase transitions. This study systematically delineates variances in the toxic potential of fresh and O3-aged PM2.5 from various anthropogenic sources. The findings highlight the intrinsic compositional dependence of particle OP and provide essential insights for assessing the health effects of source-oriented PM2.5, as well as for formulating human health protection policies.
Collapse
Affiliation(s)
- Shuaishuai Ma
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Dongsheng Cheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Yingying Tang
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Younuo Fan
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Qiong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chengxiang He
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Zhiqing Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China
| | - Tianyou Xu
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| |
Collapse
|
2
|
Hathaway QA, Majumder N, Goldsmith WT, Kunovac A, Pinti MV, Harkema JR, Castranova V, Hollander JM, Hussain S. Transcriptomics of single dose and repeated carbon black and ozone inhalation co-exposure highlight progressive pulmonary mitochondrial dysfunction. Part Fibre Toxicol 2021; 18:44. [PMID: 34911549 PMCID: PMC8672524 DOI: 10.1186/s12989-021-00437-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. RESULTS Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (- 39.3% and - 36.2%, respectively) and IV (- 55.1% and - 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (- 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (- 25%) and translation of subunits, such as ATP5F1, following co-exposure. CONCLUSIONS CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nairrita Majumder
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA
| | - William T Goldsmith
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA
| | - Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Mark V Pinti
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Vince Castranova
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Salik Hussain
- Mitochondria, Metabolism and Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, 64 Medical Center Drive, PO Box 9229, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
3
|
Majumder N, Goldsmith WT, Kodali VK, Velayutham M, Friend SA, Khramtsov VV, Nurkiewicz TR, Erdely A, Zeidler-Erdely PC, Castranova V, Harkema JR, Kelley EE, Hussain S. Oxidant-induced epithelial alarmin pathway mediates lung inflammation and functional decline following ultrafine carbon and ozone inhalation co-exposure. Redox Biol 2021; 46:102092. [PMID: 34418598 PMCID: PMC8385153 DOI: 10.1016/j.redox.2021.102092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Environmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O3) and ultrafine carbon black (CB). Environmentally/occupationally relevant lung deposition levels in mice were achieved after inhalation of stable aerosols with similar aerodynamic and mass median distributions. X-ray photoemission spectroscopy detected increased surface oxygen contents on particles in co-exposure aerosols. Compared with individual exposures, co-exposure aerosols produced greater acellular and cellular oxidants detected by electron paramagnetic resonance (EPR) spectroscopy, and in vivo immune-spin trapping (IST), as well as synergistically increased lavage neutrophils, lavage proteins and inflammation related gene/protein expression. Co-exposure induced a significantly greater respiratory function decline compared to individual exposure. A synthetic catalase-superoxide dismutase mimetic (EUK-134) significantly blunted lung inflammation and respiratory function decline confirming the role of oxidant imbalance. We identified a significant induction of epithelial alarmin (thymic stromal lymphopoietin-TSLP)-dependent interleukin-13 pathway after co-exposure, associated with increased mucin and interferon gene expression. We provided evidence of interactive outcomes after air pollution constituent co-exposure and identified a key mechanistic pathway that can potentially explain epidemiological observation of lung function decline after an acute peak of air pollution. Developing and studying the co-exposure scenario in a standardized and controlled fashion will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes. Interaction with O3 mediates free radical production on the surface of carbon black (CB) particles. Oxidants mediate co-exposure (CB + O3)-induced lung function decline. EUK-134 (a synthetic superoxide-catalase mimetic) abrogates CB + O3-induced lung inflammation. CB + O3 co-exposure induces greater lung inflammation than individual exposures. Epithelial alarmin (TSLP) contributes significantly to the CB + O3 toxicity.
Collapse
Affiliation(s)
- Nairrita Majumder
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Vamsi K Kodali
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | | | - Sherri A Friend
- Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Valery V Khramtsov
- Department of Biochemistry, School of Medicine, West Virginia University, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Aaron Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Patti C Zeidler-Erdely
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA; National Institute for Occupational Safety and Health, USA
| | - Vince Castranova
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, School of Veterinary Medicine, Michigan State University, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, USA; Center for Inhalation Toxicology (iTOX), School of Medicine, West Virginia University, USA.
| |
Collapse
|
4
|
Chua SYL, Khawaja AP, Dick AD, Morgan J, Dhillon B, Lotery AJ, Strouthidis NG, Reisman C, Peto T, Khaw PT, Foster PJ, Patel PJ. Ambient Air Pollution Associations with Retinal Morphology in the UK Biobank. Invest Ophthalmol Vis Sci 2020; 61:32. [PMID: 32428233 PMCID: PMC7405693 DOI: 10.1167/iovs.61.5.32] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Because air pollution has been linked to glaucoma and AMD, we characterized the relationship between pollution and retinal structure. Methods We examined data from 51,710 UK Biobank participants aged 40 to 69 years old. Ambient air pollution measures included particulates and nitrogen oxides. SD-OCT imaging measured seven retinal layers: retinal nerve fiber layer, ganglion cell–inner plexiform layer, inner nuclear layer, outer plexiform layer + outer nuclear layer, photoreceptor inner segments, photoreceptor outer segments, and RPE. Multivariable regression was used to evaluate associations between pollutants (per interquartile range increase) and retinal thickness, adjusting for age, sex, race, Townsend deprivation index, body mass index, smoking status, and refractive error. Results Participants exposed to greater particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and higher nitrogen oxides were more likely to have thicker retinal nerve fiber layer (β = 0.28 µm; 95% CI, 0.22–0.34; P = 3.3 × 10−20 and β = 0.09 µm; 95% CI, 0.04–0.14; P = 2.4 × 10−4, respectively), and thinner ganglion cell–inner plexiform layer, inner nuclear layer, and outer plexiform layer + outer nuclear layer thicknesses (P < 0.001). Participants resident in areas of higher levels of PM2.5 absorbance were more likely to have thinner retinal nerve fiber layer, inner nuclear layer, and outer plexiform layer + outer nuclear layers (β = –0.16 [95% CI, –0.22 to –0.10; P = 5.7 × 10−8]; β = –0.09 [95% CI, –0.12 to –0.06; P = 2.2 × 10−12]; and β = –0.12 [95% CI, –0.19 to –0.05; P = 8.3 × 10−4], respectively). Conclusions Greater exposure to PM2.5, PM2.5 absorbance, and nitrogen oxides were all associated with apparently adverse retinal structural features.
Collapse
|
5
|
Ghio AJ, Gonzalez DH, Paulson SE, Soukup JM, Dailey LA, Madden MC, Mahler B, Elmore SA, Schladweiler MC, Kodavanti UP. Ozone Reacts With Carbon Black to Produce a Fulvic Acid-Like Substance and Increase an Inflammatory Effect. Toxicol Pathol 2020; 48:887-898. [PMID: 32975498 DOI: 10.1177/0192623320961017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to ambient ozone has been associated with increased human mortality. Ozone exposure can introduce oxygen-containing functional groups in particulate matter (PM) effecting a greater capacity of the particle for metal complexation and inflammatory effect. We tested the postulate that (1) a fulvic acid-like substance can be produced through a reaction of a carbonaceous particle with high concentrations of ozone and (2) such a fulvic acid-like substance included in the PM can initiate inflammatory effects following exposure of respiratory epithelial (BEAS-2B) cells and an animal model (male Wistar Kyoto rats). Carbon black (CB) was exposed for 72 hours to either filtered air (CB-Air) or approximately 100 ppm ozone (CB-O3). Carbon black exposure to high levels of ozone produced water-soluble, fluorescent organic material. Iron import by BEAS-2B cells at 4 and 24 hours was not induced by incubations with CB-Air but was increased following coexposures of CB-O3 with ferric ammonium citrate. In contrast to CB-Air, exposure of BEAS-2B cells and rats to CB-O3 for 24 hours increased expression of pro-inflammatory cytokines and lung injury, respectively. It is concluded that inflammatory effects of carbonaceous particles on cells can potentially result from (1) an inclusion of a fulvic acid-like substance after reaction with ozone and (2) changes in iron homeostasis following such exposure.
Collapse
Affiliation(s)
- Andrew J Ghio
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David H Gonzalez
- Atmospheric and Oceanic Sciences, 8783University of California at Los Angeles, Los Angeles, CA, USA
| | - Suzanne E Paulson
- Atmospheric and Oceanic Sciences, 8783University of California at Los Angeles, Los Angeles, CA, USA
| | - Joleen M Soukup
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lisa A Dailey
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael C Madden
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - Susan A Elmore
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Urmila P Kodavanti
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Ghio AJ, Soukup JM, Dailey LA, Madden MC. Air pollutants disrupt iron homeostasis to impact oxidant generation, biological effects, and tissue injury. Free Radic Biol Med 2020; 151:38-55. [PMID: 32092410 PMCID: PMC8274387 DOI: 10.1016/j.freeradbiomed.2020.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Air pollutants cause changes in iron homeostasis through: 1) a capacity of the pollutant, or a metabolite(s), to complex/chelate iron from pivotal sites in the cell or 2) an ability of the pollutant to displace iron from pivotal sites in the cell. Through either pathway of disruption in iron homeostasis, metal previously employed in essential cell processes is sequestered after air pollutant exposure. An absolute or functional cell iron deficiency results. If enough iron is lost or is otherwise not available within the cell, cell death ensues. However, prior to death, exposed cells will attempt to reverse the loss of requisite metal. This response of the cell includes increased expression of metal importers (e.g. divalent metal transporter 1). Oxidant generation after exposure to air pollutants includes superoxide production which functions in ferrireduction necessary for cell iron import. Activation of kinases and phosphatases and transcription factors and increased release of pro-inflammatory mediators also result from a cell iron deficiency, absolute or functional, after exposure to air pollutants. Finally, air pollutant exposure culminates in the development of inflammation and fibrosis which is a tissue response to the iron deficiency challenging cell survival. Following the response of increased expression of importers and ferrireduction, activation of kinases and phosphatases and transcription factors, release of pro-inflammatory mediators, and inflammation and fibrosis, cell iron is altered, and a new metal homeostasis is established. This new metal homeostasis includes increased total iron concentrations in cells with metal now at levels sufficient to meet requirements for continued function.
Collapse
Affiliation(s)
- Andrew J Ghio
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Joleen M Soukup
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Lisa A Dailey
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| | - Michael C Madden
- From the National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Weitekamp CA, Stevens T, Stewart MJ, Bhave P, Gilmour MI. Health effects from freshly emitted versus oxidatively or photochemically aged air pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135772. [PMID: 31838301 PMCID: PMC9186024 DOI: 10.1016/j.scitotenv.2019.135772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/22/2019] [Accepted: 11/24/2019] [Indexed: 05/03/2023]
Abstract
Epidemiology studies over the past five decades have provided convincing evidence that exposure to air pollution is associated with multiple adverse health outcomes, including increased mortality. Air pollution is a complex mixture of particles, vapors and gases emitted from natural and anthropogenic sources as well as formed through photochemical transformation processes. In metropolitan areas, air pollutants from combustion emissions feature a blend of emitted particles, oxides of carbon, sulfur and nitrogen, volatile organic compounds, and secondary reaction products, such as ozone, nitrogen dioxide, and secondary organic aerosols. Because many of the primary and transformed pollutants track together, their relative contributions to health outcomes are difficult to disentangle. Aside from the criteria pollutants ozone and nitrogen dioxide and some of the simpler aldehydes (e.g. formaldehyde and acrolein), other products from photochemical processes are a particularly vexing class of chemicals to investigate since they comprise a dynamic ill-defined complex mixture in both particulate and gas phases. The purpose of this review was to describe and compare health effects of freshly emitted versus oxidatively or photochemically aged air pollutants. In some cases, (e.g. single volatile organic compounds) photochemical transformation resulted in marked enhancements in toxicity through formation of both known and unidentified reaction products, while in other examples (e.g. aging of automobile emissions) the potentiation of effect was variable. The variation in experimental design, aging system employed, concentration and type of starting agent, and toxicity endpoints make comparisons between different studies exceedingly difficult. A more systematic approach with a greater emphasis on higher throughput screening and computational toxicology is needed to fully answer under what conditions oxidatively- or photochemically-transformed pollutants elicit greater health effects than primary emissions.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Tina Stevens
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Michael J Stewart
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Prakash Bhave
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - M Ian Gilmour
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
8
|
Zhu J, Chen Y, Shang J, Zhu T. Effects of air/fuel ratio and ozone aging on physicochemical properties and oxidative potential of soot particles. CHEMOSPHERE 2019; 220:883-891. [PMID: 33395809 DOI: 10.1016/j.chemosphere.2018.12.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 06/12/2023]
Abstract
Fuel combustion conditions and atmospheric aging processes can affect the physicochemical properties of soot particles, which further change the oxidative potential (OP) of soot. In this study, we generated two soot samples under higher and lower air/fuel ratio (A/F) conditions, and further treated them with ozone (O3) at a level similar to that in the polluted atmosphere. The physicochemical properties and OP values (measured by dithiothreitol (DTT) assay, OPDTT) of fresh and ozonised soot samples were compared to investigate the influences of A/F and O3 aging. Both A/F and O3 aging significantly affected soot physicochemical properties and OPDTT values. Lower A/F was favourable for generating soot particles containing more polycyclic aromatic hydrocarbon (PAH), water-soluble organic carbon (WSOC), and light-absorbing organics, but fewer oxygen-containing groups. After O3 aging, a decline in PAHs and increase in oxygen-containing groups and WSOC were observed in both aged soot samples. In addition, both lower A/F and O3 aging enhanced soot OPDTT values. Soot generated under lower A/F was more sensitive to O3 aging, after which there was a significantly greater change in physicochemical characteristics, in turn contributing substantially to the greater OP increase observed in low-A/F soot.
Collapse
Affiliation(s)
- Jiali Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Yueyue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China.
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, PR China
| |
Collapse
|
9
|
Croze ML, Zimmer L. Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms. J Alzheimers Dis 2019; 62:503-522. [PMID: 29480184 DOI: 10.3233/jad-170857] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atmospheric pollution is a well-known environmental hazard, especially in developing countries where millions of people are exposed to airborne pollutant levels above safety standards. Accordingly, several epidemiological and animal studies confirmed its role in respiratory and cardiovascular pathologies and identified a strong link between ambient air pollution exposure and adverse health outcomes such as hospitalization and mortality. More recently, the potential deleterious effect of air pollution inhalation on the central nervous system was also investigated and mounting evidence supports a link between air pollution exposure and neurodegenerative pathologies, especially Alzheimer's disease (AD). The focus of this review is to highlight the possible link between ozone air pollution exposure and AD incidence. This review's approach will go from observational and epidemiological facts to the proposal of molecular mechanisms. First, epidemiological and postmortem human study data concerning residents of ozone-severely polluted megacities will be presented and discussed. Then, the more particular role of ozone air pollution in AD pathology will be described and evidenced by toxicological studies in rat or mouse with ozone pollution exposure only. The experimental paradigms used to reproduce in rodent the human exposure to ozone air pollution will be described. Finally, current insights into the molecular mechanisms through which ozone inhalation can affect the brain and play a role in AD development or progression will be recapitulated.
Collapse
Affiliation(s)
- Marine L Croze
- Université Claude Bernard Lyon 1, INSERM, CNRS, Lyon Neuroscience Research Center, Lyon, France
| | - Luc Zimmer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Lyon Neuroscience Research Center, Lyon, France.,Hospices Civils de Lyon, CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
10
|
Chu H, Hao W, Cheng Z, Huang Y, Wang S, Shang J, Hou X, Meng Q, Zhang Q, Jia L, Zhou W, Wang P, Jia G, Zhu T, Wei X. Black carbon particles and ozone-oxidized black carbon particles induced lung damage in mice through an interleukin-33 dependent pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:217-228. [PMID: 29981970 DOI: 10.1016/j.scitotenv.2018.06.329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Black carbon (BC) is a key component of atmospheric particles which has adverse effects on human health. Oxidation could lead to chemical property and toxicity potency changes of BC. The key cytokines participating in lung damage in mice induced by BC and ozone-oxidized BC (oBC) particles have been investigated in this study. It was concluded that oBC has stronger potency of inducing lung damage in mice comparing to BC. IL-6 and IL-33 were hypothesized to play important roles in this damage. Accordingly, IL-6 and IL-33 neutralizing antibodies were used to explore which cytokine might play a key role in lung inflammation induced by BC and oBC. As a result, IL-6 neutralizing antibody did not alleviate the lung damage induced by BC and oBC. However, IL-33 neutralizing antibody prevented BC and oBC induced lung damage. Furthermore, IL-33 neutralizing antibody treatment reduced IL-6 mRNA expression. It is hypothesized that MAPK and PI3K-AKT pathways might be involved in the oBC particles caused lung damage. It was concluded that IL-33 plays a key role in BC and oBC induced lung damage in mice.
Collapse
Affiliation(s)
- Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yao Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Siqi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qi Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Lixia Jia
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Wenjuan Zhou
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Pengmin Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
11
|
Ghio AJ, Soukup JM, Madden MC. The toxicology of air pollution predicts its epidemiology. Inhal Toxicol 2018; 30:327-334. [PMID: 30516398 DOI: 10.1080/08958378.2018.1530316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The epidemiologic investigation has successively delineated associations of air pollution exposure with non-malignant and malignant lung disease, cardiovascular disease, cerebrovascular disease, pregnancy outcomes, perinatal effects and other extra-pulmonary disease including diabetes. Defining these relationships between air pollution exposure and human health closely parallels results of an earlier epidemiologic investigation into cigarette smoking and environmental tobacco smoke (ETS), two other particle-related exposures. Humic-like substances (HULIS) have been identified as a chemical component common to cigarette smoke and air pollution particles. Toxicology studies provide evidence that a disruption of iron homeostasis with sequestration of host metal by HULIS is a fundamental mechanistic pathway through which biological effects are initiated by cigarette smoke and air pollution particles. As a result of a common chemical component and a shared mechanistic pathway, it should be possible to extrapolate from the epidemiology of cigarette smoking and ETS to predict associations of air pollution exposure with human disease, which are currently unrecognized. Accordingly, it is anticipated that the forthcoming epidemiologic investigation will demonstrate relationships of air pollution with COPD causation, peripheral vascular disease, hypertension, renal disease, digestive disease, loss of bone mass/risk of fractures, dental disease, eye disease, fertility problems, and extrapulmonary malignancies.
Collapse
Affiliation(s)
- Andrew J Ghio
- a The National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Joleen M Soukup
- a The National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Michael C Madden
- a The National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| |
Collapse
|
12
|
Larsen AE, Reich BJ, Ruminski M, Rappold AG. Impacts of fire smoke plumes on regional air quality, 2006-2013. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:319-327. [PMID: 29288254 PMCID: PMC6556614 DOI: 10.1038/s41370-017-0013-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/17/2017] [Accepted: 10/16/2017] [Indexed: 05/10/2023]
Abstract
Increases in the severity and frequency of large fires necessitate improved understanding of the influence of smoke on air quality and public health. The objective of this study is to estimate the effect of smoke from fires across the continental U.S. on regional air quality over an extended period of time. We use 2006-2013 data on ozone (O3), fine particulate matter (PM2.5), and PM2.5 constituents from environmental monitoring sites to characterize regional air quality and satellite imagery data to identify plumes. Unhealthy levels of O3 and PM2.5 were, respectively, 3.3 and 2.5 times more likely to occur on plume days than on clear days. With a two-stage approach, we estimated the effect of plumes on pollutants, controlling for season, temperature, and within-site and between-site variability. Plumes were associated with an average increase of 2.6 p.p.b. (2.5, 2.7) in O3 and 2.9 µg/m3 (2.8, 3.0) in PM2.5 nationwide, but the magnitude of effects varied by location. The largest impacts were observed across the southeast. High impacts on O3 were also observed in densely populated urban areas at large distance from the fires throughout the southeast. Fire smoke substantially affects regional air quality and accounts for a disproportionate number of unhealthy days.
Collapse
Affiliation(s)
- Alexandra E Larsen
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Brian J Reich
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Mark Ruminski
- National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service, Camp Springs, MD, USA
| | - Ana G Rappold
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC, USA.
| |
Collapse
|
13
|
Wong EM, Walby WF, Wilson DW, Tablin F, Schelegle ES. Ultrafine Particulate Matter Combined With Ozone Exacerbates Lung Injury in Mature Adult Rats With Cardiovascular Disease. Toxicol Sci 2018; 163:140-151. [PMID: 29394414 PMCID: PMC5920298 DOI: 10.1093/toxsci/kfy018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Particulate matter (PM) and ozone (O3) are dominant air pollutants that contribute to development and exacerbation of multiple cardiopulmonary diseases. Mature adults with cardiovascular disease (CVD) are particularly susceptible to air pollution-related cardiopulmonary morbidities and mortalities. The aim was to investigate the biologic potency of ultrafine particulate matter (UFPM) combined with O3 in the lungs of mature adult normotensive and spontaneously hypertensive (SH) Wistar-Kyoto rats. Conscious, mature adult male normal Wistar-Kyoto (NW) and SH rats were exposed to one of the following atmospheres: filtered air (FA); UFPM (∼ 250 μg/m3); O3 (1.0 ppm); or UFPM + O3 (∼ 250 μg/m3 + 1.0 ppm) combined for 6 h, followed by an 8 h FA recovery period. Lung sections were evaluated for lesions in the large airways, terminal bronchiolar/alveolar duct regions, alveolar parenchyma, and vasculature. NW and SH rats were similarly affected by the combined-pollutant exposure, displaying severe injury in both large and small airways. SH rats were particularly susceptible to O3 exposure, exhibiting increased injury scores in terminal bronchioles and epithelial degeneration in large airways. UFPM-exposure groups had minimal histologic changes. The chemical composition of UFPM was altered by the addition of O3, indicating that ozonolysis promoted compound degradation. O3 increased the biologic potency of UFPM, resulting in greater lung injury following exposure. Pathologic manifestations of CVD may confer susceptibility to air pollution by impairing normal lung defenses and responses to exposure.
Collapse
Affiliation(s)
- Emily M Wong
- Department of Anatomy, Physiology, and Cell Biology
| | | | - Dennis W Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California 95616
| | - Fern Tablin
- Department of Anatomy, Physiology, and Cell Biology
| | | |
Collapse
|
14
|
Farris BY, Antonini JM, Fedan JS, Mercer RR, Roach KA, Chen BT, Schwegler-Berry D, Kashon ML, Barger MW, Roberts JR. Pulmonary toxicity following acute coexposures to diesel particulate matter and α-quartz crystalline silica in the Sprague-Dawley rat. Inhal Toxicol 2017; 29:322-339. [PMID: 28967277 PMCID: PMC6545482 DOI: 10.1080/08958378.2017.1361487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of acute pulmonary coexposures to silica and diesel particulate matter (DPM), which may occur in various mining operations, were investigated in vivo. Rats were exposed by intratracheal instillation (IT) to silica (50 or 233 µg), DPM (7.89 or 50 µg) or silica and DPM combined in phosphate-buffered saline (PBS) or to PBS alone (control). At one day, one week, one month, two months and three months postexposure bronchoalveolar lavage and histopathology were performed to assess lung injury, inflammation and immune response. While higher doses of silica caused inflammation and injury at all time points, DPM exposure alone did not. DPM (50 µg) combined with silica (233 µg) increased inflammation at one week and one-month postexposure and caused an increase in the incidence of fibrosis at one month compared with exposure to silica alone. To assess susceptibility to lung infection following coexposure, rats were exposed by IT to 233 µg silica, 50 µg DPM, a combination of the two or PBS control one week before intratracheal inoculation with 5 × 105 Listeria monocytogenes. At 1, 3, 5, 7 and 14 days following infection, pulmonary immune response and bacterial clearance from the lung were evaluated. Coexposure to DPM and silica did not alter bacterial clearance from the lung compared to control. Although DPM and silica coexposure did not alter pulmonary susceptibility to infection in this model, the study showed that noninflammatory doses of DPM had the capacity to increase silica-induced lung injury, inflammation and onset/incidence of fibrosis.
Collapse
Affiliation(s)
- Breanne Y. Farris
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | - James M. Antonini
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Jeffrey S. Fedan
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Robert R. Mercer
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katherine A. Roach
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Bean T. Chen
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | | | - Michael L. Kashon
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mark W. Barger
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jenny R. Roberts
- National Institute for Occupational Safety and Health, Morgantown, WV, USA
- School of Medicine, West Virginia University, Morgantown, WV, USA
- School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
15
|
Chu H, Shang J, Jin M, Li Q, Chen Y, Huang H, Li Y, Pan Y, Tao X, Cheng Z, Meng Q, Jia G, Zhu T, Wei X, Hao W. Comparison of lung damage in mice exposed to black carbon particles and ozone-oxidized black carbon particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:303-312. [PMID: 27570198 DOI: 10.1016/j.scitotenv.2016.08.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
Black carbon (BC) is a key component of atmospheric particles and has a significant effect on human health. Oxidation could change the characteristics of BC and increase its toxicity. The comparison of lung damage in mice exposed to BC and ozone-oxidized BC (oBC) particles is investigated in this study. Mice which were intratracheally instilled with particles have a higher expression of IL-1β, IL-6 and IL-33 in bronchoalveolar lavage fluid (BALF). Also, the IL-6, IL-33 mRNA expression in the lung tissue of mice instilled with oBC was higher than that of mice instilled with BC. The expression of CD3 in the lung tissue of mice intratracheally instilled with oBC was higher than the mice distilled with BC. The pathology results showed that the lung tissue of mice instilled with oBC particles have much more inflammatory cells infiltration than that of mice treated with BC. It is believed that the PI3K-AKT pathway might be involved in the oBC particles caused lung damage. Results indicated that oBC particles in the atmosphere may cause more damage to health.
Collapse
Affiliation(s)
- Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Ming Jin
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qian Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China; POTEN Environment Group Co., Ltd., Beijing 100082, PR China
| | - Yueyue Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Hongpeng Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yuan Li
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Yao Pan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Xi Tao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Zhiyuan Cheng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, PR China.
| |
Collapse
|
16
|
Ramanathan G, Yin F, Speck M, Tseng CH, Brook JR, Silverman F, Urch B, Brook RD, Araujo JA. Effects of urban fine particulate matter and ozone on HDL functionality. Part Fibre Toxicol 2016; 13:26. [PMID: 27221567 PMCID: PMC4879751 DOI: 10.1186/s12989-016-0139-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 05/10/2016] [Indexed: 01/16/2023] Open
Abstract
Background Exposures to ambient particulate matter (PM) are associated with increased morbidity and mortality. PM2.5 (<2.5 μm) and ozone exposures have been shown to associate with carotid intima media thickness in humans. Animal studies support a causal relationship between air pollution and atherosclerosis and identified adverse PM effects on HDL functionality. We aimed to determine whether brief exposures to PM2.5 and/or ozone could induce effects on HDL anti-oxidant and anti-inflammatory capacity in humans. Methods Subjects were exposed to fine concentrated ambient fine particles (CAP) with PM2.5 targeted at 150 μg/m3, ozone targeted at 240 μg/m3(120 ppb), PM2.5 plus ozone targeted at similar concentrations, and filtered air (FA) for 2 h, on 4 different occasions, at least two weeks apart, in a randomized, crossover study. Blood was obtained before exposures (baseline), 1 h after and 20 h after exposures. Plasma HDL anti-oxidant/anti-inflammatory capacity and paraoxonase activity were determined. HDL anti-oxidant/anti-inflammatory capacity was assessed by a cell-free fluorescent assay and expressed in units of a HDL oxidant index (HOI). Changes in HOI (ΔHOI) were calculated as the difference in HOI from baseline to 1 h after or 20 h after exposures. Results There was a trend towards bigger ΔHOI between PM2.5 and FA 1 h after exposures (p = 0.18) but not 20 h after. This trend became significant (p <0.05) when baseline HOI was lower (<1.5 or <2.0), indicating decreased HDL anti-oxidant/anti-inflammatory capacity shortly after the exposures. There were no significant effects of ozone alone or in combination with PM2.5 on the change in HOI at both time points. The change in HOI due to PM2.5 showed a positive trend with particle mass concentration (p = 0.078) and significantly associated with the slope of systolic blood pressure during exposures (p = 0.005). Conclusions Brief exposures to concentrated PM2.5 elicited swift effects on HDL anti-oxidant/anti-inflammatory functionality, which could indicate a potential mechanism for how particulate air pollution induces harmful cardiovascular effects. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0139-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Fen Yin
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Mary Speck
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Chi-Hong Tseng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA
| | - Jeffrey R Brook
- Environment Canada, Toronto, ON, Canada.,Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, ON, Canada
| | - Frances Silverman
- Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, ON, Canada.,Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Bruce Urch
- Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR), Toronto, ON, Canada.,Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jesus A Araujo
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA. .,Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, USA. .,Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Bernardo S. Franklin
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
| | - Matthew S. Mangan
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
- German Center for Neurodegenerative Diseases, Bonn 53175, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn 53127, Germany; , ,
- German Center for Neurodegenerative Diseases, Bonn 53175, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
18
|
Antiñolo M, Willis MD, Zhou S, Abbatt JPD. Connecting the oxidation of soot to its redox cycling abilities. Nat Commun 2015; 6:6812. [PMID: 25873384 PMCID: PMC4410628 DOI: 10.1038/ncomms7812] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Although it is known that soot particles are emitted in large quantities to the atmosphere, our understanding of their environmental effects is limited by our knowledge of how their composition is subsequently altered through atmospheric processing. Here we present an on-line mass spectrometric study of the changing chemical composition of hydrocarbon soot particles as they are oxidized by gas-phase ozone, and we show that the surface-mediated loss rates of adsorbed polycyclic aromatic hydrocarbons in soot are directly connected to a significant increase in the particle redox cycling abilities. With redox cycling implicated as an oxidative stress mechanism that arises after inhalation of atmospheric particles, this work draws a quantitative connection between the detailed heterogeneous chemistry occurring on atmospheric particles and a potential toxic mechanism attributable to that aerosol.
Collapse
Affiliation(s)
- María Antiñolo
- 1] Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada [2] Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela s/n, Ciudad Real 13071, Spain
| | - Megan D Willis
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada
| | - Shouming Zhou
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario, M5S 3H6 Canada
| |
Collapse
|
19
|
Wang G, Zhao J, Jiang R, Song W. Rat lung response to ozone and fine particulate matter (PM2.5) exposures. ENVIRONMENTAL TOXICOLOGY 2015; 30:343-356. [PMID: 24136897 DOI: 10.1002/tox.21912] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 05/28/2023]
Abstract
Exposure to different ambient pollutants maybe more toxic to lung than exposure to a single pollutant. In this study, we discussed the inflammation and oxidative stress responses of rat lung caused by ozone and PM2.5 versus that of rats exposed to saline, ozone, or single PM2.5 . Wistar rats inhaled 0.8 ppm ozone or air for 4 h and then placed in air for 3 h following intratracheal instillation with 0, 0.2 (low dose), 0.8 (medium dose), 3.2 (high dose) mg/rat PM2.5 dissolved in sterile saline (0.25 mL/rat), repeated twice per week for 3 weeks, the cumulative doses of PM2.5 in animals were 1.2, 4.8, and 19.2 mg. Rats were sacrificed 24 h after the last (sixth) exposure. The collected bronchoalveolar lavage fluid (BALF) was analyzed for inflammatory cells and cytokines. Lung tissues were processed for light microscopic and transmission electron microscopic (TEM) examinations. Results showed that total cell number in BALF of PM2.5 -exposed groups were higher than control (p < 0.05). PM2.5 instillation caused dose-trend increase in tumor necrosis factor alpha (TNF-α), interleukin-6, lactate dehydrogenase, and total protein of BALF. Exposure to ozone alone only caused TNF-α significant change in above-mentioned indicators of lung injury. On the other hand, ozone could enhance PM2.5-induced inflammatory changes and pathological characters in rat lungs. SOD and GSH-Px activities in lung were reduced in PM2.5-exposed rats with and without prior ozone exposure compared to control. To determine whether the PM2.5 and ozone affect endothelium system, iNOS, eNOS, and ICAM-1 mRNA levels in lung were analyzed by real-time PCR. These data demonstrated that inflammation and oxidative stress were involved in toxicology mechanisms of PM2.5 in rat lung and ozone potentiated these effects induced by PM2.5. These results have implications for understanding the pulmonary effects induced by ozone and PM2.5.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Hygienic Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, 150081, China; Department of Environmental Health, School of Public Health, Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, 200032, China
| | | | | | | |
Collapse
|
20
|
Kurhanewicz N, McIntosh-Kastrinsky R, Tong H, Walsh L, Farraj AK, Hazari MS. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses. Part Fibre Toxicol 2014; 11:54. [PMID: 25318591 PMCID: PMC4203862 DOI: 10.1186/s12989-014-0054-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022] Open
Abstract
Background Studies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM) and gas, to determine whether pollutant interactions alter (e.g. synergistically, antagonistically) the health response. This study examines the independent effects of fine (FCAPs) and ultrafine (UFCAPs) concentrated ambient particles on cardiac function, and determine the impact of ozone (O3) co-exposure on the response. We hypothesized that UFCAPs would cause greater decrement in mechanical function and electrical dysfunction than FCAPs, and that O3 co-exposure would enhance the effects of both particle-types. Methods Conscious/unrestrained radiotelemetered mice were exposed once whole-body to either 190 μg/m3 FCAPs or 140 μg/m3 UFCAPs with/without 0.3 ppm O3; separate groups were exposed to either filtered air (FA) or O3 alone. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure, and cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 hrs post-exposure. Results FCAPs alone caused a significant decrease in baseline left ventricular developed pressure (LVDP) and contractility, whereas UFCAPs did not; neither FCAPs nor UFCAPs alone caused any ECG changes. O3 co-exposure with FCAPs caused a significant decrease in heart rate variability when compared to FA but also blocked the decrement in cardiac function. On the other hand, O3 co-exposure with UFCAPs significantly increased QRS-interval, QTc and non-conducted P-wave arrhythmias, and decreased LVDP, rate of contractility and relaxation when compared to controls. Conclusions These data suggest that particle size and gaseous interactions may play a role in cardiac function decrements one day after exposure. Although FCAPs + O3 only altered autonomic balance, UFCAPs + O3 appeared to be more serious by increasing cardiac arrhythmias and causing mechanical decrements. As such, O3 appears to interact differently with FCAPs and UFCAPs, resulting in varied cardiac changes, which suggests that the cardiovascular effects of particle-gas co-exposures are not simply additive or even generalizable. Additionally, the mode of toxicity underlying this effect may be subtle given none of the exposures described here impaired post-ischemia recovery. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0054-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Kurhanewicz
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Rachel McIntosh-Kastrinsky
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Haiyan Tong
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Leon Walsh
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Aimen K Farraj
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Mehdi S Hazari
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| |
Collapse
|
21
|
Madden MC, Stevens T, Case M, Schmitt M, Diaz-Sanchez D, Bassett M, Montilla TS, Berntsen J, Devlin RB. Diesel exhaust modulates ozone-induced lung function decrements in healthy human volunteers. Part Fibre Toxicol 2014; 11:37. [PMID: 25178924 PMCID: PMC4354281 DOI: 10.1186/s12989-014-0037-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/05/2014] [Indexed: 01/22/2023] Open
Abstract
The potential effects of combinations of dilute whole diesel exhaust (DE) and ozone (O₃), each a common component of ambient airborne pollutant mixtures, on lung function were examined. Healthy young human volunteers were exposed for 2 hr to pollutants while exercising (~50 L/min) intermittently on two consecutive days. Day 1 exposures were either to filtered air, DE (300 μg/m³), O₃ (0.300 ppm), or the combination of both pollutants. On Day 2 all exposures were to O₃ (0.300 ppm), and Day 3 served as a followup observation day. Lung function was assessed by spirometry just prior to, immediately after, and up to 4 hr post-exposure on each exposure day. Functional pulmonary responses to the pollutants were also characterized based on stratification by glutathione S-transferase mu 1 (GSTM1) genotype. On Day 1, exposure to air or DE did not change FEV1 or FVC in the subject population (n = 15). The co-exposure to O₃ and DE decreased FEV1 (17.6%) to a greater extent than O₃ alone (9.9%). To test for synergistic exposure effects, i.e., in a greater than additive fashion, FEV1 changes post individual O₃ and DE exposures were summed together and compared to the combined DE and O₃ exposure; the p value was 0.057. On Day 2, subjects who received DE exposure on Day 1 had a larger FEV1 decrement (14.7%) immediately after the O₃ exposure than the individuals' matched response following a Day 1 air exposure (10.9%). GSTM1 genotype did not affect the magnitude of lung function changes in a significant fashion. These data suggest that altered respiratory responses to the combination of O₃ and DE exposure can be observed showing a greater than additive manner. In addition, O₃-induced lung function decrements are greater with a prior exposure to DE compared to a prior exposure to filtered air. Based on the joint occurrence of these pollutants in the ambient environment, the potential exists for interactions in more than an additive fashion affecting lung physiological processes.
Collapse
Affiliation(s)
- Michael C Madden
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
- U.S EPA Human Studies Facility, 104 Mason Farm Road, Chapel Hill, NC, 27599-7315, USA.
| | - Tina Stevens
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
- Currently ORISE, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Martin Case
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Michael Schmitt
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - David Diaz-Sanchez
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Maryann Bassett
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | - Tracey S Montilla
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| | | | - Robert B Devlin
- EPHD, NHEERL, US EPA, Research Triangle Park, Chapel Hill, NC, 27711, USA.
| |
Collapse
|
22
|
Robertson S, Thomson AL, Carter R, Stott HR, Shaw CA, Hadoke PWF, Newby DE, Miller MR, Gray GA. Pulmonary diesel particulate increases susceptibility to myocardial ischemia/reperfusion injury via activation of sensory TRPV1 and β1 adrenoreceptors. Part Fibre Toxicol 2014; 11:12. [PMID: 24568236 PMCID: PMC4016506 DOI: 10.1186/1743-8977-11-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/08/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Clinical studies have now confirmed the link between short-term exposure to elevated levels of air pollution and increased cardiovascular mortality, but the mechanisms are complex and not completely elucidated. The present study was designed to investigate the hypothesis that activation of pulmonary sensory receptors and the sympathetic nervous system underlies the influence of pulmonary exposure to diesel exhaust particulate on blood pressure, and on the myocardial response to ischemia and reperfusion. METHODS & RESULTS 6 h after intratracheal instillation of diesel exhaust particulate (0.5 mg), myocardial ischemia and reperfusion was performed in anesthetised rats. Blood pressure, duration of ventricular arrhythmia, arrhythmia-associated death, tissue edema and reperfusion injury were all increased by diesel exhaust particulate exposure. Reperfusion injury was also increased in buffer perfused hearts isolated from rats instilled in vivo, excluding an effect dependent on continuous neurohumoral activation or systemic inflammatory mediators. Myocardial oxidant radical production, tissue apoptosis and necrosis were increased prior to ischemia, in the absence of recruited inflammatory cells. Intratracheal application of an antagonist of the vanilloid receptor TRPV1 (AMG 9810, 30 mg/kg) prevented enhancement of systolic blood pressure and arrhythmia in vivo, as well as basal and reperfusion-induced myocardial injury ex vivo. Systemic β1 adrenoreceptor antagonism with metoprolol (10 mg/kg) also blocked enhancement of myocardial oxidative stress and reperfusion injury. CONCLUSIONS Pulmonary diesel exhaust particulate increases blood pressure and has a profound adverse effect on the myocardium, resulting in tissue damage, but also increases vulnerability to ischemia-associated arrhythmia and reperfusion injury. These effects are mediated through activation of pulmonary TRPV1, the sympathetic nervous system and locally generated oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gillian A Gray
- BHF/ University Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
23
|
Solomon A, Smyth E, Mitha N, Pitchford S, Vydyanath A, Luther PK, Thorley AJ, Tetley TD, Emerson M. Induction of platelet aggregation after a direct physical interaction with diesel exhaust particles. J Thromb Haemost 2013; 11:325-34. [PMID: 23206187 DOI: 10.1111/jth.12087] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND There is a proven link between exposure to traffic-derived particulate air pollution and the incidence of platelet-driven cardiovascular diseases. It is suggested that inhalation of small, nanosized particles increases cardiovascular risk via toxicological and inflammatory processes and translocation of nanoparticles into the bloodstream has been shown in experimental models. We therefore investigated the ability of diesel exhaust particles (DEP) to interact physically and functionally with platelets. METHODS The interaction of DEP and carbon black (CB) with platelets was examined by transmission electron microscopy (TEM), whereas the functional consequences of exposure were assessed by measuring in vitro and in vivo platelet aggregation via established methods. RESULTS Both DEP and CB were internalized and seen in proximity with the open canalicular system in platelets. DEP induced platelet aggregation in vitro whereas CB had no effect. DEP induced Ca(2+) release, dense granule secretion and surface P-selectin expression, but not toxicologic membrane disruption. Low concentrations of DEP potentiated agonist-induced platelet aggregation in vitro and in vivo. CONCLUSIONS DEP associate physically with platelets in parallel with a Ca(2+) -mediated aggregation response displaying the conventional features of agonist-induced aggregation. The ability of DEP to enhance the aggregation response to platelet stimuli would be expected to increase the incidence of platelet-driven cardiovascular events should they be inhaled and translocate into the blood. This study provides a potential mechanism for the increased thrombotic risk associated with exposure to ambient particulate air pollution.
Collapse
Affiliation(s)
- A Solomon
- Platelet Biology Group, Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Robertson S, Gray GA, Duffin R, McLean SG, Shaw CA, Hadoke PWF, Newby DE, Miller MR. Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo. Part Fibre Toxicol 2012; 9:9. [PMID: 22480168 PMCID: PMC3361483 DOI: 10.1186/1743-8977-9-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 04/05/2012] [Indexed: 01/09/2023] Open
Abstract
Background Inhalation of diesel exhaust impairs vascular function in man, by a mechanism that has yet to be fully established. We hypothesised that pulmonary exposure to diesel exhaust particles (DEP) would cause endothelial dysfunction in rats as a consequence of pulmonary and systemic inflammation. Methods Wistar rats were exposed to DEP (0.5 mg) or saline vehicle by intratracheal instillation and hind-limb blood flow, blood pressure and heart rate were monitored in situ 6 or 24 h after exposure. Vascular function was tested by administration of the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) in vivo and ex vivo in isolated rings of thoracic aorta, femoral and mesenteric artery from DEP exposed rats. Bronchoalveolar lavage fluid (BALF) and blood plasma were collected to assess pulmonary (cell differentials, protein levels & interleukin-6 (IL-6)) and systemic (IL-6), tumour necrosis factor alpha (TNFα) and C-reactive protein (CRP)) inflammation, respectively. Results DEP instillation increased cell counts, total protein and IL-6 in BALF 6 h after exposure, while levels of IL-6 and TNFα were only raised in blood 24 h after DEP exposure. DEP had no effect on the increased hind-limb blood flow induced by ACh in vivo at 6 or 24 h. However, responses to SNP were impaired at both time points. In contrast, ex vivo responses to ACh and SNP were unaltered in arteries isolated from rats exposed to DEP. Conclusions Exposure of rats to DEP induces both pulmonary and systemic inflammation, but does not modify endothelium-dependent vasodilatation. Other mechanisms in vivo limit dilator responses to SNP and these require further investigation.
Collapse
Affiliation(s)
- Sarah Robertson
- Centre of Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Recent discoveries in the field of air pollution toxicology highlight the potential impact of specific sources of air pollution, especially related to roadway emissions, on acute and chronic cardiovascular disease. This review covers potential mechanisms, both in terms of biological pathways and chemical drivers, to explain these observations. RECENT FINDINGS Air pollution is associated with chronic progression of cardiovascular disease. Roadway exposures appear to have a strong correlation to these adverse outcomes. Controlled toxicological studies highlight potential interactions between vehicle-source emissions and adverse vascular outcomes. Mechanistically, a role for both innate and adaptive immune responses is emerging, with important recent findings demonstrating that immunomodulatory pattern-recognition receptors such as Toll-like receptor-4 and lectin-like oxidized LDL receptor-1 may play a role in communicating airway exposures to cardiovascular outcomes. SUMMARY An improved understanding of the sources and mechanisms underlying adverse cardiovascular health outcomes of air pollution would enhance our ability to manage vulnerable populations and establish precise, effective regulatory policies.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity of diesel exhaust particles (DEPs), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been investigated. We review the recent controlled human exposures to diesel exhaust and DEPs, and summarize the investigations into the associations between this emission source air pollution particle and airway inflammation. RECENT FINDINGS Using bronchoalveolar lavage, bronchial biopsies, and sputum collection, studies have demonstrated inflammation in the airways of healthy individuals after exposure to diesel exhaust and DEPs. This inflammation has included neutrophils, eosinophils, mast cells, and lymphocytes. Elevated expression and concentrations of inflammatory mediators have similarly been observed in the respiratory tract after diesel exhaust and DEP exposure. An increased sensitivity of asthmatic individuals to the proinflammatory effects of DEPs has not been confirmed. SUMMARY Inflammation after diesel exhaust and DEP exposure is evident at higher concentrations only; there appears to be a threshold dose for DEPs approximating 300 μg/m. The lack of a biological response to DEPs at lower concentrations may reflect a contribution of gaseous constituents or interactions between DEPs and gaseous air pollutants to the human inflammatory response and function loss.
Collapse
|
27
|
Lee D, Wallis C, Van Winkle LS, Wexler AS. Disruption of tracheobronchial airway growth following postnatal exposure to ozone and ultrafine particles. Inhal Toxicol 2011; 23:520-31. [PMID: 21780864 DOI: 10.3109/08958378.2011.591447] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study examined airway structure changes in adult rats after a long recovery period due to sub-chronic juvenile exposure to ozone and ultrafine particles that have a high organic fraction. Neonatal male Sprague-Dawley rats were exposed during lung development to 3 cycles of 0.5 ppm ozone from postnatal day 7 through 25. Two different exposure patterns were used: 5-day exposure per week (Ozone52) or 2-day exposure per week (Ozone25) with or without co-exposure to ultrafine particles (OPFP5252, OPFP5225). Airway architecture was evaluated at 81 days of age, after 56 days of continued development beyond the exposure period in filtered air (FA). By analyzing CT images from lung airway casts, we determined airway diameter, length, branching angle, and rotation angle for most conducting airways. Compared with the FA control group, the Ozone52 group showed significant decreases in airway diameter in generations larger than 10 especially in the right diaphragmatic lobe and in airway length in distal generations, while changes in airway structure due to the Ozone25 exposure were not appreciable. Interaction effects of ozone and ultrafine particle exposures were not significant. These results suggest that airway alterations due to postnatal ozone exposure are not limited to the distal region but occur extensively from the middle to distal conducting airways. Further, alterations due to early ozone exposure do not recover nearly 2 months after exposure has ceased demonstrating a persistent airway structural change following an early life exposure to ozone.
Collapse
Affiliation(s)
- Dongyoub Lee
- Department of Mechanical and Aerospace Engineering, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
28
|
Quan C, Sun Q, Lippmann M, Chen LC. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction. Inhal Toxicol 2010; 22:738-53. [PMID: 20462391 DOI: 10.3109/08958371003728057] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ambient air PM(2.5) (particulate matter less than 2.5 mum in diameter) has been associated with cardiovascular diseases (CVDs), but the underlying mechanisms affecting CVDs are unknown. The authors investigated whether subchronic inhalation of concentrated ambient PM(2.5) (CAPs), whole diesel exhaust (WDE), or diesel exhaust gases (DEGs) led to exacerbation of atherosclerosis, pulmonary and systemic inflammation, and vascular dysfunction; and whether DEG interactions with CAPs alter cardiovascular effects. ApoE(-/-) mice were simultaneously exposed via inhalation for 5 hours/day, 4 days/week, for up to 5 months to one of five different exposure atmospheres: (1) filtered air (FA); (2) CAPs (105 microg/m(3)); (3) WDE (DEP = 436 microg/m(3)); (4) DEG (equivalent to gas levels in WDE group); and (5) CAPs+DEG (PM(2.5): 113 microg/m(3); with DEG equivalent to WDE group). After 3 and 5 months, lung lavage fluid and blood sera were analyzed, and atherosclerotic plaques were quantified by ultrasound imaging, hematoxylin and eosin (H&E stain), and en face Sudan IV stain. Vascular functions were assessed after 5 months of exposure. The authors showed that (1) subchronic CAPs, WDE, and DEG inhalations increased serum vascular cell adhesion molecule (VCAM)-1 levels and enhanced phenylephrine (PE)-induced vasoconstriction; (2) for plaque exacerbation, CAPs > WDE > DEG = FA, thus PM components (not present in WDE) were responsible for plaque development; (3) atherosclerosis can exacerbated through mechanistic pathways other than inflammation and vascular dysfunction; and (4) although there were no significant interactions between CAPs and DEG on plaque exacerbation, it is less clear whether the effects of CAPs on vasomotor dysfunction and pulmonary/systemic inflammation were enhanced by the DEG coexposure.
Collapse
Affiliation(s)
- Chunli Quan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987, USA
| | | | | | | |
Collapse
|
29
|
Farraj AK, Boykin E, Ledbetter A, Andrews D, Gavett SH. Increased lung resistance after diesel particulate and ozone co-exposure not associated with enhanced lung inflammation in allergic mice. Inhal Toxicol 2010; 22:33-41. [PMID: 20017592 DOI: 10.3109/08958370902862434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exposure to diesel exhaust particulate matter (DEP) exacerbates asthma. Likewise, similar effects have been reported with exposure to the oxidizing air pollutant ozone (O(3)). Since levels of both pollutants in ambient air tend to be simultaneously elevated, we investigated the possible synergistic effect of these agents on the exacerbation of allergic airways disease in mice. Male BALB/c mice were sensitized ip with ovalbumin (Ova) or vehicle only, then exposed once per week for 4 wk via nose-only inhalation (4 h) to the PM(2.5) fraction of DEP (2 mg/m(3)), O(3) (0.5 ppm), DEP and O(3), or filtered air, and then challenged with aerosolized ovalbumin. Ova sensitization in air-exposed mice enhanced pulmonary inflammatory cell infiltration, several indicators of injury in the lung (lactate dehydrogenase, albumin and total protein), and lung resistance (R(L)) and elastance (E(L)) in response to methacholine (MCh) aerosol challenge. DEP exposure did not enhance the Ova-induced increase in pulmonary cell infiltration, indicators of injury, or R(L) and E(L). O(3) exposure enhanced the Ova-induced increase in inflammatory cell infiltration and N-acetylglucosaminidase (NAG) in the lung, but had no effect on R(L) or E(L). DEP co-exposure significantly attenuated the O(3)-induced increase in cell infiltration and indicators of injury; co-exposure had no effect on E(L) relative to air-exposed Ova-sensitized mice. However, only DEP-O(3) co-exposure significantly increased the Ova-induced increase in R(L). Thus, O(3) and DEP co-exposure exacerbated airways hyperresponsiveness, a response that was not associated with parallel increases in pulmonary inflammation and one that may be mediated by a unique mechanism.
Collapse
Affiliation(s)
- Aimen K Farraj
- Experimental Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | | | | | | | | |
Collapse
|
30
|
Volckens J, Dailey L, Walters G, Devlin RB. Direct particle-to-cell deposition of coarse ambient particulate matter increases the production of inflammatory mediators from cultured human airway epithelial cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:4595-4599. [PMID: 19603682 PMCID: PMC2902165 DOI: 10.1021/es900698a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Exposure of cultured cells to particulate matter air pollution is usually accomplished by collecting particles on a solid matrix, extracting the particles from the matrix, suspending them in liquid, and applying the suspension to cells grown on plastic and submerged in medium. The objective of this work was to develop a more physiologically and environmentally relevant model of air pollutant deposition on cultures of human primary airway epithelial cells. We hypothesize that the toxicology of inhaled particulate matter depends strongly on both the particulate dispersion state and the mode of delivery to cells. Our exposure system employs a combination of unipolar charging and electrostatic force to deposit particles directly from the air onto cells grown at an air-liquid interface in a heated, humidified exposure chamber. Normal human bronchial epithelial cells exposed to concentrated, coarse ambient particulate matter in this system expressed increased levels of inflammatory biomarkers at 1 h following exposure and relative to controls exposed to particle-free air. More importantly, these effects are seen at particulate loadings that are 1-2 orders of magnitude lower than levels applied using traditional in vitro systems.
Collapse
Affiliation(s)
- John Volckens
- Department of Environmental and Radiological Health Sciences, 1681 Campus Delivery, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
31
|
Valavanidis A, Loridas S, Vlahogianni T, Fiotakis K. Influence of ozone on traffic-related particulate matter on the generation of hydroxyl radicals through a heterogeneous synergistic effect. JOURNAL OF HAZARDOUS MATERIALS 2009; 162:886-892. [PMID: 18602214 DOI: 10.1016/j.jhazmat.2008.05.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/21/2008] [Accepted: 05/22/2008] [Indexed: 05/26/2023]
Abstract
Epidemiologic studies suggest that ozone (O(3)) and airborne particulate matter (PM) can interact causing acute respiratory inflammation and other respiratory diseases. Recent studies investigated the hypothesis that the effects of air pollution caused by O(3) and PM are larger than the effect of these two pollutants individually. We investigated the hypothesis that ozone and traffic-related PM (PM(10) and PM(2.5), diesel and gasoline exhaust particles) interact synergistically to produce increasing amounts of highly reactive hydroxyl radicals (HO) in a heterogeneous aqueous mixture at physiological pH. Electron paramagnetic resonance (EPR) and spin trapping were used for the measurements. Results showed that HO radicals are generated by the catalytic action of PM surface area with ozone and that EPR peak intensities are two to three times higher compared to PM samples without ozone. Incubation of the nucleoside 2'-deoxyguanosine (dG) in aqueous mixtures of ozone and PM at pH 7.4 resulted in the hydroxylation at C(8) position of dG. The formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed a 2-2.5-fold increase over control (PM without O(3)). These results suggest that PM and O(3) act synergistically generating a sustained production of reactive HO radicals. Partitioning of O(3) into the particle phase depends on the concentration, hygroscopicity and particle size.
Collapse
Affiliation(s)
- Athanasios Valavanidis
- Department of Chemistry, University of Athens, University Campus Zografou, 15784 Athens, Greece.
| | | | | | | |
Collapse
|
32
|
Li J, Ghio AJ, Cho SH, Brinckerhoff CE, Simon SA, Liedtke W. Diesel exhaust particles activate the matrix-metalloproteinase-1 gene in human bronchial epithelia in a beta-arrestin-dependent manner via activation of RAS. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:400-9. [PMID: 19337515 PMCID: PMC2661910 DOI: 10.1289/ehp.0800311] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 10/29/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. OBJECTIVE We elucidated the molecular mechanisms of DEPs' up-regulation of MMP-1. METHODS/RESULTS Using permanent and primary human bronchial epithelial (HBE) cells at air-liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by beta-arrestins. Short interfering RNA mediated beta-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the -1607GG polymorphism, present in 60-80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. CONCLUSION Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human -1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of beta-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2.
Collapse
Affiliation(s)
- Jinju Li
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
| | - Andrew J. Ghio
- U.S. Environmental Protection Agency, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Seung-Hyun Cho
- U.S. Environmental Protection Agency, Research Triangle Park, Research Triangle Park, North Carolina, USA
| | - Constance E. Brinckerhoff
- Departments of Medicine and Biochemistry, Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Sidney A. Simon
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Center for Neuroengineering and
| | - Wolfgang Liedtke
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Division of Neurology, Department of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
33
|
Non-cancer health effects of diesel exhaust: A critical assessment of recent human and animal toxicological literature. Crit Rev Toxicol 2009; 39:195-227. [DOI: 10.1080/10408440802220603] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Joseph PM. Can fine particulate matter explain the paradoxical ozone associations? ENVIRONMENT INTERNATIONAL 2008; 34:1185-91. [PMID: 18430471 DOI: 10.1016/j.envint.2008.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/27/2008] [Accepted: 03/05/2008] [Indexed: 05/03/2023]
Abstract
Our previous paper entitled "Paradoxical ozone associations could be due to methyl nitrite from combustion of methyl ethers or esters in engine fuels" (Env. Int.. 2007;33;1090) reviewed 11 studies of the impact of ozone on human health that, paradoxically, found a negative coefficient for ozone-morbidity associations. We argued that the most likely explanation for this effect would be methyl nitrite (MN) as an unsuspected exhaust component of engines with methyl ether in the fuel. The basis of the argument was the fact that MN is rapidly destroyed by sunlight, so that MN would be negatively correlated with ozone. All (but one) of the reviewed studies concluded that criterion pollutants could not explain the negative slope. The argument was strengthened by the observation that such paradoxical ozone associations have not been found in regions without significant methyl ether in gasoline. Left unaddressed in the previous paper was the possibility that fine particulate matter (FPM) might explain the POA. If this were true, then it would be necessary that the FPM be negatively correlated with ozone in those regions that found a POA. The current paper reviews data on FPM-ozone correlations in those regions where a POA was identified. The results show that FPM was, in most cases, positively correlated with ozone and so could not explain the POA.
Collapse
Affiliation(s)
- Peter M Joseph
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-4283, USA.
| |
Collapse
|
35
|
|
36
|
Peretz A, Kaufman JD, Trenga CA, Allen J, Carlsten C, Aulet MR, Adar SD, Sullivan JH. Effects of diesel exhaust inhalation on heart rate variability in human volunteers. ENVIRONMENTAL RESEARCH 2008; 107:178-84. [PMID: 18329013 PMCID: PMC2518070 DOI: 10.1016/j.envres.2008.01.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/27/2007] [Accepted: 01/16/2008] [Indexed: 05/19/2023]
Abstract
OBJECTIVES Particulate matter (PM) air pollution is associated with alterations in cardiac conductance and sudden cardiac death in epidemiological studies. Traffic-related air pollutants, including diesel exhaust (DE) may be at least partly responsible for these effects. In this experimental study we assessed whether short-term exposure to DE would result in alterations in heart rate variability (HRV), a non-invasive measure of autonomic control of the heart. METHODS In a double-blind, crossover, controlled-exposure study, 16 adult volunteers were exposed (at rest) in randomized order to filtered air (FA) and two levels of diluted DE (100 or 200 microg/m(3) of fine particulate matter) in 2-h sessions. Before, and at four time points after each exposure we assessed HRV. HRV parameters assessed included both time domain statistics (standard deviation of N-N intervals (SDNN), and the square root of the mean of the sum of squared differences between successive N-N intervals (RMSSD)) and frequency domain statistics (high-frequency (HF) power, low-frequency (LF) power, and the LF/HF ratio). RESULTS We observed an effect at 3-h after initiation of DE inhalation on the frequency domain statistics of HRV. DE at 200 microg/m(3) elicited an increase in HF power compared to FA (Delta=0.33; 95% CI: 0.01-0.7) and a decrease in LF/HF ratio (Delta=-0.74; 95% CI: -1.2 to -0.2). The effect of DE on HF power was not consistent among study participants. There was no DE effect on time domain statistics and no significant DE effect on HRV in later time points. CONCLUSIONS We did not observe a consistent DE effect on the autonomic control of the heart in a controlled-exposure experiment in young participants. Efforts are warranted to understand discrepancies between epidemiological and experimental studies of air pollution's impact on HRV.
Collapse
Affiliation(s)
- Alon Peretz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Joel D. Kaufman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Carol A. Trenga
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Jason Allen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Chris Carlsten
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary R. Aulet
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Sara D. Adar
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Jeffrey H. Sullivan
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
37
|
Brown JS, Graham JA, Chen LC, Postlethwait EM, Ghio AJ, Foster WM, Gordon T. Panel discussion review: session four--assessing biological plausibility of epidemiological findings in air pollution research. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2007; 17 Suppl 2:S97-S105. [PMID: 18079771 DOI: 10.1038/sj.jes.7500632] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 06/26/2007] [Indexed: 05/25/2023]
Abstract
In December 2006, the U.S. Environmental Protection Agency (EPA) sponsored a 2-day workshop on "Interpretation of Epidemiologic Studies of Multipollutant Exposure and Health Effects" in Chapel Hill, NC. The final session at this workshop was devoted to assessing the biological plausibility of epidemiological findings with regard to criteria air pollutants. The presentations and the panel contributions of this last session primarily focused on controlled exposure studies and led to wide-ranging discussions, some of which were provocative. The panel summary provides some guidance to future evaluations of the biological plausibility of the epidemiological reports on criteria pollutants and is intended to stimulate thinking, without drawing any definitive conclusions. This paper does not approach, nor was it intended to approach, the more formal analytical approach such as that used in EPA's development of its Science Assessment Document for the criteria pollutants.
Collapse
Affiliation(s)
- James S Brown
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, RTP, North Carolina 27711, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In 2002 the U.S. Environmental Protection Agency (EPA) released a Health assessment Document for Diesel Engine Exhaust. The objective of this assessment was to examine the possible health hazards associated with exposure to diesel engine exhaust (DE). The assessment concludes that long-term inhalation exposure is likely to pose a lung cancer hazard to humans as inferred from epidemiologic and certain animal studies. Estimation of cancer potency from available epidemiology studies was not attempted because of the absence of a confident cancer dose-response and animal studies were not judged appropriate for cancer potency estimation. A noncancer chronic human health hazard is inferred from rodent studies which show dose-dependent inflammation and histopathology in the rat lung. For these noncancer effects a safe exposure concentration for humans was estimated. Short-term exposures were noted to cause irritation and inflammatory symptoms of a transient nature, these being highly variable across an exposed population. The assessment also indicates that there is emerging evidence for the exacerbation of existing allergies and asthma symptoms; however, as of 2002 the data were inadequate for quantitative dose-response analysis. The assessment conclusions are based on studies that used exposures from engines built prior to the mid 1990s. More recent engines without high-efficiency particle traps would be expected to have exhaust emissions with similar characteristics. With additional cancer epidemiology studies expected in 2007-2008, and a growing body of evidence for allergenicity and cardiovascular effects, future health assessments will have an expanded health effects data base to evaluate.
Collapse
Affiliation(s)
- Charles Ris
- U.S. Environmental Protection Agency, Washington, DC 20460, USA.
| |
Collapse
|
39
|
Bosson J, Pourazar J, Forsberg B, Adelroth E, Sandström T, Blomberg A. Ozone enhances the airway inflammation initiated by diesel exhaust. Respir Med 2006; 101:1140-6. [PMID: 17196810 DOI: 10.1016/j.rmed.2006.11.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/26/2006] [Accepted: 11/16/2006] [Indexed: 11/16/2022]
Abstract
Exposure to air pollution is associated with adverse health effects, with particulate matter (PM) and ozone (O(3)) both indicated to be of considerable importance. Diesel engine exhaust (DE) and O(3) generate substantial inflammatory effects in the airways. However, as yet it has not been determined whether a subsequent O(3) exposure would add to the diesel-induced airway inflammatory effects. Healthy subjects underwent two separate exposure series: A 1-h DE exposure at a PM-concentration of 300 microg/m(3), followed after 5h by a 2-h exposure to filtered air and 0.2 ppm O(3), respectively. Induced sputum was collected 18 h after the second exposure. A significant increase in the percentage of neutrophils (PMN) and concentration of myeloperoxidase (MPO) was seen in sputum post DE+O(3) vs. DE+air (p<0.05 and <0.05, respectively). Significant associations were observed between the responses in MPO concentration and total PMN cells (p=0.001), and also between MPO and matrix metalloproteinase-9 (MMP-9) (p<0.001). The significant increase of PMN and MPO after the DE+O(3) exposures, compared to DE+air, denotes an O(3)-induced magnification of the DE-induced inflammation. Furthermore, the correlation between responses in MPO and number of PMNs and MMP-9 illustrate that the PMNs are activated, resulting in a more potent inflammatory response. The present study indicates that O(3) exposure adds significantly to the inflammatory response that is established by diesel exhaust. This interaction between exposure to particulate pollution and O(3) in sequence should be taken into consideration when health effects of air pollution are considered.
Collapse
Affiliation(s)
- Jenny Bosson
- Department of Respiratory Medicine and Allergy, University Hospital, SE-901 85 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Kongerud J, Madden MC, Hazucha M, Peden D. Nasal responses in asthmatic and nonasthmatic subjects following exposure to diesel exhaust particles. Inhal Toxicol 2006; 18:589-94. [PMID: 16864550 DOI: 10.1080/08958370600743027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Asthma rates have been increasing worldwide, and exposure to diesel exhaust particles (DEP) may be implicated in this increase. DEP may also play a role in the increased morbidity and mortality associated with ambient airborne particulate matter (PM) exposure. Two types of nasal responses have been reported for human subjects nasally instilled with one type of DEP: alterations in cytokines responses, and an increase in immunoglobulin E (IgE) production. Since DEP composition can vary depending on several factors, including fuel composition and engine load, the ability of another DEP particle and ozone-treated DEP to alter nasal IgE and cytokine production was examined. Nonasthmatic and asthmatic subjects were intranasally instilled with 300 microg NIST 1650 DEP per nostril, NIST 1650 DEP previously exposed to ozone (ozDEP; 300 microg/nostril), or vehicle. Subjects underwent nasal lavage before DEP exposure, and 4 and 96 h after exposure. Nasal cell populations and soluble mediators in the nasal lavage fluid were characterized. Total cell number, cell types, cell viability, concentrations of soluble mediators (including interleukin [IL]-8, IL-6, IgE, and granulocyte-macrophage colony-stimulating factor [GM-CSF]) were not altered by either DEP or ozDEP exposure. NO levels were not altered by either particle exposure. These findings suggest that DEP can be relatively noninflammatory and nontoxic, and that the physicochemical characteristics of DEP need to be considered when assessing the health effects of exposure to diesel exhaust.
Collapse
Affiliation(s)
- Johny Kongerud
- Lungeavdelingen, Rikshospitalet, University of Oslo, Oslo, Norway
| | | | | | | |
Collapse
|
41
|
Jang AS, Choi IS, Takizawa H, Rhim T, Lee JH, Park SW, Park CS. Additive effect of diesel exhaust particulates and ozone on airway hyperresponsiveness and inflammation in a mouse model of asthma. J Korean Med Sci 2005; 20:759-63. [PMID: 16224148 PMCID: PMC2779271 DOI: 10.3346/jkms.2005.20.5.759] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Allergic airway diseases are related to exposure to atmospheric pollutants, which have been suggested to be one factor in the increasing prevalence of asthma. Little is known about the effect of ozone and diesel exhaust particulates (DEP) on the development or aggravation of asthma. We have used a mouse asthma model to determine the effect of ozone and DEP on airway hyperresponsiveness and inflammation. Methacholine enhanced pause (P(enh)) was measured. Levels of IL-4 and IFN-gamma were quantified in bronchoalveolar lavage fluids by enzyme immunoassays. The OVA-sensitized-challenged and ozone and DEP exposure group had higher P(enh) than the OVA-sensitized-challenged group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone exposure group. Levels of IFN-gamma were decreased in the OVA-sensitized-challenged and DEP exposure group and the OVA-sensitized-challenged and ozone and DEP exposure group compared to the OVA-sensitized-challenged and ozone exposure group. Levels of IL-4 were increased in the OVA-sensitized-challenged and ozone exposure group and the OVA-sensitized-challenged and DEP exposure group, and the OVA-sensitized-challenged and ozone and DEP exposure group compared to OVA-sensitized-challenged group. Co-exposure of ozone and DEP has additive effect on airway hyperresponsiveness by modulation of IL-4 and IFN-gamma suggesting that DEP amplify Th2 immune response.
Collapse
Affiliation(s)
- An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Hospital, Bucheon, Korea.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Exposure to ambient air particulate matter (PM) is associated with pulmonary and cardiovascular diseases and cancer. The mechanisms of PM-induced health effects are believed to involve inflammation and oxidative stress. The oxidative stress mediated by PM may arise from direct generation of reactive oxygen species from the surface of particles, soluble compounds such as transition metals or organic compounds, altered function of mitochondria or NADPH-oxidase, and activation of inflammatory cells capable of generating ROS and reactive nitrogen species. Resulting oxidative DNA damage may be implicated in cancer risk and may serve as marker for oxidative stress relevant for other ailments caused by particulate air pollution. There is overwhelming evidence from animal experimental models, cell culture experiments, and cell free systems that exposure to diesel exhaust and diesel exhaust particles causes oxidative DNA damage. Similarly, various preparations of ambient air PM induce oxidative DNA damage in in vitro systems, whereas in vivo studies are scarce. Studies with various model/surrogate particle preparations, such as carbon black, suggest that the surface area is the most important determinant of effect for ultrafine particles (diameter less than 100 nm), whereas chemical composition may be more important for larger particles. The knowledge concerning mechanisms of action of PM has prompted the use of markers of oxidative stress and DNA damage for human biomonitoring in relation to ambient air. By means of personal monitoring and biomarkers a few studies have attempted to characterize individual exposure, explore mechanisms and identify significant sources to size fractions of ambient air PM with respect to relevant biological effects. In these studies guanine oxidation in DNA has been correlated with exposure to PM(2.5) and ultrafine particles outdoor and indoor. Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution. Related biomarkers and personal monitoring may be useful tools for risk characterization.
Collapse
Affiliation(s)
- Lotte Risom
- Institute of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014 Copenhagen K, Denmark
| | | | | |
Collapse
|
43
|
Abstract
This paper reviews the major physical and chemical transformation the primary diesel emissions undergo during dispersion and transport in the atmosphere. Since diesel emissions contain compounds that are present in other combustion source's emissions, their atmospheric transformations are not specific to this source category only. The most important chemical reactions of diesel exhaust constituents are with OH radicals, followed by ozone, NO3 radicals and light. While data now exists concerning the chemical and physical nature and the inventory of diesel emissions, our knowledge concerning the products of their chemical transformations is still limited. In particular, there is currently very little in the literature that addresses the impact of atmospheric transformation on the health effects of inhaled diesel exhaust. As an example of such a study, the design and the preliminary data obtained from the current project executed with the aid of the European Photoreactor (EUPHORE) simulation chamber in Valencia, Spain, is discussed.
Collapse
Affiliation(s)
- Barbara Zielinska
- Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512, USA.
| |
Collapse
|
44
|
Henderson RF. Use of bronchoalveolar lavage to detect respiratory tract toxicity of inhaled material. ACTA ACUST UNITED AC 2005; 57 Suppl 1:155-9. [PMID: 16092723 DOI: 10.1016/j.etp.2005.05.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The first epithelial surface encountered by inhaled materials is the epithelium of the respiratory tract. The epithelium is lined by a fluid (ELF) that can be sampled by a saline wash (lavage) of the area of interest. This technique, known as bronchoalveolar lavage (BAL), provides a means of sampling a body fluid that can provide valuable information on the reaction of the lung to inhaled materials. The most common responses measured are indicators of an inflammatory response, the most sensitive of which is an influx of neutrophils. In the extracellular fluid, levels of beta-glucuronidase activity indicate activation of macrophages, and lactate dehydrogenase activity indicates cytotoxicity. Other pro- and anti-inflammatory soluble factors that can be measured in BAL fluid include secretory products of macrophages and epithelial cells, such as tumor necrosis factor alpha, fibronectin, interleukin-1, various chemotactic factors (including IL-8, MIP-2), growth factors, proteases, and antiproteases. Oxidative stress can be measured by the levels of reduced glutathione in ELF, and increased levels of alkaline phosphatase indicate increased Type II cell secretions. Allergic responses are indicated by increased eosinophils and factors such as histamine and arachidonate metabolites in BAL fluid. BAL analysis can be used as a complementary technique with more traditional measures of lung injury, such as histopathology or radiology. The advantage of BAL analysis is that one can pick up early indicators of biochemical changes leading to later morphological changes in a disease process. A second advantage is that the BAL fluid analyses are quantitative, and dose-response measures can be obtained. In large animals, one can do repeated lavages to follow a disease process; in small animals, one can use serial sacrifices in similarly exposed rodents to achieve the same goal. Research related to the use of BAL fluid analyses to detect lung damage has been conducted at the Lovelace Respiratory Research Institute with funding from various sources including the US Department of Energy and the US Environmental Protection Agency.
Collapse
Affiliation(s)
- Rogene F Henderson
- Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA.
| |
Collapse
|
45
|
Gong H, Linn WS, Clark KW, Anderson KR, Geller MD, Sioutas C. Respiratory responses to exposures with fine particulates and nitrogen dioxide in the elderly with and without COPD. Inhal Toxicol 2005; 17:123-32. [PMID: 15788373 DOI: 10.1080/08958370590904481] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Elderly people, with and without chronic obstructive pulmonary disease (COPD), may be susceptible to particulate matter (PM) air pollution. However, the respiratory impacts of inhaled PM combined with copollutant(s) in controlled exposure studies are unclear and warrant investigation since exposures to PMgas mixtures constitute realistic scenarios. Thus, we exposed 6 healthy subjects and 18 volunteers with COPD (mean age 71 yr) on separate days to (a) filtered air (FA); (b) 0.4 ppm NO2; (c) concentrated ambient particles (CAP), predominantly in the fine (PM2.5) size range, at concentrations near 200 microg/m3; and (d) CAP and NO2 together. Each 2-h exposure included exercise for 15 min every half hour. Most respiratory responses, including symptoms, spirometry, and total and differential counts of induced sputum cells, showed no statistically significant responses attributable to separate or combined effects of CAP and NO2. However, maximal mid-expiratory flow and arterial O2 saturation (measured by pulse oximetry) showed small but statistically significant decrements associated with CAP, greater in healthy than COPD subjects. CAP exposure was also associated with decreased percentages of columnar epithelial cells in sputum. The results suggest that the respiratory effect of the PMNO2 mixture may be primarily PM driven since coexposure to NO2 did not significantly enhance the responses. In conclusion, older adults exposed to urban fine particles may experience acute small-airways dysfunction with impaired gas exchange. Healthy subjects appear more susceptible, suggesting that the respiratory effect may be related to efficient penetration and deposition of inhaled toxic particles in distal small airways. More clinical investigation of the elderly population is warranted.
Collapse
Affiliation(s)
- Henry Gong
- Environmental Health Service, Los Amigos Research and Education Institute, Downey, California 90242, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Nakamura T, Nakamura H, Hoshino T, Ueda S, Wada H, Yodoi J. Redox regulation of lung inflammation by thioredoxin. Antioxid Redox Signal 2005; 7:60-71. [PMID: 15650396 DOI: 10.1089/ars.2005.7.60] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The lungs are the richest in oxygen among the various organs of the body and are always subject to harmful reactive oxygen species. Regulation of the reduction/oxidation (redox) state is critical for cell viability, activation, proliferation, and organ functions. Although the protective importance of various antioxidants has been reported, few antioxidants have established their clinical usefulness. Thioredoxin (TRX), a key redox molecule, plays crucial roles as an antioxidant and a catalyst in protein disulfide/dithiol exchange. TRX also modulates intracellular signal transduction and exerts antiinflammatory effects in tissues. In addition to its beneficial effects in other organs, the protective effect of TRX in the lungs has been shown against ischemia/ reperfusion injury, influenza infection, bleomycin-induced injury, or lethal inflammation caused by interleukin- 2 and interleukin-18. Monitoring of TRX in the plasma, airway, or lung tissue may be useful for the diagnosis and follow-up of pulmonary inflammation. Promotion/modulation of the TRX system by the administration of recombinant TRX protein, induction of endogenous TRX, or gene therapies can be a therapeutic modality for oxidative stress-associated lung disorders.
Collapse
Affiliation(s)
- Takayuki Nakamura
- Thioredoxin Project, Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Arimoto T, Kadiiska MB, Sato K, Corbett J, Mason RP. Synergistic production of lung free radicals by diesel exhaust particles and endotoxin. Am J Respir Crit Care Med 2004; 171:379-87. [PMID: 15477498 DOI: 10.1164/rccm.200402-248oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The present study tested the hypothesis that free radicals were involved in the pathogenesis of lung injury caused by diesel exhaust particles (DEP) and bacterial lipopolysaccharides (LPS). Intratracheal coinstillation of DEP and LPS in rat lungs resulted in synergistic enhancement of free radical generation in the lungs. The radical metabolites were characterized as lipid-derived by electron spin resonance (ESR). The free radical generation was paralleled by a synergistic increase in total protein and by infiltration of neutrophils in the bronchoalveolar lavage (BAL) fluid of the lungs. Experiments with NADP-reduced (NADPH) oxidase and iNOS knockout mice showed that NADPH oxidase and iNOS did not contribute to free radical generation. However, pretreatment with the macrophage toxicant GdCl(3), the xanthine oxidase (XO) inhibitor allopurinol, and the Fe(III) chelator Desferal resulted in a marked decrease in free radical generation, lung inflammation, and lung injury. These effects were concomitant with the inhibition of XO activity in BAL, suggesting that the activated macrophages and the activity of XO contributed to the generation of free radicals caused by DEP and LPS. This is the first demonstration that DEP and LPS work synergistically to enhance free radical generation in lungs, mediated by the activation of local XO.
Collapse
Affiliation(s)
- Toyoko Arimoto
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
48
|
Singh P, DeMarini DM, Dick CAJ, Tabor DG, Ryan JV, Linak WP, Kobayashi T, Gilmour MI. Sample characterization of automobile and forklift diesel exhaust particles and comparative pulmonary toxicity in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:820-5. [PMID: 15175167 PMCID: PMC1242007 DOI: 10.1289/ehp.6579] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Two samples of diesel exhaust particles (DEPs) predominate in health effects research: an automobile-derived DEP (A-DEP) sample and the National Institute of Standards Technology standard reference material (SRM 2975) generated from a forklift engine. A-DEPs have been tested extensively for their effects on pulmonary inflammation and exacerbation of allergic asthmalike responses. In contrast, SRM 2975 has been tested thoroughly for its genotoxicity. In the present study, we combined physical and chemical analyses of both DEP samples with pulmonary toxicity testing in CD-1 mice to compare the two materials and to make associations between their physicochemical properties and their biologic effects. A-DEPs had more than 10 times the amount of extractable organic material and less than one-sixth the amount of elemental carbon compared with SRM 2975. Aspiration of 100 micro g of either DEP sample in saline produced mild acute lung injury; however, A-DEPs induced macrophage influx and activation, whereas SRM 2975 enhanced polymorphonuclear cell inflammation. A-DEPs stimulated an increase in interleukin-6 (IL-6), tumor necrosis factor alpha, macrophage inhibitory protein-2, and the TH2 cytokine IL-5, whereas SRM 2975 only induced significant levels of IL-6. Fractionated organic extracts of the same quantity of DEPs (100 micro g) did not have a discernable effect on lung responses and will require further study. The disparate results obtained highlight the need for chemical, physical, and source characterization of particle samples under investigation. Multidisciplinary toxicity testing of diesel emissions derived from a variety of generation and collection conditions is required to meaningfully assess the health hazards associated with exposures to DEPs. Key words: automobile, diesel exhaust particles, forklift, mice, pulmonary toxicity, SRM 2975.
Collapse
Affiliation(s)
- Pramila Singh
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
DeMarini DM, Brooks LR, Warren SH, Kobayashi T, Gilmour MI, Singh P. Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:814-9. [PMID: 15175166 PMCID: PMC1242006 DOI: 10.1289/ehp.6578] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many pulmonary toxicity studies of diesel exhaust particles (DEPs) have used an automobile-generated sample (A-DEPs) whose mutagenicity has not been reported. In contrast, many mutagenicity studies of DEPs have used a forklift-generated sample (SRM 2975) that has been evaluated in only a few pulmonary toxicity studies. Therefore, we evaluated the mutagenicity of both DEPs in Salmonella coupled to a bioassay-directed fractionation. The percentage of extractable organic material (EOM) was 26.3% for A-DEPs and 2% for SRM 2975. Most of the A-EOM (~55%) eluted in the hexane fraction, reflecting the presence of alkanes and alkenes, typical of uncombusted fuel. In contrast, most of the SRM 2975 EOM (~58%) eluted in the polar methanol fraction, indicative of oxygenated and/or nitrated organics derived from combustion. Most of the direct-acting, base-substitution activity of the A-EOM eluted in the hexane/dichloromethane (DCM) fraction, but this activity eluted in the polar methanol fraction for the SRM 2975 EOM. The direct-acting frameshift mutagenicity eluted across fractions of A-EOM, whereas > 80% eluted only in the DCM fraction of SRM 2975 EOM. The A-DEPs were more mutagenic than SRM 2975 per mass of particle, having 227 times more polycyclic aromatic hydrocarbon-type and 8-45 more nitroarene-type mutagenic activity. These differences were associated with the different conditions under which the two DEP samples were generated and collected. A comprehensive understanding of the mechanisms responsible for the health effects of DEPs requires the evaluation of DEP standards for a variety of end points, and our results highlight the need for multidisciplinary studies on a variety of representative samples of DEPs.
Collapse
Affiliation(s)
- David M DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Li N, Hao M, Phalen RF, Hinds WC, Nel AE. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 2004; 109:250-65. [PMID: 14697739 DOI: 10.1016/j.clim.2003.08.006] [Citation(s) in RCA: 462] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asthma is a chronic inflammatory disease, which involves a variety of different mediators, including reactive oxygen species. There is growing awareness that particulate pollutants act as adjuvants during allergic sensitization and can also induce acute asthma exacerbations. In this communication we review the role of oxidative stress in asthma, with an emphasis on the pro-oxidative effects of diesel exhaust particles and their chemicals in the respiratory tract. We review the biology of oxidative stress, including protective and injurious effects that explain the impact of particulate matter-induced oxidative stress in asthma.
Collapse
Affiliation(s)
- Ning Li
- Department of Medicine/Division of Clinical Immunology and Allergy, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|