1
|
Ghio AJ, Pavlisko EN, Roggli VL, Todd NW, Sangani RG. Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. Int J Chron Obstruct Pulmon Dis 2022; 17:117-140. [PMID: 35046648 PMCID: PMC8763205 DOI: 10.2147/copd.s337354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).
Collapse
Affiliation(s)
- Andrew J Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA
- Correspondence: Andrew J Ghio Human Studies Facility, US Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC, USA Email
| | | | | | - Nevins W Todd
- Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Rahul G Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
2
|
Alkan Ozdemir S, Ozdemir N, Aksan O, Kınalı B, Bilici Güler G, Erbil G, Ozer E, Ozer E. Effect of humic acid on oxidative stress and neuroprotection in hypoxic-ischemic brain injury: part 1. J Matern Fetal Neonatal Med 2020; 35:4580-4589. [PMID: 36062519 DOI: 10.1080/14767058.2020.1856809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Senem Alkan Ozdemir
- Izmir Health Science University Division of Neonatology, Dr. Behçet Uz Child Disease and Pediatric Surgery Training and Research Hospital, Izmir, Turkey
| | | | | | | | | | - Güven Erbil
- School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Erdener Ozer
- School of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Esra Ozer
- School of Medicine, Izmir Tınaztepe University, Izmir, Turkey
| |
Collapse
|
3
|
Ghio AJ, Gonzalez DH, Paulson SE, Soukup JM, Dailey LA, Madden MC, Mahler B, Elmore SA, Schladweiler MC, Kodavanti UP. Ozone Reacts With Carbon Black to Produce a Fulvic Acid-Like Substance and Increase an Inflammatory Effect. Toxicol Pathol 2020; 48:887-898. [PMID: 32975498 DOI: 10.1177/0192623320961017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to ambient ozone has been associated with increased human mortality. Ozone exposure can introduce oxygen-containing functional groups in particulate matter (PM) effecting a greater capacity of the particle for metal complexation and inflammatory effect. We tested the postulate that (1) a fulvic acid-like substance can be produced through a reaction of a carbonaceous particle with high concentrations of ozone and (2) such a fulvic acid-like substance included in the PM can initiate inflammatory effects following exposure of respiratory epithelial (BEAS-2B) cells and an animal model (male Wistar Kyoto rats). Carbon black (CB) was exposed for 72 hours to either filtered air (CB-Air) or approximately 100 ppm ozone (CB-O3). Carbon black exposure to high levels of ozone produced water-soluble, fluorescent organic material. Iron import by BEAS-2B cells at 4 and 24 hours was not induced by incubations with CB-Air but was increased following coexposures of CB-O3 with ferric ammonium citrate. In contrast to CB-Air, exposure of BEAS-2B cells and rats to CB-O3 for 24 hours increased expression of pro-inflammatory cytokines and lung injury, respectively. It is concluded that inflammatory effects of carbonaceous particles on cells can potentially result from (1) an inclusion of a fulvic acid-like substance after reaction with ozone and (2) changes in iron homeostasis following such exposure.
Collapse
Affiliation(s)
- Andrew J Ghio
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David H Gonzalez
- Atmospheric and Oceanic Sciences, 8783University of California at Los Angeles, Los Angeles, CA, USA
| | - Suzanne E Paulson
- Atmospheric and Oceanic Sciences, 8783University of California at Los Angeles, Los Angeles, CA, USA
| | - Joleen M Soukup
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lisa A Dailey
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael C Madden
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - Susan A Elmore
- National Toxicology Program, 6857National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Urmila P Kodavanti
- 138030US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Dolenko SO, Kravchenko HM, Vember VV, Taranov VV. Analysis of the effect of concentration and magnetic field on bioactivity of humic acids from position of open non-equilibrium systems. ENVIRONMENTAL TECHNOLOGY 2020; 41:2970-2976. [PMID: 30865556 DOI: 10.1080/09593330.2019.1591521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
On the example of cultures of bacteria Pseudomonas sp. and Bacillus sp. the effect of humic acids in the concentration range (0-15 mg/L) on the viability of these bacteria was studied. Multidirectional effects of humic acids on microorganisms were found, namely, at concentrations of 1 and 5 mg/L, they reduce, and at 15 mg/L, they do not affect the survival of the studied cultures of bacteria. It has been established that the treatment of aqueous solutions of humic acids with a weak magnetic field affects their physicochemical properties and structural parameters, as well as enhances the biological effect in relation to different groups of microorganisms. It was established that the multidirectionality of the biological effect of humic acids on microorganisms is well explained from the position of considering humic acids as complex open non-equilibrium systems with a developed system for energy dissipation, which leads to the formation on their basis of diverse and complex self-organized structures with different physicochemical properties. The obtained concentration dependences confirm the possibility of the existence of humic acids in the studied concentration range in at least two states. Moreover, it is the state of the system (the level of self-organization), and not the relationship with the source of origin of a humic acids, mainly determines its properties. This fact determines the possibility of using the concentration of humic acids to establish the level of organization of the system, which will allow to manage the structural organization of these objects and predict their properties.
Collapse
Affiliation(s)
- S O Dolenko
- Department of Analytical Chemistry and Radiochemistry, Institute of Colloid Chemistry and Chemistry of Water, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| | - H M Kravchenko
- Department of Analytical Chemistry and Radiochemistry, Institute of Colloid Chemistry and Chemistry of Water, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| | - V V Vember
- Department of Ecology and Technology of Plant Polymers, The National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine
| | - V V Taranov
- Department of Analytical Chemistry and Radiochemistry, Institute of Colloid Chemistry and Chemistry of Water, Ukrainian National Academy of Sciences, Kyiv, Ukraine
| |
Collapse
|
5
|
Gonzalez DH, Soukup JM, Madden MC, Hays M, Berntsen J, Paulson SE, Ghio AJ. A Fulvic Acid-like Substance Participates in the Pro-inflammatory Effects of Cigarette Smoke and Wood Smoke Particles. Chem Res Toxicol 2020; 33:999-1009. [PMID: 32191033 PMCID: PMC8274388 DOI: 10.1021/acs.chemrestox.0c00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We tested the postulates that (1) a fulvic acid (FA)-like substance is included in cigarette smoke and wood smoke particles (WSP) and (2) cell exposure to this substance results in a disruption of iron homeostasis, associated with a deficiency of the metal and an inflammatory response. The fluorescence excitation-emission matrix spectra of the water-soluble components of cigarette smoke condensate and WSP (Cig-WS and Wood-WS) approximated those for the standard reference materials, Suwanee River and Nordic fulvic acids (SRFA and NFA). Fourier transform infrared spectra for the FA fraction of cigarette smoke and WSP (Cig-FA and Wood-FA), SRFA, and NFA also revealed significant similarities (O-H bond in alcohols, phenols, and carboxylates, C═O in ketones, aldehydes, and carboxylates, and a significant carboxylate content). After exposure to Cig-WS and Wood-WS and the FA standards, iron was imported by respiratory epithelial cells, reflecting a functional iron deficiency. The release of pro-inflammatory mediators interleukin (IL)-8 and IL-6 by respiratory epithelial cells also increased following exposures to Cig-WS, Wood-WS, SRFA, and NFA. Co-exposure of the respiratory epithelial cells with iron decreased supernatant concentrations of the ILs relative to exposures to Cig-WS, Wood-WS, SRFA, and NFA alone. It is concluded that (1) a FA-like substance is included in cigarette smoke and WSP and (2) respiratory epithelial cell exposure to this substance results in a disruption of iron homeostasis associated with both a cell deficiency of the metal and an inflammatory response.
Collapse
Affiliation(s)
- David H Gonzalez
- Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095, United States
| | - Joleen M Soukup
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Michael C Madden
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Michael Hays
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Jon Berntsen
- TRC Environmental, Chapel Hill, North Carolina 27599, United States
| | - Suzanne E Paulson
- Atmospheric and Oceanic Sciences, University of California, Los Angeles, California 90095, United States
| | - Andrew J Ghio
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| |
Collapse
|
6
|
Ghio AJ, Soukup JM, Madden MC. The toxicology of air pollution predicts its epidemiology. Inhal Toxicol 2018; 30:327-334. [PMID: 30516398 DOI: 10.1080/08958378.2018.1530316] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The epidemiologic investigation has successively delineated associations of air pollution exposure with non-malignant and malignant lung disease, cardiovascular disease, cerebrovascular disease, pregnancy outcomes, perinatal effects and other extra-pulmonary disease including diabetes. Defining these relationships between air pollution exposure and human health closely parallels results of an earlier epidemiologic investigation into cigarette smoking and environmental tobacco smoke (ETS), two other particle-related exposures. Humic-like substances (HULIS) have been identified as a chemical component common to cigarette smoke and air pollution particles. Toxicology studies provide evidence that a disruption of iron homeostasis with sequestration of host metal by HULIS is a fundamental mechanistic pathway through which biological effects are initiated by cigarette smoke and air pollution particles. As a result of a common chemical component and a shared mechanistic pathway, it should be possible to extrapolate from the epidemiology of cigarette smoking and ETS to predict associations of air pollution exposure with human disease, which are currently unrecognized. Accordingly, it is anticipated that the forthcoming epidemiologic investigation will demonstrate relationships of air pollution with COPD causation, peripheral vascular disease, hypertension, renal disease, digestive disease, loss of bone mass/risk of fractures, dental disease, eye disease, fertility problems, and extrapulmonary malignancies.
Collapse
Affiliation(s)
- Andrew J Ghio
- a The National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Joleen M Soukup
- a The National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| | - Michael C Madden
- a The National Health and Environmental Effects Research Laboratory , Environmental Protection Agency , Chapel Hill , NC , USA
| |
Collapse
|
7
|
Ghio AJ, Madden MC. Human lung injury following exposure to humic substances and humic-like substances. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:571-581. [PMID: 28766124 PMCID: PMC8968324 DOI: 10.1007/s10653-017-0008-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/24/2017] [Indexed: 05/13/2023]
Abstract
Among the myriad particles the human respiratory tract is exposed to, a significant number are distinctive in that they include humic substances (HS) and humic-like substances (HULIS) as organic components. HS are heterogeneous, amorphous, organic materials which are ubiquitous occurring in all terrestrial and aqueous environments. HULIS are a complex class of organic, macromolecular compounds initially extracted from atmospheric aerosol particles which share some features with HS including an aromatic, polyacidic nature. As a result of having a variety of oxygen-containing functional groups, both HS and HULIS complex metal cations, especially iron. Following particle uptake by cells resident in the lung, host iron will be sequestered by HS- and HULIS-containing particles initiating pathways of inflammation and subsequent fibrosis. It is proposed that (1) human exposures to HS and HULIS of respirable size (<10 µm diameter) are associated with inflammatory and fibrotic lung disease and (2) following retention of particles which include HS and HULIS, the mechanism of cell and tissue injury involves complexation of host iron. Human inflammatory and fibrotic lung injuries following HS and HULIS exposures may include coal workers' pneumoconiosis, sarcoidosis, and idiopathic pulmonary fibrosis as well as diseases associated with cigarette smoking and exposures to emission and ambient air pollution particles.
Collapse
Affiliation(s)
- Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC, USA.
- Human Studies Facility, 104 Mason Farm Road, Chapel Hill, NC, 27599-7315, USA.
| | - Michael C Madden
- National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Bell NGA, Michalchuk AAL, Blackburn JWT, Graham MC, Uhrín D. Isotope-Filtered 4D NMR Spectroscopy for Structure Determination of Humic Substances. Angew Chem Int Ed Engl 2015; 54:8382-5. [PMID: 26036217 PMCID: PMC4531828 DOI: 10.1002/anie.201503321] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Indexed: 11/27/2022]
Abstract
Humic substances, the main component of soil organic matter, could form an integral part of green and sustainable solutions to the soil fertility problem. However, their global-scale application is hindered from both scientific and regulatory perspectives by the lack of understanding of the molecular make-up of these chromatographically inseparable mixtures containing thousands of molecules. Here we show how multidimensional NMR spectroscopy of isotopically tagged molecules enables structure characterization of humic compounds. We illustrate this approach by identifying major substitution patterns of phenolic aromatic moieties of a peat soil fulvic acid, an operational fraction of humic substances. Our methodology represents a paradigm shift in the use of NMR active tags in structure determination of small molecules in complex mixtures. Unlike previous tagging methodologies that focused on the signals of the tags, we utilize tags to directly probe the identity of the molecules they are attached to.
Collapse
Affiliation(s)
- Nicholle G A Bell
- EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ (UK)
| | - Adam A L Michalchuk
- EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ (UK)
| | - John W T Blackburn
- EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ (UK)
| | - Margaret C Graham
- School of Geosciences, University of Edinburgh, Grant Institute, James Hutton Road, Edinburgh EH9 3FE (UK)
| | - Dušan Uhrín
- EastChem School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ (UK).
| |
Collapse
|
9
|
Bell NGA, Michalchuk AAL, Blackburn JWT, Graham MC, Uhrín D. Isotope-Filtered 4D NMR Spectroscopy for Structure Determination of Humic Substances. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Tanaka M, Miyajima M, Hishioka N, Nishimura R, Kihara Y, Hosokawa T, Kurasaki M, Tanaka S, Saito T. Humic acid induces the endothelial nitric oxide synthase phosphorylation at Ser1177 and Thr495 Via Hsp90α and Hsp90β upregulation in human umbilical vein endothelial cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:223-231. [PMID: 23836447 DOI: 10.1002/tox.21888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
Humic acid (HA) has been implicated as a contributory factor for blackfoot disease, which is an endemic peripheral vascular disease. We investigated the effect of HA on the regulation of endothelial nitric oxide (NO) synthase (eNOS) in human umbilical vein endothelial cells (HUVECs) to evaluate the involvement of eNOS and related factors in peripheral vascular impairment with HA exposure. Treatment of HUVECs with HA induced upregulation of eNOS. This result coincides with those of previous studies. Furthermore this is the first study to report that HA induces upregulation of heat shock protein (Hsp)90α, Hsp90β, eNOS phosphorylation at Ser1177, and eNOS phosphorylation at Thr495, as compared to that in the control. In contrast, treatment with BAPTA, an intracellular Ca(2+) chelator, inhibited upregulation of these proteins induced by HA. This study demonstrates that HA treatment leads to increases in both Hsp90α and Hsp90β proteins and indicates that Hsp90α leads to eNOS phosphorylation at Ser1177 and that Hsp90β leads to eNOS phosphorylation at Thr495, respectively. Upregulation of eNOS, Hsp90α, and Hsp90β in HUVECs is regulated by intracellular Ca(2+) accumulation induced by HA. These results suggest that upregulation of eNOS phosphorylation at Ser1177 and eNOS phosphorylation at Thr495 produce NO and superoxide anions, respectively, resulting in generation of peroxynitrite, which causes impairment of vascular endothelial cells.
Collapse
Affiliation(s)
- Masato Tanaka
- Laboratory of Environmental Health Sciences, Graduate School of Health Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang HL, Huang PJ, Chen SC, Cho HJ, Kumar KJS, Lu FJ, Chen CS, Chang CT, Hseu YC. Induction of macrophage cell-cycle arrest and apoptosis by humic acid. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:741-750. [PMID: 25179584 DOI: 10.1002/em.21897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Humic acid (HA) in well water is associated with Blackfoot disease and various cancers. Previously, we reported that acute humic acid exposure (25-200 µg/mL for 24 hr) induces inflammation in RAW264.7 macrophages. In this study, we observed that prolonged (72 hr) HA exposure (25-200 µg/mL) induces cell-cycle arrest and apoptosis in cultured RAW264.7 cells. We also observed that exposing macrophages to HA arrests cells in the G2 /M phase of the cell cycle by reducing cyclin A/B1 , Cdc2, and Cdc25C levels. Treating macrophages with HA triggers a sequence of events characteristic of apoptotic cell death including loss of cell viability, morphological changes, internucleosomal DNA fragmentation, sub-G1 accumulation. Molecular markers of apoptosis associated with mitochondrial dysfunction were similarly observed, including cytochrome c release, caspase-3 or caspase-9 activation, and Bcl-2/Bax dysregulation. In addition to the mitochondrial pathway, HA-induced apoptosis may also be mediated through the death receptor and ER stress pathways, as evidence by induction of Fas, caspase-8, caspase-4, and caspase-12 activity. HA also upregulates p53 expression and causes DNA damage as assessed by the comet assay. These findings yield new insight into the mechanisms by which HA exposure may trigger atherosclerosis through modulation of the macrophage-mediated immune system.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, 40402, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kihara Y, Tanaka M, Gumiri S, Hosokawa T, Tanaka S, Saito T, Kurasaki M. Mechanism of the toxicity induced by natural humic acid on human vascular endothelial cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:916-925. [PMID: 23042718 DOI: 10.1002/tox.21819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
Humic acid (HA), a group of high-molecular weight organic compounds characterized by an ability to bind heavy metals, is normally found in natural water. Although the impairment of vascular endothelial cells in the presence of humic substances has been reported to be involved in some diseases, the mechanisms responsible for this involvement remain unclear. In this study, we examined the cytotoxicity of HA obtained from peatland in Central Kalimantan, Indonesia, to human vascular endothelial cells, as well as the mechanisms behind these effects. It was found that 50 mg/L HA showed cytotoxicity, which we considered to be mediated by apoptosis through the mitochondrial pathway because of an increase in the expression of caspases 6 and 9 in response to HA administration. In addition, this cytotoxicity was enhanced when cells in this experimental system were exposed to oxidative stress, while it was decreased by the addition of vitamin C. Thus, we conclude that the apoptosis induced by HA depends upon oxidative stress. Furthermore, an iron chelator, DFO, showed a tendency to decrease HA-induced cytotoxicity, suggesting that iron may potentially mediate HA-induced oxidative stress. In conclusion, long-term consumption of HA-rich water obtained from our study area may cause damage to endothelial cells and subsequent chronic health problems.
Collapse
Affiliation(s)
- Yusuke Kihara
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis. Toxicol Appl Pharmacol 2013; 274:249-62. [PMID: 24239652 DOI: 10.1016/j.taap.2013.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 12/31/2022]
Abstract
Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25-200μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease.
Collapse
|
14
|
van Eijl S, Mortaz E, Ferreira AF, Kuper F, Nijkamp FP, Folkerts G, Bloksma N. Humic acid enhances cigarette smoke-induced lung emphysema in mice and IL-8 release of human monocytes. Pulm Pharmacol Ther 2011; 24:682-9. [PMID: 21820074 DOI: 10.1016/j.pupt.2011.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 06/19/2011] [Accepted: 07/02/2011] [Indexed: 01/04/2023]
Abstract
UNLABELLED Tobacco smoke is the main factor in the etiology of lung emphysema. Generally prolonged, substantial exposure is required to develop the disease. Humic acid is a major component of cigarette smoke that accumulates in smokers' lungs over time and induces tissue damage. OBJECTIVES To investigate whether humic acid pre-loading potentiates the development of cigarette smoke-induced lung emphysema in mice and increases IL-8 release by human monocytes. METHODS C57BL/6J mice received humic acid or aqueous vehicle by tracheal installation on day 0 and day 7. From day 21 to day 84, the mice were exposed to cigarette smoke or clean air for 5 days/week. Twenty-four hours after the last exposure we determined leukocytes in lung lavage, heart hypertrophy and alveolar wall destruction. Human monocytes were incubated with cigarette smoke extract (CSE), humic acid or the combination overnight. RESULTS Humic acid nor cigarette smoke caused alveolar wall destruction within two months. Interestingly, the combination did induce lung emphysema. Humic acid, cigarette smoke or the combination did not change leukocyte types and numbers in lung lavage fluid, but the combination caused peribronchiolar and perivascular lymphocyte infiltration. Humic acid treatment resulted in a high proportion of alveolar macrophages heavily loaded with intracellular granula. Humic acid also induces the release of IL-8 from human monocytes and enhances the CSE-induced IL-8 release. CONCLUSIONS Humic acid deposition in the lungs potentiates the development of cigarette smoke-induced interstitial inflammation and lung emphysema. Moreover, humic acid promotes IL-8 release from human monocytes. Since humic acid accumulates steadily in the lungs of smokers, this may provide an explanation for the natural history on late onset of this disease. The model described here offers a novel way to study emphysema and may direct the search for new therapeutic approaches.
Collapse
Affiliation(s)
- Sven van Eijl
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Menzel S, Bouchnak R, Menzel R, Steinberg CEW. Dissolved humic substances initiate DNA-methylation in cladocerans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:640-2. [PMID: 21963594 DOI: 10.1016/j.aquatox.2011.08.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 05/10/2023]
Abstract
DNA-methylation is one pathway of epigenetic programming of gene expression and can be responsive to environmental challenges such as methylating agents in the food. Here we report on the DNA-methylation in the cladocerans Daphnia magna and Moina macrocopa exposed to humic substances, ubiquitous biogeochemicals. The methylation of DNA can alter the stress response, presumably including exposure to synthetic xenobiotic chemicals.
Collapse
Affiliation(s)
- Stefanie Menzel
- Humboldt-Universität zu Berlin, Department of Biology, Laboratory of Freshwater & Stress Ecology, Späthstrasse 80/81, D-12437 Berlin, Germany
| | | | | | | |
Collapse
|
16
|
Effects of humic acids in vitro. In Vitro Cell Dev Biol Anim 2011; 47:376-82. [DOI: 10.1007/s11626-011-9405-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
|
17
|
Hseu YC, Lin E, Chen JY, Liua YR, Huang CY, Lu FJ, Liao JW, Chen SC, Yang HL. Humic acid induces G1 phase arrest and apoptosis in cultured vascular smooth muscle cells. ENVIRONMENTAL TOXICOLOGY 2009; 24:243-258. [PMID: 18683188 DOI: 10.1002/tox.20426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Humic acid (HA) in well water used by the inhabitants for drinking is one of the possible etiological factors for Blackfoot disease (BFD). In this study, the ability of HA to inhibit cell cycle progression and induce apoptosis in cultured smooth muscle cells (SMCs; A7r5) was investigated. Treatment of the SMCs at various HA concentrations (25-200 microg/mL) resulted in sequences of events marked by apoptosis, as shown by loss of cell viability, morphology change, and internucleosomal DNA fragmentation. HA-induced apoptotic cell death that is associated with loss of mitochondrial membrane potential (Delta Psi m), cytochrome c translocation, caspase-3, -8, and -9 activation, poly ADP-ribose polymerase (PARP) degradation, dysregulation of Bcl-2 and Bax, and upregulation of p53 and phospholyrated p53 (p-p53) in SMCs. Flow cytometry analysis demonstrated that HA blocked cell cycle progress in the G1 phase in SMCs. This blockade of cell cycle was associated with reduced amounts of cyclin D1, CDK4, cyclin E, CDK2, and hyperphosphorylated retinoblastoma protein (pRb) in a time-dependent manner. Apparent DNA strand breaks (DNA damage) were also detected in a dose-dependent manner using Single-cell gel electrophoresis assay (comet assay). Furthermore, HA induced dose-dependent elevation of reactive oxygen species (ROS) level in SMCs, and antioxidant vitamin C and Trolox effectively suppressed HA-induced DNA damage and dysregulation of Bcl-2/Bax. Our findings suggest that HA-induced DNA damage, cell cycle arrest, and apoptosis in SMCs may be an underlying mechanisms for the atherosclerosis and thrombosis observed in the BFD endemic region.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qi S, Hartog GJMD, Bast A. Damage to lung epithelial cells and lining fluid antioxidant defense by humic acid. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:96-101. [PMID: 21783895 DOI: 10.1016/j.etap.2008.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/13/2008] [Accepted: 02/18/2008] [Indexed: 05/31/2023]
Abstract
Humic acid causes diseases including lung emphysema and fibrosis. Emerging evidence indicates that oxidative stress is involved in humic acid-induced effects. In the present study, we investigated generation of hydroxyl radicals from humic acid, as well as the effects of humic acid to lung epithelial cells and artificial alveolar lining fluid antioxidant mixture. The involvement of iron in humic acid-induced effects was also determined. We found that humic acid (concentration and time dependently) reduced the cell survival, increased caspase-3 activity, depleted GSH and raised lipid peroxidation in epithelial cells. Humic acid reduced antioxidant levels in the lining fluid antioxidant mix, which could be prevented by adding metal ion chelators. These findings suggest that humic acid causes oxidative stress in lung cells and alveolar lining fluid, which is most likely triggered by hydroxyl radicals produced directly from humic acid. Iron is probably involved in humic acid toxicity.
Collapse
Affiliation(s)
- Shufan Qi
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | |
Collapse
|
19
|
Hseu YC, Chen SC, Chen YL, Chen JY, Lee ML, Lu FJ, Wu FY, Lai JS, Yang HL. Humic acid induced genotoxicity in human peripheral blood lymphocytes using comet and sister chromatid exchange assay. JOURNAL OF HAZARDOUS MATERIALS 2008; 153:784-791. [PMID: 17964718 DOI: 10.1016/j.jhazmat.2007.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 09/05/2007] [Accepted: 09/05/2007] [Indexed: 05/25/2023]
Abstract
Humic acid (HA) in well water used by the inhabitants for drinking is one of the possible etiological factors for blackfoot disease (BFD). Moreover, within BFD endemic areas cancers occur at significantly higher rates than in areas free of BFD. In this study, the genotoxic potential of HA is assessed using human peripheral blood lymphocytes. The cells were exposed to HA (0-200 microg/mL for 2 h), and the induction of DNA primary damage in cellular DNA was evaluated by single-cell gel electrophoresis (comet assay). HA-induced DNA damage was decreased by superoxide (O(2)(-)), hydrogen peroxide (H(2)O(2)), and reactive oxygen species (ROS) scavengers (superoxide dismutase, catalase, and Trolox), and nitric oxide (NO) synthase inhibitors (N(G)-nitro-l-arginine methyl ester and N(G)-methyl-l-arginine). Moreover, formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (Endo III), known to catalyze the excision of oxidized bases, increase the amount of DNA migration in HA-treated cells. Pretreatment of the cells with both the Ca(2+)-chelator BAPTA and EGTA completely inhibited HA-induced DNA damage, indicating that HA-induced changes in Ca(2+)-homeostasis are the predominant pathways for the HA induction of genotoxicity. Furthermore, sister chromatid exchange was found in the HA-treated lymphocytes. Our findings suggest that HA can induce oxidative DNA damage and genotoxicity in human lymphocytes.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Steinberg CEW, Meinelt T, Timofeyev MA, Bittner M, Menzel R. Humic substances. Part 2: Interactions with organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2008; 15:128-35. [PMID: 18380231 DOI: 10.1065/espr2007.07.434] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
GOAL, SCOPE AND BACKGROUND Freshwater bodies which chemistry is dominated by dissolved humic substances (HS) seem to be the major type on Earth, due to huge non-calcareous geological formations in the Northern Hemisphere and in the tropics. Based on the paradigm of the inertness of being organic, direct interactions of dissolved HS with freshwater organisms are mostly neglected. However, dissolved organic carbon, the majority of which being HS, are natural environmental chemicals and should therefore directly interact with organisms. Major results that widened our perspective on humic substance ecology come from experiments with the compost nematode, Caenorhabditis elegans, which behaved contradictorily to textbook knowledge and provoked an in-depth re-consideration of some paradigms. APPROACH To overcome old paradigms on HS and their potential interactions with organisms, we reviewed recent international literature, as well as 'grey' literature. We also include results from own ongoing studies. RESULTS This review focuses on direct interactions of dissolved HS with freshwater organisms and disregards indirect effects, such as under-water light quenching. Instead we show with some macrophyte and algal species that HS adversely interfere with photosynthesis and growth, whereby closely related algal species show different response patterns. In addition to this, HS suppress cyanobacteria more than eukaryotic algae. Quinones in the HS appear to be the effective structure. Furthermore, HS can modulate the offspring numbers in the nematode C. elegans and cause feminization of fish and amphibians--they possess hormone-like properties. The ecological consequences of this potential remain obscure at present. HS also have the potential to act as chemical attractants as shown with C. elegans and exert a mild chemical stress upon aquatic organisms in many ways: induction of molecular chaperons (stress proteins), induction and modulation of biotransformation and anti-oxidant enzymes. Furthermore, they produce an oxidative stress with lipidperoxidation as one clear symptom or even stress defense strategy. Stronger chemical stresses by HS may even lead to teratogenic effects as shown with fish embryos; all physiological responses to HS-mediated stress require energy, which were compensated on the expense of yolk as shown with zebra fish embryos. One Finnish field survey supports the view of a strong chemical stress, as the weight yield in fish species decreases with increasing HS content in the lakes. DISCUSSION HS exert a variety of stress symptoms in aquatic and compost organisms. According to current paradigms of ecotoxicology, these symptoms have to be considered adverse, because their compensation consumes energy which is deducted from the main metabolism. However, the nematode C. elegans looks actively for such stressful environments, and this behavior is only understandable in the light of new paradigms of aging mechanisms, particularly the Green Theory of Aging. In this respect, we discuss the mild HS-mediated stress to aquatic and compost organisms. New empirical findings with HS themselves and HS building blocks appear to be consistent with this emerging paradigm and show that the individual lifespan may be expanded. At present the ecological consequences of these findings remain obscure. However, a multiple-stress resistance may be acquired which improves the individual fitness in a fluctuating environment. CONCLUSIONS It appears that dissolved HS have to be considered abiotic ecological driving forces, somewhat less obvious than temperature, nutrients, or light. PERSPECTIVES The understanding of the ecological control by dissolved humic substances is still fragmentary and needs to be studied in more details.
Collapse
Affiliation(s)
- Christian E W Steinberg
- Humboldt University at Berlin, Institute of Biology, Freshwater and Stress Ecology, Germany.
| | | | | | | | | |
Collapse
|
21
|
Kodama H. Antitumor effect of humus extract on murine transplantable L1210 leukemia. J Vet Med Sci 2007; 69:1069-71. [PMID: 17984596 DOI: 10.1292/jvms.69.1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humic substances are formed during the decomposition of organic matter in humus that found in many natural environments in which organic materials and microorganisms have been present. In the present study, humus extract exhibited antitumor effect on L1210 tumor development in isogeneic DBA/2 mice with the delay of tumor formation and a significant smaller tumor mass that infer a significant increase of life span of mice. The antitumor effect was not due to direct killing of L1210 or induction of apoptosis in tumor cells by humus extract.
Collapse
Affiliation(s)
- Hiroshi Kodama
- Laboratory of Veterinary Immunology, Course of Veterinary Science, Graduate School of Life and Environmental Science, Osaka Prefecture University, Japan.
| | | |
Collapse
|
22
|
Bittner M, Janosek J, Hilscherová K, Giesy J, Holoubek I, Bláha L. Activation of Ah receptor by pure humic acids. ENVIRONMENTAL TOXICOLOGY 2006; 21:338-42. [PMID: 16841312 DOI: 10.1002/tox.20185] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Humic substances (HS) are ubiquitous in the environment. However, some studies indicate that HS could induce direct adverse effects on human health and hormone-like effects in fish, amphibians, and invertebrates. In this study we investigated a possible biochemical mechanism of HS toxicity via activation of the aryl hydrocarbon receptor (AhR). AhR mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but a number of structurally diverse compounds has also been found to activate AhR. Alkali solutions of humic acids (HA) were prepared, and subsequently, lipophilic compounds (including parts of HA) were extracted by liquid-liquid extraction with hexane/dichloromethane. Organic extract of HA was further treated with sulfuric acid to study the role of possible trace persistent contaminants. In vitro dioxin-like activities of obtained extract and HA solutions have been evaluated using H4IIE.luc cells by determining the ethoxyresorufin-O-deethylase (EROD) activity and induction of AhR-dependent reporter luciferase. Traces of nonpersistent residues in HA with known AhR activity were identified and quantified by GC-MS. Our results show that an alkali solution as well as organic extract of HA were active in both EROD and luciferase assays, while H2SO4-treated extract activity was negligible. Only nonsignificant levels of AhR-inducing contaminants (PAHs and PCBs) were found in the HA samples. Our results indicate that HA or their fragments can elicit significant inductions of AhR-mediated effects in vitro. To our best knowledge, this study is the first in providing direct evidence of dioxin-like effects of HA. Further efforts should focus on detailed characterization of potential toxic effects of various HSs.
Collapse
Affiliation(s)
- Michal Bittner
- Masaryk University in Brno, RECETOX, Kamenice 126/3, 625 00 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
In view of the alleged effect of humic acid (HA) on growth plate arthrosis in humans, we sought to find if poultry tibial dyschondroplasia (TD) is caused by HA that can occur as a ground water contaminant. In 2 separate trials, broiler chickens were fed different concentrations of HA added to their diet for 4 and 5 wk. The effects of these treatments were measured by general health indices such as growth, feed conversion ratio, relative organ weights, blood differential count, serum chemistry, TD index, and bone biomechanical strength. Humic acid treatment decreased BW but appeared to improve feed conversion ratio. There was no effect on TD index or bone biomechanical strength in HA-treated birds compared with controls. There was no toxic effect of HA that was evident by the absence of any dramatic change in relative organ weights or other telltale signs of serum clinical chemistry that would suggest liver, muscle, or kidney dysfunction. Red blood cell, white blood cell, monocyte, and hematocrit values were not affected, but there was a decrease in blood heterophil counts and heterophil to lymphocyte ratio, which was significant in 4-wk HA-treated birds. Overall these results show that HA slows down growth, but it does not have any adverse health effects on chickens.
Collapse
Affiliation(s)
- N C Rath
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, USDA, Poultry Science Center, University of Arkansas, Fayetteville 72701, USA.
| | | | | |
Collapse
|
24
|
Tseng CH. Blackfoot disease and arsenic: a never-ending story. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2005; 23:55-74. [PMID: 16291522 DOI: 10.1081/gnc-200051860] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Blackfoot disease (BFD) is an endemic peripheral vascular disease confined to the southwestern coast of Taiwan. This article reviews the epidemiology, clinical manifestations and diagnosis, pathology, etiology and pathogenesis of this disease. Sporadic cases of BFD occurred as early as in the early 20th century, and peak incidence was noted between 1956 and 1960, with prevalence rates ranging from 6.51 to 18.85 per 1,000 population in different villages. Typical clinical symptoms and signs of progressive arterial occlusion mainly found in the lower extremities, but in rare cases, the upper extremities might also be involved. Ulceration, gangrene and spontaneous or surgical amputation were typical fate. An extensive pathological study concluded that 30% of the BFD patients had histologic lesions compatible with thromboangiitis obliterans and 70% showed changes of arteriosclerosis obliterans. Epidemiologic studies carried out since mid-20th century revealed that BFD was associated with the consumption of inorganic arsenic from the artesian wells. Recent studies confirmed the existence of preclinical peripheral vascular disease, subclinical arterial insufficiency and defects in cutaneous microcirculation in the residents of the endemic villages. A more recent study suggested that the methylation capacity of arsenic can interact with arsenic exposure in the development of peripheral vascular disease among residents of BFD-endemic areas. The incidence of BFD decreased dramatically after the implementation of tap water in these villages over the past 2-3 decades. The atherogenicity of arsenic could be associated with its effects of hypercoagulability, endothelial injury, smooth muscle cell proliferation, somatic mutation, oxidative stress, and apoptosis. However, its interaction with some trace elements and its association with hypertension and diabetes mellitus could also explain part of its higher risk of developing atherosclerosis. Although humic substances have also been suggested as a possible cause of BFD, epidemiologic studies are required to confirm its etiologic role.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taian University Hospital, Taipei, Taiwan.
| |
Collapse
|
25
|
Yang HL, Hseu YC, Hseu YT, Lu FJ, Lin E, Lai JS. Humic acid induces apoptosis in human premyelocytic leukemia HL-60 cells. Life Sci 2004; 75:1817-31. [PMID: 15302226 DOI: 10.1016/j.lfs.2004.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 02/26/2004] [Indexed: 12/12/2022]
Abstract
It has been shown that humic acid (HA), a phenolic polymer, exhibits pro-oxidant and cytotoxic effects. In this study, HA induction of apoptosis was studied using cultured human premyelocytic leukemia HL-60 cells. Treatment at a range of HA concentrations (50-400 microg/ml) resulted in dose-and time-dependent sequences of events marked by apoptosis, as demonstrated through by apoptotic features such as loss of cell viability, chromatin condensation, and internucleosomal DNA fragmentation. This HA-induced apoptosis in the HL-60 cells was mainly associated with the release of cytochrome c from the mitochondria. Furthermore, apoptosis in the HL-60 cells was accompanied by the activation of caspase-3 and the specific proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), a major component in the apoptotic cell death mechanism. Although the HA-induced apoptosis was associated with Bax protein levels, negligible Bcl-2 reduction was observed. Analysis of the data reported herein reveals that HA exerts antiproliferative action and growth inhibition on HL-60 cells through induction of apoptosis, which may have anticancer properties potentially useful for the development of new drug products.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Cheng ML, Ho HY, Huang YW, Lu FJ, Chiu DTY. Humic acid induces oxidative DNA damage, growth retardation, and apoptosis in human primary fibroblasts. Exp Biol Med (Maywood) 2003; 228:413-23. [PMID: 12671186 DOI: 10.1177/153537020322800412] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Humic acid (HA) has been implicated as an etiological factor of Blackfoot disease endemic in the southwest coast of Taiwan. Dysfunction of endothelial cells and vasculopathy have been proposed to explain the onset of ulcerous changes at extremities. However, little is known about the effect of HA on activities of cells in these nonhealing wounds. In the present study, we demonstrate that HA adversely affects the growth properties of fibroblasts, one of the key players in wound repair. HA treatment caused growth arrest and apoptosis in human foreskin fibroblasts (HFF). This was accompanied by a significant increase in the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in cellular DNA. The increased fluorescence in dichlorofluorescin (H2DCF)-stained and HA-treated cells suggests the involvement of reactive oxygen species (ROS) in HA-induced biological effects. Conversely, vitamin E pretreatment, which significantly reduced the 8-OHdG formation in HA-treated cells, alleviated the growth-inhibitory and apoptosis-inducing effects of HA. These results indicate that HA initiates oxidative damages to fibroblasts, and leads to their dwindling growth potential and survival. The present study suggests that HA-induced growth retardation and apoptosis of fibroblasts may play a role in the pathogenesis of Blackfoot disease.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Graduate Institute of Medical Biotechnology and School of Medical Technology, Chang Gung University, Kwei-san, Tao-yuan, Taiwan
| | | | | | | | | |
Collapse
|