1
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
2
|
Farber DL. Memory CD4 T Cell Distribution and Recall Function in Nonlymphoid Organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1627-1628. [PMID: 37987803 DOI: 10.4049/jimmunol.2300062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
This Pillars of Immunology article is a commentary on the following two seminal articles: “Visualizing the generation of memory CD4 T cells in the whole body,” an article written by R. L. Reinhardt, A. Khoruts, R. Merica, T. Zell, and M. K. Jenkins, and published in Nature, in 2001. https://www.nature.com/articles/35065111, and “Protection from respiratory virus infections can be mediated by memory CD4 T cells that persist in the lungs,” by R. J. Hogan, W. Zhong, E. J. Usherwood, T. Cookenham, A. D. Roberts, and D. L. Woodland, and published in the Journal of Experimental Medicine, in 2001. https://doi.org/10.1084/jem.193.8.981.
Collapse
Affiliation(s)
- Donna L Farber
- Department of Microbiology and Immunology, Columbia University, New York, NY; and Department of Surgery, Columbia University, New York, NY
| |
Collapse
|
3
|
Castro A, Ozturk K, Zanetti M, Carter H. In silico analysis suggests less effective MHC-II presentation of SARS-CoV-2 RBM peptides: Implication for neutralizing antibody responses. PLoS One 2021; 16:e0246731. [PMID: 33571241 PMCID: PMC7877779 DOI: 10.1371/journal.pone.0246731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2 antibodies develop within two weeks of infection, but wane relatively rapidly post-infection, raising concerns about whether antibody responses will provide protection upon re-exposure. Here we revisit T-B cooperation as a prerequisite for effective and durable neutralizing antibody responses centered on a mutationally constrained RBM B cell epitope. T-B cooperation requires co-processing of B and T cell epitopes by the same B cell and is subject to MHC-II restriction. We evaluated MHC-II constraints relevant to the neutralizing antibody response to a mutationally-constrained B cell epitope in the receptor binding motif (RBM) of the spike protein. Examining common MHC-II alleles, we found that peptides surrounding this key B cell epitope are predicted to bind poorly, suggesting a lack MHC-II support in T-B cooperation, impacting generation of high-potency neutralizing antibodies in the general population. Additionally, we found that multiple microbial peptides had potential for RBM cross-reactivity, supporting previous exposures as a possible source of T cell memory.
Collapse
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, CA, United States of America
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Maurizio Zanetti
- The Laboratory of Immunology, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
4
|
Gopal R, Marinelli MA, Alcorn JF. Immune Mechanisms in Cardiovascular Diseases Associated With Viral Infection. Front Immunol 2020; 11:570681. [PMID: 33193350 PMCID: PMC7642610 DOI: 10.3389/fimmu.2020.570681] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Influenza virus infection causes 3-5 million cases of severe illness and 250,000-500,000 deaths worldwide annually. Although pneumonia is the most common complication associated with influenza, there are several reports demonstrating increased risk for cardiovascular diseases. Several clinical case reports, as well as both prospective and retrospective studies, have shown that influenza can trigger cardiovascular events including myocardial infarction (MI), myocarditis, ventricular arrhythmia, and heart failure. A recent study has demonstrated that influenza-infected patients are at highest risk of having MI during the first seven days of diagnosis. Influenza virus infection induces a variety of pro-inflammatory cytokines and chemokines and recruitment of immune cells as part of the host immune response. Understanding the cellular and molecular mechanisms involved in influenza-associated cardiovascular diseases will help to improve treatment plans. This review discusses the direct and indirect effects of influenza virus infection on triggering cardiovascular events. Further, we discussed the similarities and differences in epidemiological and pathogenic mechanisms involved in cardiovascular events associated with coronavirus disease 2019 (COVID-19) compared to influenza infection.
Collapse
Affiliation(s)
- Radha Gopal
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | |
Collapse
|
5
|
The impact of aging on CD4 + T cell responses to influenza infection. Biogerontology 2018; 19:437-446. [PMID: 29616390 PMCID: PMC6170716 DOI: 10.1007/s10522-018-9754-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
CD4+ T cells are important for generating high quality and robust immune responses to influenza infection. Immunosenescence that occurs with aging, however, compromises the ability of CD4+ T cells to differentiate into functional subsets resulting in a multitude of dysregulated responses namely, delayed viral clearance and prolonged inflammation leading to increased pathology. Current research employing animal models and human subjects has provided new insights into the description and mechanisms of age-related CD4+ T cell changes. In this review, we will discuss the consequences of aging on CD4+ T cell differentiation and function and how this influences the initial CD4+ T cell effector responses to influenza infection. Understanding these age-related alterations will aid in the pharmacological development of therapeutic treatments and improved vaccination strategies for the vulnerable elderly population.
Collapse
|
6
|
Marshall NB, Vong AM, Devarajan P, Brauner MD, Kuang Y, Nayar R, Schutten EA, Castonguay CH, Berg LJ, Nutt SL, Swain SL. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:1142-1155. [PMID: 28031335 DOI: 10.4049/jimmunol.1601297] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/05/2016] [Indexed: 01/22/2023]
Abstract
CD4 T cells can differentiate into multiple effector subsets, including ThCTL that mediate MHC class II-restricted cytotoxicity. Although CD4 T cell-mediated cytotoxicity has been reported in multiple viral infections, their characteristics and the factors regulating their generation are unclear, in part due to a lack of a signature marker. We show in this article that, in mice, NKG2C/E identifies the ThCTL that develop in the lung during influenza A virus infection. ThCTL express the NKG2X/CD94 complex, in particular the NKG2C/E isoforms. NKG2C/E+ ThCTL are part of the lung CD4 effector population, and they mediate influenza A virus-specific cytotoxic activity. The phenotype of NKG2C/E+ ThCTL indicates they are highly activated effectors expressing high levels of binding to P-selectin, T-bet, and Blimp-1, and that more of them secrete IFN-γ and readily degranulate than non-ThCTL. ThCTL also express more cytotoxicity-associated genes including perforin and granzymes, and fewer genes associated with recirculation and memory. They are found only at the site of infection and not in other peripheral sites. These data suggest ThCTL are marked by the expression of NKG2C/E and represent a unique CD4 effector population specialized for cytotoxicity.
Collapse
Affiliation(s)
- Nikki B Marshall
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Matthew D Brauner
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Yi Kuang
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Elizabeth A Schutten
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Catherine H Castonguay
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
7
|
Pomorska-Mól M, Kwit K, Markowska-Daniel I, Kowalski C, Pejsak Z. Local and systemic immune response in pigs during subclinical and clinical swine influenza infection. Res Vet Sci 2014; 97:412-21. [PMID: 25000875 DOI: 10.1016/j.rvsc.2014.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 05/26/2014] [Accepted: 06/08/2014] [Indexed: 11/18/2022]
Abstract
Local and systemic immune responses in pigs intranasally (IN) and intratracheally (IT) inoculated with swine influenza virus (SIV) were studied. No clinical signs were observed in IN-inoculated pigs, while IT-inoculated pigs developed typical signs of influenza. Significantly higher titres of specific antibodies and changes of haematological parameters were found only in IT-inoculated pigs. Because positive correlations between viral titre, local cytokine concentration, and lung pathology have been observed, we hypothesise that both viral load and the local secretion of cytokines play a role in the induction of lung lesions. It could be that a higher replication of SIV stimulates immune cells to secrete higher amounts of cytokines. The results of the present study indicate that pathogenesis of SIV is dependent on both, the damage caused to the lung parenchyma directly by virus, and the effects on the cells of the host's immune system.
Collapse
Affiliation(s)
- M Pomorska-Mól
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland.
| | - K Kwit
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - I Markowska-Daniel
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - C Kowalski
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Life Sciences, 20-033 Lublin, Poland
| | - Z Pejsak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
8
|
CD4 T cell help is limiting and selective during the primary B cell response to influenza virus infection. J Virol 2013; 88:314-24. [PMID: 24155379 DOI: 10.1128/jvi.02077-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza virus vaccination strategies are focused upon the elicitation of protective antibody responses through administration of viral protein through either inactivated virions or live attenuated virus. Often overlooked in this strategy is the CD4 T cell response: how it develops into memory, and how it may support future primary B cell responses to heterologous infection. Through the utilization of a peptide-priming regimen, this study describes a strategy for developing CD4 T cell memory with the capacity to robustly expand in the lung-draining lymph node after live influenza virus infection. Not only were frequencies of antigen-specific CD4 T cells enhanced, but these cells also supported an accelerated primary B cell response to influenza virus-derived protein, evidenced by high anti-nucleoprotein (NP) serum antibody titers early, while there is still active viral replication ongoing in the lung. NP-specific antibody-secreting cells and heightened frequencies of germinal center B cells and follicular T helper cells were also readily detectable in the draining lymph node. Surprisingly, a boosted memory CD4 T cell response was not sufficient to provide intermolecular help for antibody responses. Our study demonstrates that CD4 T cell help is selective and limiting to the primary antibody response to influenza virus infection and that preemptive priming of CD4 T cell help can promote effective and rapid conversion of naive B cells to mature antibody-secreting cells.
Collapse
|
9
|
Rambal V, Müller K, Dang-Heine C, Sattler A, Dziubianau M, Weist B, Luu SH, Stoyanova A, Nickel P, Thiel A, Neumann A, Schweiger B, Reinke P, Babel N. Differential influenza H1N1-specific humoral and cellular response kinetics in kidney transplant patients. Med Microbiol Immunol 2013; 203:35-45. [PMID: 24057515 DOI: 10.1007/s00430-013-0312-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022]
Abstract
Renal transplant recipients (RTR) are considered at high risk for influenza-associated complications due to immunosuppression. The efficacy of standard influenza vaccination in RTRs is unclear. Hence, we evaluated activation of the adaptive immunity by the pandemic influenza A(H1N1) 2009 (A(H1N1)pdm09) vaccine in RTRs as compared to healthy controls. To determine cross-reactivity and/or bystander activation, seasonal trivalent influenza vaccine and tetanus/diphteria toxoid (TT/DT) vaccine-specific T cells along with allospecific T cells were quantified before and after A(H1N1)pdm09 vaccination. Vaccination-induced alloimmunity was additionally determined by quantifying serum creatinine and proinflammatory protein IP-10. Contrary to healthy controls, RTRs required a booster vaccination to achieve seroconversion (13.3 % day 21; 90 % day 90). In contrast to humoral immunity, sufficient A(H1N1)pdm09-specific T-cell responses were mounted in RTRs already after the first immunization with a magnitude comparable with healthy controls. Interestingly, vaccination simultaneously boosted T cells reacting to seasonal flu but not to TT/DT, suggesting cross-activation. No alloimmune effects were recorded. In conclusion, protective antibody responses required booster vaccination. However, sufficient cellular immunity is established already after the first vaccination, demonstrating differential kinetics of humoral and cellular immunity.
Collapse
Affiliation(s)
- Vinay Rambal
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Multifunctional CD4 cells expressing gamma interferon and perforin mediate protection against lethal influenza virus infection. J Virol 2012; 86:6792-803. [PMID: 22491469 DOI: 10.1128/jvi.07172-11] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CD4 effectors generated in vitro can promote survival against a highly pathogenic influenza virus via an antibody-independent mechanism involving class II-restricted, perforin-mediated cytotoxicity. However, it is not known whether CD4 cells activated during influenza virus infection can acquire cytolytic activity that contributes to protection against lethal challenge. CD4 cells isolated from the lungs of infected mice were able to confer protection against a lethal dose of H1N1 influenza virus A/Puerto Rico 8/34 (PR8). Infection of BALB/c mice with PR8 induced a multifunctional CD4 population with proliferative capacity and ability to secrete interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α) in the draining lymph node (DLN) and gamma interferon (IFN-γ) and IL-10 in the lung. IFN-γ-deficient CD4 cells produced larger amounts of IL-17 and similar levels of TNF-α, IL-10, and IL-2 compared to wild-type (WT) CD4 cells. Both WT and IFN-γ(-/-) CD4 cells exhibit influenza virus-specific cytotoxicity; however, IFN-γ-deficient CD4 cells did not promote recovery after lethal infection as effectively as WT CD4 cells. PR8 infection induced a population of cytolytic CD4 effectors that resided in the lung but not the DLN. These cells expressed granzyme B (GrB) and required perforin to lyse peptide-pulsed targets. Lethally infected mice given influenza virus-specific CD4 cells deficient in perforin showed greater weight loss and a slower time to recovery than mice given WT influenza virus-specific CD4 cells. Taken together, these data strengthen the concept that CD4 T cell effectors are broadly multifunctional with direct roles in promoting protection against lethal influenza virus infection.
Collapse
|
12
|
The contribution of systemic and pulmonary immune effectors to vaccine-induced protection from H5N1 influenza virus infection. J Virol 2012; 86:5089-98. [PMID: 22379093 DOI: 10.1128/jvi.07205-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Live attenuated influenza vaccines (LAIVs) are effective in providing protection against influenza challenge in animal models and in preventing disease in humans. We previously showed that LAIVs elicit a range of immune effectors and that successful induction of pulmonary cellular and humoral immunity in mice requires pulmonary replication of the vaccine virus. An upper respiratory tract immunization (URTI) model was developed in mice to mimic the human situation, in which the vaccine virus does not replicate in the lower respiratory tract, allowing us to assess the protective efficacy of an H5N1 LAIV against highly pathogenic H5N1 virus challenge in the absence of significant pulmonary immunity. Our results show that, after one dose of an H5N1 LAIV, pulmonary influenza-specific lymphocytes are the main contributors to clearance of challenge virus from the lungs and that contributions of influenza-specific enzyme-linked immunosorbent assay (ELISA) antibodies in serum and splenic CD8(+) T cells were negligible. Complete protection from H5N1 challenge was achieved after two doses of H5N1 LAIV and was associated with maturation of the antibody response. Although passive transfer of sera from mice that received two doses of vaccine prevented lethality in naive recipients following challenge, the mice showed significant weight loss, with high pulmonary titers of the H5N1 virus. These data highlight the importance of mucosal immunity in mediating optimal protection against H5N1 infection. Understanding the requirements for effective induction and establishment of these protective immune effectors in the respiratory tract paves the way for a more rational and effective vaccine approach in the future.
Collapse
|
13
|
Homan EJ, Bremel RD. Patterns of predicted T-cell epitopes associated with antigenic drift in influenza H3N2 hemagglutinin. PLoS One 2011; 6:e26711. [PMID: 22039539 PMCID: PMC3200361 DOI: 10.1371/journal.pone.0026711] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/03/2011] [Indexed: 12/19/2022] Open
Abstract
Antigenic drift allowing escape from neutralizing antibodies is an important feature of transmission and survival of influenza viruses in host populations. Antigenic drift has been studied in particular detail for influenza A H3N2 and well defined antigenic clusters of this virus documented. We examine how host immunogenetics contributes to determination of the antibody spectrum, and hence the immune pressure bringing about antigenic drift. Using uTOPE™ bioinformatics analysis of predicted MHC binding, based on amino acid physical property principal components, we examined the binding affinity of all 9-mer and 15-mer peptides within the hemagglutinin 1 (HA1) of 447 H3N2 virus isolates to 35 MHC-I and 14 MHC-II alleles. We provide a comprehensive map of predicted MHC-I and MHC-II binding affinity for a broad array of HLA alleles for the H3N2 influenza HA1 protein. Each HLA allele exhibited a characteristic predicted binding pattern. Cluster analysis for each HLA allele shows that patterns based on predicted MHC binding mirror those described based on antibody binding. A single amino acid mutation or position displacement can result in a marked difference in MHC binding and hence potential T-helper function. We assessed the impact of individual amino acid changes in HA1 sequences between 10 virus isolates from 1968-2002, representative of antigenic clusters, to understand the changes in MHC binding over time. Gain and loss of predicted high affinity MHC-II binding sites with cluster transitions were documented. Predicted high affinity MHC-II binding sites were adjacent to antibody binding sites. We conclude that host MHC diversity may have a major determinant role in the antigenic drift of influenza A H3N2.
Collapse
Affiliation(s)
- E Jane Homan
- ioGenetics LLC, Madison, Wisconsin, United States of America.
| | | |
Collapse
|
14
|
Seasonal influenza infection and live vaccine prime for a response to the 2009 pandemic H1N1 vaccine. Proc Natl Acad Sci U S A 2011; 108:1140-5. [PMID: 21199945 DOI: 10.1073/pnas.1009908108] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The robust immune response to a single dose of pandemic 2009 H1N1 vaccine suggests that a large segment of the population has been previously primed. We evaluated the effect of seasonal (s) H1N1 infection, s-trivalent inactivated vaccine (s-TIV), and trivalent s-live attenuated influenza vaccine (s-LAIV) before immunization with a pandemic live attenuated influenza vaccine (p-LAIV) in mice. We compared serum and mucosal antibody and pulmonary CD8 and CD4 responses and the virologic response to challenge with a wild-type 2009 pandemic H1N1 (p-H1N1) virus. Two doses of p-LAIV induced cellular immune and robust ELISA and neutralizing antibody responses that were associated with complete protection from p-H1N1 challenge. A single dose of p-LAIV induced a cellular response and ELISA but not a neutralizing antibody response, and incomplete protection from p-H1N1 virus challenge. Primary infection with s-H1N1 influenza virus followed by a dose of p-LAIV resulted in cross-reactive ELISA antibodies and a robust cellular immune response that was also associated with complete protection from p-H1N1 virus challenge. A lower-magnitude but similar response associated with partial protection was seen in mice that received a dose of s-LAIV followed by p-LAIV. Mice that received a dose of s-TIV followed by p-LAIV did not show any evidence of priming. In summary, prior infection with a seasonal influenza virus or s-LAIV primed mice for a robust response to a single dose of p-LAIV that was associated with protection equivalent to two doses of the matched pandemic vaccine.
Collapse
|
15
|
Subbramanian RA, Basha S, Shata MT, Brady RC, Bernstein DI. Pandemic and seasonal H1N1 influenza hemagglutinin-specific T cell responses elicited by seasonal influenza vaccination. Vaccine 2010; 28:8258-67. [DOI: 10.1016/j.vaccine.2010.10.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 10/23/2010] [Accepted: 10/29/2010] [Indexed: 11/25/2022]
|
16
|
Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, Qin Z, Renukaradhya GJ, Lee CW. Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus. J Virol 2010; 84:11210-8. [PMID: 20719941 PMCID: PMC2953174 DOI: 10.1128/jvi.01211-10] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pigs are capable of generating reassortant influenza viruses of pandemic potential, as both the avian and mammalian influenza viruses can infect pig epithelial cells in the respiratory tract. The source of the current influenza pandemic is H1N1 influenza A virus, possibly of swine origin. This study was conducted to understand better the pathogenesis of H1N1 influenza virus and associated host mucosal immune responses during acute infection in humans. Therefore, we chose a H1N1 swine influenza virus, Sw/OH/24366/07 (SwIV), which has a history of transmission to humans. Clinically, inoculated pigs had nasal discharge and fever and shed virus through nasal secretions. Like pandemic H1N1, SwIV also replicated extensively in both the upper and lower respiratory tracts, and lung lesions were typical of H1N1 infection. We detected innate, proinflammatory, Th1, Th2, and Th3 cytokines, as well as SwIV-specific IgA antibody in lungs of the virus-inoculated pigs. Production of IFN-γ by lymphocytes of the tracheobronchial lymph nodes was also detected. Higher frequencies of cytotoxic T lymphocytes, γδ T cells, dendritic cells, activated T cells, and CD4+ and CD8+ T cells were detected in SwIV-infected pig lungs. Concomitantly, higher frequencies of the immunosuppressive T regulatory cells were also detected in the virus-infected pig lungs. The findings of this study have relevance to pathogenesis of the pandemic H1N1 influenza virus in humans; thus, pigs may serve as a useful animal model to design and test effective mucosal vaccines and therapeutics against influenza virus.
Collapse
Affiliation(s)
- Mahesh Khatri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
| | - Varun Dwivedi
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
| | - Steven Krakowka
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
| | - Cordelia Manickam
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
| | - Ahmed Ali
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
| | - Leyi Wang
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
| | - Zhuoming Qin
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
| | - Gourapura J. Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
- Corresponding author. Mailing address: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, OH 44691. Phone for G. J. Renukaradhya: (330) 263-3748. Fax: (330) 263-3677. E-mail: . Phone for C.-W. Lee: (330) 263-3750. Fax: (330) 263-3677. E-mail:
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, Ohio 44691, Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210, Institute of Poultry Science, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China 250023, Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio 43210
- Corresponding author. Mailing address: Food Animal Health Research Program, Ohio Agricultural Research and Development Center, the Ohio State University, 1680 Madison Avenue, Wooster, OH 44691. Phone for G. J. Renukaradhya: (330) 263-3748. Fax: (330) 263-3677. E-mail: . Phone for C.-W. Lee: (330) 263-3750. Fax: (330) 263-3677. E-mail:
| |
Collapse
|
17
|
Age-related changes in magnitude and diversity of cross-reactive CD4+ T-cell responses to the novel pandemic H1N1 influenza hemagglutinin. Hum Immunol 2010; 71:957-63. [DOI: 10.1016/j.humimm.2010.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/25/2010] [Accepted: 07/12/2010] [Indexed: 11/21/2022]
|
18
|
Wu H, Haist V, Baumgärtner W, Schughart K. Sustained viral load and late death in Rag2-/- mice after influenza A virus infection. Virol J 2010; 7:172. [PMID: 20667098 PMCID: PMC2919473 DOI: 10.1186/1743-422x-7-172] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
The importance of the adaptive immune response for secondary influenza infections and protection from a lethal challenge after vaccination has been well documented. However, some controversy still exists concerning the specific involvement of B and T cells during a primary infection. Here, we have followed the survival, weight loss, viral load and lung pathology in Rag2-/- knock-out mice after infection with influenza A virus (H1N1). Infected wild type mice initially lost weight early after infection but then cleared the virus and recovered. Rag2-/- mice, however, showed similar weight loss kinetics in the early stages after infection but weight loss continued post infection and culminated in death. In contrast to wild type mice, Rag2-/- mice were not able to clear the virus, despite an increased inflammatory response. Furthermore, they did not recruit virus-specific lymphocytes into the lung in the later stages after infection and exhibited sustained pulmonary lesions.
Collapse
Affiliation(s)
- Haiya Wu
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Inhoffenstr 7, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
19
|
Miao H, Hollenbaugh JA, Zand MS, Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ. Quantifying the early immune response and adaptive immune response kinetics in mice infected with influenza A virus. J Virol 2010; 84:6687-98. [PMID: 20410284 PMCID: PMC2903284 DOI: 10.1128/jvi.00266-10] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 04/08/2010] [Indexed: 01/12/2023] Open
Abstract
Seasonal and pandemic influenza A virus (IAV) continues to be a public health threat. However, we lack a detailed and quantitative understanding of the immune response kinetics to IAV infection and which biological parameters most strongly influence infection outcomes. To address these issues, we use modeling approaches combined with experimental data to quantitatively investigate the innate and adaptive immune responses to primary IAV infection. Mathematical models were developed to describe the dynamic interactions between target (epithelial) cells, influenza virus, cytotoxic T lymphocytes (CTLs), and virus-specific IgG and IgM. IAV and immune kinetic parameters were estimated by fitting models to a large data set obtained from primary H3N2 IAV infection of 340 mice. Prior to a detectable virus-specific immune response (before day 5), the estimated half-life of infected epithelial cells is approximately 1.2 days, and the half-life of free infectious IAV is approximately 4 h. During the adaptive immune response (after day 5), the average half-life of infected epithelial cells is approximately 0.5 days, and the average half-life of free infectious virus is approximately 1.8 min. During the adaptive phase, model fitting confirms that CD8(+) CTLs are crucial for limiting infected cells, while virus-specific IgM regulates free IAV levels. This may imply that CD4 T cells and class-switched IgG antibodies are more relevant for generating IAV-specific memory and preventing future infection via a more rapid secondary immune response. Also, simulation studies were performed to understand the relative contributions of biological parameters to IAV clearance. This study provides a basis to better understand and predict influenza virus immunity.
Collapse
Affiliation(s)
- Hongyu Miao
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Joseph A. Hollenbaugh
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Martin S. Zand
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Jeanne Holden-Wiltse
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Tim R. Mosmann
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Alan S. Perelson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Hulin Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - David J. Topham
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, New York 14642, David H. Smith Center for Vaccine Biology & Immunology, Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, Department of Medicine, Division of Nephrology, University of Rochester, Rochester, New York 14642, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|
20
|
Memory CD4 T cells direct protective responses to influenza virus in the lungs through helper-independent mechanisms. J Virol 2010; 84:9217-26. [PMID: 20592069 DOI: 10.1128/jvi.01069-10] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Memory CD4 T cells specific for influenza virus are generated from natural infection and vaccination, persist long-term, and recognize determinants in seasonal and pandemic influenza virus strains. However, the protective potential of these long-lived influenza virus-specific memory CD4 T cells is not clear, including whether CD4 T-cell helper or effector functions are important in secondary antiviral responses. Here we demonstrate that memory CD4 T cells specific for H1N1 influenza virus directed protective responses to influenza virus challenge through intrinsic effector mechanisms, resulting in enhanced viral clearance, recovery from sublethal infection, and full protection from lethal challenge. Mice with influenza virus hemagglutinin (HA)-specific memory CD4 T cells or polyclonal influenza virus-specific memory CD4 T cells exhibited protection from influenza virus challenge that occurred in the presence of CD8-depleting antibodies in B-cell-deficient mice and when CD4 T cells were transferred into lymphocyte-deficient RAG2(-/-) mice. Moreover, the presence of memory CD4 T cells mobilized enhanced T-cell recruitment and immune responses in the lung. Neutralization of gamma interferon (IFN-gamma) production in vivo abrogated memory CD4 T-cell-mediated protection from influenza virus challenge by HA-specific memory T cells and heterosubtypic protection by polyclonal memory CD4 T cells. Our results indicate that memory CD4 T cells can direct enhanced protection from influenza virus infection through mobilization of immune effectors in the lung, independent of their helper functions. These findings have important implications for the generation of universal influenza vaccines by promoting long-lived protective CD4 T-cell responses.
Collapse
|
21
|
Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, Koyasu S, Tanaka K, Takahama Y. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 2009; 32:29-40. [PMID: 20045355 DOI: 10.1016/j.immuni.2009.10.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/03/2009] [Accepted: 10/14/2009] [Indexed: 12/21/2022]
Abstract
How self-peptides displayed in the thymus contribute to the development of immunocompetent and self-protective T cells is largely unknown. In contrast, the role of thymic self-peptides in eliminating self-reactive T cells and thereby preventing autoimmunity is well established. A type of proteasome, termed thymoproteasome, is specifically expressed by thymic cortical epithelial cells (cTECs) and is required for the generation of optimal cellularity of CD8+ T cells. Here, we show that cTECs displayed thymoproteasome-specific peptide-MHC class I complexes essential for the positive selection of major and diverse repertoire of MHC class I-restricted T cells. CD8+ T cells generated in the absence of thymoproteasomes displayed a markedly altered T cell receptor repertoire that was defective in both allogeneic and antiviral responses. These results demonstrate that thymoproteasome-dependent self-peptide production is required for the development of an immunocompetent repertoire of CD8+ T cells.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Beishuizen CRL, Kragten NAM, Boon L, Nolte MA, van Lier RAW, van Gisbergen KPJM. Chronic CD70-Driven Costimulation Impairs IgG Responses by Instructing T Cells to Inhibit Germinal Center B Cell Formation through FasL-Fas Interactions. THE JOURNAL OF IMMUNOLOGY 2009; 183:6442-51. [DOI: 10.4049/jimmunol.0901565] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Zinckgraf JW, Sposato M, Zielinski V, Powell D, Treanor JJ, von Hofe E. Identification of HLA class II H5N1 hemagglutinin epitopes following subvirion influenza A (H5N1) vaccination. Vaccine 2009; 27:5393-401. [PMID: 19596415 DOI: 10.1016/j.vaccine.2009.06.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/09/2009] [Accepted: 06/22/2009] [Indexed: 12/17/2022]
Abstract
Prophylactic immunization against influenza infection requires CD4+ T-helper cell activity for optimal humoral and cellular immunity. Currently there is one FDA approved H5N1 subvirion vaccine available, although stockpiles of this vaccine are insufficient for broad population coverage and the vaccine has only demonstrated modest immunogenicity. Specific activation of CD4+ T-helper cells using class II H5N1 HA peptide vaccines may be a useful component in immunization strategy and design. Identification of HLA class II HA epitopes was undertaken in this report by obtaining PBMCs from volunteers previously immunized with an H5N1 inactivated subvirion vaccine, followed by direct ex vivo stimulation of CD4+ T cells against different sources of potential HA class II epitopes. In the 1st round of analysis, 35 donors were tested via IFN-gamma ELISPOT using pools of overlapping HA peptides derived from the H5N1 A/Thailand/4(SP-528)/2004 virus, recombinant H5N1 (rHA) and inactivated H5N1 subvirion vaccine. In addition, a series of algorithm-predicted epitopes coupled with the Ii-Key moiety of the MHC class II-associated invariant chain for enhanced MHC class II charging were also included. Specific responses were observed for all 20 peptide pools, with 6-26% of vaccinated individuals responding to any given pool (donor response frequency) and a magnitude of response ranging from 3- to >10-fold above background levels. Responses were similarly observed with the majority of algorithm-predicted epitopes, with a donor response frequency of up to 29% and a magnitude of response ranging from 3-10-fold (11/24 peptides) to >10-fold above background (7/24 peptides). PBMCs from vaccine recipients that had detectable responses to H5N1 rHA following 1st round analysis were used in a 2nd round of testing to confirm the identity of specific peptides based on the results of the 1st screening. Sixteen individual HA peptides identified from the library elicited CD4+ T cell responses between 3- and >10-fold above background, with two peptides being recognized in 21% of recipients tested. Eight of the putative MHC class II epitopes recognized were found in regions showing partial to significant sequence homology with New Caledonia H1N1 influenza HA, while eight were unique to H5N1 HA. This is the first study to identify H5N1 HA epitope-specific T cells in vaccine recipients and offers hope for the design of a synthetic peptide vaccine to prime CD4+ T-helper cells. Such a vaccine could be used to provide at least some minimal level of H5N1 protection on its own and/or prime for a subsequent dose of a more traditional but supply-limited vaccine.
Collapse
Affiliation(s)
- John W Zinckgraf
- Antigen Express, Inc, One Innovation Drive, Worcester, MA 01605, United States
| | | | | | | | | | | |
Collapse
|
24
|
Waisman A, Croxford AL, Demircik F. New tools to study the role of B cells in cytomegalovirus infections. Med Microbiol Immunol 2008; 197:145-149. [PMID: 18330599 DOI: 10.1007/s00430-008-0088-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Indexed: 01/08/2023]
Abstract
B cells were previously shown to mediate partial protection against CMV infection, as in the absence of B cells, latently infected mice were more susceptible to virus reactivation. It remains unclear if this effect stems from the loss of B cells as antibody producers or as antigen presenting cells. To address this fundamental question, we propose to make use of new mouse models that allow conditional ablation of B cells or that allow for the generation of mice with B cells that are not able to produce antibodies.
Collapse
Affiliation(s)
- Ari Waisman
- 1st Medical Department, University of Mainz, Obere-Zahlbacherstr. 63, 55131 Mainz, Germany.
| | | | | |
Collapse
|
25
|
Baumgarth N, Choi YS, Rothaeusler K, Yang Y, Herzenberg LA. B cell lineage contributions to antiviral host responses. Curr Top Microbiol Immunol 2008; 319:41-61. [PMID: 18080414 DOI: 10.1007/978-3-540-73900-5_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B cell responses are a major immune protective mechanism induced against a large variety of pathogens. Technical advances over the last decade, particularly in the isolation and characterization of B cell subsets by multicolor flow cytometry, have demonstrated the multifaceted nature of pathogen-induced B cell responses. In addition to participation by the major follicular B cell population, three B cell subsets are now recognized as key contributors to pathogen-induced host defenses: marginal zone (MZ) B cells, B-1a and B-1b cells. Each of these subsets seems to require unique activation signals and to react with distinct response patterns. Here we provide a brief review of the main developmental and functional features of these B cell subsets. Furthermore, we outline our current understanding of how each subset contributes to the humoral response to influenza virus infection and what regulates their differential responses. Understanding of the multilayered nature of the humoral responses to infectious agents and the complex innate immune signals that shape pathogen-specific humoral responses are likely at the heart of enhancing our ability to induce appropriate and long-lasting humoral responses for prophylaxis and therapy.
Collapse
Affiliation(s)
- N Baumgarth
- Center for Comparative Medicine, University of California, Davis, County Rd 98 & Hutchison Drive, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
26
|
La Gruta NL, Kedzierska K, Stambas J, Doherty PC. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol 2007; 85:85-92. [PMID: 17213831 DOI: 10.1038/sj.icb.7100026] [Citation(s) in RCA: 358] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Influenza A viruses that circulate normally in the human population cause a debilitating, though generally transient, illness that is sometimes fatal, particularly in the elderly. Severe complications arising from pandemic influenza or the highly pathogenic avian H5N1 viruses are often associated with rapid, massive inflammatory cell infiltration, acute respiratory distress, reactive hemophagocytosis and multiple organ involvement. Histological and pathological indicators strongly suggest a key role for an excessive host response in mediating at least some of this pathology. Here, we review the current literature on how various effector arms of the immune system can act deleteriously to initiate or exacerbate pathological damage in this viral pneumonia. Generally, the same immunological factors mediating tissue damage during the anti-influenza immune response are also critical for efficient elimination of virus, thereby posing a significant challenge in the design of harmless yet effective therapeutic strategies for tackling influenza virus.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
27
|
Jayasekera JP, Vinuesa CG, Karupiah G, King NJC. Enhanced antiviral antibody secretion and attenuated immunopathology during influenza virus infection in nitric oxide synthase-2-deficient mice. J Gen Virol 2006; 87:3361-3371. [PMID: 17030871 DOI: 10.1099/vir.0.82131-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NOS2 gene-deficient (NOS2−/−) mice are less susceptible than wild-type (NOS2+/+) mice to infection with Influenza A virus. Virus titres in the lungs of influenza-infected NOS2−/− mice are significantly lower than those in NOS2+/+ mice, with enhanced viral clearance in NOS2−/− mice dependent on gamma interferon (IFN-γ). The current study was undertaken to ascertain the role of specific components of the immune response in promoting virus clearance in influenza-infected NOS2−/− mice. Levels of T cell- and natural killer cell-mediated cytotoxicity in the lungs of virus-infected mice were not significantly different between NOS2+/+ and NOS2−/− mice. However, virus-infected NOS2−/− mice produced higher levels of virus-specific IgG2a antibody. Furthermore, more viable B cells and plasmablasts, along with greater levels of IFN-γ, were found in NOS2−/− splenocyte cultures stimulated with B-cell mitogens. In addition to the early reduction in virus titres, clinical symptoms and proinflammatory cytokine production were attenuated in NOS2−/− mice. Thus, NOS2−/− B cells are capable of responding rapidly to influenza virus infection by proliferating and preferentially producing antibody of the IgG2a subtype. The relationship between viral load and the development of immunopathology is discussed.
Collapse
Affiliation(s)
- Jerome P Jayasekera
- Department of Pathology, Bosch Institute, School of Biomedical Sciences, Blackburn Building D06, University of Sydney, NSW 2006, Australia
| | - Carola G Vinuesa
- Division of Immunology and Genetics, John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | - Gunasegaran Karupiah
- Division of Immunology and Genetics, John Curtin School of Medical Research (JCSMR), Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas J C King
- Department of Pathology, Bosch Institute, School of Biomedical Sciences, Blackburn Building D06, University of Sydney, NSW 2006, Australia
| |
Collapse
|
28
|
Brown DM, Dilzer AM, Meents DL, Swain SL. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. THE JOURNAL OF IMMUNOLOGY 2006; 177:2888-98. [PMID: 16920924 DOI: 10.4049/jimmunol.177.5.2888] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanisms whereby CD4 T cells contribute to the protective response against lethal influenza infection remain poorly characterized. To define the role of CD4 cells in protection against a highly pathogenic strain of influenza, virus-specific TCR transgenic CD4 effectors were generated in vitro and transferred into mice given lethal influenza infection. Primed CD4 effectors conferred protection against lethal infection over a broad range of viral dose. The protection mediated by CD4 effectors did not require IFN-gamma or host T cells, but did result in increased anti-influenza Ab titers compared with untreated controls. Further studies indicated that CD4-mediated protection at high doses of influenza required B cells, and that passive transfer of anti-influenza immune serum was therapeutic in B cell-deficient mice, but only when CD4 effectors were present. Primed CD4 cells also acquired perforin (Pfn)-mediated cytolytic activity during effector generation, suggesting a second mechanism used by CD4 cells to confer protection. Pfn-deficient CD4 effectors were less able to promote survival in intact BALB/c mice and were unable to provide protection in B cell-deficient mice, indicating that Ab-independent protection by CD4 effectors requires Pfn. Therefore, CD4 effectors mediate protection to lethal influenza through at least two mechanisms: Pfn-mediated cytotoxicity early in the response promoted survival independently of Ab production, whereas CD4-driven B cell responses resulted in high titer Abs that neutralized remaining virus.
Collapse
Affiliation(s)
- Deborah M Brown
- Trudeau Institute, Saranac Lake, NY 12983, USA. dbrown@trudeauinstitute
| | | | | | | |
Collapse
|
29
|
Coleclough C, Sealy R, Surman S, Marshall DR, Hurwitz JL. Respiratory Vaccination of Mice Against Influenza Virus: Dissection of T- and B-Cell Priming Functions. Scand J Immunol 2005; 62 Suppl 1:73-83. [PMID: 15953188 DOI: 10.1111/j.1365-3083.2005.01613.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We find that a single respiratory administration of replicationally inactivated influenza A viral particles most often elicits a waning serum antibody response, as the long-sustained bone marrow antiviral plasma cell populations characteristically induced by viral infection are lacking, though antiviral plasma cells at other sites may occasionally persist for a long time. To determine whether this alteration in the pattern of the B-cell response is a reflection of the nature of T-helper (Th) priming, we simultaneously primed B cells with inactivated influenza A/PR8(H1N1) and Th cells with infectious A/x31(H3N2). We show that Th cells cross-react extensively between these two viruses, although the antibody response to viral envelope glycoproteins is completely non-cross-reactive. Th cells primed by infectious A/x31 have little impact on the antibody response specifically elicted from naïve B cells by inactivated A/PR8 viruses, suggesting that the characteristic vigour of the antibody response to influenza viral infection depends on the direct interaction of antiviral B cells with virally infected dendritic cells. Memory B cells primed by inactivated influenza viral particles however, respond rapidly to secondary challenge with live or inactivated viruses, promptly populating bone marrow with antiviral plasma cells. Moreover, Th cells primed by previous live A/x31 viral challenge alter the pattern of the response of naïve B cells to live A/PR8 challenge by accelerating the appearance of anti-H1/N1 plasma cells in bone marrow, eliminating the early spike of anti-H1/N1 plasma cells in the mediastinal node, and generally diminishing the magnitude of the lymph node response. Inactivated A/PR8 and infectious A/x31 are both effective vaccines against A/PR8 infection, as mice preimmunized with either vaccine exhibit much more rapid viral clearance from the lung after infectious A/PR8 challenge. In fact, even when given during a course of anti-CD8 treatment to preempt cross-reactive cytotoxic T cells, live A/x31 is a more effective vaccine against A/PR8 infection than is inactivated A/PR8 itself.
Collapse
Affiliation(s)
- C Coleclough
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
30
|
Mozdzanowska K, Furchner M, Zharikova D, Feng J, Gerhard W. Roles of CD4+ T-cell-independent and -dependent antibody responses in the control of influenza virus infection: evidence for noncognate CD4+ T-cell activities that enhance the therapeutic activity of antiviral antibodies. J Virol 2005; 79:5943-51. [PMID: 15857980 PMCID: PMC1091716 DOI: 10.1128/jvi.79.10.5943-5951.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that B cells make a significant contribution to the resolution of influenza virus infection. To determine how B cells participate in the control of the infection, we transferred intact, major histocompatibility complex class II (MHC-II)-negative or B-cell receptor (BCR)-transgenic spleen cells into B-cell-deficient and CD8(+) T-cell-depleted muMT mice, termed muMT(-8), and tested them for ability to recover from infection. muMT(-8) mice that received no spleen cells invariably succumbed to the infection within 20 days, indicating that CD4(+) T-cell activities had no significant therapeutic activity on their own; in fact, they were harmful and decreased survival time. Interestingly, however, they became beneficial in the presence of antiviral antibody (Ab). Injection of MHC-II((-/-)) spleen cells, which can provide CD4(+) T-cell-independent (TI) but not T-cell-dependent (TD) activities, delayed mortality but only rarely resulted in clearance of the infection. By contrast, 80% of muMT(-8) mice injected with normal spleen cells survived and resolved the infection. Transfer of BCR-transgenic spleen cells, which contained approximately 10 times fewer virus-specific precursor B cells than normal spleen cells, had no significant impact on the course of the infection. Taken together, the results suggest that B cells contribute to the control of the infection mainly through production of virus-specific Abs and that the TD Ab response is therapeutically more effective than the TI response. In addition, CD4(+) T cells appear to contribute, apart from promoting the TD Ab response, by improving the therapeutic activity of Ab-mediated effector mechanisms.
Collapse
|
31
|
Abstract
Immune responses to viral infections involve a complex orchestration between innate signals and adaptive responses of specific T and B cells. Anti-viral CD4 cells can direct CD8 responses by secreting a Type 1 panel of cytokines including IFN-gamma, IL-2 and TNF-alpha and can drive B cell production of IgG2a to neutralize infective viral particles. This review will focus specifically on the role of CD4 cells in the immune response to influenza, an acute, localized respiratory viral infection. We suggest that CD4 cells act as direct effectors in protection against influenza, may contribute to immunopathology and generate functionally distinct memory subsets.
Collapse
Affiliation(s)
- Deborah M Brown
- Trudeau Institute, Inc., 154 Algonquin Ave., Saranac Lake, NY 12983, USA
| | | | | |
Collapse
|
32
|
Ramaswamy M, Shi L, Monick MM, Hunninghake GW, Look DC. Specific Inhibition of Type I Interferon Signal Transduction by Respiratory Syncytial Virus. Am J Respir Cell Mol Biol 2004; 30:893-900. [PMID: 14722224 DOI: 10.1165/rcmb.2003-0410oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Respiratory viruses often express mechanisms to resist host antiviral systems, but the biochemical basis for evasion of interferon effects by respiratory syncytial virus (RSV) is poorly defined. In this study, we identified RSV effects on interferon (IFN)-dependent signal transduction and gene expression in human airway epithelial cells. Initial experiments demonstrated inhibition of antiviral gene expression induced by IFN-alpha and IFN-beta, but not IFN-gamma, in epithelial cells infected with RSV. Selective viral effects on type I IFN-dependent signaling were confirmed when we observed impaired type I, but not type II, IFN-induced activation of the transcription factor Stat1 in RSV-infected cells. RSV infection of airway epithelial cells resulted in decreased Stat2 expression and function with preservation of upstream signaling events, providing a molecular mechanism for viral inhibition of the type I IFN JAK-STAT pathway. Furthermore, nonspecific pharmacologic inhibition of proteasome function in RSV-infected cells restored Stat2 levels and IFN-dependent activation of Stat1. The results indicate that RSV acts on epithelial cells in the airway to directly modulate the type I IFN JAK-STAT pathway, and this effect is likely mediated though proteasome-dependent degradation of Stat2. Decreased antiviral gene expression in RSV-infected airway epithelial cells may allow RSV replication and establishment of a productive viral infection through subversion of IFN-dependent immunity.
Collapse
Affiliation(s)
- Murali Ramaswamy
- University of Iowa Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, 200 Hawkins Drive, C33-GH, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The mucosal surfaces of the lungs pose tremendous problems for an immune system charged with maintaining a sterile pulmonary environment. Despite these problems, the immune system is effective at controlling most pulmonary infections. Over the past few years significant progress has been made in our understanding of how adaptive (humoral and cellular) immunity is able to control infections in the respiratory tract. Recent advances include the identification of effector memory T-cell populations in the lungs and an appreciation for the role of cytokines in regulating memory T-cell pools.
Collapse
|
34
|
Webby RJ, Andreansky S, Stambas J, Rehg JE, Webster RG, Doherty PC, Turner SJ. Protection and compensation in the influenza virus-specific CD8+ T cell response. Proc Natl Acad Sci U S A 2003; 100:7235-40. [PMID: 12775762 PMCID: PMC165859 DOI: 10.1073/pnas.1232449100] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus-specific CD8+ T cells generally recognize peptides derived from conserved, internal proteins that are not subject to antibody-mediated selection pressure. Prior exposure to any one influenza A virus (H1N1) can prime for a secondary CD8+ T cell response to a serologically different influenza A virus (H3N2). The protection afforded by this recall of established CD8+ T cell memory, although limited, is not negligible. Key characteristics of primary and secondary influenza-specific host responses are probed here with recombinant viruses expressing modified nucleoprotein (NP) and acid polymerase (PA) genes. Point mutations were introduced into the epitopes derived from the NP and PA such that they no longer bound the presenting H2Db MHC class I glycoprotein, and reassortant H1N1 and H3N2 viruses were made by reverse genetics. Conventional (C57BL/6J, H2b, and Ig+/+) and Ig-/- (muMT) mice were more susceptible to challenge with the single NP [HKx31 influenza A virus (HK)-NP] and PA (HK-PA) mutants, but unlike the Ig-/- mice, Ig+/+ mice were surprisingly resistant to the HK-NP/-PA double mutant. This virus was found to promote an enhanced IgG response resulting, perhaps, from the delayed elimination of antigen-presenting cells. Antigen persistence also could explain the increase in size of the minor KbPB1703 CD8+ T cell population in mice infected with the mutant viruses. The extent of such compensation was always partial, giving the impression that any virus-specific CD8+ T cell response operates within constrained limits. It seems that the relationship between protective humoral and cellular immunity is neither simple nor readily predicted.
Collapse
Affiliation(s)
- Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L, Gerhard W. Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 2003; 21:2616-26. [PMID: 12744898 DOI: 10.1016/s0264-410x(03)00040-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matix protein 2 (M2) is a transmembrane protein of influenza type A virus. It contains a 23 aa long ectodomain (M2e) that is highly conserved amongst human influenza type A viruses. M2e-specific antibodies have been shown to restrict virus growth in vitro and in vivo and thus have the potential of providing cross-reactive resistance to influenza type A virus infection. We attempted to induce M2e-specific protection with synthetic multiple antigen peptide (MAP) constructs that contained covalently linked M2e- and Th-determinant peptides. Mice, vaccinated twice by the intranasal (i.n.) route with adjuvanted M2e-MAPs exhibited significant resistance to virus replication in all sites of the respiratory tract. Compared to mice primed by two consecutive heterosubtypic infections, resistance was of similar strength in nasal and tracheal tissue but lower in pulmonary tissue. Importantly, the protection in M2e-MAP- and infection-immunized mice appeared to be mediated by distinct immune mechanisms. This suggests that stronger protection may be achievable by combining both protective activities.
Collapse
Affiliation(s)
- Krystyna Mozdzanowska
- Immunology Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Belz GT, Wodarz D, Diaz G, Nowak MA, Doherty PC. Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 2002; 76:12388-93. [PMID: 12414983 PMCID: PMC136883 DOI: 10.1128/jvi.76.23.12388-12393.2002] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The primary influenza A virus-specific CD8(+)-T-cell responses measured by tetramer staining of spleen, lymph node, and bronchoalveolar lavage (BAL) lymphocyte populations were similar in magnitude for conventional I-A(b+/+) and CD4(+)-T-cell-deficient I-A(b-/-) mice. Comparable levels of virus-specific cytotoxic-T-lymphocyte activity were detected in the inflammatory exudate recovered by BAL following challenge. However, both the size of the memory T-cell pool and the magnitude of the recall response in the lymphoid tissues (but not the BAL specimens) were significantly diminished in mice lacking the CD4(+) subset. Also, the rate of virus elimination from the infected respiratory tract slowed at low virus loads following challenge of naïve and previously immunized I-A(b-/-) mice. Thus, though the capacity to mediate the CD8(+)-T-cell effector function is broadly preserved in the absence of concurrent CD4(+)-T-cell help, both the maintenance and recall of memory are compromised and the clearance of residual virus is delayed. These findings are consistent with mathematical models that predict virus-host dynamics in this, and other, models of infection.
Collapse
Affiliation(s)
- Gabrielle T Belz
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
37
|
Ghosh MK, Borca MV, Roy P. Virus-derived tubular structure displaying foreign sequences on the surface elicit CD4+ Th cell and protective humoral responses. Virology 2002; 302:383-92. [PMID: 12441082 DOI: 10.1006/viro.2002.1648] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Particulate vector systems for the presentation of immunogenic epitopes provide an alternate and powerful approach for the delivery of immunogens of interest. In this article, we have exploited a viral protein of unknown function, bluetongue virus (BTV) nonstructural protein NS1, which forms distinct tubular aggregates in infected cells, as an immunogen delivery system. Tubules are helical assemblies of NS1 protein that present the C-terminus of the protein to the outer edge effectively displaying appended residues in a regular and repeating array akin to the coat of a filamentous phage. To assess the breadth of response induced following tubule-based immunization, two different immunodominant foreign peptides were inserted at the C-terminus of NS1 and chimeric tubules generated following expression in the baculovirus expression system. Both constructs, one carrying a peptide of foot and mouth disease virus (FMDV) (aa 135-144 of VP1) and the other, a peptide of influenza A virus (aa 186-205 of HA), effectively assembled into tubules and were easily purified. Subsequently, using in vitro assay systems, we demonstrated that each purified chimeric particle was capable of eliciting strong immune responses. Further, NS1-FMDV chimeric tubules could induce a potent immune response that could protect against disease.
Collapse
Affiliation(s)
- M K Ghosh
- Department of Medicine, University of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
38
|
Heinen PP, Rijsewijk FA, de Boer-Luijtze EA, Bianchi ATJ. Vaccination of pigs with a DNA construct expressing an influenza virus M2-nucleoprotein fusion protein exacerbates disease after challenge with influenza A virus. J Gen Virol 2002; 83:1851-1859. [PMID: 12124449 DOI: 10.1099/0022-1317-83-8-1851] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mice, vaccines inducing antibodies to the extracellular domain of the M2 protein (M2e) can confer protection to influenza A virus infection. Unlike the surface glycoproteins, haemagglutinin and neuraminidase, this domain of M2 is highly conserved and is therefore a potential broad-spectrum immunogen. In this study, the protection conferred by vaccines inducing antibodies to M2e was evaluated in a challenge model for swine influenza in pigs. A protein resulting from the fusion between M2e and the hepatitis B virus core protein (M2eHBc), with or without adjuvant, was evaluated. In addition, a DNA construct expressing a fusion protein between M2e and influenza virus nucleoprotein (M2eNP) was evaluated to see if the broad-spectrum protection conferred by antibodies could be further enhanced by T helper cells and cytotoxic T cells. All vaccines induced an antibody response against M2e, and the M2eNP DNA vaccine additionally induced an influenza virus-specific lymphoproliferation response. However, after challenge with a swine influenza virus (H1N1), no protection was observed in the vaccinated groups compared with the non-vaccinated control group. On the contrary, vaccinated pigs showed more severe clinical signs than the control pigs. The M2eNP DNA-vaccinated pigs showed the most severe clinical signs and three out of six pigs died on days 1 and 2 post-challenge. These results indicate that antibodies to M2e, especially in combination with cell-mediated immune responses, exacerbate disease. Thus, clinical signs after infection should be observed closely in further studies using M2e as an immunogen and caution should be exercised in using M2e in humans.
Collapse
Affiliation(s)
- Paul P Heinen
- Division of Mammalian Virology, Institute for Animal Science and Health (ID-Lelystad), PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Frans A Rijsewijk
- Division of Mammalian Virology, Institute for Animal Science and Health (ID-Lelystad), PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Els A de Boer-Luijtze
- Division of Mammalian Virology, Institute for Animal Science and Health (ID-Lelystad), PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - André T J Bianchi
- Division of Mammalian Virology, Institute for Animal Science and Health (ID-Lelystad), PO Box 65, 8200 AB Lelystad, The Netherlands1
| |
Collapse
|
39
|
Abstract
Respiratory virus infections, such as those caused by influenza and parainfluenza viruses, are a major cause of morbidity and mortality worldwide. Current vaccines against these pathogens rely on the induction of humoral immune responses that target viral coat proteins. Although this type of immunity provides solid protection against homologous virus strains, it is ineffective against heterologous virus strains that express serologically distinct coat proteins. In contrast, cellular immune responses can target internal antigens that are shared between heterologous viral strains. This form of immunity, sometimes referred to as heterosubtypic immunity, can mediate a substantial degree of protection. Thus, vaccines that emphasize cellular immune responses would be a valuable complement to available humoral vaccines. However, we only have a rudimentary understanding of which T cell subsets mediate protective immunity, how T cell memory is established and maintained, how that memory is recalled in a secondary infection, and why cellular immunity wanes rapidly with time. Here we review the role of CD4+ and CD8+ T cells in the recall response to influenza and parainfluenza viruses. In particular we focus on the recent observation that substantial numbers of memory T cells are established in the lung tissues and discuss the potential role of these cells in mediating a recall response. A thorough understanding of the cellular immune response to infection in the lungs is essential for future vaccine development.
Collapse
|
40
|
Heinen PP, de Boer-Luijtze EA, Bianchi ATJ. Respiratory and systemic humoral and cellular immune responses of pigs to a heterosubtypic influenza A virus infection. J Gen Virol 2001; 82:2697-2707. [PMID: 11602782 DOI: 10.1099/0022-1317-82-11-2697] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The level of heterosubtypic immunity (Het-I) and the immune mechanisms stimulated by a heterosubtypic influenza virus infection were investigated in pigs. Pigs are natural hosts for influenza virus and, like humans, they host both subtypes H1N1 and H3N2. Marked Het-I was observed when pigs were infected with H1N1 and subsequently challenged with H3N2. After challenge with H3N2, pigs infected earlier with H1N1 did not develop fever and showed reduced virus excretion compared with non-immune control pigs. In addition, virus transmission to unchallenged group-mates could be shown by virus isolation in the non-immune control group but not in the group infected previously with H1N1. Pigs infected previously with homologous H3N2 virus were protected completely. After challenge with H3N2, pigs infected previously with H1N1 showed a considerable increase in serum IgG titre to the conserved extracellular domain of M2 but not to the conserved nucleoprotein. These results suggest that antibodies against external conserved epitopes can have an important role in broad-spectrum immunity. After primary infection with both H1N1 and H3N2, a long-lived increase was observed in the percentage of CD8(+) T cells in the lungs and in the lymphoproliferation response in the blood. Upon challenge with H3N2, pigs infected previously with H1N1 again showed an increase in the percentage of CD8(+) T cells in the lungs, whereas pigs infected previously with H3N2 did not, suggesting that CD8(+) T cells also have a role in Het-I. To confer broad-spectrum immunity, future vaccines should induce antibodies and CD8(+) T cells against conserved antigens.
Collapse
Affiliation(s)
- Paul P Heinen
- Department of Mammalian Virology, Institute for Animal Science and Health (ID-Lelystad BV), PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Els A de Boer-Luijtze
- Department of Mammalian Virology, Institute for Animal Science and Health (ID-Lelystad BV), PO Box 65, 8200 AB Lelystad, The Netherlands1
| | - Andre T J Bianchi
- Department of Mammalian Virology, Institute for Animal Science and Health (ID-Lelystad BV), PO Box 65, 8200 AB Lelystad, The Netherlands1
| |
Collapse
|
41
|
Nguyen HH, van Ginkel FW, Vu HL, McGhee JR, Mestecky J. Mechanism of heterosubtypic immunity to influenza A virus infection. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0531-5131(01)00344-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
|
43
|
Affiliation(s)
- W Gerhard
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA
| |
Collapse
|
44
|
Zhong W, Roberts AD, Woodland DL. Antibody-independent antiviral function of memory CD4+ T cells in vivo requires regulatory signals from CD8+ effector T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1379-86. [PMID: 11466356 DOI: 10.4049/jimmunol.167.3.1379] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity.
Collapse
Affiliation(s)
- W Zhong
- Trudeau Institute, Saranac Lake, NY 12983, USA
| | | | | |
Collapse
|
45
|
Bergmann CC, Ramakrishna C, Kornacki M, Stohlman SA. Impaired T cell immunity in B cell-deficient mice following viral central nervous system infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1575-83. [PMID: 11466379 DOI: 10.4049/jimmunol.167.3.1575] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells are required to control acute viral replication in the CNS following infection with neurotropic coronavirus. By contrast, studies in B cell-deficient (muMT) mice revealed Abs as key effectors in suppressing virus recrudescence. The apparent loss of initial T cell-mediated immune control in the absence of B cells was investigated by comparing T cell populations in CNS mononuclear cells from infected muMT and wild-type mice. Following viral recrudescence in muMT mice, total CD8(+) T cell numbers were similar to those of wild-type mice that had cleared infectious virus; however, virus-specific T cells were reduced at least 3-fold by class I tetramer and IFN-gamma ELISPOT analysis. Although overall T cell recruitment into the CNS of muMT mice was not impaired, discrepancies in frequencies of virus-specific CD8(+) T cells were most severe during acute infection. Impaired ex vivo cytolytic activity of muMT CNS mononuclear cells, concomitant with reduced frequencies, implicated IFN-gamma as the primary anti viral factor early in infection. Reduced virus-specific CD8(+) T cell responses in the CNS coincided with poor peripheral expansion and diminished CD4(+) T cell help. Thus, in addition to the lack of Ab, limited CD8(+) and CD4(+) T cell responses in muMT mice contribute to the ultimate loss of control of CNS infection. Using a model of virus infection restricted to the CNS, the results provide novel evidence for a role of B cells in regulating T cell expansion and differentiation into effector cells.
Collapse
Affiliation(s)
- C C Bergmann
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
46
|
Huber VC, Lynch JM, Bucher DJ, Le J, Metzger DW. Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7381-8. [PMID: 11390489 DOI: 10.4049/jimmunol.166.12.7381] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fc receptors for IgG expressed on macrophages and NK cells are important mediators of opsonophagocytosis and Ab-dependent cell-mediated cytotoxicity. Phagocyte-mediated opsonophagocytosis is pivotal for protection against bacteria, but its importance in recovery from infection with intracellular pathogens is unclear. We have now investigated the role of opsonophagocytosis in protection against lethal influenza virus infection by using FcR gamma(-/-) mice. Absence of the FcR gamma-chain did not affect the expression of IFN-gamma and IL-10 in the lungs and spleens after intranasal immunization with an influenza subunit vaccine. Titers of serum and respiratory Abs of the IgM, IgG1, IgG2a, and IgA isotypes in FcR gamma(-/-) mice were similar to levels seen in FcR gamma(+/+) mice. Nevertheless, FcR gamma(-/-) mice were highly susceptible to influenza infection, even in the presence of anti-influenza Abs from immune FcR gamma(+/+) mice. NK cells were not necessary for the observed Ab-mediated viral clearance, but macrophages were found to be capable of actively ingesting opsonized virus particles. We conclude that Fc receptor-mediated phagocytosis plays a pivotal role in clearance of respiratory virus infections.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- CD3 Complex
- Cell Line
- Cytokines/biosynthesis
- Genetic Predisposition to Disease
- Humans
- Immune Sera/administration & dosage
- Immunization, Passive
- Immunoglobulin Isotypes/biosynthesis
- Influenza A virus/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Injections, Intraperitoneal
- Lung/immunology
- Lung/metabolism
- Macrophages/immunology
- Macrophages/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Mice, Transgenic
- Phagocytosis/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Fc/deficiency
- Receptors, Fc/genetics
- Receptors, Fc/physiology
- Spleen/immunology
- Spleen/metabolism
Collapse
Affiliation(s)
- V C Huber
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
47
|
Benton KA, Misplon JA, Lo CY, Brutkiewicz RR, Prasad SA, Epstein SL. Heterosubtypic immunity to influenza A virus in mice lacking IgA, all Ig, NKT cells, or gamma delta T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7437-45. [PMID: 11390496 DOI: 10.4049/jimmunol.166.12.7437] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms of broad cross-protection to influenza viruses of different subtypes, termed heterosubtypic immunity, remain incompletely understood. We used knockout mouse strains to examine the potential for heterosubtypic immunity in mice lacking IgA, all Ig and B cells, NKT cells (CD1 knockout mice), or gamma(delta) T cells. Mice were immunized with live influenza A virus and compared with controls immunized with unrelated influenza B virus. IgA(-/-) mice survived full respiratory tract challenge with heterosubtypic virus that was lethal to controls. IgA(-/-) mice also cleared virus from the nasopharynx and lungs following heterosubtypic challenge limited to the upper respiratory tract, where IgA has been shown to play an important role. Ig(-/-) mice controlled the replication of heterosubtypic challenge virus in the lungs. Acute depletion of CD4+ or CD8+ T cell subsets abrogated this clearance of virus, thus indicating that both CD4+ and CD8+ T cells are required for protection in the absence of Ig. These results in Ig(-/-) mice indicate that CD4+ T cells can function by mechanisms other than providing help to B cells for the generation of Abs. Like wild-type mice, CD1(-/-) mice and gamma(delta) (-/-) mice survived lethal heterosubtypic challenge. Acute depletion of CD4+ and CD8+ cells abrogated heterosubtypic protection in gamma(delta) (-/-) mice, but not B6 controls, suggesting a contribution of gamma(delta) T cells. Our results demonstrate that the Ab and cellular subsets deficient in these knockout mice are not required for heterosubtypic protection, but each may play a role in a multifaceted response that as a whole is more effective than any of its parts.
Collapse
Affiliation(s)
- K A Benton
- Molecular Immunology Laboratory, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20852, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Tumpey TM, Renshaw M, Clements JD, Katz JM. Mucosal delivery of inactivated influenza vaccine induces B-cell-dependent heterosubtypic cross-protection against lethal influenza A H5N1 virus infection. J Virol 2001; 75:5141-50. [PMID: 11333895 PMCID: PMC114919 DOI: 10.1128/jvi.75.11.5141-5150.2001] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza vaccines that induce greater cross-reactive or heterosubtypic immunity (Het-I) may overcome limitations in vaccine efficacy imposed by the antigenic variability of influenza A viruses. We have compared mucosal versus traditional parenteral administration of inactivated influenza vaccine for the ability to induce Het-I in BALB/c mice and evaluated a modified Escherichia coli heat-labile enterotoxin adjuvant, LT(R192G), for augmentation of Het-I. Mice that received three intranasal (i.n.) immunizations of H3N2 vaccine in the presence of LT(R192G) were completely protected against lethal challenge with a highly pathogenic human H5N1 virus and had nasal and lung viral titers that were at least 2,500-fold lower than those of control mice receiving LT(R192G) alone. In contrast, mice that received three vaccinations of H3N2 vaccine subcutaneously in the presence or absence of LT(R192G) or incomplete Freund's adjuvant were not protected against lethal challenge and had no significant reductions in tissue virus titers observed on day 5 post-H5N1 virus challenge. Mice that were i.n. administered H3N2 vaccine alone, without LT(R192G), displayed partial protection against heterosubtypic challenge. The immune mediators of Het-I were investigated. The functional role of B and CD8+ T cells in Het-I were evaluated by using gene-targeted B-cell (IgH-6(-/-))- or beta2-microglobulin (beta2m(-/-))-deficient mice, respectively. beta2m(-/-) but not IgH-6(-/-) vaccinated mice were protected by Het-I and survived a lethal infection with H5N1, suggesting that B cells, but not CD8+ T cells, were vital for protection of mice against heterosubtypic challenge. Nevertheless, CD8+ T cells contributed to viral clearance in the lungs and brain tissues of heterotypically immune mice. Mucosal but not parenteral vaccination induced subtype cross-reactive lung immunoglobulin G (IgG), IgA, and serum IgG anti-hemagglutinin antibodies, suggesting the presence of a common cross-reactive epitope in the hemagglutinins of H3 and H5. These results suggest a strategy of mucosal vaccination that stimulates cross-protection against multiple influenza virus subtypes, including viruses with pandemic potential.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Administration, Cutaneous
- Administration, Intranasal
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- B-Lymphocytes/immunology
- Bacterial Toxins/administration & dosage
- Birds
- CD8-Positive T-Lymphocytes/immunology
- Cross Reactions
- Enterotoxins/administration & dosage
- Escherichia coli/immunology
- Escherichia coli Proteins
- Female
- Freund's Adjuvant/administration & dosage
- Hemagglutinins, Viral/immunology
- Humans
- Immunoglobulin A/analysis
- Immunoglobulin A/blood
- Immunoglobulin G/analysis
- Immunoglobulin G/blood
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Lung/immunology
- Lung/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Species Specificity
- Vaccines, Inactivated/immunology
Collapse
Affiliation(s)
- T M Tumpey
- Influenza Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | |
Collapse
|
49
|
Riberdy JM, Christensen JP, Branum K, Doherty PC. Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice. J Virol 2000; 74:9762-5. [PMID: 11000251 PMCID: PMC112411 DOI: 10.1128/jvi.74.20.9762-9765.2000] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optimal expansion of influenza virus nucleoprotein (D(b)NP(366))-specific CD8(+) T cells following respiratory challenge of naive Ig(-/-) microMT mice was found to require CD4(+) T-cell help, and this effect was also observed in primed animals. Absence of the CD4(+) population was consistently correlated with diminished recruitment of virus-specific CD8(+) T cells to the infected lung, delayed virus clearance, and increased morbidity. The splenic CD8(+) set generated during the recall response in Ig(-/-) mice primed at least 6 months previously showed a normal profile of gamma interferon production subsequent to short-term, in vitro stimulation with viral peptide, irrespective of a concurrent CD4(+) T-cell response. Both the magnitude and the localization profiles of virus-specific CD8(+) T cells, though perhaps not their functional characteristics, are thus modified in mice lacking CD4(+) T cells.
Collapse
Affiliation(s)
- J M Riberdy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
50
|
Doherty PC, Riberdy JM, Belz GT. Quantitative analysis of the CD8+ T-cell response to readily eliminated and persistent viruses. Philos Trans R Soc Lond B Biol Sci 2000; 355:1093-101. [PMID: 11186311 PMCID: PMC1692813 DOI: 10.1098/rstb.2000.0647] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recent development of techniques for the direct staining of peptide-specific CD8+ T cells has revolutionized the analysis of cell-mediated immunity (CMI) in virus infections. This approach has been used to quantify the acute and long-term consequences of infecting laboratory mice with the readily eliminated influenza A viruses (fluA) and a persistent gammaherpesvirus (gammaHV). It is now, for the first time, possible to work with real numbers in the analysis of CD8+ T CMI, and to define various characteristics of the responding lymphocytes both by direct flow cytometric analysis and by sorting for further in vitro manipulation. Relatively little has yet been done from the latter aspect, though we are rapidly accumulating a mass of numerical data. The acute, antigen-driven phases of the fluA and gammaHV-specific response look rather similar, but CD8+ T-cell numbers are maintained in the long term at a higher 'set point' in the persistent infection. Similarly, these 'memory' T cells continue to divide at a much greater rate in the gammaHV-infected mice. New insights have also been generated on the nature of the recall response following secondary challenge in both experimental systems, and the extent of protection conferred by large numbers of virus-specific CD8+ T cells has been determined. However, there are still many parameters that have received little attention, partly because they are difficult to measure. These include the rate of antigen-specific CD8+ T-cell loss, the extent of the lymphocyte 'diaspora' to other tissues, and the diversity of functional characteristics, turnover rates, clonal life spans and recirculation profiles. The basic question for immunologists remains how we reconcile the extraordinary plasticity of the immune system with the mechanisms that maintain a stable milieu interieur. This new capacity to quantify CD8+ T-cell responses in readily manipulated mouse models has obvious potential for illuminating homeostatic control, particularly if the experimental approaches to the problem are designed in the context of appropriate predictive models.
Collapse
Affiliation(s)
- P C Doherty
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38104, USA.
| | | | | |
Collapse
|